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1. SUMMARY 

The Blackjack effort was part of the DARPA Architecture Aware Compiler Environment (AACE) 
program as a test and evaluation contract (T2) for the AACE compilers developers (T1). Due to a 
change in DARPA direction which eliminated the connection with the T1 teams, this effort changed 
focus to assess the capabilities of the existing commercial and free compilers. As the scope and 
functionality of currently available compilers is much different from the goals set out for the 
DARPA AACE compilers, Blackjack project objectives and methodology changed accordingly and 
only included a subset of original evaluation criteria and metrics. Specifically, a set of commercial 
and open source benchmarks, as well as applications, were chosen for evaluation of the existing 
compilers. 

The problem under investigation is to assess the capabilities of commercially available and open 
source freely available compilers for compiling scientific software to produce correct and efficient 
executable versions for modern high performance computing (HPC) systems. The compilers tested 
were the Intel, and GNU compilers for C, C++, and Fortran. The conclusion was that while the 
different compilers have their strengths and weaknesses, none is clearly better than the others under 
all circumstances.
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1 INTRODUCTION 

The Blackjack project developed metrics and a test harness for evaluating compilers for scientific 
computing. The evaluation was performed by using representative applications and implementing 
relevant micro-benchmarks in order to test and analyze the productivity, correctness, and 
performance of multiple commercially available and freely available open source compiler systems. 
The main two goals were: 

1. to test whether compiler technology can automatically select the appropriate optimizations 
based on a learned characterization of the target system; and 

2. to ensure the compiler technology has a dynamic runtime environment that can dynamically 
improve the performance of a program during runtime and/or provide information that can 
be used by the compiler to optimize for future runs of the program. 

The project consisted of two phases. Phase I developed a set of characterization benchmarks to 
determine platform characteristics such as cache sizes and memory latency and bandwidth. 

The main focus of Phase II was the T2 team’s evaluation of commercial and freely available 
production compilers. The evaluation of these compilers was based on measurements taken from 
the areas of performance, productivity, correctness and scalability. The Blackjack team defined 
evaluation metrics for each of the evaluation criteria in this list. The metrics were evaluated by 
using a test harness to run a set of test suites consisting of a range of benchmarks using the different 
compilers on two different test platforms. 
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2 METHODS, ASSUMPTIONS, AND PROCEDURES 

2.1 System Characterization 
BlackjackBench is a collection of portable micro-benchmarks that automate the characterization 
process and the statistical analysis techniques for interpreting the results. The BlackjackBench 
discovers the effective parameters of the hardware as experienced by the user application, rather 
than the often unattainable peak values. It aims at hardware characteristics that are observed by 
running executables from existing compilers and standard C codes. It characterizes the cache and 
Translation Lookaside Buffer (TLB) hierarchies, the cache sharing and Non Uniform Memory 
Access (NUMA) characteristics, the cost of arithmetic operations, the number of effective contexts 
(cores), the number of available registers, and the length of the OS scheduler time slot. We show 
how these features of modern multicore processors can be discovered programmatically. We also 
show how these features could potentially interfere with each other, which could result in incorrect 
interpretation of the results, and how established classification and statistical analysis techniques 
can reduce experimental noise and aid automatic interpretation of the results. 

2.2 Evaluation Benchmarks and Metrics 
The metrics we used for judging and scoring the production compilers are listed below by category: 

 Correctness 

o Language conformance 

o Correct answers 

 Robustness 

o Ease of installation 

o Response to errors 

 Performance 

o Compile-time 

 Total time 

 Memory footprint 

o Runtime 

 Comparison to baseline benchmark execution time 

 Ability to apply performance-critical transformations 

Phase II required three sets of test programs. The first was a set of correctness tests, to make sure 
the compilers correctly implement the language standards. For the base Fortran and C languages, 
we used language conformance tests. There are also tests for the OpenMP additions, and we can use 
other benchmark suites and community applications, to evaluate the robustness of the compilers. 

