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Chapter 1

Introduction

1.1. Pattern Recognition

Pattern recognition is a common part of everyday human life. Humans can
recognize objects, people, familiar voices, have a sense for distance based on size relative
to surroundings and so forth. Machine pattern recognition however must be performed
using non-biological means and intuitions. The image of an object to be recognized must
be captured either in a format, or converted to a format that is compatible with the rest of
the recognition system. The systems today have evolved to include a host of
instrumentation such as synthetic aperture radar (SAR) which uses microwaves to obtain
high resolution images of the earth, laser scanning technology which uses backscattered
information of an object as used in retinal scans, cameras that operate within the visible
and/or infrared realm for tracking cooperative and non-cooperative targets and a host of
other technologies that are employed for imaging specifics of an object. Optical pattern
recognition, the technology focus of this research, has its roots in the experiments
performed by Abbe (1) and later confirmed by Porter (2). Their experiments showed that
by blocking spatial frequencies in the frequency spectrum of the Fourier transformed
object, the resultant image obtained after inverse transformation had that spatial content
removed. In their experiments, the vertical or horizontal spatial frequencies of a wire

mesh (with vertical and horizontal structure) were independently blocked resulting in an




image with only horizontal or vertical structure respectively. Techniques have since been
developed for image restoration and enhancement by selectively removing, dampening or
altering the spatial frequencies associated with the undesired content. Pattern recognition
on the other hand, where the task is to not alter but rather recognize the image,
manipulates the frequency spectrum of the object using Fourier plane masks such that the
Fourier transform of the product of the mask with the objects frequency spectrum results
in a detectable correlation signal which signifies the presence of the object. This signal
and a description of the types of masks used will be discussed in later chapters. Using
Fourier transformations and Fourier plane masks to identify or extract information about
an object using Fourier plane correlation is called Fourier optical processing and is
commonly used in pattern recognition.

The advancement of Fourier optical processing came in 1964 when Anthony
Vander Lugt, while working at the University of Michigan’s Radar Laboratory,
demonstrated using holographic techniques, the ability to control the phase and amplitude
of light at the Fourier plane by creating the Fourier plane mask, also referred to as a filter
mask (and here after referred to only as filter) using a holographic medium (3).
Holograms record phase and amplitude information through the interference of two
coherent beams of light, resulting in a complex transfer function. If the complex
conjugate of the Fourier transform of the object under inspection is used as this transfer
function, the filter is called a matched spatial filter (MSF) and results in a maximum
valued peak in the correlation plane after inverse transformation. The MSF is commonly
used in a template matching application. Template matching, in the simplest sense, is

comparing a stored number of templates with the input scenery until a best match is




found. The template used which results in the optimum correlation signal is said to be
matched to the object under inspection (the MSF will be discussed more in Chapter 3).
Pattern recognition is therefore an application that is connected to pattern/image

manipulation through the Abbe and Porter experiments with filters designed to give an

object detection signal rather than an altered image of the object.
1.2. Optical Correlation

The mathematical foundation of optical correlation can be expressed using two

functions f(x) and g(x), and defining their correlation as
fykg(x)= [ f(x)g" (x'-x) dx' (1.1)

where % is the correlation operation and g"(x) is the complex conjugate of g(x) . For
unit-energy signals, the correlation f(x)%g(x)reaches its maximum value of 1 only if
the signals f(x') and g (x'-x) are identical for some value x. The maximum value of
the correlation is thereby a measure of similarity between the functions f(x) and g(x).

In optical pattern recognition, the convolution theorem is used to extend the above spatial
representation of the correlation operation to the spatial frequency domain F(v,) using

Fourier transforms. The convolution theorem states that the convolution of two functions

can be computed by inverse transforming the product of their Fourier transforms. Stated

mathematically, let F(v,)=F {f(x)} and G(v,) = F (g(x)} whereF { } is the Fourier




transform operation, and the inverse Fourier transform F ~'{ } are defined respectively

as:

F=F {f}: jf(x)e‘z””""dx

and (1.2)
f=F{F}= [Fo)e™=dv

Then the convolution f(x)® g(x) is computed as

f()®g(x)= [f(x)glx-x)dx'

- u]-f(x')[ n]'G(v)ez""’(“"’ dv] dx'

- o

- T[? f(x"e ™ dx'JG(v)ez"”‘ dv (1.3)

= [F(v)Gvye™ dv
=F

HF(W) G}

This is known as the convolution theorem (4). Similarly, the correlation of the two

functions can be shown to be computed as

flxykg(x)=f(x0)®g (-x)

, 1.4
=F {F(v)G )} (14




1.3. Optical Correlator System

An optical correlator uses the Fourier transforming properties of lenses and the
correlation theorem to correlate an input scene with a reference image. For a coherent
optical system, the illumination is a uniform plane wave produced by spatially filtering a
monochromatic light source (typically a laser source) through a pinhole and collimating it
using a lens. There are two primary types of coherent optical correlators in use; the
Vander Lugt type and the Joint Transform type (5). Both systems use coherent
illumination which allows the manipulation of the complex amplitude at the back focal
plane of a Fourier transforming lens. The optical system architecture of the Vander Lugt
type, as used in this research, is commonly referred to by many names including serial
correlator, frequency plane correlator and 4-f correlator in reference to the optical path
length from input scene to correlation plane being 4 times the focal length of the lenses
used if they all have the same focal length f. Illustrated below, the input plane P, has

image f(x,y) adistance one focal length fin front of lens L;. Lens L, Fourier transforms

the image f(x,y) into its spatial frequency representation f(v,,v,)at the back focal plane

P, where a filter G'(Vx.l’y) is inserted to manipulate the spectrum as it passes through that

plane. Lens L; located one focal length f behind P, Fourier transforms the product
F(v,,v,)G"(v,,v,) and the final output c(x, y) = f(x,y)*g(x,y) is produced at the back
focal plane of Lens L at plane P;. It should be noted that the output at P3 is inverted

unless the coordinate axes at P; are reversed. This is a result of using two Fourier

transforms instead of an inverse Fourier transform as the final optical transformation.
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Figure 1-1 4f Optical Processor

