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Chapter 1 

Introduction 

1.1. Pattern Recognition 

Pattern recognition is a common part of everyday human life. Humans can 

recognize objects, people, familiar voices, have a sense for distance based on size relative 

to surroundings and so forth. Machine pattern recognition however must be performed 

using non-biological means and intuitions. The image of an object to be recognized must 

be captured either in a format, or converted to a format that is compatible with the rest of 

the recognition system. The systems today have evolved to include a host of 

instrumentation such as synthetic aperture radar (SAR) which uses microwaves to obtain 

high resolution images of the earth, laser scanning technology which uses backscattered 

information of an object as used in retinal scans, cameras that operate within the visible 

and/or infrared realm for tracking cooperative and non-cooperative targets and a host of 

other technologies that are employed for imaging specifics of an object. Optical pattern 

recognition, the technology focus of this research, has its roots in the experiments 

performed by Abbe (1) and later confirmed by Porter (2). Their experiments showed that 

by blocking spatial frequencies in the frequency spectrum of the Fourier transformed 

object, the resultant image obtained after inverse transformation had that spatial content 

removed. In their experiments, the vertical or horizontal spatial frequencies of a wire 

mesh (with vertical and horizontal structure) were independently blocked resulting in an 
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image with only horizontal or vertical structure respectively. Techniques have since been 

developed for image restoration and enhancement by selectively removing, dampening or 

altering the spatial frequencies associated with the undesired content. Pattern recognition 

on the other hand, where the task is to not alter but rather recognize the image, 

manipulates the frequency spectrum of the object using Fourier plane masks such that the 

Fourier transform of the product of the mask with the objects frequency spectrum results 

in a detectable correlation signal which signifies the presence of the object. This signal 

and a description of the types of masks used will be discussed in later chapters. Using 

Fourier transformations and Fourier plane masks to identify or extract information about 

an object using Fourier plane correlation is called Fourier optical processing and is 

commonly used in pattern recognition. 

The advancement of Fourier optical processing came in 1964 when Anthony 

Vander Lugt, while working at the University of Michigan's Radar Laboratory, 

demonstrated using holographic techniques, the ability to control the phase and amplitude 

of light at the Fourier plane by creating the Fourier plane mask, also referred to as a filter 

mask (and here after referred to only as filter) using a holographic medium (3). 

Holograms record phase and amplitude information through the interference of two 

coherent beams of light, resulting in a complex transfer function. If the complex 

conjugate of the Fourier transform of the object under inspection is used as this transfer 

function, the filter is called a matched spatial filter (MSF) and results in a maximum 

valued peak in the correlation plane after inverse transformation. The MSF is commonly 

used in a template matching application. Template matching, in the simplest sense, is 

comparing a stored number of templates with the input scenery until a best match is 



found.   The template used which results in the optimum correlation signal is said to be 

matched to the object under inspection (the MSF will be discussed more in Chapter 3). 

Pattern recognition is therefore an application that is connected to pattern/image 

manipulation through the Abbe and Porter experiments with filters designed to give an 

object detection signal rather than an altered image of the object. 

1.2. Optical Correlation 

The mathematical foundation of optical correlation can be expressed using two 

functions/(x) and g(x), and defining their correlation as 

00 

/(*)•*(*)= J/Or'teV-*)*' (1.1) 

where *is the correlation operation and g'(x) is the complex conjugate of g(x). For 

unit-energy signals, the correlation f(x)icg(x) reaches its maximum value of 1 only if 

the signals /(*') and g'(x'-x) are identical for some valuex. The maximum value of 

the correlation is thereby a measure of similarity between the functions/(x) andg(jc). 

In optical pattern recognition, the convolution theorem is used to extend the above spatial 

representation of the correlation operation to the spatial frequency domain F(vx) using 

Fourier transforms. The convolution theorem states that the convolution of two functions 

can be computed by inverse transforming the product of their Fourier transforms. Stated 

mathematically, let F(vx)= F (f(x)} and G{yx) = F (g(x)} where F { } is the Fourier 



transform operation, and the inverse Fourier transform F  l { } are defined respectively 

as: 

/r = F{/}= \f(x)e'2^dx 

and 

f = F  >{F}=)F(v)e2*n"dv 

(1.2) 

Then the convolution f(x)®g(x) is computed as 

/(x)®g(x) = \f(x')g(x-x')dx' 

= }/(x')   )ü(y)e2"^-'> dv dx' 

= J   J/(x>~2jnwc' A'|C 
-ac [_~*> 

oc 

= JF(V)G(VV^ 
to 

= F  '{F(v)G(v)} 

(1.3) 

This is known as the convolution theorem (4). Similarly, the correlation of the two 

functions can be shown to be computed as 

/(x)*g(x) = /(x)<8 *'(-*) 

= F{F(v)G»} 
(1.4) 



1.3. Optical Correlator System 

An optical correlator uses the Fourier transforming properties of lenses and the 

correlation theorem to correlate an input scene with a reference image. For a coherent 

optical system, the illumination is a uniform plane wave produced by spatially filtering a 

monochromatic light source (typically a laser source) through a pinhole and collimating it 

using a lens. There are two primary types of coherent optical correlators in use; the 

Vander Lugt type and the Joint Transform type (5). Both systems use coherent 

illumination which allows the manipulation of the complex amplitude at the back focal 

plane of a Fourier transforming lens.   The optical system architecture of the Vander Lugt 

type, as used in this research, is commonly referred to by many names including serial 

correlator, frequency plane correlator and 4-f correlator in reference to the optical path 

length from input scene to correlation plane being 4 times the focal length of the lenses 

used if they all have the same focal length f. Illustrated below, the input plane Pj has 

image f(x>y) a distance one focal length fin front of lens L\. Lens L| Fourier transforms 

the image f(x,y) into its spatial frequency representation F(vx,vv)aX the back focal plane 

P2 where a filter G*(vi,i> ) is inserted to manipulate the spectrum as it passes through that 

plane. Lens L2 located one focal length f behind P2 Fourier transforms the product 

F(vx,vy}G*(vx,vv) and the final output c(x,y) = f{x,y)^kg{x,y) is produced at the back 

focal plane of Lens L2 at plane P3. It should be noted that the output at P3 is inverted 

unless the coordinate axes at P3 are reversed. This is a result of using two Fourier 

transforms instead of an inverse Fourier transform as the final optical transformation. 



Input Filter Output 

Figure 1-1 4f Optical Processor 

The optical correlator has several advantages in image processing in comparison to 

digital computation. The 2-D FT operations performed by the lenses are done at the 

k,speed of light", essentially an instantaneous operation. The point by point product 

F{ynvy}G\vxivy) *s a^so carried out at the speed of light and in a single step making the 

optical correlator a parallel processor that can compare an entire input scene to a 

reference image in three essentially instantaneous operations. Real time optical 

correlators however require input and filter devices to display the scene and filter images 

instead of static image and filter transparencies. So although the optical correlator's 

speed of operation is that of light, practically speaking the speed of the system is limited 

by the ability to write information at the input and filter planes and retrieve the data from 

the correlation plane. Nevertheless, optical correlation is much faster than a digital 

computer which uses the fast-Fourier transform (FFT) to perform the necessary transform 

calculations and compute the point by point product F(vx$v)G'(vx,v ) serially instead of 



in parallel. The number of computations (additions and multiplications) used in the FFT 

process is N log2 N, where N is equal to the total number of values (pixels) in the image 

and filter matrices. For a 256 x 256 data array, N = 65536 and the number of operations 

required is N log2 N = 1,048,576. In an optical correlator, the same number of operations 

is carried out at the speed of light (=  1 ft/ns). In a correlator with an optical path-length 

of 1 ft, this corresponds to a throughput on the order of 1015 operations per second. As 

the resolution of the data array increases, the number of operations in digital computation 

also increases whereas in an optical correlator, the increase in the data array size does not 

affect the speed of the parallel computation. However, the speed of the bus to carry data 

to and from the correlator must scale according to the data array size to maintain the same 

speed characteristics as the original configuration. 

There are several drawbacks to using real time optical correlators despite their 

high speed and computational parallelism. The transparencies used in the original work 

by Vander Lugt were created using holography. The interferometric techniques used to 

record the complex function G\vx,v ) allowed an independent variation of magnitude 

and phase. A real time correlator uses input devices known as spatial light modulators 

(SLM's) which will be discussed further in the next section. It is sufficient here however 

to mention that SLM's cannot fully represent an arbitrary complex filter function and 

their realizable phase and magnitude values are usually coupled instead of being 

independently controllable. This requires designing filters that are constrained to the 

operating curves of the SLM. These devices can be binary in phase, single valued in 

magnitude (constant magnitude of 1) as in phase only modulators, phase magnitude 

coupled or amplitude only.   The input SLM which displays the input scene also has a 



limited dynamic range in grayscale values.   This causes a reduction in resolution and a 

loss of image detail. The limitations of devices also include the photo-detector used in 

the correlation plane which detects the correlation functionc(x,y) = f(x,y)itg(x,y). 

This measurement is an irradiance measurement which is the squared magnitude of the 

correlation therefore all phase information is lost in the detection along with polarity 

information (negative magnitudes), all of which are preserved in digital detection. 

1.4. Spatial Light Modulators 

An SLM is a device capable of modulating the amplitude and/or phase of an 

incident wavefront. The modulation of the wavefront is a function of position across the 

wavefront (6). The transmittance T(x,y) of the SLM is controllable by the addressing 

mechanism. In an electrically addressed SLM, the control is an applied voltage. One 

method of electrical control is to arrange an array of transparent electrodes on each side 

of a planar electro-optic material placed between crossed polarizers and to apply an 

appropriate voltage to each cell in the array.  T(x,y) is then a function of prescribed 

voltage values at the (x,y) location of each cell.  The transmitted intensity It(x,y) 

through the SLM device is therefore related to the incident intensity I,(x,y) and the 

transmittance T(x,y) by the product l,(x,y) = Il(x,y)^T(x,y). If the incident intensity 

I,(x,y) is a uniform collimated wavefront, then I,(x,y) can be treated as unity 

and /,(*,>>) = T(x,y). The input scene or "image" T(x,y) is then seen to be encoded 

onto the transmitted wavefront. The encoded image is therefore a conversion from a 

grayscale valued image to an array of prescribed voltage values T(x,y) whose resultant 



electro-optic/cross polarizer effect gives a transmitted intensity proportional to the 

grayscale value. 

1.4.1.   Liquid Crystals 

The electro-optic material used in an electrically addressed SLM can be a liquid 

crystal (LC) layer which has both electrical and optical properties. LC's are elongated 

oblong shaped molecules that exist in a state of matter that lacks positional order (like a 

liquid) but has orientational order much like a crystal, hence the name liquid crystal. 

They respond to electrical forces in that an applied electric field induces a dipole moment 

in the molecule. The electric field interaction with the dipole imparts a torque to the 

molecule proportional to the field strength, causing it to twist into alignment with the 

applied electric field. They also respond to mechanical forces in that LC's will align with 

physical grooves purposely scratched (also known as rubbing) on a glass plate, often 

termed a director. If two glass plates are rubbed such that the resulting director axes are 

perpendicular and a thin layer of LC is sandwiched between them, the molecules will 

undergo a twist from one boundary to the next as they orient their axes to be aligned with 

the director at each interface. 

There are three phases of LC's which define their type; Nematic, Smectic and 

Chiral. Nematic LC's have random molecular positions but their molecular orientations 

tend to be statistically oriented along a preferred axis. Smectic LC's also have 

orientational order but exist in layers that can slide on one another. Thus the Smectic 

types have positional order corresponding to the layer they are in. Chiral LC's undergo a 

helical rotation about an axis perpendicular to the director. Each layer of the helix is 

comprised of molecules whose long molecular axes are oriented parallel to one another 



within the layer, and at a given angle with the direction of the axes of the molecules in 

the preceding layer (7). Twisted nematic LC's are nematic LC's which exhibit a twist 

much like that found naturally in the chiral type, but are a result of the mechanical forces 

imposed by the perpendicular directors of two glass plates with the LC material placed in 

between as mentioned above.    Optically, LC's are inhomogeneous and anisotropic 

meaning that the permittivity of the material is not constant throughout the region of 

propagation and the optical properties are polarization dependant. For waves traveling 

perpendicular to the glass plates through the material along an axis defined as the z-axis, 

the normal modes are linear polarizations in the x and y directions which are parallel and 

perpendicular to the molecular orientation. Since the medium is anisotropic, the 

refractive indices are the extraordinary and ordinary indices ne and n0 for the x and y 

polarization states. For a linearly polarized wave with vacuum wavelength An traveling 

through a cell of thickness d, the wave retardation is expressed as Y = 2x(ne - n0)d IA0. If 

an electric field is applied across the cell, the molecules will tilt in alignment with the 

direction of the field changing the extraordinary index ne. The retardation of the cell then 

becomes a function of the tilt angle S(V) which is itself determined by the strength of the 

applied voltage V. The retardation is then expressed as V = 2n(ne(9) -nn)dl A0. For a 

linear polarization of 45° in the x-y plane the cell is described as a voltage controlled 

variable wave retarder. For a wave completely polarized in the x direction, 

T = 27tne(0)d I An and the cell is described as a phase modulator. If the cell is designed 

such that r = n, it is referred to as half-wave retarder. When placed in between two 

cross polarizers at ± 45°, it becomes a voltage controlled amplitude modulator. An 

10 



amplitude modulator can also be constructed out of the twisted nematic LC cell (8). As 

already described, the molecules undergo a helical twist from one glass plate to the next. 