The second set was to test the usability of the compiler. This included measuring compile time and 
resource usage and how well the compilers work with standard application build environments.  

The third set, which overlapped the first two sets, tested for performance improvement. We selected 
several benchmarks and produced a baseline version of each for the target systems using the vendor 
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or recommended compiler for that system. The baseline version was then used as the starting point 
for comparison. 

More details concerning the benchmarks and metrics can be found in the Benchmarks and Metrics 
Specification Progress Report [2]. 

2.3 Evaluation Systems 
We selected two evaluation systems, including Intel and AMD x86 multicore systems.  The AMD 
system was pluto.icl.utk.edu, which is a Quad Processor AMD Magny Cours (48 cores) 
6172.  The Intel system was zoot.icl.utk.edu, which has four Intel Tigerton 2.4 GHz 
Processors (Quad Core) (16 total cores total). 

2.4 Compiler Test Harness and Database 
Blackjack has created a self-contained test harness that allows compilers to be tested both for 
correctness and performance, stores and logs the results within a central database, and allows access 
to results via a configurable Graphical User Interface (GUI). Using this test harness system allows 
compiler progress to be tracked and viewed using a flexible report-generation tool. 

The creation of the test harness required numerous components, from basic makefiles, to Structured 
Query Language (SQL) queries, to web-page configuration. The management of the makefiles and 
the handling and coordination of all the items are performed with code written in Python. Using this 
approach, the overall system is portable and extensible. 

At the most basic level, a generated test program needs to be executed on the chosen hardware 
running Unix-like Operating System (OS).  To generate the test program, we need to follow several 
steps, and in general this process is makefile-driven. In particular, the makefile in conjunction with 
Python scripts comprises at least the following pieces: 

1. build – this step incorporates the compiler, the given test, the options, and the desired end 
result (typically an object file). 

2. link – the objects are linked together to produce an executable; options needed at this step 
include the linker to be used, a list of objects, linker flags, and library locations.  

3. run – the executable is invoked on the desired platform. It may be sufficient to just name the 
executable, but there might also be arguments passed to the executable, or a command 
such as rsh might be needed if the executable is built on a host node (or a more involved 
process in a batch-queuing system might even be necessary).  

4. verify – this step processes the output of the run step; depending on the type of test, 
execution time (and perhaps compile time) in addition to output results will be collected. 

5. record – the data from the previous steps are stored within the database for later viewing 
and report generation. 

The user interface for the test harness is web-based. The interface is the direct connection to the 
database, and may not exist on a remote-installed version of the test harness. When a user accesses 
the database, he/she may be uploading a results file from a remote location or accessing the 
database to view data and results. In this latter case there will be default reports generated on the 
web interface from which a user can examine or drill-down for more details. We also developed 
custom report generation capabilities that are useful for comparison purposes, as well as producing 
output suited to a particular evaluation task. 
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The main test harness command is runtest. An invocation of runtest specifies the test suite to be run 
along with optional arguments. The basic usage form is: 

 

    runtest -suite <N> [<options>] [-help] 

 

Test suites are described in the next section. 

More details about the test harness and database, including installation instructions, may be found in 
the documentation provided with the test harness release on the Blackjack website at 
icl.eecs.utk.edu/blackjack. As a result of deploying the test harness and database the 
user gains access to an automated system that can launch the compiler test suites from the 
convenience of a web page. Subsequently, the user can see the results (including execution time, 
command line output, etc.) on a web page by clicking appropriate link in the browser window. The 
results are archived in a database and the web interface is able to access this data based on the user 
settings and specific query details. 

2.5 Test Suites 
Tests and groups of tests fall into the following hierarchical scheme: 

 At the top level a test grouping falls into a Test Suite Type, which describes the basic 
template for all tests or Suites of tests within the same type. Usually all tests or suites within 
the same Type share common characteristics of makefile structure, build sequence, 
execution method, and verification procedure (although a notable exception is the 
Application Suite Type, described in more detail below). Examples of Suite Types are C 
correctness tests, Fortran correctness tests, embedded tests, and SPEC tests. 