The optical correlator has several advantages in image processing in comparison to
digital computation. The 2-D FT operations performed by the lenses are done at the
“speed of light”, essentially an instantaneous operation. The point by point product

F(v,,v,)G (v,,v,) is also carried out at the speed of light and in a single step making the

optical correlator a parallel processor that can compare an entire input scene to a
reference image in three essentially instantaneous operations. Real time optical
correlators however require input and filter devices to display the scene and filter images
instead of static image and filter transparencies. So although the optical correlator’s
speed of operation is that of light, practically speaking the speed of the system is limited
by the ability to write information at the input and filter planes and retrieve the data from
the correlation plane. Nevertheless, optical correlation is much faster than a digital

computer which uses the fast-Fourier transform (FFT) to perform the necessary transform

calculations and compute the point by point product F(v,,v )YG'(v,,v,) serially instead of




in parallel. The number of computations (additions and multiplications) used in the FFT

process is Nlog, N, where N is equal to the total number of values (pixels) in the image

and filter matrices. For a 256 x 256 data array, N = 65536 and the number of operations

required is NV log, N =1,048,576 . In an optical correlator, the same number of operations

is carried out at the speed of light (= 1 ft/ns). In a correlator with an optical path-length
of 1 ft, this corresponds to a throughput on the order of 10" operations per second. As
the resolution of the data array increases, the number of operations in digital computation
also increases whereas in an optical correlator, the increase in the data array size does not
affect the speed of the parallel computation. However, the speed of the bus to carry data
to and from the correlator must scale according to the data array size to maintain the same
speed characteristics as the original configuration.

There are several drawbacks to using real time optical correlators despite their
high speed and computational parallelism. The transparencies used in the original work
by Vander Lugt were created using holography. The interferometric techniques used to

record the complex function G'(v,,v,) allowed an independent variation of magnitude

and phase. A real time correlator uses input devices known as spatial light modulators
(SLM’s) which will be discussed further in the next section. It is sufficient here however
to mention that SLM’s cannot fully represent an arbitrary complex filter function and
their realizable phase and magnitude values are usually coupled instead of being
independently controllable. This requires designing filters that are constrained to the
operating curves of the SLM. These devices can be binary in phase, single valued in
magnitude (constant magnitude of 1) as in phase only modulators, phase magnitude

coupled or amplitude only. The input SLM which displays the input scene also has a




limited dynamic range in grayscale values. This causes a reduction in resolution and a
loss of image detail. The limitations of devices also include the photo-detector used in
the correlation plane which detects the correlation functione(x, y) = f(x, y)kg(x, ).
This measurement is an irradiance measurement which is the squared magnitude of the
correlation therefore all phase information is lost in the detection along with polarity

information (negative magnitudes), all of which are preserved in digital detection.
1.4. Spatial Light Modulators

An SLM is a device capable of modulating the amplitude and/or phase of an
incident wavefront. The modulation of the wavefront is a function of position across the

wavefront (6). The transmittance T'(x, y) of the SLM is controllable by the addressing

mechanism. In an electrically addressed SLM, the control is an applied voltage. One
method of electrical control is to arrange an array of transparent electrodes on each side
of a planar electro-optic material placed between crossed polarizers and to apply an

appropriate voltage to each cell in the array. T'(x, y) is then a function of prescribed
voltage values at the (x, y) location of each cell. The transmitted intensity /,(x, y)
through the SLM device is therefore related to the incident intensity / (x,y) and the
transmittance 7'(x, y) by the product/ (x,y)=1(x,y)®T(x,y). If the incident intensity
1,(x, y)is a uniform collimated wavefront, then / (x,y)can be treated as unity

and /,(x,y) =T(x,y). The input scene or “image” T(x, y) is then seen to be encoded

onto the transmitted wavefront. The encoded image is therefore a conversion from a

grayscale valued image to an array of prescribed voltage values T(x, y) whose resultant




electro-optic/cross polarizer effect gives a transmitted intensity proportional to the

grayscale value.
1.4.1. Liquid Crystals

The electro-optic material used in an electrically addressed SLM can be a liquid
crystal (LC) layer which has both electrical and optical properties. LC’s are elongated
oblong shaped molecules that exist in a state of matter that lacks positional order (like a
liquid) but has orientational order much like a crystal, hence the name liguid crystal.
They respond to electrical forces in that an applied electric field induces a dipole moment
in the molecule. The electric field interaction with the dipole imparts a torque to the
molecule proportional to the field strength, causing it to twist into alignment with the
applied electric field. They also respond to mechanical forces in that LC’s will align with
physical grooves purposely scratched (also known as rubbing) on a glass plate, often
termed a director. If two glass plates are rubbed such that the resulting director axes are
perpendicular and a thin layer of LC is sandwiched between them, the molecules will
undergo a twist from one boundary to the next as they orient their axes to be aligned with
the director at each interface.