This twist angle is 90° if the directors of the plates are orthogonal to each other.   If the 

director of the first plate (and therefore the orientation of the LC molecules) is oriented 

along the x-axis, the polarization of an incident linearly polarized wave (with polarization 

parallel to the director) will rotate following the helical twist of the molecules. The 

polarization exiting the LC cell will be polarized along the y-axis. The cell therefore acts 

as a polarization rotator. If an electric field is applied across the cell, the molecules tilt in 

the direction of the field (the z-axis) diminishing the polarization rotary power of the cell. 

If the applied electric field is strong enough, the tilt angle of the molecules (except for 

those at the glass surfaces) reaches 90° and the twisted state of the molecules is lost and 

the polarization rotary power of the cell is deactivated. If placed between crossed 

polarizers whose transmission axes are parallel to the directors of the plates, the cell acts 

as an optical switch, transmitting light when there is no applied field, and blocks the light 

when the field is applied. If a variable field is applied, the voltage controlled tilt angle 

0(V) determines how much of the rotary power is lost and therefore partial polarization 

rotation does occur and the cell then acts as a voltage controlled amplitude modulator. A 

complete treatment of liquid crystal devices can be found in (7) and (9). 

1.4.2.   Bipolar Amplitude Spatial Light Modulators 

The SLIvTs used in this research are deformed helix ferroelectric liquid crystal 

(DHFLC) devices. DHFLC is a Smectic C* type LC with a small molecular pitch. 

Ferroelectric LC's (FLC's) have a faster response time than the LC's mentioned due to an 

inherent electric dipole moment possessed by ferroelectric material. The dipole moment 
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interacts with the applied electric field switching the molecules orientation faster than the 

LC's that require an induced dipole moment. The switching speed of a FLC (50 - 200us) 

is therefore an order of magnitude faster than the nematic type (20ms) (9). The helical 

arrangement of the DHFLC is similar to that of the twisted nematic LC which acts as a 

polarization rotator. The polarization rotation of the DHFLC works on the same principle 

but with the switching speed advantage of the FLC.   The DHFLC therefore has the 

polarization rotary power to cause up to a 90° rotation in polarization which, when 

combined with an analyzer, gives an amplitude transmittance of 0 - 1 for an incident 

beam linearly polarized along the director. For an incident beam polarized at 45 degrees 

to the director axis, the transmitted amplitude ranges from -.7 to .7 with zero to 2pi 

rotation respectively. This is further illustrated below in Figure 1-2. The black arrow 

represents the maximum rotation amount of the polarized field due to the modulation; the 

gray line is the transmission amount along the analyzer axis. 

Illustration used from reference 

(46) 
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Figure 1-2 Transmission amplitude curve of bipolar DHFLC 
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The DHFLC device is therefore bipolar in phase and grayscale in amplitude due 

to a natural linear relationship between applied voltage and LC response. The rotation of 

the crystals as a response to applied voltage Vm is shown below in Figure 1-3. 

Polarization Rotation: 
Illustration used from reference (46) 
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Figure 1-3 Illustration of polarization rotation of FLC to applied field. 
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Chapter 2 

Pose Estimation for Autonomous Rendezvous and Docking 

2.1. Science Motivation 

The optical correlator has been tested extensively for target recognition and 

tracking in various military and industrial applications. Space applications are on the 

horizon, including pose estimation for autonomous rendezvous and docking (AR&D). An 

autonomous docking solution removes the potential for human introduced error, 

minimizing the risk to equipment and crew. The George W. Bush administration's 2004 

NASA Space Exploration Initiative (10) which involves returning humans to the moon 

for lunar exploration will serve as a technological stepping stone for the human 

exploration of Mars and will elevate the importance of AR&D. Present rendezvous and 

docking technology requires on board human intervention for flight operations during the 

docking event and extensive ground control support at the Johnson Space Center in 

Houston. For a lunar operation, the signal delay from craft to ground support will be 

problematic and for proximity operations as far as Mars, the long signal delay makes 

Earth based intervention impossible. Therefore, an AR&D system, with less reliance on 

human participation (both ground and crew) is considered necessary to help accomplish 

the goals of the Exploration Initiative. 

Signal delay however is not the only motivation for AR&D. The dangers 

associated with manual docking were manifested in 1997 when a 7 ton cargo ship crashed 

into the Russian MIR space station when it approached too fast to dock safely. The event 
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almost killed all on board after sending the MIR into a slow spin, piercing a module 

known as Specktr. This damage caused a leak in air pressure before it was sealed off. 

Power conservation required turning off all air conditioning and urine processing systems 

causing abrupt disruption to scientific experiments and the on board crew had to conserve 

oxygen by working in slow motion. This near tragic event brought the need for AR&D 

technology development to the forefront. Safety and technological demands for further 

space exploration make AR&D a necessary research element for space exploration. 

AR&D technology will be a system integration of many technologies that allow a 

craft to identify another craft, determine its orientation with respect to that craft, and then 

approach the craft for either rendezvous or for docking. The identification of a craft and 

the determination of its pose is the focus of pattern recognition research which has been 

particularly developed in the digital domain. Research in correlation filters that can be 

used for pose estimation and target tracking have been developed by Juday et al. (11), 

Casasent (12), and many others (12-24). Treatments on optical considerations have been 

addressed by Mohalanobis et al (25) with actual implementation for target tracking being 

done by Chao (26-29). However, using an optical correlator for pose estimation has not 

been successfully implemented. With the development of high speed SLM's, the pose 

estimation problem of AR&D is a good platform for developing techniques that can 

possibly be extended to faster moving targets. 

2.2. Statement of Research Problem 

The scope of this research is to investigate pose estimation for AR&D using an 

optical correlator. For AR&D, the goal is to identify the target vehicle and estimate its 

rotational and translational state. The application of optical correlation techniques for 
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target tracking and pose estimation has been facilitated by the recent development of 

high-speed spatial light modulators (SLM). The techniques and filter designs that have 

been researched for digital methods do not have a trivial implementation when extended 

to an optical correlator and in some cases may not be possible due to real device 

limitations versus the flexibility allowed when working in the digital domain. 

The demands of pose estimation using optical correlation exceed the demands of 

target tracking when considering filter design and implementation. In a pose estimation 

scenario, the peak values of the correlation measurements relative to one another are used 

to determine the pose of the craft. One method is based on modified composite filter 

designs that weight the poses in the training set such that the correlation peak value for 

each pose is predetermined in a way that a post processing algorithm can extract the pose 

based on the measurement values (16, 21).  These techniques work well in a digital 

routine, however, optical correlation is more challenging. The range of values available 

for weighting the poses for optical composite filter designs is limited between 0 and 1 

whereas digitally they can take on any value. In an optical correlator, the filter SLM does 

not have the ability to add gain to the signal. It operates between zero and full 

transmittance and therefore has a weighting ability of 0 to 1. Digitally, a large dynamic 

range of gain can be added in the filter design. Digital filters can also be, and usually are, 

complex valued and are not fully realizable on a real SLM device being limited by the 

operating curve of the SLM. Projecting a complex filter to an optimal real valued 

realizable filter has been investigated using minimum Euclidean distance (MED) 

projection to the operating curves of the SLM devices as explained in full detail by Juday 

(32, 33). However, the limited dynamic range of the SLM cannot accommodate the 
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dynamic range of the original digitally designed filter.   Another drawback is the response 

of the SLM not being active over all 8 bits which reduces the resolution of the image and 

the available values for filter projection. The questions that will be addressed in this 

research are: 

1. Can an optical correlator be used for the pose estimation of a spacecraft? 

2. If so, how does its implementation differ from a digital method? 

3. What are the pros and cons of an optical correlation approach? 

The first two questions will be addressed in the validation of pose estimation 

techniques. The third question will be addressed in the final conclusions chapter where 

the pros and cons of pose estimation will be discussed based on the results of the 

correlation experiments. 

2.3. Limitations of Research 

This research will be limited to investigating optical pose estimation only. The digital 

pose estimation methods discussed serve only to contrast the limitations between digital 

and optical correlation approaches. Optically implementable filters created from the 

digital models are presented to highlight the challenge of optical pose estimation using 

composite digital filters platforms. New digital filter designs will not be investigated or 

developed. The spacecraft docking scenario will be the docking of the space shuttle to 

the international space station (ISS). The pose estimation will be done with zero clutter 

in the background. Pose estimation with clutter and background noise will be suggested 

as recommended future research. 
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Chapter 3 

Correlation Filters 

3.1. Matched Filter 

The matched filter has played a significant role in pattern recognition due to its 

ability to detect signals corrupted with additive noise. An in depth treatment of the 

matched filter can be found in (25) whose outline of approach is summarized here. The 

matched filter maximizes the signal to noise ratio (SNR) performance criterion defined 

as: 

»«JfSM (3,) 
varKVJ 

where E{} denotes the expected value operation and "var" denotes the variance, Cu v is 

the correlation between the input signal u and the input signal plus additive noise n where 

v = u+n. Since the noise is assumed to have zero mean,  E{Cuv(0)} is maximum when 

the input signal is u. The numerator of equation 3.1 can be further simplified as: 

|£{C-,(0)|2 =|( \u(t)h{-t)dt)t = |( \U(f)H(f)df\ (3.2) 

where U(f) and H(f) are the Fourier transforms of the signal u and impulse response h. 

The input noise if is further assumed to be wide sense stationary (WSS) with power 

spectral density (PSD)   Pn(f). The output noise of a linear shift invariant (LSI) system 

18 



is also WSS and has PSD Pn(f) |//(/)| . The variance of a zero-mean random process is 

equal to the total area under its PSD (25), therefore the denominator of equation 3.1 can 

now be expressed as: 

var{Q ,(0)} = \Pn(f)\H(f)\2 df (3.3) 

The SNR can now be expressed in terms of U(f), the FT of the signal u(t), the 

PSD Pn(f) of the additive noise n(t), and the filter frequency response //(/) by using 

Eqs.(3.2)and(3.3)inEq.(3.1). 

_ \\V(f)H(fW\2 

SNR = 
\Pn(f)\H(f)\2 df 

(3.4) 

In this form, the SNR can theoretically be infinite if P„(f) contains zeros in frequency 

regions where U(f) does not and the filter magnitude is set to be non-zero in those 

regions. This generally does not occur so //(/) must be chosen to maximize the SNR 

differently. The SNR can be re-written using the Cauchy-Schwarz inequality: 

|\A(f)B(f)df\ < [ J/K/)|2#][ Jß(/)f#] (3.5) 

which has equality if and only if A(f) = ßB'(f), where ß is a complex constant. An 

upper bound on the SNR can be obtained by applying Eq. (3.5) to the numerator of Eq. 

(3.4) to get 

19 



SNR = 
\\U(f)H(f)df\ I [n(f)4W)]df 

\P„(f)\H(ft df \PAf)\H(ffdf 

<!=• 

ßftf 
] PAf) 

[lPJf)\H(f)fdf] 

\PSf)\H(f)f df -m~- 
(3.6) 

Because the PSD /"„(/) is real and non-negative, taking the square root of it is allowed to 

obtain the above expression for maximum SNR which depends only on the FT of the 

signal u(t) and P„(f). Using the equality condition A{f) = ßB\f) of Eq. 3.5, the 

maximum SNR can be obtained if and only if 

_4PJT)_ 
= ß[H(f)yfpJT)'j^H(f) = a^- (3.7) 

P.if) 

where a is any complex constant. For the case where the input noise is white noise, the 

PSD is a constant (P„{f) = N0) and the maximum SNR is simply 

H(f) = aNU'(f) (3.8) 

a where orN = —. This maximal-SNR filter is known as the matched filter (MF) since it is 

"matched" to the input signal by conjugating the FT U(f). This is best interpreted 

optically where MF //(w,v) = U\u,v) is inserted in the Fourier plane and input scenery 

W(JC,>>) is in located in the input plane of the optical correlator. Incident on the filter 

is£/(w,v), the FT of u(x,y). The filter 7/(w,v) transmits a field proportional to 

UU' which is purely real. Optically, this translates into the phase curvature of the 
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incident field being cancelled by the filterH(u,v), which results in a transmitted plane 

wave. The second FT lens focuses the plane wave to a spot one focal length distance 

away at the correlation plane.   The MF is therefore a phase canceling filter which results 

in a maximum SNR. 

