

AFRL-RY-WP-TR-2012-0137

BLACKJACK

Jack Dongarra, Antonios Danalis, and Piotr Luszczek

University of Tennessee Knoxville

Jeffrey Vetter and Gabriel Marin

Oak Ridge National Laboratory

Eric Stoltz and Michael Wolfe

The Portland Group

MAY 2012
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) and is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2012-0137 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH THE ASSIGNED DISTRIBUTION STATEMENT.

*//signature// //signature//
_______________________________________ ______________________________________
ALFRED J. SCARPELLI, Project Engineer BRADLEY J. PAUL, Chief
Integrated Circuits & Microsystems Branch Integrated Circuits & Microsystems Branch
Aerospace Components Division Aerospace Components Division

//signature//

BRADLEY CHRISTIANSEN, Lt Col, USAF
Deputy Division Chief
Aerospace Components Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

May 2012 Final 09 March 2009 – 02 April 2012
4. TITLE AND SUBTITLE

BLACKJACK
5a. CONTRACT NUMBER

FA8650-09-C-7916
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

62303E
6. AUTHOR(S)

Jack Dongarra, Antonios Danalis, and Piotr Luszczek (University of Tennessee
Knoxville)
Jeffrey Vetter and Gabriel Marin (Oak Ridge National Laboratory)
Eric Stoltz and Michael Wolfe (The Portland Group)

5d. PROJECT NUMBER

3000
5e. TASK NUMBER

YD
5f. WORK UNIT NUMBER

Y0H4
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

University of Tennessee Knoxville
800 Andy Holt Tower
Knoxville, TN 37996-0003

Oak Ridge National Laboratory

The Portland Group

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

AFRL/RYAP

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

AFRL-RY-WP-TR-2012-0137

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

PAO Case Number: DARPA-19767; cleared 21 August 2012. Report contains color.

14. ABSTRACT

The Blackjack project developed metrics and a test harness for evaluating compilers for scientific computing. The
evaluation was performed by using representative applications and implementing relevant micro-benchmarks in order to
test and analyze the productivity, correctness, and performance of multiple commercially available and freely available
open source compiler systems.

15. SUBJECT TERMS
compilers, benchmarks, correctness, performance

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 30

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Alfred J. Scarpelli
19b. TELEPHONE NUMBER (Include Area Code)

(937) 528-8898

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

 i

TABLE OF CONTENTS

1. SUMMARY ... 1

2 INTRODUCTION .. 2

3 METHODS, ASSUMPTIONS, AND PROCEDURES ... 3

3.1 System Characterization .. 3

3.2 Evaluation Benchmarks and Metrics ... 3

3.3 Evaluation Systems ... 4

3.4 Compiler Test Harness and Database .. 4

3.5 Test Suites ... 5

4 RESULTS AND DISCUSSION .. 6

4.1 Hardware Characterization .. 6

4.1.1 Cache Hierarchy ... 7

4.1.2 Asymmetries in the Memory Hierarchy ... 8

4.1.3 TLB Hierarchy .. 10

4.1.4 Execution Contexts ... 12

4.1.5 Statistical Analysis .. 13

4.2 Compiler Evaluation ... 13

4.2.1 Test Harness Results ... 13

4.2.2 Interpretation of Results .. 15

4.2.3 Discussion of SPEC CPU 2006 Results .. 18

5 CONCLUSION .. 20

5.1 Hardware Characterization .. 20

5.2 Compiler Evaluation ... 20

6 REFERENCES ... 21

Approved for public release; distribution unlimited.

 ii

LIST OF FIGURES

Figure 1: Cache Line Size Characterization on Intel Core 2 Duo. ... 7
Figure 2: Cache Count, Size and Latency Characterization on Intel Atom. .. 8
Figure 3: Cache Associativity Characterization on Itanium II. .. 8
Figure 4: One-way, inter-core communication bandwidth for different memory block sizes and core

placements on a dual-socket Intel Gainestown system. ... 9
Figure 5: Graph of timing results that reveal the TLB page size. .. 11
Figure 6: Graph of results that reveal the number of levels of TLB and the number of entries in each

level. ... 12
Figure 7: Execution Contexts Characterization on IBM POWER7. .. 13
Figure 8: Code bases used with the Compiler Test Harness. ... 14
Figure 9: Correctness test of multiple compilers. .. 15

Approved for public release; distribution unlimited.