There are three phases of LC’s which define their type; Nematic, Smectic and
Chiral. Nematic LC’s have random molecular positions but their molecular orientations
tend to be statistically oriented along a preferred axis. Smectic LC’s also have
orientational order but exist in layers that can slide on one another. Thus the Smectic
types have positional order corresponding to the layer they are in. Chiral LC’s undergo a
helical rotation about an axis perpendicular to the director. Each layer of the helix is

comprised of molecules whose long molecular axes are oriented parallel to one another




within the layer, and at a given angle with the direction of the axes of the molecules in
the preceding layer (7). Twisted nematic LC’s are nematic LC’s which exhibit a twist
much like that found naturally in the chiral type, but are a result of the mechanical forces
imposed by the perpendicular directors of two glass plates with the LC material placed in
between as mentioned above. Optically, LC’s are inhomogeneous and anisotropic
meaning that the permittivity of the material is not constant throughout the region of
propagation and the optical properties are polarization dependant. For waves traveling
perpendicular to the glass plates through the material along an axis defined as the z-axis,
the normal modes are linear polarizations in the x and y directions which are parallel and
perpendicular to the molecular orientation. Since the medium is anisotropic, the

refractive indices are the extraordinary and ordinary indices n, and n, for the x and y
polarization states. For a linearly polarized wave with vacuum wavelength A, traveling
through a cell of thickness d, the wave retardation is expressed asI" =2z(n, —n,)d/ 2,. If

an electric field is applied across the cell, the molecules will tilt in alignment with the

direction of the field changing the extraordinary index n, . The retardation of the cell then
becomes a function of the tilt angle (V') which is itself determined by the strength of the
applied voltage V. The retardation is then expressed asI" = 2z(n,(0)—n,)d/ A,. For a

linear polarization of 45° in the x-y plane the cell is described as a voltage controlled

variable wave retarder. For a wave completely polarized in the x direction,

['=2zn,(0)d/ A, and the cell is described as a phase modulator. If the cell is designed

such that I' =7, it is referred to as half-wave retarder. When placed in between two

cross polarizers at +45°, it becomes a voltage controlled amplitude modulator. An
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amplitude modulator can also be constructed out of the twisted nematic LC cell (8). As
already described, the molecules undergo a helical twist from one glass plate to the next.
This twist angle is 90° if the directors of the plates are orthogonal to each other. If the
director of the first plate (and therefore the orientation of the LC molecules) is oriented
along the x-axis, the polarization of an incident linearly polarized wave (with polarization
parallel to the director) will rotate following the helical twist of the molecules. The
polarization exiting the LC cell will be polarized along the y-axis. The cell therefore acts
as a polarization rotator. If an electric field is applied across the cell, the molecules tilt in
the direction of the field (the z-axis) diminishing the polarization rotary power of the cell.
If the applied electric field is strong enough, the tilt angle of the molecules (except for
those at the glass surfaces) reaches 90° and the twisted state of the molecules is lost and
the polarization rotary power of the cell is deactivated. If placed between crossed
polarizers whose transmission axes are parallel to the directors of the plates, the cell acts
as an optical switch, transmitting light when there is no applied field, and blocks the light
when the field is applied. If a variable field is applied, the voltage controlled tilt angle
(V) determines how much of the rotary power is lost and thercfore partial polarization
rotation does occur and the cell then acts as a voltage controlled amplitude modulator. A

complete treatment of liquid crystal devices can be found in (7) and (9).
1.4.2. Bipolar Amplitude Spatial Light Modulators

The SLM’s used in this research are deformed helix ferroelectric liquid crystal
(DHFLC) devices. DHFLC is a Smectic C* type LC with a small molecular pitch.
Ferroelectric LC’s (FLC’s) have a faster response time than the LC’s mentioned due to an

inherent electric dipole moment possessed by ferroelectric material. The dipole moment
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interacts with the applied electric field switching the molecules orientation faster than the
LC’s that require an induced dipole moment. The switching speed of a FLC (50 — 200us)
is therefore an order of magnitude faster than the nematic type (20ms) (9) . The helical
arrangement of the DHFLC is similar to that of the twisted nematic LC which acts as a
polarization rotator. The polarization rotation of the DHFLC works on the same principle
but with the switching speed advantage of the FLC. The DHFLC therefore has the
polarization rotary power to cause up to a 90° rotation in polarization which, when
combined with an analyzer, gives an amplitude transmittance of 0 — 1 for an incident
beam linearly polarized along the director. For an incident beam polarized at 45 degrees
to the director axis, the transmitted amplitude ranges from -.7 to .7 with zero to 2pi
rotation respectively. This is further illustrated below in Figure 1-2. The black arrow
represents the maximum rotation amount of the polarized field due to the modulation; the

gray line is the transmission amount along the analyzer axis.

[llustration used from reference

(46)
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Figure 1-2 Transmission amplitude curve of bipolar DHFLC
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The DHFLC device is therefore bipolar in phase and grayscale in amplitude due
to a natural linear relationship between applied voltage and LC response. The rotation of

the crystals as a response to applied voltage Vm is shown below in Figure 1-3.

Illustration used from reference (46)
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Figure 1-3 Illustration of polarization rotation of FLC to applied field.
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Chapter 2

Pose Estimation for Autonomous Rendezvous and Docking

2.1. Science Motivation

The optical correlator has been tested extensively for target recognition and
tracking in various military and industrial applications. Space applications are on the
horizon, including pose estimation for autonomous rendezvous and docking (AR&D). An
autonomous docking solution removes the potential for human introduced error,
minimizing the risk to equipment and crew. The George W. Bush administration’s 2004
NASA Space Exploration Initiative (10) which involves returning humans to the moon
for lunar exploration will serve as a technological stepping stone for the human
exploration of Mars and will elevate the importance of AR&D. Present rendezvous and
docking technology requires on board human intervention for flight operations during the
docking event and extensive ground control support at the Johnson Space Center in
Houston. For a lunar operation, the signal delay from craft to ground support will be
problematic and for proximity operations as far as Mars, the long signal delay makes
Earth based intervention impossible. Therefore, an AR&D system, with less reliance on
human participation (both ground and crew) is considered necessary to help accomplish
the goals of the Exploration Initiative.