3.2. Inverse Filter 

The inverse filter (IF) maximizes the peak to correlation energy (PCE) ratio 

defined as 

|CMV(0,0)|2 

PCE = L^—L (3.9) 
Ec 

where Ec is the energy contained in the correlation signal Cm v defined as 

Ec = l[JCuAx,ytfdxdy (3.10) 

The inverse filter is defined as 

which can be seen to have a maximum PCE when the input scene is the reference object 

U(f) (Incident on the filter is field U(f) which transmits 

U(f)H(f) = —^-—>P-= unity.) The FT of a constant is a delta function. The IF 
Pt/i 

therefore, by design, produces the sharpest correlation peaks and therefore the highest 

PCE. The IF however suffers serious drawbacks. Where the spectrum U(f) contains 

zeros is ill defined in the IF and therefore cannot be realized. The IF also does not 
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account for any noise that may be in the signal and boosts the frequency components that 

have the worst SNR. The Wiener Filter defined as 

"(/)= Uy)P(n (312) 
\U{ff + W± 
1      '    P.if) 

where Pn(f) and fo(/)are the PSD of the noise and object respectively, solves the above 

mention problems associated with the IF. It is defined for zeros in the spectrum of U(f) 

and takes into account the noise that may be present in the signal. For high SNR, the WF 

P (f) 
reduces to the IF. For low SNR, it reduces to the matched filter //(/) * sill U\f). 

PSf) 

3.3. Binary Phase Only Filter 

The binary phase only filter (BPOF) is defined as 

BPOF(u,v) = Sgn{Re(POF)} (3.13) 

where 

fl     ifx>0 
Sgn(x) = \       J (3.14) 

[-1   ifx<0 

and the phase only filter (POF) is defined as 

POF(u,v) = ^s?l (3.15) 

The BPOF has been studied extensively since its introduction (35-39) with one of its 

advancements being that of a threshold line angle (TLA) where the binarization axis is 

allowed to be arbitrarily rotated. Eq. (3.13) then becomes 

BPOF(u,v) = Sgn{Re(POF)exp(ij3)} (3.16) 
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where ß\s the TLA as illustrated below in figure 2. 

Im{POF(u,v)} 

BPOF(u,v) = -l 

BPOF(u,v) - 1 

Re{POF(u.v)} 

Figure 3-1 Illustration of TLA as used in BPOF 

The optimum TLA usually involves a search algorithm and it is often selected as either 

0°,90°or 45°corresponding to the real, imaginary, or real + imaginary parts of POF 

respectively. BPOF's are light efficient since the transmission for all filter values are±l. 

They are also easily computed requiring little processing time. They are of significant 

interest in optical correlation since many SLM devices are binary in phase such as the 

Magneto-Optic SLM (MOSLM) and can only implement BPOF's. A complete treatment 

of BPOF and implementations using binary SLM's can be found in references (34-39). 

3.4. Synthetic Discriminate Function Filters 

One of the most useful advances in correlation filters has been the development of 

synthetic discriminate function (SDF) filters. The idea behind an SDF is to weight the 

frequency content of N training images used in its construction such that the peak 

correlation of the filter with any image in the training set is determined by the weight 

assigned. The general formulation (40) of an SDF filter H is given by the equation 
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r+   v-\-I H = X(X+Xylu (3.17) 

where X = [x,,x2,x3,...,jcn]is the matrix whose columns xi are the Fourier transforms of 

the N images in the construction set lexicographically rearranged as column vectors, + 

indicates complex conjugate transpose and u is a weighting vector containing the desired 

auto-correlation peak values for each image in the construction set. Typically, these 

filters are created to achieve invariance to distortions such as in-plane and out-of-plane 

rotations. This design has traditionally been geared more toward automated target 

tracking and recognition (ATR). In contrast to pose estimation, the ATR parameters of 

interest are the identification and tracking of the target as it translates through space. 

Pose estimation consists of identification, tracking, and the extraction of the 3 degrees of 

rotational freedom of the craft, hence making pose estimation a more difficult task 

requiring a different approach in filter design. 

3.4.1.   The Minimum Average Correlation Energy (MACE) Filter 

The MACE filter (41) minimizes the correlation plane energy and produces very 

sharp correlation peaks over the recognition class. The correlation function c, of the ith 

training image xt with the filter h is denoted as ct =xt*kh.   With the discrete Fourier 

transform (DFT) of the correlation function denoted asC,, and Xt and H the DFT of the 

training image and filter respectively, the energy in the correlation plane is computed by 

£.=Sk(«)f=i£lc.M2 

"■' ";' (3.18) 

= ±i\H(m)\2\X,(m)\2 

m   \ 
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This can also be expressed using the vectorized image form as 

Et=H+D,H (3.19) 

where D, is a diagonal matrix with the power spectrum of the image x, as its diagonal 

elements. The average energy in the correlation over all training images is then 

The MACE filter minimizes this average energy function while constrained to having 

peak amplitudec,(0) = X*H = ut. Its general formulation is given by the element by 

element matrix operation 

H = D-lX(XTD'lX) ]u (3.21) 

where D is the average power spectrum of the N training images contained in X, 

D = — YDI (3.22) 

The MACE filter is equivalent to a cascade of a whitening filter followed by a linear 

associative memory (41). 

Introduced by Kumar (16), focused MACE filters are designed to have one pose 

as the "focus" of the filter, with the neighboring poses suppressed. The weighting of the 

poses is Gaussian with the target pose at the origin. As the target vehicle deviates away 
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from the focus pose, the signal peak degrades in a controlled manner. The filters are 

designed to cover a wide range of poses with each filter focused on a particular pose. 

When presented with a target image, the peak response of each filter is collected in a 

vector. The shape of the vector elements is then compared to signature shape vectors of 

known poses generated during the design of the filter. The ability to generate a focused 

MACE filter with controlled responses after data compression for real valued 

implementable filters is a research challenge but the approach is worth consideration. 

3.4.2.   The Maximum Average Correlation Height (MACH) Filter 

The MACH filter (25) is designed to maximize the correlation peak of the average 

of the training images. The MACE filter produces maximum peaks for images inside of 

the training set, but has decreased correlation energy for distortions of the image in 

between those used for the training set. The MACH filter maximizes the average 

correlation height of all distortions in and out of the training set. Its general formulation 

is given below. The FT of the vectorized training image set is again represented 

as X = [JC,, jc2,jc3,...,xn], where column vectors xt are the FT of each training image of size 

dxd lexicographically rearranged as vectors of size S. The correlation peak of the /th 

training image (found at the origin) with filter h is found as c,(0,0) = x\h. The Average 

Similarity Measure (ASM) is a metric used to characterize the tolerance in distortions and 

is defined as 

ASM ^zzzi^")-^")!2 (3-23) 
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1   N 

where c;(m,w) is the correlation of the /th training image and  c(m,n) = — Yc (m,n) is 

the average of the correlation surfaces of all training images. Using Parseval's theorem, 

the ASM can be rewritten as 

ASM = — YYY\c(m,n)-C(m,n) (3.24) 

C(m, ri) is referred to as the average correlation height (ACH) and is given by 

ACH = M'H (3.25) 

1      N 

where M = — Y Xt, the average of the training images FT's. The ASM can then be 

derived to be 

ASM =—Y\X'H-M'H\ 

=—YHUX, -M)(X -M)' H 
dUNtf 

\— YiX^MMX^M^H 

(3.26) 

where S = 
dUNtty   '       n   '        ' 

. By method of Lagrange Multipliers, H is 

found to be 

-1 w v+o-1 v\-\. H = slx(x+slxylu (3.27) 
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where u is a weighting vector used to weight the spectrum of the training set. For equal 

correlation peak weighting, u = [1,1,...,1] and is of length X. A complete treatment on the 

MACH filter can be found in reference (25). 

3.4.3.   The Optimum Tradeoff Mach (OTMACH) Filter 

The OTMACH Filter has been implemented with reasonable success by Chao 

(42) for target tracking applications. It optimizes several performance measures such as 

the ACH, ASM, ACE and output noise variance (ONV). The filter minimizes the energy 

function 

E{H) = a(ONV) + ß(ACE) + y(ASM)-ö(ACH) 

= aCH + ßDH + ySH-ö\M'H\ 

The OTMACH filter that satisfies the minimized equation is 

(3.28) 

H =  (3.29) 
aC + ßD + yS 

where C is the PSD of the additive input noise. M, D and S are as defined above and a, ß, 

and y are non-negative OT parameters.   The selection of a, ß, and y values determine the 

performance behavior of the filter as required by application. For a = ß = 0, the filter 

behaves like a MACH filter which is good for tracking over a range of object distortions. 

For a = y = 0, the filter reduces to the MACE filter which gives sharp peaks but varies 

significantly over distortions of the object. For/? = y = 0, the filter reduces to a minimum 

variance (MV) SDF which was introduced by Kumar to reduce the output noise variance 
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in the correlation. For other values, the filter trades off performance in one area to be 

optimal in another according to the application need. 

3.4.4.   The Minimum Euclidean Distance Optimal Filter (MEDOF) 

The MEDOF is designed to be implemented on SLM devices which have a 

limited realizable range of amplitude and phase values in which they operate. Therefore, 

the filter values must be fitted to this operating curve. The Minimum Euclidean Distance 

(MED) principle introduced by Juday (32) can be summarized as a mapping of the 

complex values of the filter design to the MED values of the complex operating curve of 

the SLM. For a binary phase-only SLM device, its MED mapping is given by: 

// MED 

[+1,    Re(//)>0 

1-1,   Re(//)<0 
(3.30) 

where HMED is the projected MED filter of//. This is illustrated below in Figure 3-3. 

Im 

-l 

° 

o   H computed value 

• HMED Realizable value 

Re 

Figure 3-2 MED mapping for binary SLM 

For a ternary SLM device, its MED mapping is: 
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"Mkü 

+1, +0.5<Re(//) 

0, -0.5<Re(//)<+0.5 

-1, -0.5 < Re(//) 
(3.31) 

For a bipolar amplitude only SLM (AOSLM), the MED mapping is simply a projection 

of the complex valued filter H to the real axis. This mapping is given as 

" MhV ~ 

+1, +l<Re(//) 

Re(//),        -l<Re(//)<+l 

-1, Re(//)<-l 

(3.32) 

and is illustrated below in Figure 3-4. 

Im 

\ 

-l 

o   H computed value 

• HM,,D realizable value 

Re 

Figure 3-3 MED mapping for AOSLM 

For coupled amplitude/phase response SLM's, the MEDOF is mapped to the complex 

operating curve of the device by selecting the MED value of the SLM to the ideal 

computed value. Because the dynamic range and the information capacity of the digitally 

designed filter will have to be compressed to the allowed dynamic range limited to that 
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achievable by the SLM's, the MEDOF performance will decline rapidly with the number 

of training images used and limit the designer to additional constraints.   The conversion 

from digital to a constrained realizable filter is one of the main hurdles in achieving 

optical correlation based pose estimation using composite filter designs. 

3.5. Application of Correlation Filters 

Composite correlation filters have been used extensively in the recognition of 

targets in synthetic aperture radar (SAR) imagery, in the growing field of biometric 

recognition, industrial automated inspection, space applications and defense. Images 

used for developing filters for detecting targets in SAR are mostly taken from the moving 

and stationary target recognition (MSTAR) database. The MSTAR database contains 

SAR image sets of particular targets at specific depression angles and multiple poses. 

These images are used to develop algorithms for ATR applications. Chao at the Jet 

Propulsion Laboratory (JPL) has reported success using OTMACH filters implemented 

on a grayscale optical correlator for ATR applications (41). The problem of pose 

estimation has been investigated initially by Juday where correlation targets are placed on 

the vehicles to aid in the pose estimation task. Castro (43) and Kumar (16) used 

weighted composite filter schemes whose complex designs may necessitate a digital 

implementation. Conversion from the digital to an optically implementable filter has 

been suggested by using binary phase only SDF's which binarize the digital filter. These 

binarization techniques have not been shown to result in filters whose performances are 

on par with the original complex digital version and have many constraints and 

drawbacks (44). 
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rendezvous simulations for test which eliminates hardware simulation cost. The software 

used to render the 2D images is © 3ds Max version 9. This software is designed for 

animation and has the necessary tools built in such that anticipated scenery and precise 

control of the movement of the craft can be simulated and tested. Various camera options 

are available with controlled lighting such that the docking event can be as closely 

simulated to match real world docking scenarios. This approach is not limited to 

spacecraft or space applications and is useful for the generation of training images for any 

target of interest in any environment. 