 A Test Suite consists of one or more tests controlled by a given makefile. Information about 
the Suite will be stored in the database table suites. Examples of Suites are a particular set of 
correctness tests or a SPEC application instance.  

 An individual test is simply an instance to be instantiated within a given Suite. It likely 
shows up as an item to be built and run within the makefile of its associated Suite. 

It is important to note that performance applications generally consist of their own build procedures, 
run parameters, and verification methods. Thus it makes sense to group benchmarks that fall into 
the Application Suite Type together under the same Suite Type, despite the fact that there may be 
little similarity between their test cycle methods. This special grouping allows us to avoid creating 
Suite Types for each application benchmark. 
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3 RESULTS AND DISCUSSION 

3.1 Hardware Characterization 
One of the results of the project is BlackjackBench, a system characterization benchmark suite [1]. 
The contributions of this work are twofold: 

1. A collection of portable micro-benchmarks that can probe the hardware and record its 
behavior while control variables, such as buffer size, are varied. 

2. A statistical analysis methodology, implemented as a collection of scripts for result parsing, 
examines the output of the micro-benchmarks and produces the desired system 
characterization information, e.g. effective speeds and sizes. 

BlackjackBench was specifically motivated by the effort to develop architecture aware compiler 
environments that automatically adapt to hardware that is unknown to the compiler writer and 
optimize application codes based on the discovery of the runtime environment.  Often, important 
performance related decisions take into account effective values of hardware features, rather than 
their peak values. In this context, we consider an effective value to be the value of a hardware 
feature that would be experienced by a user level application written in C (or any other portable, 
high level, standards- compliant language) running on that hardware. This is in contrast with values 
that can be found in vendor documents, or through assembler benchmarks, or specialized 
instructions and system-calls. 

BlackjackBench goes beyond the state of the art in system benchmarking by characterizing features 
of modern multicore systems, taking into account contemporary, complex, hardware characteristics 
such as modern sophisticated cache prefetchers, the interaction between the cache and TLB 
hierarchies, etc. Furthermore, BlackjackBench combines established classification and statistical 
analysis techniques with heuristics tailored to specific benchmarks, to reduce experimental noise 
and aid automatic interpretation of the results. As a consequence, BlackjackBench does not merely 
output large sets of data that require human intervention and comprehension; it shows information 
about the hardware characteristics of the tested platform. Moreover, BlackjackBench does not rely 
on assembler code, specialized kernel modules and libraries, or non-portable system calls. 
Therefore, it is a portable system characterization tool. 

Approved for public release; distribution unlimited.



 7

 

3.1.1 Cache Hierarchy 

 

Improved cache utilization is one of the most performance critical optimizations in modern 
computer hardware. Processor speed has been increasing faster than memory speed for several 
decades, making it increasingly harder for main memory to feed all processing elements with data 
quickly enough. To bridge the gap, fast, albeit small, cache memory has become necessary for fast 
program execution. In recent years, the pressure on main memory has increased further, as the 
number of processing elements per socket has been going up. As a result, most modern processor 
designs incorporate complex, multi-level cache hierarchies that include both shared and non-shared 
cache levels between the processing elements.  Selected results from the cache hierarchy 
benchmarks are shown in Figures 1, 2, and 3.  More details can be found in a published paper about 
the benchmark [1].  

 

 

 
Figure 1: Cache Line Size Characterization on Intel Core 2 Duo. 
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Figure 2: Cache Count, Size and Latency Characterization on Intel Atom. 

 

 

 
Figure 3: Cache Associativity Characterization on Itanium II. 