 1

1. SUMMARY

The Blackjack effort was part of the DARPA Architecture Aware Compiler Environment (AACE)
program as a test and evaluation contract (T2) for the AACE compilers developers (T1). Due to a
change in DARPA direction which eliminated the connection with the T1 teams, this effort changed
focus to assess the capabilities of the existing commercial and free compilers. As the scope and
functionality of currently available compilers is much different from the goals set out for the
DARPA AACE compilers, Blackjack project objectives and methodology changed accordingly and
only included a subset of original evaluation criteria and metrics. Specifically, a set of commercial
and open source benchmarks, as well as applications, were chosen for evaluation of the existing
compilers.

The problem under investigation is to assess the capabilities of commercially available and open
source freely available compilers for compiling scientific software to produce correct and efficient
executable versions for modern high performance computing (HPC) systems. The compilers tested
were the Intel, and GNU compilers for C, C++, and Fortran. The conclusion was that while the
different compilers have their strengths and weaknesses, none is clearly better than the others under
all circumstances.

Approved for public release; distribution unlimited.

 2

1 INTRODUCTION

The Blackjack project developed metrics and a test harness for evaluating compilers for scientific
computing. The evaluation was performed by using representative applications and implementing
relevant micro-benchmarks in order to test and analyze the productivity, correctness, and
performance of multiple commercially available and freely available open source compiler systems.
The main two goals were:

1. to test whether compiler technology can automatically select the appropriate optimizations
based on a learned characterization of the target system; and

2. to ensure the compiler technology has a dynamic runtime environment that can dynamically
improve the performance of a program during runtime and/or provide information that can
be used by the compiler to optimize for future runs of the program.

The project consisted of two phases. Phase I developed a set of characterization benchmarks to
determine platform characteristics such as cache sizes and memory latency and bandwidth.

The main focus of Phase II was the T2 team’s evaluation of commercial and freely available
production compilers. The evaluation of these compilers was based on measurements taken from
the areas of performance, productivity, correctness and scalability. The Blackjack team defined
evaluation metrics for each of the evaluation criteria in this list. The metrics were evaluated by
using a test harness to run a set of test suites consisting of a range of benchmarks using the different
compilers on two different test platforms.

Approved for public release; distribution unlimited.

 3

2 METHODS, ASSUMPTIONS, AND PROCEDURES

2.1 System Characterization
BlackjackBench is a collection of portable micro-benchmarks that automate the characterization
process and the statistical analysis techniques for interpreting the results. The BlackjackBench
discovers the effective parameters of the hardware as experienced by the user application, rather
than the often unattainable peak values. It aims at hardware characteristics that are observed by
running executables from existing compilers and standard C codes. It characterizes the cache and
Translation Lookaside Buffer (TLB) hierarchies, the cache sharing and Non Uniform Memory
Access (NUMA) characteristics, the cost of arithmetic operations, the number of effective contexts
(cores), the number of available registers, and the length of the OS scheduler time slot. We show
how these features of modern multicore processors can be discovered programmatically. We also
show how these features could potentially interfere with each other, which could result in incorrect
interpretation of the results, and how established classification and statistical analysis techniques
can reduce experimental noise and aid automatic interpretation of the results.

2.2 Evaluation Benchmarks and Metrics
The metrics we used for judging and scoring the production compilers are listed below by category:

 Correctness

o Language conformance

o Correct answers

 Robustness

o Ease of installation

o Response to errors

 Performance

o Compile-time

 Total time

 Memory footprint

o Runtime

 Comparison to baseline benchmark execution time

 Ability to apply performance-critical transformations

Phase II required three sets of test programs. The first was a set of correctness tests, to make sure
the compilers correctly implement the language standards. For the base Fortran and C languages,
we used language conformance tests. There are also tests for the OpenMP additions, and we can use
other benchmark suites and community applications, to evaluate the robustness of the compilers.

The second set was to test the usability of the compiler. This included measuring compile time and
resource usage and how well the compilers work with standard application build environments.

The third set, which overlapped the first two sets, tested for performance improvement. We selected
several benchmarks and produced a baseline version of each for the target systems using the vendor

Approved for public release; distribution unlimited.

 4

or recommended compiler for that system. The baseline version was then used as the starting point
for comparison.

More details concerning the benchmarks and metrics can be found in the Benchmarks and Metrics
Specification Progress Report [2].

2.3 Evaluation Systems
We selected two evaluation systems, including Intel and AMD x86 multicore systems. The AMD
system was pluto.icl.utk.edu, which is a Quad Processor AMD Magny Cours (48 cores)
6172. The Intel system was zoot.icl.utk.edu, which has four Intel Tigerton 2.4 GHz
Processors (Quad Core) (16 total cores total).