The craft used for this research is the NASA space shuttle. The docking 

procedure with the International Space Station (ISS) will be reproduced and used as the 

test docking scenario for study. Mainly, pose estimation at the alignment ranges of 

100m, 50m and 10m will serve as the test ranges for study. A simulated light and camera 

are situated inside the docking port of the ISS used to illuminate and view the craft as it 

approaches as shown in Image 3-1. Image 3-2 is a rendition of the shuttle at each 

alignment plane as it prepares to dock to the ISS as used in the research model. The tools 

available in the 3D software create a virtual laboratory where the effects of lighting, 

shadows, and camera can be designed into the filters which can compensate for these 

effects. 
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3.6. Research Contribution 

The optical correlator has been successfully used for ATR but limited 

application to pose estimation has been performed. This research will investigate the 

viability of optical correlation based pose estimation using bipolar amplitude spatial light 

modulators. The approach taken will briefly highlight why weighted composite filters, 

one of the main components of digital pose estimation, cannot successfully be 

implemented on real devices which makes optical pose estimation more difficult to 

achieve and a more complicated problem to solve than the digital solution.   However, 

this research effort will show that a brute force method using a bank of filters and a 

minimum amount of image processing can result in accurate pose estimates using a 

minimum amount of filters per estimation cycle.    This research will also suggest a 

method of mapping large dynamic range digital filters to 8bit real valued SLM's resulting 

in higher signal to noise ratio correlations than non amplitude (bipolar) modulation. 

The technical approach to this research will differ from that using cooperative 

correlation targets. The aim of this research is to develop pose estimation techniques of a 

craft by using only the geometry of the craft to obtain the correlation result. This goal of 

this approach introduces 3D simulation software generated images for the training set of 

the craft which can be generated by importing the CAD design of the craft or a simulated 

model of the craft. It is typical in research to obtain training images by using physical 

models of the desired target using cameras and rotation platforms in a laboratory 

environment. This requires equipment and setup time which adds overall cost to the 

project. Using 3D animation software to generate the training images for the correlation 

filters eliminates this hardware cost and also allows for the generation of docking and 
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Image 3-1 3D pose estimation setup of camera and light (Top) and view from camera of 
illuminated craft (Bottom) 
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Image 3-2 Shuttle at each alignment plane (100m, 50m, and 10m left to right). Top row shows 
docking event from an angled view camera. The bottom row is the camera view as seen from the 

docking port on the ISS. 
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Chapter 4 

Research Procedures 

4.1. Research Methodology 

The most ideal pose estimation method would involve the fewest correlations per 

detection using the fewest number of correlation filters.   This is best achieved with 

composite correlation filters where information exists for many poses within a single 

filter. The characterization of the SLM's is the first step in preparing any filter design for 

optical implementation. The images and filters were mapped to the amplitude response 

of the input and filter SLM's respectively. After SLM characterization, filter designs 

using weighted composite filters are designed, mapped and the obtained correlations are 

compared to the digital results. To implement the composite filters, a linearly stretched 

histogram mapping of the filters to the filter SLM response as successfully used by Chao 

(45) is compared to logarithmically mapping the dynamic range of the filter design to the 

filter SLM response. This mapping has greater optical efficiency than histogram 

stretching and produces a higher signal to noise ratio than bipolar modulated filters. 

After mapping the filters, the composite filter designs are tested for the ability to 

selectively weight poses in a controlled and predetermined manner.   The inability to 

meet this goal resulted in using a bank of filters approach using logarithmically mapped 

(LM) distortion sensitive filters. To improve the discrimination ability of each filter, 

edge detection and image scaling were performed on the images with the results 
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compared to that obtained with no image preprocessing. The following sections outline 

the procedure of each validation technique. 

4.2. Characterization of SLM's 

Because both SLM's are amplitude modulators, the phase characteristics are 

already known to be bipolar and therefore only amplitude characterization is necessary 

for complete characterization of the SLM's. The SLM's are assumed to be uniform with 

a non-uniform approach considered if uniformity becomes a dominant issue in error 

analysis. The amplitude response of the input and filter SLM is characterized by doing 

the following: 

Input SLM 

1. Write full transmittance filter array to filter SLM (256x256 array with 

values of 0 or 255). 

2. Increment input SLM array from 0 to 255 and record average intensity 

value in correlation plane. 

Filter SLM 

1. Write array on input SLM with four active pixels in the center (2x2) of 

the 256x256 array at full transmittance (255) values with the rest of the 

array at zero transmittance values. The Fourier transform of a small 

active region will fill most of the Filter SLM. 

2. Increment the array values at the Filter SLM from 0 to 255 and record 

average intensity value in central region of correlation plane. 

The amplitude response is proportional to the square root of the obtained values 

and the response of both input and filter SLM's are stored as vectors for further use. 
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4.3. Dynamic Range Compression 

All filter designs are generated digitally and will have to be converted to an 

optically implementable filter design. This primarily involves dynamic range 

compression and mapping of the filter amplitudes to the amplitude response of the filter 

SLM. For the bank of matched filters approach, the initial filter designs used to test the 

search algorithm will be BPOF's since they are easily computed and implementable on 

an optical correlator. Dynamic range compression is required for the composite filter 

designs and for compression of the distortion sensitive Weiner filters. Both the linearly 

stretched mapping and the creation of LM filters are presented in more detail in Chapter 5 

with the results of each as illustrations. The two methods were compared based on the 

following: 

• Light efficiency of filter design 

• Number of filter values on SLM modulation curve. 

• Effect of compression technique on optical correlations 

The light efficiency of the filter is calculated by normalizing the magnitude of the 

resultant filter to 1 after shifting the filter values such that zero optical throughputs 

correspond to a value of zero, and then summing the magnitude of all filter values. This 

is discussed further in Chapter 5. 

4.4. Disqualification of Composite Filters 

Using weighted composite filters for pose estimation requires the control of the 

peak values of selected poses.   Equal correlation peak (ECP) filters ideally have a 

constant response for all poses in the training set. This is the ideal requirement for target 

tracking where the correlation peaks have to be present, but their individual values with 
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respect to one another does not have to be meaningful. However, pose estimation is a 

more challenging task by requiring the relative pose measurements to have a consistent 

predictable weighted response. Weighted correlation filters are therefore designed and 

tested as follows: 

1. Design MACE, MACH and OTMACH filters with weighted correlation 

peaks. 

2. Verify filter design using digital correlation and obtain peak values of 

weighted training set. 

3. Create LM MED version of filters and obtain optical correlation results for 

each image in training set. 

4. Compare optical results to expected digital results. 

If the above validation had proven to be successful, then pose estimation 

techniques using weighted composite filters could have been investigated. The results 

shown in chapter 5 will cover the details of additional constraining factors not 

encountered digitally. The bank of matched filters approach was then considered as an 

alternative solution. 

4.5. Validation of the Bank of Filters Technique with Pose Search 

Algorithm 

The traditional bank of filters (BOF) approach requires generating a large number 

of filters and scanning through them until a correlation peak is found which is determined 

to be a best match according to the metric chosen (peak value, SNR, etc). This approach 

is more of a brute force approach but if an algorithm is used that intelligently selects and 

loads filters to be used to determine the pose, the number of correlation filters used per 
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cycle decreases dramatically. Because of the number of filters needed, a simple filter 

design that is sensitive to distortions and computationally efficient was chosen to prove 

the concept. The binary phase only filter (BPOF) has such characteristics and is 

computed by binarizing the phase q> of the MSF for each image in the filter bank 

according to equation (3.30). One method of taking the BOF approach with a pose 

search algorithm is as follows: 

Consider a three dimensional pose space corresponding to the 3 degrees of 

freedom (DOF) pitch, yaw, and roll. For this illustration, the range for all axes of rotation 

will be limited to 0 - 4 degrees for clarity and demonstration purposes. Pose points are 

constructed on the x, y, and z axes corresponding to the pose parameters pitch, yaw, and 

roll respectively. The cubic space describing this is shown below in Figure 4-1. 

4-, 

3- 

!2- 

i- 

3D Pose Space 

••:•:•• 

yaw pitch 

Figure 4-1 Illustration of 3D pose space as used in search algorithm 

40 



In this example, the craft was found oriented such that it corresponds to the pose point 

2,2,2 (highlighted in center). On the next image capture the algorithm checks that pose 

parameter again in case the craft has not moved, and then checks the correlation of the 

image with the filters of the nearest neighboring poses (poses surrounding 2,2,2). The 

maximum correlation value found determines which direction the craft has moved and its 

new orientation. The steps involved are: 

1. Perform Image Capture 

2. Correlate image with each filter in bank storing maximum value of each 

correlation 

Corr(k) = m-dx(l*Fk) 

1 = Image from initial image capture 

Fk = k'h filter in bank of N filters 

* = {1 N) 
*= correlation operation 

3. Determine pose with greatest correlation peak 

4. Perform next image capture 

5. Use algorithm to determine pose matrix 
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Figure 4-2 Initial steps in pose estimation routine 

Once the pose of the craft has been determined from the initial image capture and the 

next image and pose search matrix has been acquired, a loop of the following steps is 

initiated: 

1. Correlate captured image with filters from pose matrix 

Corr(n) = m<ixUm*Fn) 

Im = m'h Image capture 

Fn = n* filter determined by pose matrix 

« = {1,...,27} 

*= correlation operation 

2. Determine pose corresponding to maximum correlation value found in 

Corr(k). Display and/or feed pose information to operator/craft. 

3. Perform next image capture 

4. Create new pose matrix 

5. Repeat from step 6 
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Figure 4-3 Pose estimation cycle 

Each cycle produces a single pose estimate which is stored and compared to the 

actual pose of the craft. The validation set of poses found in Table 5-3 were used to test 

the algorithm. The standard deviations of the errors of the pose estimates is the data 

reported. 

A statistical analysis of the performance of the algorithm described above was 

performed by generating a set of poses to be tested and comparing the SNR and the peak 

values of the autocorrelations with the 26 neighboring pose cross-correlations of each 

pose. Ideally, the autocorrelations will always exceed the value of the cross correlations 

in both SNR and peak value. However, it was found that the autocorrelation values are 

not of consistent magnitude and cross-correlations can at times exceed the autocorrelation 

peak value in a data set spaced apart in 1° increments. This requires filters very sensitive 

to distortions to be for the algorithm to select the correct pose. The statistical analysis of 

the algorithm is determined by evaluating a portion of its function. Specifically, the 
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correlation of a pose with its neighboring poses. However, the next pose input into the 

algorithm is not determined by the algorithm, but predetermined as the next pose in the 

set. The data will be composed of the autocorrelation and neighboring pose cross- 

correlations values. The value of each interest for each data set is the number of cross 

correlations that exceed the value of the autocorrelations. The ideal value which will 

produce zero error in the pose estimation of the training images in the set is zero. 

4.6. Edge Detection 

Preprocessing the images using edge detection will compensate for the limited 

dynamic range of the input SLM by writing only binary images with full transmittance 

values (255) where edges are present and zero elsewhere. However, the optical 

throughput decreases by having few values in the image as "on" so there is a tradeoff 

between optical throughput and the ability of optically reproducing images at the input 

SLM that were used in the construction of the filter. Edge detection was performed on the 

images using the Sobel method found in the Matlab image processing toolbox. The edge 

detected images were compared to the unprocessed images by doing the following: 

1. Perform edge detection of selected images. 

2. Create filters from edge detected images. 

3. Perform algorithm performance test using edge detected images/filters 

4. Obtain auto and cross-correlation peak values 

5. Compare to statistics of unprocessed image correlations 
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4.7. Additive White Gaussian Noise Tolerance 

The effect of adding noise to the images will ultimately determine the robustness 

of the pose estimation routine. For this exercise, additive white Gaussian noise (A WGN) 

is added to the image in increasing amounts such that the SNR decreases for each 

successive image set used for the pose estimations. The SNR used decreased from 20dB 

to lOdB. No effect on the pose estimation was found for SNR's higher than 20dB with 

lOdB being the lower threshold before the algorithm could not track the target. The 

AWGN algorithm in the Matlab image processing toolbox is used to measure the signal 

of the image and add the specified amount of noise to the images. 

4.8. Instrumentation 

Each SLM has drive electronics that consist of three boards: a PCI Driver Board, 

a DAC Board and an Op-Amp Board. The PCI Driver Board is located in the PCI slot of 

the computer. Image data is sent from the PC to the PCI Driver Board and then to the 

DAC Board. From the DAC Board, data along with the control signals is transferred to an 

Op-Amp Board where voltage levels are amplified to the level for which the SLM is 

designed. The input SLM is used to encode an image onto a coherent beam of light and 

the filter SLM is used to display the filter image. Each SLM is an electrically addressed 

8bit 256x256 pixel array device that can operate at up to 4000 frames per second. The 

correlator, including the SLM's, was manufactured by Boulder Nonlinear Systems. 

The overall layout of the correlator electronics and cabling is shown in Figure 4. 