 

 

3.1.2 Asymmetries in the Memory Hierarchy 

With the move to multi-core processors, we witnessed the quasi- general introduction of shared 
cache levels to the memory hierarchy. A shared cache design provides larger cache capacity by 
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eliminating data replication for multi-threaded applications. The entire cache may be used by a 
single active core for single-threaded workloads. More importantly, a shared cache design 
eliminates on- chip cache coherence at that cache level. In addition, it resolves coherence of the 
private lower level caches internally within the chip and thus reduces external coherence traffic. 
One downside of shared caches is a larger hit latency, which may cause increased cache contention 
and unpredictable conflicts. Shared caches are not an entirely new design feature. Before level two 
caches were integrated onto the chip, some Symmetric Multiprocessor (SMP) architectures were 
using external shared L2 caches to increase capacity for single threaded workloads, and to reduce 
communication costs between processors. 

Figure 4 shows aggregated results for an Intel Gainestown system with two sockets and Hyper-
Threading disabled. The X axis represents the memory block size, and the y axis represents the 
bandwidth observed by one of the threads. The bandwidth is computed as number_updated_lines * 
cache_line_size / time, where number_updated_lines is the number of cache lines updated by the 
first thread. Since the two threads update an equal number of lines, the values shown in the figure 
represent only half of the actual two-way bandwidth. 
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Figure 4: One-way, inter-core communication bandwidth for different memory block sizes and core placements 

on a dual-socket Intel Gainestown system. 
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3.1.3 TLB Hierarchy 

 

TLB hierarchy is an important part of the memory system that bears some resemblance to the cache 
hierarchy. However, TLB is sufficiently different to warrant its own characterization methodology. 
Accordingly, we will focus on the description of our TLB benchmarking techniques rather than 
present differences and similarities with the cache benchmarks. 

The crucial feature that any TLB benchmark should posses is the ability to alleviate cache effects on 
the measurements. Both conflict and capacity misses coming from data caches should either be 
avoided at runtime or filtered out during the analysis of the results. We chose the latter, as it has the 
added benefit of capturing the rare events when the TLB and the data cache are inherently 
interconnected, such as when TLB fits the same number of pages as there are data cache lines. 

To determine the page size, our benchmark maximizes the penalty coming from the TLB misses. 
We do it by traversing a large array multiple times with a given stride. The array is large enough to 
exceed the span of any TLB level – this guarantees a high miss rate if the stride is larger or equal to 
the page size. If the stride is less than the page size, some of the accesses to the array will be 
contained in the same page, and thus, will decrease the number of misses and the overall benchmark 
execution time. The false positives stemming from interference of data cache misses are eliminated 
by the high cost of a TLB miss in the last level of TLB. Handling these misses requires the traversal 
of the OS page table stored in main memory – the combined latency exceeds the cost of a miss for 
any level of cache. Typical timing curves for this benchmark are shown in Figure 5. The figure 
shows results from three very different processors: ARM OMAP3, Intel Itanium 2, and Intel 
Nehalem EP. The graph line for each system has the same shape; for strides smaller than the page 
size the line raises as the number of misses increases because fewer memory accesses hit the same 
page. And for strides that exceed the page size, the graph line is flat because each array access 
touches a different page so the per-access overhead remains the same. The page size is determined 
as the inflection point in the graph line. For our example, the page size is 4 KiB on both ARM and 
Nehalem, and 16 KiB on Itanium. 
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Figure 5: Graph of timing results that reveal the TLB page size. 

 

 

Once the actual TLB page is known, it is possible to proceed with discovering the sizes of the levels 
of the TLB hierarchy. Probably the most important task is to minimize the impact of the data cache. 
The common and portable technique is to perform repeated accesses to a large memory buffer at 
strides equal to the TLB page size. This technique is prone to creating as many false positives as 
there are data cache levels, and a slight modification to this technique is required. On each visited 
TLB page, our benchmark chooses a different cache line to access, thus, maximizing the use of any 
level of data cache. As a side note, choosing a random cache line within a page utilizes only half of 
the data cache on average. Figure 6 shows the timing graphs on a variety of platforms. Both Level 1 
and Level 2 TLBs are identified accurately. 
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Figure 6: Graph of results that reveal the number of levels of TLB and the number of entries in each level. 