Signal delay however is not the only motivation for AR&D. The dangers
associated with manual docking were manifested in 1997 when a 7 ton cargo ship crashed

into the Russian MIR space station when it approached too fast to dock safely. The event
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almost killed all on board after sending the MIR into a slow spin, piercing a module
known as Specktr. This damage caused a leak in air pressure before it was sealed off.
Power conservation required turning off all air conditioning and urine processing systems
causing abrupt disruption to scientific experiments and the on board crew had to conserve
oxygen by working in slow motion. This near tragic event brought the need for AR&D
technology development to the forefront. Safety and technological demands for further
space exploration make AR&D a necessary research element for space exploration.
AR&D technology will be a system integration of many technologies that allow a
craft to identify another craft, determine its orientation with respect to that craft, and then
approach the craft for either rendezvous or for docking. The identification of a craft and
the determination of its pose is the focus of pattern recognition research which has been
particularly developed in the digital domain. Research in correlation filters that can be
used for pose estimation and target tracking have been developed by Juday et al. (11),
Casasent (12), and many others (12-24). Treatments on optical considerations have been
addressed by Mohalanobis et al (25) with actual implementation for target tracking being
done by Chao (26-29). However, using an optical correlator for pose estimation has not
been successfully implemented. With the development of high speed SLM’s, the pose
estimation problem of AR&D is a good platform for developing techniques that can

possibly be extended to faster moving targets.
2.2. Statement of Research Problem

The scope of this research is to investigate pose estimation for AR&D using an
optical correlator. For AR&D, the goal is to identify the target vehicle and estimate its

rotational and translational state. The application of optical correlation techniques for
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target tracking and pose estimation has been facilitated by the recent development of
high-speed spatial light modulators (SLM). The techniques and filter designs that have
been researched for digital methods do not have a trivial implementation when extended
to an optical correlator and in some cases may not be possible due to real device
limitations versus the flexibility allowed when working in the digital domain.

The demands of pose estimation using optical correlation exceed the demands of
target tracking when considering filter design and implementation. In a pose estimation
scenario, the peak values of the correlation measurements relative to one another are used
to determine the pose of the craft. One method is based on modified composite filter
designs that weight the poses in the training set such that the correlation peak value for
each pose is predetermined in a way that a post processing algorithm can extract the pose
based on the measurement values (16, 21). These techniques work well in a digital
routine, however, optical correlation is more challenging. The range of values available
for weighting the poses for optical composite filter designs is limited between 0 and 1
whereas digitally they can take on any value. In an optical correlator, the filter SLM does
not have the ability to add gain to the signal. It operates between zero and full
transmittance and therefore has a weighting ability of 0 to 1. Digitally, a large dynamic
range of gain can be added in the filter design. Digital filters can also be, and usually are,
complex valued and are not fully realizable on a real SLM device being limited by the
operating curve of the SLM. Projecting a complex filter to an optimal real valued
realizable filter has been investigated using minimum Euclidean distance (MED)
projection to the operating curves of the SLM devices as explained in full detail by Juday

(32, 33). However, the limited dynamic range of the SLM cannot accommodate the
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dynamic range of the original digitally designed filter. Another drawback is the response
of the SLM not being active over all 8 bits which reduces the resolution of the image and
the available values for filter projection. The questions that will be addressed in this
research are:

1. Can an optical correlator be used for the pose estimation of a spacecraft?

2. If so, how does its implementation differ from a digital method?

3. What are the pros and cons of an optical correlation approach?

The first two questions will be addressed in the validation of pose estimation
techniques. The third question will be addressed in the final conclusions chapter where
the pros and cons of pose estimation will be discussed based on the results of the

correlation experiments.
2.3. Limitations of Research

This research will be limited to investigating optical pose estimation only. The digital
pose estimation methods discussed serve only to contrast the limitations between digital
and optical correlation approaches. Optically implementable filters created from the
digital models are presented to highlight the challenge of optical pose estimation using
composite digital filters platforms. New digital filter designs will not be investigated or
developed. The spacecraft docking scenario will be the docking of the space shuttle to
the international space station (ISS). The pose estimation will be done with zero clutter
in the background. Pose estimation with clutter and background noise will be suggested

as recommended future research.
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Chapter 3

Correlation Filters

3.1. Matched Filter

The matched filter has played a significant role in pattern recognition due to its
ability to detect signals corrupted with additive noise. An in depth treatment of the
matched filter can be found in (25) whose outline of approach is summarized here. The
matched filter maximizes the signal to noise ratio (SNR) performance criterion defined

as:

|EC, o
var{C, }

SNR = (3.1)

where E{} denotes the expected value operation and “var” denotes the variance, C,  is

the correlation between the input signal v and the input signal plus additive noise n where

v = u+n. Since the noise is assumed to have zero mean, E{C, (0)} is maximum when

the input signal is ». The numerator of equation 3.1 can be further simplified as:

[E€C.,, O =|{ fuwmenar)| =[{ fuoraoar| (32)

where U(f) and H( f) are the Fourier transforms of the signal « and impulse response A.
The input noise if is further assumed to be wide sense stationary (WSS) with power

spectral density (PSD) P, (f). The output noise of a linear shift invariant (LSI) system
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is also WSS and has PSD P,(f) |H(f)|2. The variance of a zero-mean random process is

equal to the total area under its PSD (25), therefore the denominator of equation 3.1 can

now be expressed as:
var{C,,(0)} = [B(N|H(Y df (3.3)
The SNR can now be expressed in terms of U(f), the FT of the signal u(1), the

PSD P,(f) of the additive noise n(1), and the filter frequency response H(f) by using

Egs. (3.2) and (3.3) in Eq. (3.1).

|funaar
SNR =

= 7 3.49)
[BHIH] af

In this form, the SNR can theoretically be infinite if P,(f) contains zeros in frequency
regions where U(f) does not and the filter magnitude is set to be non-zero in those
regions. This generally does not occur so H( f) must be chosen to maximize the SNR

differently. The SNR can be re-written using the Cauchy-Schwarz inequality:
|[anBndar] <[ lanfar || fsofar] (3.5)

which has equality if and only if A(f)= B (f), where Bis a complex constant. An

upper bound on the SNR can be obtained by applying Eq. (3.5) to the numerator of Eq.