2.4 Compiler Test Harness and Database
Blackjack has created a self-contained test harness that allows compilers to be tested both for
correctness and performance, stores and logs the results within a central database, and allows access
to results via a configurable Graphical User Interface (GUI). Using this test harness system allows
compiler progress to be tracked and viewed using a flexible report-generation tool.

The creation of the test harness required numerous components, from basic makefiles, to Structured
Query Language (SQL) queries, to web-page configuration. The management of the makefiles and
the handling and coordination of all the items are performed with code written in Python. Using this
approach, the overall system is portable and extensible.

At the most basic level, a generated test program needs to be executed on the chosen hardware
running Unix-like Operating System (OS). To generate the test program, we need to follow several
steps, and in general this process is makefile-driven. In particular, the makefile in conjunction with
Python scripts comprises at least the following pieces:

1. build – this step incorporates the compiler, the given test, the options, and the desired end
result (typically an object file).

2. link – the objects are linked together to produce an executable; options needed at this step
include the linker to be used, a list of objects, linker flags, and library locations.

3. run – the executable is invoked on the desired platform. It may be sufficient to just name the
executable, but there might also be arguments passed to the executable, or a command
such as rsh might be needed if the executable is built on a host node (or a more involved
process in a batch-queuing system might even be necessary).

4. verify – this step processes the output of the run step; depending on the type of test,
execution time (and perhaps compile time) in addition to output results will be collected.

5. record – the data from the previous steps are stored within the database for later viewing
and report generation.

The user interface for the test harness is web-based. The interface is the direct connection to the
database, and may not exist on a remote-installed version of the test harness. When a user accesses
the database, he/she may be uploading a results file from a remote location or accessing the
database to view data and results. In this latter case there will be default reports generated on the
web interface from which a user can examine or drill-down for more details. We also developed
custom report generation capabilities that are useful for comparison purposes, as well as producing
output suited to a particular evaluation task.

Approved for public release; distribution unlimited.

 5

The main test harness command is runtest. An invocation of runtest specifies the test suite to be run
along with optional arguments. The basic usage form is:

 runtest -suite <N> [<options>] [-help]

Test suites are described in the next section.

More details about the test harness and database, including installation instructions, may be found in
the documentation provided with the test harness release on the Blackjack website at
icl.eecs.utk.edu/blackjack. As a result of deploying the test harness and database the
user gains access to an automated system that can launch the compiler test suites from the
convenience of a web page. Subsequently, the user can see the results (including execution time,
command line output, etc.) on a web page by clicking appropriate link in the browser window. The
results are archived in a database and the web interface is able to access this data based on the user
settings and specific query details.

2.5 Test Suites
Tests and groups of tests fall into the following hierarchical scheme:

 At the top level a test grouping falls into a Test Suite Type, which describes the basic
template for all tests or Suites of tests within the same type. Usually all tests or suites within
the same Type share common characteristics of makefile structure, build sequence,
execution method, and verification procedure (although a notable exception is the
Application Suite Type, described in more detail below). Examples of Suite Types are C
correctness tests, Fortran correctness tests, embedded tests, and SPEC tests.

 A Test Suite consists of one or more tests controlled by a given makefile. Information about
the Suite will be stored in the database table suites. Examples of Suites are a particular set of
correctness tests or a SPEC application instance.

 An individual test is simply an instance to be instantiated within a given Suite. It likely
shows up as an item to be built and run within the makefile of its associated Suite.

It is important to note that performance applications generally consist of their own build procedures,
run parameters, and verification methods. Thus it makes sense to group benchmarks that fall into
the Application Suite Type together under the same Suite Type, despite the fact that there may be
little similarity between their test cycle methods. This special grouping allows us to avoid creating
Suite Types for each application benchmark.

Approved for public release; distribution unlimited.

 6

3 RESULTS AND DISCUSSION

3.1 Hardware Characterization
One of the results of the project is BlackjackBench, a system characterization benchmark suite [1].
The contributions of this work are twofold:

1. A collection of portable micro-benchmarks that can probe the hardware and record its
behavior while control variables, such as buffer size, are varied.

2. A statistical analysis methodology, implemented as a collection of scripts for result parsing,
examines the output of the micro-benchmarks and produces the desired system
characterization information, e.g. effective speeds and sizes.