 

 

3.1.4 Execution Contexts 

 

Modern systems commonly have multiple cores per socket and multiple sockets per node. To avoid 
confusion due to the overloading of the terms core, CPU, node, etc., by hardware vendors, we use 
the term “Execution Context” to refer to the minimum hardware necessary to effect the execution of 
a compute thread. Several modern architectures implementing virtual hardware threads exhibit 
selective preference over different resources. For example, a processor could have private integer 
units for each virtual hardware thread, but only a shared floating-point unit for all hardware threads 
residing on a physical core. The Blackjack benchmarks attempt to discover the maximum number 
of: 

1. Floating Point Execution Contexts  

2. Integer Execution Contexts 

3. Memory Intensive Execution Contexts 

A sample output of this benchmark on an IBM POWER7 processor can be seen in Figure 7. 
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Figure 7: Execution Contexts Characterization on IBM POWER7. 

 

 

3.1.5 Statistical Analysis 

The output of the micro-benchmarks discussed above is typically a performance curve, or rather, a 
large number of points representing the performance of the code for different values of the control 
variable. Since our motivation for developing BlackjackBench was to inform compilers and auto-
tuners about the characteristics of a given hardware platform, we have developed analyses that can 
process the performance curves and output values that correspond to actual hardware 
characteristics.  More details and examples may be found in a published paper about the 
benchmark [1]. 

3.2 Compiler Evaluation 

3.2.1 Test Harness Results 

As can be seen in Figure 8, we used the Blackjack Test Harness with several benchmark code bases. 
In particular, we used:  

 C_Correct, a suite of correctness tests for C syntax. 

 MILC ver. 7, a set of codes written in C for doing simulations of four dimensional SU(3) 
lattice gauge theory. 

 SPEC CPU 2006, a popular performance test for processors by the Standard Performance 
Evaluation Corporation. 

 SPEC CPU 2006 Intel, a variant of SPEC CPU 2006 for Intel processors. 
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 HPCC, the High Performance Computing Challenge Benchmark, a DARPA funded 
benchmark suite that provides a comprehensive way to assess the overall performance of 
HPC machines. 

 F_Performance, a performance test for a Fortran code. 

 

 
Figure 8: Code bases used with the Compiler Test Harness. 

 

 

In Figure 9, we can see that the harness can test several compilers, against each benchmark, to 
evaluate their quality. 
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Figure 9: Correctness test of multiple compilers. 

 

 

Since the AACE program terminated before producing the experimental compilers for which we 
had developed the test harness, we demonstrate the functionality of the harness on the open source 
compiler gcc and the commercial compilers icc from Intel, respectively. Also, in the figure we 
can see that results from different platforms (zoot, pluto) can be stored into the database of the 
harness and presented to the evaluator in a single page. 

3.2.2 Interpretation of Results 

 

C_correctness 

 

The C_correctness test is meant to ascertain the compiler’s ability to parse a large set of language 
constructs. It is not, by far, the most exhaustive test. Only the Intel C compiler properly identified 
an error that tested what happens when there is a return statement missing in function returning 
“void”. This is the relevant error message from the Intel compiler icc: 

s3.c(13): warning #1011: missing return statement at end of non-void function 
"test" 
 

On one hand, the newest C standard deems such constructs as errors and the compiler has every 
right to complain about it. On the other hand, such statements are a prevailing practice and are 
deeply entrenched in fairly large code bases. Following this observation, the gcc compiler does not 
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consider this construct to be worth issuing a warning unless instructed specifically by the user with 
an appropriate command line option. 

Aside from the above ambiguity, the remaining 57 of 58 tests pass without problems on both tested 
systems, with both compilers. 