(3.4) to get
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Because the PSD P, (f)is real and non-negative, taking the square root of it is allowed to
obtain the above expression for maximum SNR which depends only on the FT of the
signal u(t) and P,(f). Using the equality condition A(f)= BB’(f) of Eq. 3.5, the

maximum SNR can be obtained if and only if

D | s¥sr il = g i o TP v
[ Jfo)] BlHUWED | = H()=a— 2 o (3.7)

where a is any complex constant. For the case where the input noise is white noise, the

PSD is a constant ( £,(f) = N,) and the maximum SNR is simply

H(f)=a U (f) (3.8)

where a, = %. This maximal-SNR filter is known as the matched filter (MF) since it is
0

“matched” to the input signal by conjugating the FT U(f). This is best interpreted

optically where MF H (u,v) =U ' (u,v) is inserted in the Fourier plane and input scenery
u(x, y)is in located in the input plane of the optical correlator. Incident on the filter

isU(u,v), the FT of u(x,y). The filter H(u,v)transmits a field proportional to

UU" which is purely real. Optically, this translates into the phase curvature of the
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incident field being cancelled by the filter H (u,v), which results in a transmitted plane

wave. The second FT lens focuses the plane wave to a spot one focal length distance
away at the correlation plane. The MF is therefore a phase canceling filter which results

in a maximum SNR.

3.2. Inverse Filter

The inverse filter (IF) maximizes the peak to correlation energy (PCE) ratio

defined as
C,, 0,0
PCE =*-———" (3.9)
where E, is the energy contained in the correlation signal C, , defined as
. 2
E = [[|c,,(x.y)| dxdy (3.10)
The inverse filter is defined as
U'
(=) @1

2
U
which can be seen to have a maximum PCE when the input scene is the reference object

U(f) (Incident on the filter is field U(f) which transmits

U(f)-H(f) =U;({+(/j_;l(2f)— = unity.) The FT of a constant is a delta function. The IF

therefore, by design, produces the sharpest correlation peaks and therefore the highest

PCE. The IF however suffers serious drawbacks. Where the spectrum U( f) contains

zeros is ill defined in the IF and therefore cannot be realized. The IF also does not
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account for any noise that may be in the signal and boosts the frequency components that

have the worst SNR. The Wiener Filter defined as

H(f)= v (3.12)

where P,(f) and P,(f)are the PSD of the noise and object respectively, solves the above

mention problems associated with the IF. It is defined for zeros in the spectrum of U(f)

and takes into account the noise that may be present in the signal. For high SNR, the WF

reduces to the IF. For low SNR, it reduces to the matched filter H(f) ~ %U'(f) :

3.3. Binary Phase Only Filter

The binary phase only filter (BPOF) is defined as

BPOF(u,v) = Sgn{Re(POF)} (3.13)
where
B 1 ifx20
Sgn(x)—{_] if x<0 (3.14)

and the phase only filter (POF) is defined as

U (u,v)
U (u,v)

POF (u,v) = (3.15)

The BPOF has been studied extensively since its introduction (35-39) with one of its
advancements being that of a threshold line angle (TLA) where the binarization axis is

allowed to be arbitrarily rotated. Eq. (3.13) then becomes

BPOF (u,v) = Sgn{Re(POF)exp(iB)} (3.16)
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where fis the TLA as illustrated below in figure 2.

Im{POF(u,v)}

BPOF(u,v) = 1

Re{POF(u,v)}
BPOF(u,v) = -1

Figure 3-1 Illustration of TLA as used in BPOF

The optimum TLA usually involves a search algorithm and it is often selected as either
0°,90° or 45°corresponding to the real, imaginary, or real + imaginary parts of POF
respectively. BPOF’s are light efficient since the transmission for all filter values are +1.
They are also easily computed requiring little processing time. They are of significant
interest in optical correlation since many SLM devices are binary in phase such as the
Magneto-Optic SLM (MOSLM) and can only implement BPOF’s. A complete treatment

of BPOF and implementations using binary SLM’s can be found in references (34-39).
3.4. Synthetic Discriminate Function Filters

One of the most useful advances in correlation filters has been the development of
synthetic discriminate function (SDF) filters. The idea behind an SDF is to weight the
frequency content of N training images used in its construction such that the peak
correlation of the filter with any image in the training set is determined by the weight

assigned. The general formulation (40) of an SDF filter H is given by the equation
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H=XX"'X)"u (3.17)

where X =[x,,x,,X,....,x, |is the matrix whose columns x, are the Fourier transforms of

the N images in the construction set lexicographically rearranged as column vectors, +
indicates complex conjugate transpose and u is a weighting vector containing the desired
auto-correlation peak values for each image in the construction set. Typically, these
filters are created to achieve invariance to distortions such as in-plane and out-of-plane
rotations. This design has traditionally been geared more toward automated target
tracking and recognition (ATR). In contrast to pose estimation, the ATR parameters of
interest are the identification and tracking of the target as it translates through space.
Pose estimation consists of identification, tracking, and the extraction of the 3 degrees of
rotational freedom of the craft, hence making pose estimation a more difficult task

requiring a different approach in filter design.
3.4.1. The Minimum Average Correlation Energy (MACE) Filter

The MACE filter (41) minimizes the correlation plane energy and produces very

sharp correlation peaks over the recognition class. The correlation function c, of the i"
training image x, with the filter 4 is denoted as ¢, = x,%h. With the discrete Fourier

transform (DFT) of the correlation function denoted as C,, and X; and H the DFT of the

training image and filter respectively, the energy in the correlation plane 1s computed by

Y 2 1 ¢ 2
E =2 Jeonf == 2 |C.(m)
o ] " (3.18)
- §|H(m)|2 X, (m)|’
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This can also be expressed using the vectorized image form as
E=H'DH (3.19)
where D; is a diagonal matrix with the power spectrum of the image x; as its diagonal

elements. The average energy in the correlation over all training images is then
E =—1-ZE (3.20)

The MACE filter minimizes this average energy function while constrained to having
peak amplitude ¢,(0) = X;"H =u,. Its general formulation is given by the element by

element matrix operation
H=D'X(X"D"'X)'u (3.21)

where D is the average power spectrum of the N training images contained in X;

D=—>"'D (3.22)

The MACE filter is equivalent to a cascade of a whitening filter followed by a linear
associative memory (41).