BlackjackBench was specifically motivated by the effort to develop architecture aware compiler
environments that automatically adapt to hardware that is unknown to the compiler writer and
optimize application codes based on the discovery of the runtime environment. Often, important
performance related decisions take into account effective values of hardware features, rather than
their peak values. In this context, we consider an effective value to be the value of a hardware
feature that would be experienced by a user level application written in C (or any other portable,
high level, standards- compliant language) running on that hardware. This is in contrast with values
that can be found in vendor documents, or through assembler benchmarks, or specialized
instructions and system-calls.

BlackjackBench goes beyond the state of the art in system benchmarking by characterizing features
of modern multicore systems, taking into account contemporary, complex, hardware characteristics
such as modern sophisticated cache prefetchers, the interaction between the cache and TLB
hierarchies, etc. Furthermore, BlackjackBench combines established classification and statistical
analysis techniques with heuristics tailored to specific benchmarks, to reduce experimental noise
and aid automatic interpretation of the results. As a consequence, BlackjackBench does not merely
output large sets of data that require human intervention and comprehension; it shows information
about the hardware characteristics of the tested platform. Moreover, BlackjackBench does not rely
on assembler code, specialized kernel modules and libraries, or non-portable system calls.
Therefore, it is a portable system characterization tool.

Approved for public release; distribution unlimited.

 7

3.1.1 Cache Hierarchy

Improved cache utilization is one of the most performance critical optimizations in modern
computer hardware. Processor speed has been increasing faster than memory speed for several
decades, making it increasingly harder for main memory to feed all processing elements with data
quickly enough. To bridge the gap, fast, albeit small, cache memory has become necessary for fast
program execution. In recent years, the pressure on main memory has increased further, as the
number of processing elements per socket has been going up. As a result, most modern processor
designs incorporate complex, multi-level cache hierarchies that include both shared and non-shared
cache levels between the processing elements. Selected results from the cache hierarchy
benchmarks are shown in Figures 1, 2, and 3. More details can be found in a published paper about
the benchmark [1].

Figure 1: Cache Line Size Characterization on Intel Core 2 Duo.

Approved for public release; distribution unlimited.

 8

Figure 2: Cache Count, Size and Latency Characterization on Intel Atom.

Figure 3: Cache Associativity Characterization on Itanium II.

3.1.2 Asymmetries in the Memory Hierarchy

With the move to multi-core processors, we witnessed the quasi- general introduction of shared
cache levels to the memory hierarchy. A shared cache design provides larger cache capacity by

Approved for public release; distribution unlimited.

 9

eliminating data replication for multi-threaded applications. The entire cache may be used by a
single active core for single-threaded workloads. More importantly, a shared cache design
eliminates on- chip cache coherence at that cache level. In addition, it resolves coherence of the
private lower level caches internally within the chip and thus reduces external coherence traffic.
One downside of shared caches is a larger hit latency, which may cause increased cache contention
and unpredictable conflicts. Shared caches are not an entirely new design feature. Before level two
caches were integrated onto the chip, some Symmetric Multiprocessor (SMP) architectures were
using external shared L2 caches to increase capacity for single threaded workloads, and to reduce
communication costs between processors.

Figure 4 shows aggregated results for an Intel Gainestown system with two sockets and Hyper-
Threading disabled. The X axis represents the memory block size, and the y axis represents the
bandwidth observed by one of the threads. The bandwidth is computed as number_updated_lines *
cache_line_size / time, where number_updated_lines is the number of cache lines updated by the
first thread. Since the two threads update an equal number of lines, the values shown in the figure
represent only half of the actual two-way bandwidth.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 16 64 256 1024 4096 16384

L1 L2 L3

O
ne

 w
ay

 b
an

dw
id

th
 (

M
B

/s
)

Block size (KB)

Inter-node
Intra-node

Figure 4: One-way, inter-core communication bandwidth for different memory block sizes and core placements

on a dual-socket Intel Gainestown system.

Approved for public release; distribution unlimited.

 10

3.1.3 TLB Hierarchy

TLB hierarchy is an important part of the memory system that bears some resemblance to the cache
hierarchy. However, TLB is sufficiently different to warrant its own characterization methodology.
Accordingly, we will focus on the description of our TLB benchmarking techniques rather than
present differences and similarities with the cache benchmarks.

The crucial feature that any TLB benchmark should posses is the ability to alleviate cache effects on
the measurements. Both conflict and capacity misses coming from data caches should either be
avoided at runtime or filtered out during the analysis of the results. We chose the latter, as it has the
added benefit of capturing the rare events when the TLB and the data cache are inherently
interconnected, such as when TLB fits the same number of pages as there are data cache lines.