The Laser/Power Board provides an external power source for the DALSA Camera and 

provides cabling routing out of the PC for the laser power and laser control signals. The 

Frame Grabber board retrieves the image from the camera and sends it to the software to 
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be displayed and analyzed. A diagram of the system and optical schematic is shown 

below in figures 4 and 5 respectively. 
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Figure 4-4 Optical Correlator System Diagram 

Illustration taken from reference (46) 
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Illustration taken from reference (46) 
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Figure 4-5 Optical Schematic of Correlator 
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The optical path through the correlator is as follows: 

6. Linearly polarized light exits Laser and is reflected at folding Mirror 1. 

7. Light is reflected at polarized Beam Splitter 1 

8. Retarder 1 rotates light reflected from Beam Splitter 1 into optical 

orientation of Input SLM. 

9. Input SLM reflects encodes image onto beam and reflects beam back to 

Retarder 1. 

10. Retarder 1 rotates beam into the transmission axis of the polarized beam 

splitter 1. 

11. Beam Splitter 1 transmits the beam through Lens 1, through quarter wave 

(QW) Retarder 2 and is then reflected at Mirror 2. The beam is reflected 

back through Retarder 2 and through Lens 1. The double pass through 

Lens 1 Fourier transforms the encoded image. The double pass through 

QW Retarder 2 rotates the polarization of the beam into the reflection axis 

of Beam Splitter 1. 

12. The beam is reflected from Beam Splitter 1 to Beam Splitter 2. 

13. Beam Splitter 2 reflects the beam through Retarder 3 which rotates the 

beam into the optical orientation of the filter SLM. 

14. Filter SLM reflects the beam through Retarder 3 which rotates the beam 

into the transmission axis of Beam Splitter 2. 

15. The beam is then passed through Lens 3 and Lens 4 and focused at the 

CCD camera. Lens 3 and Lens 4 perform the second Fourier transform. 
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Illustration taken from reference (46) 

Figure 4-6 3D Cad rendering of optical correlator 

4.9. Summary 

The validation of pose estimation using an optical correlator poses many 

challenges for the use of composite filters. Although the composite filter approach is the 

most desirable approach because it minimizes the number of correlation filters for 

detection, it faced the most difficult challenges for implementation. Because the 

correlation peak values must be meaningful with respect to all other measurement values, 

the weighting of the image spectrum is the most critical in the digital filter design. This 

weighting is made simpler for a training set with autocorrelation values that has 

minimum variance from one pose measurement to the next. This difference makes pose 

estimation a more difficult challenge than ATR where the correlation peaks must be 

present, but not meaningful with respect to all previous or future measurement values. 
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The alternative bank of matched filters approach faces the same meaningful value 

challenge as the composite filter approach; however, the filter is designed to have a 

maximized correlation response at only one pose and sensitive to other pose distortions. 

The cross correlation values do not have to be meaningful with respect to the 

autocorrelation pose measurement or with respect to each other; they just have to be less 

than the autocorrelation pose measurement for the search algorithm to work. This 

simplicity compensates for the inability to weight the correlation response of each pose in 

a predictable and repeatable manner. The downside to this approach is the generation of 

a filter database which increases system storage requirements. The impact of this 

requirement to system cost has decreased significantly over the last decade as memory 

and disk storage has increased in data density while decreasing in cost per gigabyte. The 

use of a pose search algorithm that only loads neighboring poses decreased the number of 

pose measurements from the entire filter bank for each alignment plane to that which is 

comparable to theoretical pose estimation routines using weighted composite filters. 
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Chapter 5 

Findings 

5.1. SLM Characterization 

The amplitude response of the SLM's was characterized as outlined in section 4.2. 

The mean of 30 data sets is plotted in Figure 5-1. The amplitude response for both the 

input and filter SLM's is proportional to the square root of the intensity values measured 

in the correlation plane. The mean values were then normalized to unity transmission 

after subtracting off the minimum offset value such that the magnitude of the 

transmission values ranged from 0 to 1. To prepare the filter response data to be used for 

mapping the digital filters to optically implementable filters, the polarity of the 

amplitudes was applied by multiplying the left hand side of the zero crossing by -1 to 

obtain the solid line plot. The dashed line plot is before polarity is applied. 
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5.2. Dynamic Range Compression 

To compress the dynamic range of the digital filters such that the filter values can 

be mapped to the filter SLM operating curve, a logarithmic compression technique is 

compared to a histogram linear stretched method as described by Chao (45). The MACE 

and MACH filters to be implemented have a dynamic range comparable to that of the 

Weiner filter which is essentially a MACE filter with a single training image.    The 

Weiner filter was therefore the filter chosen to compare the dynamic range compression 

techniques. This dynamic range can be on the order of 105 to 106 which is beyond the 

dynamic range capability of the SLM's. The linearly stretched method is best described 

using histograms and refers to pushing the values outside of a given standard deviation 

out to the saturation value of maximum transmittance, and linearly stretching the rest of 

the pixel values towards that maximum (45).   For the SLM's used in this research, the 

maximum values are the full transmittance values of 0 (for negative polarity) and 255 (for 

positive polarity). Creating a linearly stretched inverse filter is demonstrated in the 

following section. 

5.2.1.   Linearly Stretched Filter Generation 

The training image used for the filter generation of a linearly stretched 

Weiner filter is the craft oriented with zero rotation on every axis located 50m 

away from the docking port and is shown below in Image 5-1. Inverse filter HIF 

is generated using equation (3.11) then doing a MED projection onto the real axis 

and is therefore a real valued filter. 
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The linearly stretched filter is created by stretching the histogram values of 

Hn. such that all values that lie outside ±3cr from the zero mean value are pushed into 

saturation and all values that are within ±3a are then linearly stretched out to the 

maximum transmittance values. A histogram of Z/^.. before linear stretch , after a ±3cr 

stretch, and after a ±0.5(7 stretch is shown in Figure 5-3 plots A,B and C respectively. 

The digital pixel values of Hn. are seen to be narrowly distributed about a zero mean 

transmittance as shown in Figure 5-3 A. After a ±3cr stretch of pixel values as seen in 

Figure 5-3 B, only a few pixels are at a full transmittance value of±l. More pixels are 

seen to be at full transmittance after a ±0.5cr stretch as shown in Figure 5-3 C. 
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5.2.2.   Logarithmic Compression Procedure 

To reduce the number of near zero transmission values for the above filter Hu . a 

logarithmic dynamic range compression is applied to the magnitudes of Hu,. This is 

performed by doing the following: 

1. Take Logarithm of filter Hn. creating new filter Hu,. 

Hu.=\og(H,,) 

Since \Hlh | < 1, Hu. < 0 so the polarity information of the original filter is not retained. 

The dynamic range of the filters in this instance is: 

Hu D 106 

Hu D 6 

Filter Hlh now gives a much narrower range to map to. Both filters are shown in 

Figure 5-4. 

2. The standard deviation a and mean value JJ. of Hu, is then calculated. In 

this instance, 

o- = .5625 

M = -2.5668 

The filter response Rr is scaled such that \Rf,\ spans 6<rof the values of the reduced 

dynamic range of H,, . 

3. Scale R}, to cover ±3cr of filter Hu, 

RL=6a\R, 
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The vector used for the mapping of Hu. must have values that coincide with the desired 

overlap.   That is, R{ must be shifted such that its values overlap the desired range of 

values in Hn .  R{ and the shifted mapping vector RMtJ) are shown in Figure 5-5. 

4.   Compute shifted mapping vector RMED as: 

RMhD =R
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Figure 5-5 /?7 (top) and the shifted mapping vector RMED (bottom) 
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The values of HLl are then mapped to /?7 by choosing the MED of Hu, to RL. The 

polarity of the original filter Hu. must be taken into consideration when doing the 

mapping. 

5.   Map //7/,to /?/ by doing the following: 

a. If////, (w, n) < 0, then //^ (w, w) is mapped to the 8-bit values of 

RMED corresponding to negative polarity. These are the 8-bit values to 

the left of the zero transmission value in R{. 

b. If ////,(w, n) > 0, then Hu. (/w, n) is mapped to the 8-bit values of 

R-MED corresponding to positive polarity. These are the 8-bit values to 

the right of the zero transmission value in/^. 

The optical and digital histograms for filter////, are shown in Figure 5-6. The 

transmission of Hu, and the transmission of a \a linearly stretched filter Hls are shown 

in Image 5-2. The amplitude transmission of each filter is calculated by: 

J}H{m,n)F(m,n)\ 

T=mn   _, :  (5.1) Zl^")| 
m,n 

where the incident field F is the FFT of the input image /. 

F * FFT(I) 
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The calculated transmission values for pose ranges 0,0,0 (pitch,yaw,roll) through 

0,9,9 are plotted for the logarithmically compressed filter and linearly stretched filters 

with lcr,0.5<rand O.lcr stretch values in Figure 5-7. An increase in transmission is 

shown if the starting point for the linear stretch is closer to the zero throughput value. 
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Figure 5-7 Transmission values for poses 0,0,0 to 0,9,9 for logarithmically compressed and 
linearly stretched filters 
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5.3. Disqualification of Weighted Composite Filters 

5.3.1.   Focused MACE Filters 

MACE filters were designed digitally using equations (3.21) with 

weighting vector u assigned values such that the filter response is maximized for a 

single pose parameter. Training set poses were selected to be: 

Pitch 0 0 0 0 2 2 2 2 

Yaw 0 0 2 2 0 0 2 2 

Roll 0 2 0 2 0 2 0 2 

Pose# 1 2 3 4 5 6 7 8 

Table 5-1 Training set poses used for focused MACE filter 

for a total of 8 training images. The effect of weighting the filters digitally is compared 

to the optical correlation values. All optical correlation values are normalized to 1. The 

effect of the weighting on the digital correlation values and optical correlation values for 

weighting vectors ul and u2 are shown in Figure 5-8.   The weighting vector values were 

chosen to only illustrate the digital weighting ability. 

Pose# 1 2 3 4 5 6 7 8 

ul 100 100 100 100 100 100 100 100 

u2 100 150 225 300 225 150 125 100 

Ti ible 5-2 Po se weights < assigned fo r weighted MACE filt( jr. 
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5.3.2.   MACH Filter 

The MACH filter is designed according to equation (3.27) with training set 

poses from Table 5-1. The digital correlations with images from the training set 

are compared to the cross correlations values to the BPOF designed for target 

pose # 4 from the focused MACE filter set. The optical filter created by using 

logarithmic compression is compared to the cross correlations for the same target 

BPOF. This comparison is to illustrate the response of a single MACH filter to 

the cross-correlations of the set of poses versus the cross correlations of a single 

BPOF from the set.     The correlation results are plotted in Figure 5-9. The error 

bars correspond to ± 1 o standard deviation of 30 measurements taken. 
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5.4. Validation of Bank of Filters 

The BOF approach is tested according to section 4.5. The poses used to test the 

pose search algorithm are listed below in Table 5-3. 

p 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 

Y 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 

R 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 

Ascending 

Descending 

p 9 8 8 8 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0 

Y 9 9 8 8 8 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 

R 9 9 9 8 8 8 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 

Tat ile 5 -3/ ̂ sce ndi nga nd ( iesc end ing pos< JS u sed tO t€ :stE tank .of Filters method 

Standard deviations for pose measurements of the craft at 50m using the BOF 

approach with BPOF and Logarithmically mapped Weiner filters (LMWF) of 

unprocessed training images are shown in Table 5-4 and Table 5-5 respectively. Data at 

100m and at 10m was not attainable due to poor correlation signal and therefore no 

data is reported at these alignment planes with unprocessed images using BPOF or 

LMWF's. 
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BPOF Data Set 1 Data Set 2 Data Set 3 

Pitch .57 .41 .52 

Yaw .30 .27 .23 

Roll .77 .59 .48 

Table 5-4 Standard deviations of pose estimates using BPOF 

LMWF Data Set 1 Data Set 2 Data Set 3 

Pitch .82 .91 .85 

Yaw .61 .23 .14 

Roll 1.0 1.0 1.5 

Table 5-5 Standard deviations of pose estimates using LMWF 

The bank of filters approach using digital correlation had zero error across the 

entire pose set using BPOF. This is due to the autocorrelation value of the target 

always exceeding the cross-correlation values of the neighboring poses.    This was 

true at all alignment planes. Optically, pose estimates at 100m were inconsistent and 

at 10m the correlations were of poor quality and difficult to obtain using unprocessed 

images. To address both issues and to improve the distinction between the auto and 
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cross correlation at all alignment planes, edge detection and image scaling were 

implemented. 