Introduced by Kumar (16), focused MACE filters are designed to have one pose
as the “focus™ of the filter, with the neighboring poses suppressed. The weighting of the

poses is Gaussian with the target pose at the origin. As the target vehicle deviates away
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from the focus pose, the signal peak degrades in a controlled manner. The filters are
designed to cover a wide range of poses with each filter focused on a particular pose.
When presented with a target image, the peak response of each filter is collected in a
vector. The shape of the vector elements is then compared to signature shape vectors of
known poses generated during the design of the filter. The ability to generate a focused
MACE filter with controlled responses after data compression for real valued

implementable filters is a research challenge but the approach is worth consideration.
3.4.2. The Maximum Average Correlation Height (MACH) Filter

The MACH filter (25) is designed to maximize the correlation peak of the average
of the training images. The MACE filter produces maximum peaks for images inside of
the training set, but has decreased correlation energy for distortions of the image in
between those used for the training set. The MACH filter maximizes the average
correlation height of all distortions in and out of the training set. Its general formulation

is given below. The FT of the vectorized training image set is again represented

as X =[x,,x,,x,,...,x, |, where column vectors x, are the FT of each training image of size
d x d lexicographically rearranged as vectors of size d*. The correlation peak of the ith
training image (found at the origin) with filter 4 is found as c,(0,0)=x" . The Average

Similarity Measure (ASM) is a metric used to characterize the tolerance in distortions and

is defined as

ASM =-1—1]—izd:ilc,(m, n)—.c‘(m,n)2 (3.23)

i=]
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where c,(m, n) is the correlation of the ith training image and c(m,n) = Zc (m,n) is
ja—]

the average of the correlation surfaces of all training images. Using Parseval’s theorem,

the ASM can be rewritten as

ASM = ﬁii i[c,(m,n) ~Coaim| (3.24)
=l m n

E(m,n) is referred to as the average correlation height (ACH) and is given by

ACH=M'H (3.25)

N
where M = lZ:X ., the average of the training images FT’s. The ASM can then be

t=1

derived to be

N
ASM —ﬁzpr H-MH[

i=]

N
H (X -M)(X,-M) H
~d N;: ( ) ) (3.26)
1 ‘
=H'"|— ) (X,-M)(X,-M) |H
| S b - b |
=H'SH
1 N
where S = [d_J\?Z (X, -M)(X, - M)jl By method of Lagrange Multipliers, H is
i=]
found to be
H=S"X(X'S"'X)'u (3.27)
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where u is a weighting vector used to weight the spectrum of the training set. For equal

correlation peak weighting, » =[1,1,...,1] and is of length X. A complete treatment on the

MACH filter can be found in reference (25).

3.4.3. The Optimum Tradeoff Mach (OTMACH) Filter

The OTMACH Filter has been implemented with reasonable success by Chao
(42) for target tracking applications. It optimizes several performance measures such as
the ACH, ASM, ACE and output noise variance (ONV). The filter minimizes the energy
function

E(H)=a(ONV)+ B(ACE) + y(ASM) - 6(ACH)

. 3.28
=aCH + BDH +ySH - §|M " H| ik
The OTMACH filter that satisfies the minimized equation is
A (3.29)
aC+pD+yS

where C is the PSD of the additive input noise. M, D and S are as defined above and a, f,
and y are non-negative OT parameters. The selection of a, f, and y values determine the
performance behavior of the filter as required by application. For a = = 0, the filter
behaves like a MACH filter which is good for tracking over a range of object distortions.
For a =y =0, the filter reduces to the MACE filter which gives sharp peaks but varies
significantly over distortions of the object. For =y = 0, the filter reduces to a minimum

variance (MV) SDF which was introduced by Kumar to reduce the output noise variance




in the correlation. For other values, the filter trades off performance in one area to be

optimal in another according to the application need.
3.4.4. The Minimum Euclidean Distance Optimal Filter (MEDOF)

The MEDOF is designed to be implemented on SLM devices which have a
limited realizable range of amplitude and phase values in which they operate. Therefore,
the filter values must be fitted to this operating curve. The Minimum Euclidean Distance
(MED) principle introduced by Juday (32) can be summarized as a mapping of the
complex values of the filter design to the MED values of the complex operating curve of

the SLM. For a binary phase-only SLM device, its MED mapping is given by:

+1, Re(H)=0
H,,, = (3.30)

" |-1, Re(H)<0

where Hyzp is the projected MED filter of H. This is illustrated below in Figure 3-3.

Im © H computed value

\ ® Hy:p Realizable value

|

Figure 3-2 MED mapping for binary SLM

For a ternary SLM device, its MED mapping is:
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+1, +0.5<Re(H)
H,p=10, —-0.5<Re(H)<+0.5 (3.31)
-1, —-0.5<Re(H)

For a bipolar amplitude only SLM (AOSLM), the MED mapping is simply a projection

of the complex valued filter H to the real axis. This mapping is given as

+1, +1 <Re(H)
H,,, ={Re(H), -1<Re(H)<+l (3.32)
-1, Re(H) < -1

and is illustrated below in Figure 3-4.