 

MILC ver. 7 

 

We included 28 tests in our harness that use many features that could stress both the harness and the 
compiler. MILC is a physics application with a large code base. Due to its size, it could create a 
problem for the harness during both build and running stages. The number of files that are built for 
each test could be as high as 50 and the total number of lines of code is counted in thousands. In 
addition, MILC requires setup to properly account for optimization options and the available build 
infrastructure. We used the tests from MILC to test the behavior of the harness under various failing 
conditions. And the conditions included: 

 Lack of proper Makefile in one of the MILC source code directories 

 Exceeding the time available for the build or running stages 

In all cases, the harness behaved as expected by recording the incident in the database and making 
the failing output available for inspection. This is in line with the design objective of having enough 
information available in the database to properly diagnose and even correct the error. 

 

SPEC CPU 2006 

 

SPEC CPU 2006 is a benchmark that tests system performance by running a comprehensive suite of 
applications and providing appropriately chosen weighted averages to aide in direct comparisons of 
computers. The following components were used in tests: 

 astar (C++) path finding algorithms. 

 bwaves (Fortran) simulation of blast waves in 3D transonic transient laminar viscous flow. 

 bzip2 (C) in-memory compression using block-sorting lossless algorithm for Joint 
Photographic Experts Group (JPEG) images, a code binary, tar file of source code, and an 
Hyper Text Markup Language (HTML) file. 

 cactusADM (Fortran 90, C) Einstein evolution equation solver based on Cactus open source 
code and BenchADM (for Arnowitt, Desser, and Misner formalism) computational kernels. 

 calculix (Fortran 90, C) finite element code for linear and non-linear 3D structural 
applications mostly used in structural mechanics. 

 dealII (C++) finite element code with error estimators and adaptive meshes that uses 
advanced C++ features. 

 gamess (Fortran) quantum mechanical code for self-consistent field computations. 

 gcc (C) source code for gcc version 3.2. 
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 GemsFDTD (Fortran 90) solver for 3D Maxwell equations using finite-difference time-
domain method. 

 gobmk (C) analyzer for Go game positions. 

 gromacs (Fortran and C) molecular dynamics code that performs simulation of the 
Newtonian equations of motion for systems of with hundreds to millions of particles. 

 h264ref (C) video compression algorithm. 

 hmmer (C) genome sequence search based on Profile Hidden Markov Models. 

 lbm (C) implementation of Lattice Boltzman Method for simulation of incompressible fluids 
in 3D. 

 leslie3d (Fortran 90) research-level Computational Fluid Dynamics code for Large-Eddy 
Simulations with Linear-Eddy Model in 3D. 

 libquantum (C) simulator of a quantum computer. 

 mcf (C) a solver for single-depot vehicle scheduling problem in public mass transportation. 

Each of these components is commonly used as a separate application and usually requires input 
data. SPEC CPU 2006 provides these input data sets for each component application. 

The results for SPEC CPU 2006 consist of 5 columns. Each column is defined in length by SPEC 
on their website: http://www.spec.org/auto/cpu2006/Docs/result-fields.html. We give here a 
sufficient description of each column to make this document self-contained: 

1. ID: each test included in SPEC CPU 2006 suite is given a unique identification number that 
can easily be used in the suite of tools provided by SPEC. 

2. NAME: each test included in SPEC CPU 2006 suite is given a unique name is primarily 
meant for readability of the results. 

3. Base Time (seconds): each test was run on a reference platform (Sun UltraSparc II system at 
296 MHz) and this time is printed for reference. 

4. Execution Time (seconds): each test is run 3 times and the median time is recorded as a 
primary performance metric. Obviously, the smaller the execution time is the faster the 
tested system. 

5. Ratio: to provide unit-less measure of the tested system performance the ratio of base time 
to execution time is printed. 

In our tests, many component applications exceeded 1000 seconds of running time, sometimes even 
approaching the 2000-second mark. In addition they produce a fairly large output at the console 
screen. Neither of these caused issues for the harness, and the results were properly recorded in the 
database. 