5.4.1.   Edge Detection and Image Scaling 

Using edge detection of the images does two things that improve the 

performance of the optical correlator: 

1. Binarized images are easier to reproduce on the input SLM 

2. Increases high frequency components for correlation with LMWF 

The edges were detected using the Sobel method in the Matlab image 

processing toolbox. An example of an edge detected image of the craft at each 

alignment plane with no rotation introduced is shown below in Figure 5-13. Edge 

detection alone improved the correlations at 100m such that pose estimates could 

be performed repeatedly and consistently. However, edge detection was not 

sufficient to produce correlations at the 10m alignment plane. The edges in the 

image still did not have enough high spatial frequency information to be used 

with the distortion sensitive Weiner filters. To increase the high spatial frequency 

information, the image at 10m was scaled from 256x256 to 32x32 and reinserted 

in a blank 256x256 matrix. The correlations showed a marked improvement over 

the un-scaled images and the pose estimates obtained were repeatable with high 

SNR correlations. Scaling the image at 50m from 256x256 to 64x64 and 

reinserting into a blank 256x256 matrix also improved the correlation SNR and 

pose estimates. With edge detection at 100m, and scaling the edge detected 

images at 50m and 10m alignment planes, pose estimates were obtained for each 
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Alignment Distance 
10m 50m 100m 

Pitch 0 0 0 
Yaw 015 015 0.15 
Roll 0 0 0 

Table 5-6 Standard deviation of error in pose estimates using edge 
detection and image scaling (at 50m and 10m) 

alignment plane taking 30 measurements at each plane. The standard deviation 

for the accuracy of each rotation at each alignment plane is shown above in Table 

5-6. The standard deviation for the entire pose estimation sequence and the pose 

estimates obtained are shown in Table A-2 through A-4 for each alignment plane. 

The effect of edge detection and image scaling on the pose estimation 

routine can best be seen by looking at the statistical performance of the engine of 

the search algorithm which loads the filters for the pose set (selected pose and its 

neighboring poses) given to it and correlates them with the input scene. Doing 

this for each pose in the selected pose set, a comparison of the LMWF is 

compared to the BPOF for the same edge detected/scaled image. The correlation 

peak values obtained for each pose and its neighboring poses is presented in the 

Appendix in Figure A - 1 through Figure A - 27 for 100m, 50m and 10m 

alignment planes. For the 50m alignment plane, the improvement using edge 

detection and image scaling can be seen by comparing the results from using 

unprocessed images and the edge detected images. The 50m alignment plane was 

the only plane initially that could give semi-repeatable measurements to take a 

statistical set. It is therefore the only plane where data is reported for unprocessed 
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images and serves as the representation of the improvement from using edge 

detection and image processing. The complete set of plots can be found in the 

Appendix. Figure 5-10 below shows the effect of edge detection and scaling for 

poses (1,1,2), (1,2,2), (2,2,2) and (2,2,3). It can be seen that the first pose 

correlation peak value (the autocorrelation/target pose) exceeds the values for all 

the neighboring poses when using edge detection and scaling. The unprocessed 

images have multiple neighboring pose cross-correlations whose values exceed 

the target. This condition leads to pose estimation errors in the algorithm. 
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Figure 5-10 Normalized correlation values for edge detected and scaled images versus unprocessed images 
with craft at 50m alignment plane. 
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The number of poses whose cross-correlations exceed the autocorrelation in the pose set 

at the 50m alignment plane is plotted below in Figure 5-11. The value at each target # is 

the number of cross correlations in that target's neighboring pose set (26 neighboring 

poses) that exceeds the value of the target correlation. The target # corresponds to the 

target specified in Table 5-3 Ascending and descending poses used to test Bank of Filters 

methodTable 5-3 in the ascending section.   A significant difference in the opportunity 

for error can be seen when going from unprocessed to edge detected and scaled images. 

This data is plotted in Figure 5-12 for each alignment plane using edge detected scaled 

images (image scaling at 50m and 10m only). 
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Figure 5-11 Comparison of the number of cross-correlation values that exceed the target autocorrelation 
values for each target in the target set with the target craft at 50m using edge detection and image scaling vs 

unprocessed images. 
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Figure 5-12 Number of cross-correlation values that exceed the target autocorrelation values for each target 
in the target set with the target craft at 50m. 
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Edge Detected - 100m 

Unprocessed - 50m 

Unprocessed - 10m Edge Detected - 10m 

Figure 5-13 Unprocessed and edge detected images at 100m (top), 50 m (middle) and 10m 
(bottom) alignment planes. 
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Figure 5-14  10m correlations using unprocessed (top), edge detected (middle) and edge detected 
images with scaling (bottom). 
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Figure 5-15 50m correlations using unprocessed (top), edge detected (middle) and edge detected 
images with scaling (bottom). 
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5.4.2.   Additive White Gaussian Noise Effects 

To determine how sensitive the pose estimation is to noise, Additive white 

Gaussian noise was added to the images using the additive white Gaussian noise 

(AWGN) command in the Matlab communications toolbox. The signal power of 

each image is measured and AWGN is added such that the SNR is as specified. 

No impact was noticed in the standard deviations of the pose estimation accuracy 

until the SNR was 20dB and below. The AWGN was added to the unprocessed 

images and the edge detection and image scaling was applied to the noisy image. 

The noisy edge detected image was then written to the input SLM and the filter 

created from the noiseless image was written to the Filter. This is repeated for 

each image associated with each pose in the pose set. The visual effect of the 

AWGN to the images and on the edge detected images is shown below in Figure 

5-18 to Figure 5-16 for each alignment plane. The scaled edge detected images 

corrupted with noise for the 50m and 10m alignment plane is shown in Figure 

5-19 and Figure 5-20.   The standard deviation of the error in the pose estimates 

obtained using noise corrupted images is shown in Table 5-7.   As the noise is 

increased, the standard deviations of the error in the pose estimate is seen to 

increase at varying degrees depending on the alignment plane with the 50m plane 

showing the most robustness. This is due to the image containing more 

information than the clipped 10m image and the scaling at 50m results in an 

image that is further reduced in size than the un-scaled 100m image, an interesting 

and unexpected result. The further craft appears to be, the more accurate the pose 
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estimation suggesting scaling at all alignment planes improves the correlations 

and algorithm performance. 

Dist= 10m 
20dB 15dB 10dB 

Pitch 
Yaw 
Roll 

0 
0.19 

0 

0 
026 

0 

Dist = 50m 

1.37 
0.35 
1 06 

20dB 15dB 10dB 
Pitch 
Yaw 
Roll 

0 
0.15 

0 

0 
0.13 
0.13 

Dist = 100m 

0 
0.13 
.19 

20dB 15dB 10dB 
Pitch 
Yaw 
Roll 

0.32 
0.33 
0.13 

2.19 
0.88 
1.75 

2.72 
1.15 
1.59 

Table 5-7 Standard deviation of pose estimate error using noise corrupted images 

Dist = 50m SNR = 5dB 

Pitch 
Yaw 
Roll 

BPOF 
223 
2.3 

2.36 

LMWF 
0.13 
0.19 
0.45 

Table 5-8 Standard deviation of pose estimate error using BPOF's vs LMWF's 

The advantage of using the LMWF's instead of BPOF's is the ability to 

suppress noise.   This will be useful in applications when clutter is being 

considered. When performing pose estimates with 5dB SNR at the 50m 

alignment plane, the difference between the BPOF and the LMWF can be seen in 

Table 5-8. The error using BPOF's is seen to be much greater than the LMWF's. 
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Figure 5-16 Unprocessed and edge detected images after AWGN has been added to the input 
scene at the 10m alignment plane 
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50m, No noise 

SNR = 20dB SNR=15dB SNR=10dB 

Edge Detected Images 
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Figure 5-17 Unprocessed and edge detected images after AWGN has been added to the input 
scene at the 50m alignment plane 
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100m, No noise 

SNR= 15dB SNR= 10dB 

Edge Detected Images 

SNR = 20dB SNR= 15dB SNR= 10dB 

Figure 5-18 Unprocessed and edge detected images after AWGN has been added to the input 
scene at the 100m alignment plane 
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Figure 5-20 Scaled edge detected images corrupted with AWGN at the 50m alignment plane. 
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5.5. Optimum Rotation Angle Selection 

Up to now, all filters have had a constant phase rotation of nil introduced before 

binarization or projection to the real axis. This is equivalent to binarizing or projecting 

the imaginary axis, the axis of symmetry.  This is a common approach in research; 

however, the filter can be arbitrarily rotated in the complex plane as suggested with the 

TLA mentioned in section 3.3. To create a projected filter with minimum energy 

difference with the original filter, the energy equation 

E = \hp-he'*\2 (5.2) 

must be minimized for projected filter hpby rotating filter h by a phase amount#>. 

Another method of determining the optimum rotation angle is mentioned by Chao using 

the equation (45) 

n    1       / 
<p = tan 

4    2 .2 
(5.3) 

/ 

where hr and h, are the real and imaginary parts of filter h.   Autocorrelations of the craft 

rotated in yaw 360 degrees is shown below in Figure 5-21. The autocorrelations are 

taken using the optimum rotation angles calculated using equations (5.2) and (5.3).   They 

are plotted versus the autocorrelations using a fixed rotation of nil and the normalized 

digital autocorrelation values. The optimum rotation angle has little to no effect on the 

general shape of the yaw rotation correlation peak values. All three optical methods are 

have a similar profile in comparison to the digitally obtain correlation response. In 

Figure 5-12, the error introduced begins when the yaw rotation approaches 8-9 degrees. 

The data was taken on the portion of the plot below ranging from 180 - 190 degrees 

where it is a relatively flat region. In locations where the rotation is at 25 to 30 degrees, 
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the correlation peak disappears. This is not found to happen in the digital model and the 

optimum rotation angle does not compensate for it. Further investigation will need to be 

performed to determine the root cause of the degrading correlation with yaw rotation. 

270 

Eqtn 5-3 
. Eqtn 5-4 

 pi/2 (Optical) 
*     pi/2 (Distil) 

Figure 5-21 Normalized auto-correlation values of craft rotated in yaw 360° 
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5.6. Summary 

The SLM characterization showed an active applied voltage region between the 

8bit values of approximately 100 to 190 in the input SLM with a steady gradual 

increase in transmittance value from 190 to 255. The filter SLM has an active region 

between the 8bit values of approximately 70 to 210. In the input SLM, this reduction 

was overcome using binary edge detected images and at the filter SLM, mapping the 

logarithm of the dynamic range of the correlation filter showed improved results over 

the BPOF. Logarithmic mapped filters also showed greater optical efficiency than 

the linearly stretched filters (Figure 5-7) with more pixels being modulated, 

particularly in the mid to high frequency range as seen in Figure 5-6. 

The composite filter designs were not useful when considering pose estimation 

using weighted filter responses across a training set of poses. The response of the 

autocorrelation of one pose to the next is seen to exhibit greater variance than the 

digital response.   Controlled weighting is therefore not possible when gain cannot be 

added optically to compensate for the autocorrelations with decreased values such 

that a controlled response can be obtained. In Figure 5-8 and Figure 5-9, the 

difference in digitally and optically weighted composite filters can be seen. In the 

case of Figure 5-8 where the filter is designed to be "focused" at a single pose, this is 

easily accomplished with the digital filter. The optical filter results clearly disqualify 

this approach for an optical correlator based pose estimation routine. The optical 

MACH and OTMACH filters were however implementable using logarithmic 

mapping for distortion invariance across a training set of poses in a target tracking 
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scenario. Composite filter designs have already been demonstrated in this capacity 

using an amplitude modulated optical correlator by Chao (42). 

The BOF approach using logarithmically mapped Weiner filters relied on the 

sensitivity of each filter to distortions, creating a stronger response for the 

autocorrelation (target pose) and a weaker response to the cross correlations 

(neighboring poses).   The edge detected images using the Sobel method improved the 

SNR and the pose estimation of the craft at 100m using the BOF approach. At 50m 

and 10m, edge detection and image scaling combined gave the best results. 

Removing the low frequencies and creating a binary input image compensated for the 

reduced resolution in the input SLM due to the delayed response of the liquid crystals 

to the magnitude of the applied field. The image scaling increased the high spatial 

frequency content which the Weiner filters were designed to detect. The alignment 

plane at 10m showed the most improvement when implementing the image scaling. 

The pose estimates at 50m also showed an improvement with image scaling 

suggesting that image scaling can be performed at all intermediate alignment planes 

as the craft approaches for docking. Performing edge detection and image scaling 

also contributed to a noise tolerant approach. As seen in Table 5-7, the additive 

Gaussian noise did not affect the pose estimates until the SNR dropped between 20 to 

lOdB. At the 50m plane, a SNR of 5dB still has acceptable pose estimates as shown 

in Table 5-8 in comparison to using the BPOF. 

The error in the pose estimation routine was seen to be introduced consistently as 

the yaw rotation approached 8-9 degrees. In Figure 5-21, the correlation dependence 

on the yaw rotation is seen to change drastically with rotation angle.   This yaw 
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dependence did not show up in the digital correlation model using the BOF approach. 