Yo O H computed value

X O | @ Huyprealizable value
-1

[
o»9
—

Re

Figure 3-3 MED mapping for AOSLM

For coupled amplitude/phase response SLM’s, the MEDOF is mapped to the complex
operating curve of the device by selecting the MED value of the SLM to the ideal
computed value. Because the dynamic range and the information capacity of the digitally
designed filter will have to be compressed to the allowed dynamic range limited to that
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achievable by the SLM’s, the MEDOF performance will decline rapidly with the number
of training images used and limit the designer to additional constraints. The conversion
from digital to a constrained realizable filter is one of the main hurdles in achieving

optical correlation based pose estimation using composite filter designs.
3.5. Application of Correlation Filters

Composite correlation filters have been used extensively in the recognition of
targets in synthetic aperture radar (SAR) imagery, in the growing ficld of biometric
recognition, industrial automated inspection, space applications and defense. Images
used for developing filters for detecting targets in SAR are mostly taken from the moving
and stationary target recognition (MSTAR) database. The MSTAR database contains
SAR image sets of particular targets at specific depression angles and multiple poses.
These images are used to develop algorithms for ATR applications. Chao at the Jet
Propulsion Laboratory (JPL) has reported success using OTMACH filters implemented
on a grayscale optical correlator for ATR applications (41). The problem of pose
estimation has been investigated initially by Juday where correlation targets are placed on
the vehicles to aid in the pose estimation task. Castro (43) and Kumar (16) used
weighted composite filter schemes whose complex designs may necessitate a digital
implementation. Conversion from the digital to an optically implementable filter has
been suggested by using binary phase only SDF’s which binarize the digital filter. These
binarization techniques have not been shown to result in filters whose performances are
on par with the original complex digital version and have many constraints and

drawbacks (44).
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rendezvous simulations for test which eliminates hardware simulation cost. The software
used to render the 2D images is © 3ds Max version 9. This software is designed for
animation and has the necessary tools built in such that anticipated scenery and precise
control of the movement of the craft can be simulated and tested. Various camera options
are available with controlled lighting such that the docking event can be as closely
simulated to match real world docking scenarios. This approach is not limited to
spacecraft or space applications and is useful for the generation of training images for any
target of interest in any environment.

The craft used for this research is the NASA space shuttle. The docking
procedure with the International Space Station (ISS) will be reproduced and used as the
test docking scenario for study. Mainly, pose estimation at the alignment ranges of
100m, 50m and 10m will serve as the test ranges for study. A simulated light and camera
are situated inside the docking port of the ISS used to illuminate and view the craft as it
approaches as shown in Image 3-1. Image 3-2 is a rendition of the shuttle at each
alignment plane as it prepares to dock to the ISS as used in the research model. The tools
available in the 3D software create a virtual laboratory where the effects of lighting,
shadows, and camera can be designed into the filters which can compensate for these

effects.
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3.6. Research Contribution

The optical correlator has been successfully used for ATR but limited
application to pose estimation has been performed. This research will investigate the
viability of optical correlation based pose estimation using bipolar amplitude spatial light
modulators. The approach taken will briefly highlight why weighted composite filters,
one of the main components of digital pose estimation, cannot successfully be
implemented on real devices which makes optical pose estimation more difficult to
achieve and a more complicated problem to solve than the digital solution. However,
this research effort will show that a brute force method using a bank of filters and a
minimum amount of image processing can result in accurate pose estimates using a
minimum amount of filters per estimation cycle. This research will also suggest a
method of mapping large dynamic range digital filters to 8bit real valued SLM’s resulting
in higher signal to noise ratio correlations than non amplitude (bipolar) modulation.

The technical approach to this research will differ from that using cooperative
correlation targets. The aim of this research is to develop pose estimation techniques of a
craft by using only the geometry of the craft to obtain the correlation result. This goal of
this approach introduces 3D simulation software generated images for the training set of
the craft which can be generated by importing the CAD design of the craft or a simulated
model of the craft. It is typical in research to obtain training images by using physical
models of the desired target using cameras and rotation platforms in a laboratory
environment. This requires equipment and setup time which adds overall cost to the
project. Using 3D animation software to generate the training images for the correlation

filters eliminates this hardware cost and also allows for the generation of docking and
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Location of Light and Camera

Inside Docking Port of ISS

o

Image 3-1 3D pose estimation setup of camera and light (Top) and view from camera of
illuminated craft (Bottom)




Image 3-2 Shuttle at each alignment plane (100m, 50m, and 10m left to right). Top row shows
docking event from an angled view camera. The bottom row is the camera view as seen from the
docking port on the ISS.
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Chapter 4

Research Procedures

4.1. Research Methodology

The most ideal pose estimation method would involve the fewest correlations per
detection using the fewest number of correlation filters. This is best achieved with
composite correlation filters where information exists for many poses within a single
filter. The characterization of the SLM’s is the first step in preparing any filter design for
optical implementation. The images and filters were mapped to the amplitude response
of the input and filter SLM’s respectively. After SLM characterization, filter designs
using weighted composite filters are designed, mapped and the obtained correlations are
compared to the digital results. To implement the composite filters, a linearly stretched
histogram mapping of the filters to the filter SLM response as successfully used by Chao
(45) is compared to logarithmically mapping the dynamic range of the filter design to the
filter SLM response. This mapping has greater optical efficiency than histogram
stretching and produces a higher signal to noise ratio than bipolar modulated filters.

After mapping the filters, the composite filter designs are tested for the ability to
selectively weight poses in a controlled and predetermined manner. The inability to
meet this goal resulted in using a bank of filters approach using logarithmically mapped
(LM) distortion sensitive filters. To improve the discrimination ability of each filter,

edge detection and image scaling were performed on the images with the results
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compared to that obtained with no image preprocessing. The following sections outline

the procedure of each validation technique.