To determine the page size, our benchmark maximizes the penalty coming from the TLB misses.
We do it by traversing a large array multiple times with a given stride. The array is large enough to
exceed the span of any TLB level – this guarantees a high miss rate if the stride is larger or equal to
the page size. If the stride is less than the page size, some of the accesses to the array will be
contained in the same page, and thus, will decrease the number of misses and the overall benchmark
execution time. The false positives stemming from interference of data cache misses are eliminated
by the high cost of a TLB miss in the last level of TLB. Handling these misses requires the traversal
of the OS page table stored in main memory – the combined latency exceeds the cost of a miss for
any level of cache. Typical timing curves for this benchmark are shown in Figure 5. The figure
shows results from three very different processors: ARM OMAP3, Intel Itanium 2, and Intel
Nehalem EP. The graph line for each system has the same shape; for strides smaller than the page
size the line raises as the number of misses increases because fewer memory accesses hit the same
page. And for strides that exceed the page size, the graph line is flat because each array access
touches a different page so the per-access overhead remains the same. The page size is determined
as the inflection point in the graph line. For our example, the page size is 4 KiB on both ARM and
Nehalem, and 16 KiB on Itanium.

Approved for public release; distribution unlimited.

 11

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 0 5000 10000 15000 20000 25000 30000

A
cc

es
s

La
te

nc
y

(
s)

Stride for memory accesses

ARM OMAP3
Intel Itanium 2

Intel Nehalem EP

Figure 5: Graph of timing results that reveal the TLB page size.

Once the actual TLB page is known, it is possible to proceed with discovering the sizes of the levels
of the TLB hierarchy. Probably the most important task is to minimize the impact of the data cache.
The common and portable technique is to perform repeated accesses to a large memory buffer at
strides equal to the TLB page size. This technique is prone to creating as many false positives as
there are data cache levels, and a slight modification to this technique is required. On each visited
TLB page, our benchmark chooses a different cache line to access, thus, maximizing the use of any
level of data cache. As a side note, choosing a random cache line within a page utilizes only half of
the data cache on average. Figure 6 shows the timing graphs on a variety of platforms. Both Level 1
and Level 2 TLBs are identified accurately.

Approved for public release; distribution unlimited.

 12

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

 5.0

 50 100 150 200 250 300 350 400 450 500

A
cc

es
s

La
te

nc
y

(n
s)

Working set size (number of visited TLB pages)

Intel Penryn (Core 2 Duo)
AMD Opteron K10 (Istanbul)

IBM POWER7

Figure 6: Graph of results that reveal the number of levels of TLB and the number of entries in each level.

3.1.4 Execution Contexts

Modern systems commonly have multiple cores per socket and multiple sockets per node. To avoid
confusion due to the overloading of the terms core, CPU, node, etc., by hardware vendors, we use
the term “Execution Context” to refer to the minimum hardware necessary to effect the execution of
a compute thread. Several modern architectures implementing virtual hardware threads exhibit
selective preference over different resources. For example, a processor could have private integer
units for each virtual hardware thread, but only a shared floating-point unit for all hardware threads
residing on a physical core. The Blackjack benchmarks attempt to discover the maximum number
of:

1. Floating Point Execution Contexts

2. Integer Execution Contexts

3. Memory Intensive Execution Contexts

A sample output of this benchmark on an IBM POWER7 processor can be seen in Figure 7.

Approved for public release; distribution unlimited.

 13

Figure 7: Execution Contexts Characterization on IBM POWER7.

3.1.5 Statistical Analysis

The output of the micro-benchmarks discussed above is typically a performance curve, or rather, a
large number of points representing the performance of the code for different values of the control
variable. Since our motivation for developing BlackjackBench was to inform compilers and auto-
tuners about the characteristics of a given hardware platform, we have developed analyses that can
process the performance curves and output values that correspond to actual hardware
characteristics. More details and examples may be found in a published paper about the
benchmark [1].

3.2 Compiler Evaluation

3.2.1 Test Harness Results

As can be seen in Figure 8, we used the Blackjack Test Harness with several benchmark code bases.
In particular, we used:

 C_Correct, a suite of correctness tests for C syntax.

 MILC ver. 7, a set of codes written in C for doing simulations of four dimensional SU(3)
lattice gauge theory.

 SPEC CPU 2006, a popular performance test for processors by the Standard Performance
Evaluation Corporation.

 SPEC CPU 2006 Intel, a variant of SPEC CPU 2006 for Intel processors.

Approved for public release; distribution unlimited.

 14

 HPCC, the High Performance Computing Challenge Benchmark, a DARPA funded
benchmark suite that provides a comprehensive way to assess the overall performance of
HPC machines.