It is therefore not a fundamental correlation issue, and is suspiciously a modulator 

issue. Further investigation into the source of the yaw dependence on the correlation 

needs to be performed. 
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Chapter 6 

Conclusions 

6.1. Conclusion 

Pose estimation using a bank of filters and a pose search algorithm approach 

worked in both the digital and optical domain with sub degree standard deviations in 

accuracy. The digital routine did not require as much image processing as the optical 

method due to the optical inability of the input SLM to achieve the resolution as the 

original digital image. The digital routine is also capable of implementing complex 

composite filter designs which performed poorly when optically implemented when 

designed for the optical weighting of poses for pose estimation. This was not an 

unexpected result and was anticipated due to the limited dynamic range of the filter SLM 

and its amplitude only (real valued) modulation. It was however worth pointing out to 

distinguish the composite filter implementation in tracking using an optical correlator and 

to explicitly show why this approach cannot be extended to pose estimation using 

digitally weighted filter models. 

Using 3D software to render the training images eliminated otherwise necessary 

hardware acquisition and setup of models and rotation platforms. The lighting and 

camera options with readily available models of both space and military craft make 3D 

modeled training images a modern solution to the generation of training image sets for 

pose estimation and target tracking algorithm development.   The 3D approach also has 
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the utility of CAD import. For edge detected images, the CAD model without surface 

texturing or other 3D enhancements used to add realism (which is typical in gaming 

applications) can be used as is to generate the training set. The BOF approach using a 

pose search algorithm and 3D software is a fully automatable process which would not 

require the use of cooperative targets on the craft. The simulation and debugging of 

algorithms can also be done using only a computer and correlator instead of hardware 

setup. Using Matlab as an interface to the correlator for the pose estimation routine and 

for the development of filter conversion algorithms and image processing of the 3D 

software generated training images allowed for the programming and generation of the 

filter bank and image loading sequence for bank of filters with search algorithm proof of 

concept. It allowed for programmable changes to filter designs or image processing to be 

implemented within a single software platform. This general approach to pose estimation 

is therefore more streamlined and less costly in time and hardware from development to 

simulation than other existing approaches. 

The primary difficulty in this research was creating and mapping distortion 

sensitive filters. Many unsuccessful attempts in the mapping resulted in inconsistent 

correlation results from one pose to the next. The autocorrelations must exceed the cross 

correlations of the neighboring poses in order for the BOF approach to be successful with 

a minimum amount of error being introduced from one detection cycle to the next. With 

too many poses with cross correlations exceeding the target pose, the search algorithm is 

rendered ineffective. Using BPOF's during the initial qualification testing of the search 

algorithm resulted in encouraging but not repeatable results. Implementing logarithmic 

amplitude modulation showed a significant improvement in the SNR in both unprocessed 
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and edge detected image correlations. However, the BPOF, when using edge detected 

images, did exhibit repeatable behavior, but had more noise in the correlation than the 

LMWF's.   The LMWF's are therefore more suitable for pursuing correlation detection in 

a cluttered environment. 

The SNR of the correlations, although tending to follow the peak values, was not 

more effective than using the peak values of the correlations to distinguish the target from 

the neighboring poses. The logarithmic mapping outlined in section 5.2.2 along with the 

edge detection and image scaling yielded the best results. This was due to a combination 

of three primary contributing factors: 

1. The modulation of more pixels in the filter design by mapping more 

values of the logarithmically compressed filter to the active region of the 

SLM. 

2. Using edge detected images removed the low spatial frequency content of 

each training image helping to distinguish one image from the other 

3. Scaling the images increased the high spatial frequencies at the close 

ranges where the correlation signal was the weakest and at times, non 

existent. 

The ability to get repeatable near zero error measurements across the training set after 

implementing the three step approach briefly summarized above resulted in an optical 

method that is on par with a digital method in accuracy. The speed of the optical 

correlators SLM's have been the most favorable feature of the correlator which gives it 

an edge over digital routines. The drawback of not being able to implement the digital 

composite filters on an optical correlator is one of the primary reasons digital pose 
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estimation has been the most likely solution. It enables pose estimation using a minimum 

number of correlation filters. However, if the number of filter images can be reduced to 

cover only anticipated realistic docking ranges of rotation, the size of the optical 

correlators filter bank can be kept to a minimum. Composite filters also use an 

interpolative result which is not as accurate as a 1:1 comparison of image to matched 

filter with 1 degree resolution. It has been shown in this research that the BOF approach 

can yield accurate pose estimates, even with the craft buried in a large amount of additive 

noise (with an SNR of lOdB), with 1 degree resolution using 27 correlations per detection 

cycle. A digital pose estimation approach using weighted composite filters that can 

achieve the same level of accuracy in resolution in 3 degrees of rotational freedom could 

not be found by the author. This approach may therefore be favorable for applications 

where accuracy to within 1 degree resolution in pose measurement is critical and a higher 

detection frequency is desired. To keep the filter bank size to a minimum, only 

cooperative targets with limited expected rotational range for docking or rendezvous is 

recommended. 

6.2. Recommendations for Future Research 

In this research, pose estimates using a bank of filters was demonstrated using a 

pose search algorithm with logarithmically mapped distortion sensitive filters using Sobel 

edge detection and image scaling. This approach was shown to be effective at each 

alignment plane in the space shuttle to ISS docking scenario of 100m, 50m and 10m with 

the craft buried in significant additive noise. The next logical step in research would be 

to perform pose estimates of the craft at any distance while it is in transit from one 
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alignment plane to the next. This would allow for continuous monitoring of the crafts 

orientation. In a rendezvous scenario when the crafts may be approaching one another, 

keeping track of their respective orientations while in transit is useful to prevent collision 

hazards from unexpected changes in trajectory. However, with the current approach, this 

would require many filter banks with overlapping effective scale (which corresponds to 

distance) ranges to achieve a continuum in detection without loss of signal. There will 

also be an additional number of necessary correlations; the pose detection cycle and the 

scale detection cycle to determine how the craft is oriented and if it has moved within the 

range of the neighboring filter banks respectively. With the improved results that image 

scaling provided, instead of having multiple scaled filter banks, a single bank can be used 

by scaling the input image to the most effective scale size used by the correlator which 

provides the most sensitive and highest SNR correlations. One method of 

implementation would be to have a rangefinder provide continuous distance 

measurements to the pose algorithm such that the correct scale factor can be applied to 

the input image before edge detection is applied and the data then sent to the input SLM. 

All correlations will then be made using a single filter bank instead of multiple banks to 

cover the entire range. 

Another method would utilize the correlator to track distance and pose by taking 

two additional correlations. The first cycle being the pose detection cycle and the second 

cycle (using two additional correlations) would be: 

1. Correlation of input image with detected pose filter using additional scaling. 

2. Correlation of input image with detected pose filter using less scaling 
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With an optimum correlator operating speed of 1000Hz, 29 correlations to track pose and 

determine scaling from change in distance is easily achieved in controlled docking and 

rendezvous scenarios with cooperative vehicles. The pose selection and the scaling for 

the next input image will be determined using the peak associated with both pose and 

best scale measurements. 

The loss of resolution from one scaled distance to the next will result in identical 

poses being slightly different from one another due to the range of the craft before 

scaling.  The effect of this difference on the pose detection cycle will have to be 

determined and must be less than the effect of the neighboring poses for the performance 

of the algorithm to be consistent and accurate across the translation range. This small 

difference in resolution losses is expected to have a negligible impact. 

Another solution may be to create the filter bank from an image which is a 

composite of edge detected scaled images of identical poses. The filter will therefore 

give a correlation peak for the same pose over a range of distance without having to scale 

the input image while also discriminating against neighboring poses. This would require 

generating many training images that cover the anticipated translation range at a scale 

interval that does not exceed the scale response of the filter. For close distances when 

portions of the craft begin to be clipped by the field of view of the camera, feature 

extraction of the craft determined by the features seen at the closest desired position can 

be used (such as the docking port) as correlation targets. This therefore would require 

two filter banks to be created; one for the far field and one for the near field. All of these 

proposed methods however can be implemented digitally with a BOF for low detection 
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frequency requirements. The range of poses can still be limited to realistic approach 

poses of the craft which will limit the size of the necessary filter bank. 

Further investigation needs to be performed to determine the root cause of the 

unexpected strong correlation dependence on yaw rotation. This dependence is assumed 

to be the cause of the error being introduced near the edge of the yaw range in the pose 

ranges used. The data is seen to be consistent in zero error until the yaw range 

approaches 8-9 degrees. This is not a fundamental correlation issue and is more than 

likely modulator specific. 
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Figure A -  l Auto and cross correlation peak values for craft at 10m. Target pose is labeled on 
graph. Neighboring poses are in Table A - 1 
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Figure A - 3 Auto and cross correlation peak values for craft at 10m. Target pose is labeled on 
graph. Neighboring poses are in Table A - l 
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Figure A - 5 Auto and cross correlation peak values for craft at 10m. Target pose is labeled on 
graph. Neighboring poses are in Table A - l 

104 



Ost = 10m. Target Pose = 888 Ost = 10m, Target Pose = 889 

LMWF 

BPOF 

10 15        20 
Pose# 

Dist = 10m Target Pose ■ 899 

LMWF 

BPOF 

3C 

1 1 

1 

09 

08 

0 7 

06 

05 

04 

03 

02 

0 1 

0 

Dist = 10m. Target Pose = 999 

10 

LMWF 
BPOF 

15 
Pose# 

20 25 3C 

Figure A - 6 Auto and cross correlation peak values for craft at 10m. Target pose is labeled on 
graph. Neighboring poses are in Table A - l 
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Figure A - 7 Auto and cross correlation peak values for craft at 50m. Target pose is labeled on 
graph. Neighboring poses are in Table A - l 
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Figure A - 8 Auto and cross correlation peak values for craft at 50m. Target pose is labeled on 
graph. Neighboring poses are in Table A - 1 
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Figure A - 9 Auto and cross correlation peak values for craft at 50m. Target pose is labeled on 
graph. Neighboring poses are in Table A - l 
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Figure A -  10 Auto and cross correlation peak values for craft at 50m. Target pose is labeled on 
graph. Neighboring poses are in Table A - 1 
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Figure A -  11 Auto and cross correlation peak values for craft at 50m. Target pose is labeled on 
graph. Neighboring poses are in Table A - I 
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Figure A -  12 Auto and cross correlation peak values for craft at 50m. Target pose is labeled on 
graph. Neighboring poses are in Table A - 1 
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Figure A -  13 Auto and cross correlation peak values for craft at 50m. Target pose is labeled on 
graph. Neighboring poses are in Table A - l 
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Figure A -  14 Comparison of edge detected and unprocessed image correlations at 50m. The 
target pose is as indicated. Neighboring poses are in Table A - 1 
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Figure A -  15 Comparison of edge detected and unprocessed image correlations at 50m. The 
target pose is as indicated. Neighboring poses are in Table A - 1 
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Figure A - 16 Comparison of edge detected and unprocessed image correlations at 50m. The 
target pose is as indicated. Neighboring poses are in Table A - 1 
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Figure A -  17 Comparison of edge detected and unprocessed image correlations at 50m. The 
target pose is as indicated. Neighboring poses are in Table A - 1 
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Figure A -  18 Comparison of edge detected and unprocessed image correlations at 50m. The 
target pose is as indicated. Neighboring poses are in Table A - 1 
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Figure A - 19 Comparison of edge detected and unprocessed image correlations at 50m. The 
target pose is as indicated. Neighboring poses are in Table A - 1 
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Figure A - 20 Comparison of edge detected and unprocessed image correlations at 50m. The 
target pose is as indicated. Neighboring poses are in Table A - 1 
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Figure A - 21 Auto and cross correlation peak values for craft at 100m. Target pose is labeled on 
graph. Neighboring poses are in Table A - 1 
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Figure A - 22 Auto and cross correlation peak values for craft at 100m. Target pose is labeled on 
graph. Neighboring poses are in Table A - 1 
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Figure A - 23 Auto and cross correlation peak values for craft at 100m. Target pose is labeled on 
graph. Neighboring poses are in Table A - l 
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Figure A - 24 Auto and cross correlation peak values for craft at 100m. Target pose is labeled on 
graph. Neighboring poses are in Table A - I 
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Figure A - 25 Auto and cross correlation peak values for craft at 100m. Target pose is labeled on 
graph. Neighboring poses are in Table A - l 
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Figure A - 26 Auto and cross correlation peak values for craft at 100m. Target pose is labeled on 
graph. Neighboring poses are in Table A - 1 
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Figure A - 27 Auto and cross correlation peak values for craft at 100m. Target pose is labeled on 
graph. Neighboring poses are in Table A - 1 
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Pose* 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

p 0 0 0 1 0 1 1 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

Y 0 1 0 0 1 1 0 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

R 0 0 1 0 1 0 1 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

0 0 0 0 1 0 0 1 1 1 1 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

0 0 1 0 0 1 1 0 1 1 0 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
1 0 1 2 1 0 2 0 0 1 2 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 NA NA NA NA NA NA NA NA NA 