The problems recorded by the harness occurred in the astar, bwaves, and dealII component 
applications. The errors may be attributed to general classes: linking and C++ instantiation. The 
former has to do with linking against language specific libraries such as math library for C and 
Gfortran intrinsics for Fortran. The latter is related to instantiation of specific member function in 
C++ classes used by the code. As before, the harness properly detects the occurrence of failure and 
preserves the command line output in the database, which is then accessible through the web 
interface of the harness. 
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SPEC CPU 2006 Intel 

 

This streamlined version of the SPEC CPU 2006 benchmark suite is targeted specifically for Intel 
software and hardware. Naturally, a lot of errors recorded by the harness have to do with proper 
configuration of the tests and accounting for proper system settings. This can be observed by 
consulting the specific sections of the harness' GUI that relate to this particular test. 

 

3.2.3 Discussion of SPEC CPU 2006 Results 

 

We have used the SPEC CPU 2006 suite of tests to perform evaluation of both the harness and the 
compilers themselves. Test suites coming from SPEC are comprehensive in both their depth and 
breadth, and as a result, produce a quite substantial number of performance metrics to allow for 
informed comparisons between tested systems. At the same time, however, the members of SPEC 
recognize the value of conciseness and offer various methods of aggregating the reported results 
with careful attention to preserve balanced insight into the systems’ performance. When quoting the 
SPEC CPU 2006 results in this report, we chose to show the values produced from individual runs 
of each test. Each such run was executed separately by the Blackjack harness, and was recorded 
successfully in the associated database. The failed attempts were used only to test the robustness of 
the harness and are not used for the compiler evaluation shown in this section. 

Results from gcc. To test the gcc compiler, we used version 4.1 with 64-bit support, which 
allowed the compiler to use a larger register file than is normally available in the 32-bit mode. The 
performance results reported by the various components of the SPEC CPU 2006 suite are shown 
below: 

 
 ID.NAME      Base Time   Exec Time    Ratio                                    
------------------------------------------------------------------------------- 
401.bzip2        9650        914       10.6 *                                   
403.gcc          8050        701       11.5 *                                   
410.bwaves      13590       2576       5.28 *                                   
416.gamess      19580       1525       12.8 *                                   
435.gromacs      7140        923       7.74 *                                   
436.cactusADM   11950       1957       6.11 *                                   
437.leslie3d     9400        911       10.3 *                                   
445.gobmk       10490        805       13.0 *                                   
454.calculix     8250       3046       2.71 *                                   
456.hmmer        9330       1098       8.50 *                                   
459.GemsFDTD    10610       1059       10.0 *                                   
462.libquantum  20720       1060       19.5 *                                   
464.h264ref     22130       1302       17.0 *                                   
470.lbm         13740        849       16.2 *                                   
 

The noteworthy flags included “-DSPEC_CPU_LP64” and “-O2”. The “-DSPEC_CPU_LP64” 
flag enables 64-bit mode for the source code, and assumes that both “long” integral values and 
pointers are 64-bit entities which was the case for our tested machines. The optimization option 
chosen for the run was “-O2”. 

 

Results for Intel compiler. We tested a full commercial version of the Intel compiler. The exact 
version number was 2011.6.233. The flag for enabling 64-bit processing was “-m64”.   The set of 
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optimization options was the commonly used shorthand flag “-fast”. The performance results 
reported by the Intel compiler are as follows: 

 

 ID.NAME      Base Time   Exec Time    Ratio                                    
------------------------------------------------------------------------------- 
416.gamess      19580       1335       14.7 *                                   
434.zeusmp       9100        592       15.4 *                                   
435.gromacs      7140        590       12.1 *                                   
436.cactusADM   11950        748       16.0 *                                   
437.leslie3d     9400        666       14.1 *                                   
454.calculix     8250        491       16.8 *                                   
459.GemsFDTD    10610        831       12.8 *                                   
465.tonto        9840        588       16.7 *                                   
 

 

Discussion. The most immediate observation is the fact that the Intel compiler always delivers 
faster performance than the GNU compiler.  This is the case despite the fact that the tests were 
performed on an AMD processor. The advantage that the Intel compiler holds over the GNU 
compiler may be as low as 20% (see 416.gamess results: 1335 seconds versus 1525 seconds) but it 
may be as high as many-fold more (see 454.calculix: 491 seconds versus 3046 seconds). We 
attribute such stark differences to a better instruction generation at the very backend of the 
compilation stages. We would definitely expect this difference to be even larger for an Intel 
processor. 