 F_Performance, a performance test for a Fortran code.

Figure 8: Code bases used with the Compiler Test Harness.

In Figure 9, we can see that the harness can test several compilers, against each benchmark, to
evaluate their quality.

Approved for public release; distribution unlimited.

 15

Figure 9: Correctness test of multiple compilers.

Since the AACE program terminated before producing the experimental compilers for which we
had developed the test harness, we demonstrate the functionality of the harness on the open source
compiler gcc and the commercial compilers icc from Intel, respectively. Also, in the figure we
can see that results from different platforms (zoot, pluto) can be stored into the database of the
harness and presented to the evaluator in a single page.

3.2.2 Interpretation of Results

C_correctness

The C_correctness test is meant to ascertain the compiler’s ability to parse a large set of language
constructs. It is not, by far, the most exhaustive test. Only the Intel C compiler properly identified
an error that tested what happens when there is a return statement missing in function returning
“void”. This is the relevant error message from the Intel compiler icc:

s3.c(13): warning #1011: missing return statement at end of non-void function
"test"

On one hand, the newest C standard deems such constructs as errors and the compiler has every
right to complain about it. On the other hand, such statements are a prevailing practice and are
deeply entrenched in fairly large code bases. Following this observation, the gcc compiler does not

Approved for public release; distribution unlimited.

 16

consider this construct to be worth issuing a warning unless instructed specifically by the user with
an appropriate command line option.

Aside from the above ambiguity, the remaining 57 of 58 tests pass without problems on both tested
systems, with both compilers.

MILC ver. 7

We included 28 tests in our harness that use many features that could stress both the harness and the
compiler. MILC is a physics application with a large code base. Due to its size, it could create a
problem for the harness during both build and running stages. The number of files that are built for
each test could be as high as 50 and the total number of lines of code is counted in thousands. In
addition, MILC requires setup to properly account for optimization options and the available build
infrastructure. We used the tests from MILC to test the behavior of the harness under various failing
conditions. And the conditions included:

 Lack of proper Makefile in one of the MILC source code directories

 Exceeding the time available for the build or running stages

In all cases, the harness behaved as expected by recording the incident in the database and making
the failing output available for inspection. This is in line with the design objective of having enough
information available in the database to properly diagnose and even correct the error.

SPEC CPU 2006

SPEC CPU 2006 is a benchmark that tests system performance by running a comprehensive suite of
applications and providing appropriately chosen weighted averages to aide in direct comparisons of
computers. The following components were used in tests:

 astar (C++) path finding algorithms.

 bwaves (Fortran) simulation of blast waves in 3D transonic transient laminar viscous flow.

 bzip2 (C) in-memory compression using block-sorting lossless algorithm for Joint
Photographic Experts Group (JPEG) images, a code binary, tar file of source code, and an
Hyper Text Markup Language (HTML) file.

 cactusADM (Fortran 90, C) Einstein evolution equation solver based on Cactus open source
code and BenchADM (for Arnowitt, Desser, and Misner formalism) computational kernels.

 calculix (Fortran 90, C) finite element code for linear and non-linear 3D structural
applications mostly used in structural mechanics.

 dealII (C++) finite element code with error estimators and adaptive meshes that uses
advanced C++ features.

 gamess (Fortran) quantum mechanical code for self-consistent field computations.

 gcc (C) source code for gcc version 3.2.

Approved for public release; distribution unlimited.

 17

 GemsFDTD (Fortran 90) solver for 3D Maxwell equations using finite-difference time-
domain method.

 gobmk (C) analyzer for Go game positions.

 gromacs (Fortran and C) molecular dynamics code that performs simulation of the
Newtonian equations of motion for systems of with hundreds to millions of particles.

 h264ref (C) video compression algorithm.

 hmmer (C) genome sequence search based on Profile Hidden Markov Models.

 lbm (C) implementation of Lattice Boltzman Method for simulation of incompressible fluids
in 3D.

 leslie3d (Fortran 90) research-level Computational Fluid Dynamics code for Large-Eddy
Simulations with Linear-Eddy Model in 3D.

 libquantum (C) simulator of a quantum computer.

 mcf (C) a solver for single-depot vehicle scheduling problem in public mass transportation.

Each of these components is commonly used as a separate application and usually requires input
data. SPEC CPU 2006 provides these input data sets for each component application.

The results for SPEC CPU 2006 consist of 5 columns. Each column is defined in length by SPEC
on their website: http://www.spec.org/auto/cpu2006/Docs/result-fields.html. We give here a
sufficient description of each column to make this document self-contained:

1. ID: each test included in SPEC CPU 2006 suite is given a unique identification number that
can easily be used in the suite of tools provided by SPEC.