4.2. Characterization of SLM’s

Because both SLM’s are amplitude modulators, the phase characteristics are
already known to be bipolar and therefore only amplitude characterization is necessary
for complete characterization of the SLM’s. The SLM’s are assumed to be uniform with
a non-uniform approach considered if uniformity becomes a dominant issue in error
analysis. The amplitude response of the input and filter SLM is characterized by doing
the following:

Input SLM

1. Write full transmittance filter array to filter SLM (256x256 array with
values of 0 or 255).

2. Increment input SLM array from 0 to 255 and record average intensity
value in correlation plane.

Filter SLM

1. Write array on input SLM with four active pixels in the center (2x2) of
the 256x256 array at full transmittance (255) values with the rest of the
array at zero transmittance values. The Fourier transform of a small
active region will fill most of the Filter SLM.

2. Increment the array values at the Filter SLM from 0 to 255 and record
average intensity value in central region of correlation plane.

The amplitude response is proportional to the square root of the obtained values

and the response of both input and filter SLM’s are stored as vectors for further use.
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4.3. Dynamic Range Compression

All filter designs are generated digitally and will have to be converted to an
optically implementable filter design. This primarily involves dynamic range
compression and mapping of the filter amplitudes to the amplitude response of the filter
SLM. For the bank of matched filters approach, the initial filter designs used to test the
search algorithm will be BPOF’s since they are easily computed and implementable on
an optical correlator. Dynamic range compression is required for the composite filter
designs and for compression of the distortion sensitive Weiner filters. Both the linearly
stretched mapping and the creation of LM filters are presented in more detail in Chapter 5
with the results of each as illustrations. The two methods were compared based on the
following:

o Light efficiency of filter design
e Number of filter values on SLM modulation curve.
o Effect of compression technique on optical correlations

The light efficiency of the filter is calculated by normalizing the magnitude of the
resultant filter to 1 after shifting the filter values such that zero optical throughputs
correspond to a value of zero, and then summing the magnitude of all filter values. This

is discussed further in Chapter S.

4.4. Disqualification of Composite Filters

Using weighted composite filters for pose estimation requires the control of the
peak values of selected poses. Equal correlation peak (ECP) filters ideally have a
constant response for all poses in the training set. This is the ideal requirement for target

tracking where the correlation peaks have to be present, but their individual values with
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respect to one another does not have to be meaningful. However, pose estimation is a
more challenging task by requiring the relative pose measurements to have a consistent
predictable weighted response. Weighted correlation filters are therefore designed and
tested as follows:
1. Design MACE, MACH and OTMACH filters with weighted correlation
peaks.
2. Verify filter design using digital correlation and obtain peak values of
weighted training set.
3. Create LM MED version of filters and obtain optical correlation results for
each image in training set.
4. Compare optical results to expected digital results.

If the above validation had proven to be successful, then pose estimation
techniques using weighted composite filters could have been investigated. The results
shown in chapter 5 will cover the details of additional constraining factors not
encountered digitally. The bank of matched filters approach was then considered as an

alternative solution.

4.5. Validation of the Bank of Filters Technique with Pose Search

Algorithm

The traditional bank of filters (BOF) approach requires generating a large number
of filters and scanning through them until a correlation peak is found which is determined
to be a best match according to the metric chosen (peak value, SNR, etc). This approach
is more of a brute force approach but if an algorithm is used that intelligently selects and

loads filters to be used to determine the pose, the number of correlation filters used per
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cycle decreases dramatically. Because of the number of filters needed, a simple filter
design that is sensitive to distortions and computationally efficient was chosen to prove
the concept. The binary phase only filter (BPOF) has such characteristics and is

computed by binarizing the phase @ of the MSF for each image in the filter bank

according to equation (3.30). One method of taking the BOF approach with a pose
search algorithm is as follows:

Consider a three dimensional pose space corresponding to the 3 degrees of
freedom (DOF) pitch, yaw, and roll. For this illustration, the range for all axes of rotation
will be limited to 0 — 4 degrees for clarity and demonstration purposes. Pose points are
constructed on the x, y, and z axes corresponding to the pose parameters pitch, yaw, and

roll respectively. The cubic space describing this is shown below in Figure 4-1.

30 Pose Space
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Figure 4-1 Illustration of 3D pose space as used in search algorithm




In this example, the craft was found oriented such that it corresponds to the pose point
2,2,2 (highlighted in center). On the next image capture the algorithm checks that pose
parameter again in case the craft has not moved, and then checks the correlation of the
image with the filters of the nearest neighboring poses (poses surrounding 2,2,2). The
maximum correlation value found determines which direction the craft has moved and its
new orientation. The steps involved are:

1. Perform Image Capture
2. Correlate image with each filter in bank storing maximum value of each

correlation

Corr(k) =max(/ % F,)

I = Image from initial image capture
F, = k" filter in bank of N filters
k={1,..,N}

%= correlation operation

3. Determine pose with greatest correlation peak
4. Perform next image capture

5. Use algorithm to determine pose matrix
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Correlate image
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Perform image
Caputure

Algorithm crestes

Determine Pose
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Perform image
Capture
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Figure 4-2 Initial steps in pose estimation routine

Once the pose of the craft has been determined from the initial image capture and the
next image and pose search matrix has been acquired, a loop of the following steps is
initiated:

1. Correlate captured image with filters from pose matrix

Corr(n) =max(/, % F,)

I, = m" Image capture
F, = n" filter determined by pose matrix
= {l.....27}

%= correlation operation
2. Determine pose corresponding to maximum correlation value found in
Corr(k). Display and/or feed pose information to operator/craft.
3. Perform next image capture
4. Create new pose matrix

5. Repeat from step 6
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Figure 4-3 Pose estimation cycle

Each cycle produces a single pose estimate which is stored and compared to the
actual pose of the craft. The validation set of poses found in Table 5-3 were used to test
the algorithm. The standard deviations of the errors of the pose estimates is the data
reported.

A statistical analysis of the performance of the algorithm described above was
performed by generating a set of poses to be tested and comparing the SNR and the peak
values of the autocorrelations with the 26 neighboring pose cross-correlations of each
pose. ldeally, the autocorrelations will always exceed the value of the cross correlations
in both SNR and peak value. However, it was found that the autocorrelation values a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>