1 0 1 2 1 1 0 0 2 2 0 1 0 2 0 2 1 2 NA NA NA NA NA NA NA NA NA 

1 1 0 1 2 1 0 2 0 2 0 0 1 0 2 1 2 2 NA NA NA NA NA NA NA NA NA 

1 1 1 1 1 2 0 1 1 1 1 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 

1 0 1 2 1 1 1 0 0 2 2 0 1 0 2 0 2 1 2 0 1 0 2 0 2 1 2 

1 1 0 1 2 1 1 0 2 0 2 0 0 1 0 2 1 2 2 0 0 1 0 2 1 2 2 

1 1 i I 1 2 0 I 1 1 ! 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 

1 0 i 2 1 1 1 0 0 2 2 0 1 0 2 0 2 1 2 0 1 0 2 0 2 1 2 

2 2 i 2 3 2 2 1 3 1 3 1 1 2 1 3 2 3 3 1 1 2 1 3 2 3 3 

1 1 i 1 1 2 0 1 1 1 1 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 

2 1 2 3 2 2 2 1 1 3 3 1 2 1 3 1 3 2 3 1 2 1 3 1 3 2 3 

2 2 1 2 3 2 2 1 3 1 3 1 1 2 1 3 2 3 3 1 1 2 1 3 2 3 3 

2 2 2 2 2 3 1 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 

2 1 2 3 2 2 2 1 1 3 3 1 2 1 3 1 3 2 3 1 2 1 3 1 3 2 3 

2 2 1 2 3 2 2 1 3 1 3 1 1 2 1 3 2 3 3 ! 1 2 1 3 2 3 3 

Table A- 1 Table of neighboring poses for each target Pose # 
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Pose* 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

p 2 2 2 2 2 3 1 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 

Y 2 1 2 3 2 2 2 1 1 3 3 1 2 1 3 1 3 2 3 1 2 1 3 1 3 2 3 

R 3 3 2 3 4 3 3 2 4 2 4 2 2 3 2 4 3 4 4 2 2 3 2 4 3 4 4 

2 2 2 2 2 3 1 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 

3 2 3 4 3 3 3 2 2 4 4 2 3 2 4 2 4 3 4 2 3 2 4 2 4 3 4 

3 3 2 3 4 3 3 2 4 2 4 2 2 3 2 4 3 4 4 2 2 3 2 4 3 4 4 

3 3 3 3 3 4 2 3 3 3 3 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 

3 2 3 4 3 3 3 2 2 4 4 2 3 2 4 2 4 3 4 2 3 2 4 2 4 3 4 

3 3 2 3 4 3 3 2 4 2 4 2 2 3 2 4 3 4 4 2 2 3 2 4 3 4 4 

3 3 3 3 3 4 2 3 3 3 3 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 

3 2 3 4 3 3 3 2 2 4 4 2 3 2 4 2 4 3 4 2 3 2 4 2 4 3 4 

4 4 3 4 5 4 4 3 5 3 5 3 3 4 3 5 4 5 5 3 3 4 3 5 4 5 5 

3 3 3 3 3 4 2 3 3 3 3 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 

4 3 4 5 4 4 4 3 3 5 5 3 4 3 5 3 5 4 5 3 4 3 5 3 5 4 5 

4 4 3 4 5 4 4 ■j 5 ■j 5 3 3 4 i 5 4 5 5 ■j 3 4 3 5 4 5 5 

4 4 4 4 4 5 3 4 4 4 4 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 

4 3 4 5 4 4 4 3 3 5 5 3 4 3 5 3 5 4 5 3 4 3 5 3 5 4 5 

4 4 3 4 5 4 4 3 5 3 5 3 3 4 3 5 4 5 5 3 3 4 3 5 4 5 5 

4 4 4 4 4 5 3 4 4 4 4 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 

4 3 4 5 4 4 4 3 3 5 5 3 4 3 5 3 5 4 5 3 4 3 5 3 5 4 5 

5 5 4 5 6 5 5 4 6 4 6 4 4 5 4 6 5 6 6 4 4 5 4 6 5 6 6 

Table A-1 Cont. 

128 



Pose« 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

p 4 4 4 4 4 5 3 4 4 4 4 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 

Y 5 4 9 0 5 5 5 4 4 6 b 4 5 4 6 1 6 s b 4 5 4 b 4 6 5 6 

R 5 5 4 5 6 5 5 4 6 4 6 4 4 5 4 6 5 6 6 4 4 5 4 6 5 6 6 

5 5 5 5 5 6 4 s 5 5 5 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 

5 4 5 6 5 5 5 4 4 b h 4 5 4 6 4 i 5 b i 5 4 6 4 b 5 6 
5 5 4 5 6 5 5 4 6 4 6 4 4 5 4 6 5 6 6 4 4 5 4 6 5 6 6 

5 5 5 5 5 6 4 5 5 5 5 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 

5 4 3 6 5 5 5 4 4 b 6 4 5 4 6 4 6 5 6 4 3 4 6 4 b 5 b 

6 6 5 6 7 6 6 5 7 5 7 5 5 6 5 7 6 7 7 5 5 6 5 7 b 7 1 

5 5 5 5 5 6 4 5 5 5 5 4 4 4 4 4 4 4 4 6 6 6 6 6 6 b 6 

6 5 6 7 6 b 6 s 3 7 7 5 b 5 7 3 7 6 7 3 b 3 7 5 7 b 7 

6 6 5 6 7 6 6 5 7 5 7 5 5 6 5 7 6 7 7 5 5 b 5 7 6 1 7 

6 6 6 6 6 7 5 6 6 6 6 5 5 5 5 5 5 5 5 7 7 7 7 - 7 7 7 

6 5 6 7 6 b 6 3 3 7 7 3 b 5 7 5 7 (i 7 5 6 5 7 5 7 b 7 

6 6 5 6 7 6 6 5 7 5 7 5 5 6 5 7 6 7 7 5 5 6 5 7 6 7 7 

6 6 6 6 6 7 5 6 6 6 6 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 

6 5 fr 7 (> (^ 6 5 5 7 7 5 b 5 7 5 7 b 7 5 (^ 3 7 5 7 6 7 

7 7 6 7 8 7 7 6 8 6 8 6 6 7 6 8 7 8 8 6 6 7 6 8 7 8 8 

6 6 6 6 6 7 5 6 6 6 5 5 5 5 5 5 5 7 7 7 7 7 7 7 6 5 7 

7 6 7 1 7 7 7 b b s S 6 7 b 1 b 1 7 8 6 7 6 8 b S 7 s 
7 7 6 7 8 7 7 6 8 6 8 6 6 7 6 8 7 8 8 6 6 7 6 8 7 8 8 

Table A-l Cont 
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Pose« 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

P   7 7 7 7 7 8 6 7 7 7 7 6 6 6 6 6 6 6 6 8 8 8 8 8 8 8 8 

Y  7 6 7 8 7 7 7 6 6 8 8 6 7 6 8 6 8 7 8 6 7 6 8 6 8 7 8 

R 7 6 7 8 7 7 6 8 6 8 6 6 7 6 8 7 8 8 6 6 7 6 8 7 8 8 

7 7 7 7 7 8 6 7 7 7 7 6 6 6 6 6 6 6 6 8 8 8 8 8 8 8 8 

7 6 7 8 7 7 7 6 6 8 8 6 7 6 8 6 8 7 8 6 7 6 8 6 8 7 8 

8 8 7 8 9 8 8 7 9 7 9 7 7 8 7 9 8 9 9 7 7 8 7 9 8 9 9 

7 7 7 7 7 8 6 7 7 7 7 6 6 6 6 6 6 6 6 8 8 8 8 8 8 8 8 

8 7 8 9 8 8 8 7 7 9 9 7 8 7 9 7 9 8 9 7 8 7 9 7 9 8 9 

8 8 7 8 9 8 8 7 9 7 9 7 7 8 7 9 8 9 9 7 7 8 7 9 8 9 9 

8 8 8 8 8 9 7 8 8 8 8 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 

8 7 8 9 8 8 8 7 7 9 9 7 8 7 9 7 9 8 9 7 8 7 9 7 9 8 9 

8 8 7 8 9 8 8 7 9 7 9 7 7 8 7 9 8 9 9 7 7 8 7 9 8 9 9 

8 8 8 8 9 7 8 8 7 7 7 7 7 9 9 9 9 9 NA NA NA NA NA NA NA NA NA 

8 7 8 9 8 8 7 9 7 8 7 9 9 7 8 7 9 9 NA NA NA NA NA NA NA NA NA 

9 9 8 9 9 9 8 8 8 8 9 8 9 8 8 9 8 9 NA NA NA NA NA NA NA NA NA 

8 8 8 9 7 8 7 7 7 9 9 9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

9 8 9 9 9 8 8 9 8 8 9 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

9 9 8 9 9 8 8 8 9 8 8 9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

9 9 9 8 9 8 8 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

9 8 9 9 8 8 9 8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

9 9 8 9 8 8 8 9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

Table A-] Cont 
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Ascending Cycle 10m 

Mean Detected Pose 

P   0   0   01112223334445556667778   8   8   9 
Y 0   0   11122233344455566677788  8.3   9  8.6 
R   0  97   11222333444555666777888   9   9   9 
 Target Pose  

0 0 01112223334445556667778 8 8 9 
0 0 11122233344455566677788 8 9 9 
0   1   11222333444555666777888   9   9   9 
 Standard Deviation  

0 0 00000000000000000000000 0 0 0 
0 0 00000000000000000000000 0.4 0.5 0.5 
0 0.2   00000000000000000000000   0   0   0 

Descending Cycle 10m 

 Mean Detected Pose  

P   9   8   88777666555444333222111   0   0   0 
Y 84   8   98877766655544433322211   1   0   0 
R   9   9   98887776665554443332221   1   1   0 
 Target Pose  

9 8 88777666555444333222111 0 0 0 
9 9 88877766655544433322211 1 0 0 
9   9   98887776665554443332221   1   1   0 
 Standard Deviation  

0       0       00000000000000000000000       0       0       0 
0.5    0.5    0.5    0000000000000000000000       0       0       0 

0       0        00000000000000000000000       0        0        0 
Table A- 2 Ascending and descending detected poses for 10m alignment plane 
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Ascending Cycle 50m 

Mean Detected Pose 

P   0   0   01112223334445556667778   8   8   9 
Y 0   0   11122233344455566677788  8.4  8.3 86 
R   0   1   11222333444555666777888   9   9  9 
 Target Pose  

0 0 01112223334445556667778 8 8 9 
0 0 11122233344455566677788 8 9 9 
0   1   11222333444555666777888   9   9   9 

 Standard Deviation  

0 0 00000000000000000000000 0 0 0 
0 0 00000000000000000000000 0.5 0.5 0.5 
0   0   00000000000000000000000   0   0   0 

Descending Cycle 50m 

 Mean Detected Pose  

P   9   8   88777666555444333222111   0   0  0 
Y 86  8.4   88877766655544433322211   1   0  0 
R   9   9   98887776665554443332221    1   1   0 

 Target Pose  

9 8 88777666555444333222111 0 0 0 
9 9 88877766655544433322211 1 0 0 
9   9   98887776665554443332221   1   1   0 

 Standard Deviation  

0   0   00000000000000000000000   0   0  0 
0.5  0.5  0.5 0000000000000000000000   0   0  0 
0   0   00000000000000000000000   0   0  0 

Table A- 3 Ascending and descending detected poses for 50m alignment plane 
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Ascending Cycle 100m 

Mean Detected Pose 

8 8 9 
8 9 9 
9 9 9 

P   0   0   01112223334445556667778   8   8   9 
Y 0   0   11122233344455566677788  84  8.5 8.6 
R   0   1   11222333444555666777888   9   9   9 
 Target Pose  

0 0 01112223334445556667778 
0 0 11122233344455566677788 
0   1   11222333444555666777888 
 Standard Deviation  

0 0 00000000000000000000000 0 0 0 
0 0 00000000000000000000000 0.5 0.5 0.5 
0   0   00000000000000000000000   0   0   0 

Descending Cycle 100m 

 Mean Detected Pose  

P   9   8   88777666555444333222111   0   0   0 
Y 8.5  8.5  8.5 8877766655544433322211   1   0   0 
R   9   9   98887776665554443332221   1   1   0 
 Target Pose  

88777666555444333222111 0 0 0 
88877766655544433322211 1 0 0 
98887776665554443332221   1   1   0 
 Standard Deviation  

0   0   00000000000000000000000   0   0   0 
0.5  0.5  0.5 0000000000000000000000   0   0   0 
0   0   00000000000000000000000   0   0   0 

Table A- 4 Ascending and descending detected poses for 100m alignment plane 

9 8 
9 9 
9 9 
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