2. NAME: each test included in SPEC CPU 2006 suite is given a unique name is primarily
meant for readability of the results.

3. Base Time (seconds): each test was run on a reference platform (Sun UltraSparc II system at
296 MHz) and this time is printed for reference.

4. Execution Time (seconds): each test is run 3 times and the median time is recorded as a
primary performance metric. Obviously, the smaller the execution time is the faster the
tested system.

5. Ratio: to provide unit-less measure of the tested system performance the ratio of base time
to execution time is printed.

In our tests, many component applications exceeded 1000 seconds of running time, sometimes even
approaching the 2000-second mark. In addition they produce a fairly large output at the console
screen. Neither of these caused issues for the harness, and the results were properly recorded in the
database.

The problems recorded by the harness occurred in the astar, bwaves, and dealII component
applications. The errors may be attributed to general classes: linking and C++ instantiation. The
former has to do with linking against language specific libraries such as math library for C and
Gfortran intrinsics for Fortran. The latter is related to instantiation of specific member function in
C++ classes used by the code. As before, the harness properly detects the occurrence of failure and
preserves the command line output in the database, which is then accessible through the web
interface of the harness.

Approved for public release; distribution unlimited.

 18

SPEC CPU 2006 Intel

This streamlined version of the SPEC CPU 2006 benchmark suite is targeted specifically for Intel
software and hardware. Naturally, a lot of errors recorded by the harness have to do with proper
configuration of the tests and accounting for proper system settings. This can be observed by
consulting the specific sections of the harness' GUI that relate to this particular test.

3.2.3 Discussion of SPEC CPU 2006 Results

We have used the SPEC CPU 2006 suite of tests to perform evaluation of both the harness and the
compilers themselves. Test suites coming from SPEC are comprehensive in both their depth and
breadth, and as a result, produce a quite substantial number of performance metrics to allow for
informed comparisons between tested systems. At the same time, however, the members of SPEC
recognize the value of conciseness and offer various methods of aggregating the reported results
with careful attention to preserve balanced insight into the systems’ performance. When quoting the
SPEC CPU 2006 results in this report, we chose to show the values produced from individual runs
of each test. Each such run was executed separately by the Blackjack harness, and was recorded
successfully in the associated database. The failed attempts were used only to test the robustness of
the harness and are not used for the compiler evaluation shown in this section.

Results from gcc. To test the gcc compiler, we used version 4.1 with 64-bit support, which
allowed the compiler to use a larger register file than is normally available in the 32-bit mode. The
performance results reported by the various components of the SPEC CPU 2006 suite are shown
below:

 ID.NAME Base Time Exec Time Ratio

401.bzip2 9650 914 10.6 *
403.gcc 8050 701 11.5 *
410.bwaves 13590 2576 5.28 *
416.gamess 19580 1525 12.8 *
435.gromacs 7140 923 7.74 *
436.cactusADM 11950 1957 6.11 *
437.leslie3d 9400 911 10.3 *
445.gobmk 10490 805 13.0 *
454.calculix 8250 3046 2.71 *
456.hmmer 9330 1098 8.50 *
459.GemsFDTD 10610 1059 10.0 *
462.libquantum 20720 1060 19.5 *
464.h264ref 22130 1302 17.0 *
470.lbm 13740 849 16.2 *

The noteworthy flags included “-DSPEC_CPU_LP64” and “-O2”. The “-DSPEC_CPU_LP64”
flag enables 64-bit mode for the source code, and assumes that both “long” integral values and
pointers are 64-bit entities which was the case for our tested machines. The optimization option
chosen for the run was “-O2”.

Results for Intel compiler. We tested a full commercial version of the Intel compiler. The exact
version number was 2011.6.233. The flag for enabling 64-bit processing was “-m64”. The set of

Approved for public release; distribution unlimited.

 19

optimization options was the commonly used shorthand flag “-fast”. The performance results
reported by the Intel compiler are as follows:

 ID.NAME Base Time Exec Time Ratio

416.gamess 19580 1335 14.7 *
434.zeusmp 9100 592 15.4 *
435.gromacs 7140 590 12.1 *
436.cactusADM 11950 748 16.0 *
437.leslie3d 9400 666 14.1 *
454.calculix 8250 491 16.8 *
459.GemsFDTD 10610 831 12.8 *
465.tonto 9840 588 16.7 *

Discussion. The most immediate observation is the fact that the Intel compiler always delivers
faster performance than the GNU compiler. This is the case despite the fact that the tests were
performed on an AMD processor. The advantage that the Intel compiler holds over the GNU
compiler may be as low as 20% (see 416.gamess results: 1335 seconds versus 1525 seconds) but it
may be as high as many-fold more (see 454.calculix: 491 seconds versus 3046 seconds). We
attribute such stark differences to a better instruction generation at the very backend of the
compilation stages. We would definitely expect this difference to be even larger for an Intel
processor.