On the negative side, we observe that the gcc compiler is capable of successfully completing many 
more tests (14 in total) than the Intel compiler (8 in total). Lack of successful completion can either 
mean that the compilation failed (e.g., due to complicated use of advanced C++ syntax) or the result 
does not verify by using the test’s internal consistency checks. The difference in completion rates 
may be attributed to more aggressive optimization levels enabled by the “-fast” option for the 
Intel compiler. However, we chose this option as the recommended optimization setting indicated 
by the Intel compiler documentation. This flag is in fact very likely to be selected by most end 
users. 

 

HPC Challenge 

 

HPC Challenge (HPCC) is a benchmark that tests floating point performance of a distributed 
memory machine under different memory access patterns. HPCC depends on Message Passing 
Interface (MPI) and requires a special command to run the test. The Blackjack Harness may be 
easily configured for such a case, which is why there was a lack of failures recorded for HPCC in 
our web harness. 

 

F_Performance 

 

F_Performance includes only a single performance test that measures running time of a generic 
matrix-matrix multiplication routine. The harness records related to F_Performance indicated 
successful test due to its small code size and few features that are exercised from the Fortran 
language. 
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4 CONCLUSION 

4.1 Hardware Characterization 
We have presented the BlackjackBench system characterization suite. This suite of micro-
benchmarks goes beyond the state-of-the-art in benchmarking by: 

1. Offering micro-benchmarks that can exercise a wider set of hardware features than most 
existing benchmark suites do. 

2. Emphasizing portability by avoiding low-level primitives, specialized software tools and 
libraries, or non-portable OS calls. 

3. Providing comprehensive statistical analyses as part of the characterization suite, capable of 
distilling the micro-benchmarks’ results into useful values that describe the hardware. 

4. Emphasizing the detection of hardware features through variations in performance. As a 
result, BlackjackBench detects the effective values of hardware characteristics, which is 
what a user level application experiences when running on the hardware, instead of often 
unattainable peak values. 

We described how the micro-benchmarks operate and their fundamental assumptions. We explained 
the analysis techniques for extracting useful information from the results and demonstrated through 
several examples, drawn from a variety of hardware platforms and operating systems, that our 
assumptions are valid and our benchmarks portable. 

 

4.2 Compiler Evaluation 
We have used the Blackjack compiler test harness with a collection of correctness and performance 
benchmarks to evaluate the GNU and Intel compilers.  The results can be viewed from a Web 
browser.  The results show that while the Intel compiler in general produces better performance, the 
GNU compiler is more robust. 
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List of Acronyms, Abbreviations, and Symbols 

Acronym  Description 

AACE   Architecture Aware Compiler Environment 
ACM   Association for Computing Machinery 
AMD   Advanced Micro Devices 
ARM   Acorn RISC Machine 
CPU   Central Processing Unit 
GCC   GNU Compiler Collection 
GNU   Gnu is Not Unix 
GUI   Graphical User Interface 
HPC   High Performance Computing 
HPCC   HPC Challenge 
IBM   International Business Machines 
ICC   Intel C Compiler 
JPEG   Joint Photographic Experts Group 
KiB   kibibyte, 1024 bytes 
MPI   Message Passing Interface 
NUMA  Non Uniform Memory Access 
OMAP   Open Multimedia Applications Platform 
OS   Operating System 
OpenMP  Open Multi Processing 
RISC   Reduced Instruction Set Computer 
SMP   Symmetric Multiprocessor 
SPEC   Standard Performance Evaluation Corporation 
SQL   Structured Query Language 
TLB   Translation Lookaside Buffer 
3D   three dimensional 
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