On the negative side, we observe that the gcc compiler is capable of successfully completing many
more tests (14 in total) than the Intel compiler (8 in total). Lack of successful completion can either
mean that the compilation failed (e.g., due to complicated use of advanced C++ syntax) or the result
does not verify by using the test’s internal consistency checks. The difference in completion rates
may be attributed to more aggressive optimization levels enabled by the “-fast” option for the
Intel compiler. However, we chose this option as the recommended optimization setting indicated
by the Intel compiler documentation. This flag is in fact very likely to be selected by most end
users.

HPC Challenge

HPC Challenge (HPCC) is a benchmark that tests floating point performance of a distributed
memory machine under different memory access patterns. HPCC depends on Message Passing
Interface (MPI) and requires a special command to run the test. The Blackjack Harness may be
easily configured for such a case, which is why there was a lack of failures recorded for HPCC in
our web harness.

F_Performance

F_Performance includes only a single performance test that measures running time of a generic
matrix-matrix multiplication routine. The harness records related to F_Performance indicated
successful test due to its small code size and few features that are exercised from the Fortran
language.

Approved for public release; distribution unlimited.

 20

4 CONCLUSION

4.1 Hardware Characterization
We have presented the BlackjackBench system characterization suite. This suite of micro-
benchmarks goes beyond the state-of-the-art in benchmarking by:

1. Offering micro-benchmarks that can exercise a wider set of hardware features than most
existing benchmark suites do.

2. Emphasizing portability by avoiding low-level primitives, specialized software tools and
libraries, or non-portable OS calls.

3. Providing comprehensive statistical analyses as part of the characterization suite, capable of
distilling the micro-benchmarks’ results into useful values that describe the hardware.

4. Emphasizing the detection of hardware features through variations in performance. As a
result, BlackjackBench detects the effective values of hardware characteristics, which is
what a user level application experiences when running on the hardware, instead of often
unattainable peak values.

We described how the micro-benchmarks operate and their fundamental assumptions. We explained
the analysis techniques for extracting useful information from the results and demonstrated through
several examples, drawn from a variety of hardware platforms and operating systems, that our
assumptions are valid and our benchmarks portable.

4.2 Compiler Evaluation
We have used the Blackjack compiler test harness with a collection of correctness and performance
benchmarks to evaluate the GNU and Intel compilers. The results can be viewed from a Web
browser. The results show that while the Intel compiler in general produces better performance, the
GNU compiler is more robust.

Approved for public release; distribution unlimited.

 21

5 REFERENCES

1. Anthony Danalis, Piotr Luszczek, Gabriel Marin, Jeffrey S. Vetter, and Jack Dongarra,
BlackjackBench: Portable Hardware Characterization, Special Issue of ACM Performance
Evaluation Review, 40(2), 2012.

2. Anthony Danalis, Piotr Luszczek, and Shirley Moore, Benchmarks and Metrics
Specification Progress Report, DARPA AACE Program Phase II, 2011.

Approved for public release; distribution unlimited.

 22

List of Acronyms, Abbreviations, and Symbols

Acronym Description

AACE Architecture Aware Compiler Environment
ACM Association for Computing Machinery
AMD Advanced Micro Devices
ARM Acorn RISC Machine
CPU Central Processing Unit
GCC GNU Compiler Collection
GNU Gnu is Not Unix
GUI Graphical User Interface
HPC High Performance Computing
HPCC HPC Challenge
IBM International Business Machines
ICC Intel C Compiler
JPEG Joint Photographic Experts Group
KiB kibibyte, 1024 bytes
MPI Message Passing Interface
NUMA Non Uniform Memory Access
OMAP Open Multimedia Applications Platform
OS Operating System
OpenMP Open Multi Processing
RISC Reduced Instruction Set Computer
SMP Symmetric Multiprocessor
SPEC Standard Performance Evaluation Corporation
SQL Structured Query Language
TLB Translation Lookaside Buffer
3D three dimensional

Approved for public release; distribution unlimited.

	StmtACover
	NoticePgwoSigs
	SF298
	final

