


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
APR 2004 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2004 to 00-00-2004  

4. TITLE AND SUBTITLE 
CrossTalk. The Journal of Defense Software Engineering. Volume 17,
Number 4, April 2004 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

32 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Improving the DoD Software Acquisition Processes 
This article outlines the Department of Defense’s implementation guidance for section 804
of the National Defense Authorization Act for Fiscal Year 2003, including one approach taken
by the Naval Air Systems Command’s software acquisition and process improvement program.
by Lisa Pracchia

Why We Need Empirical Information on Best Practices
This author proposes that a methodical approach to gathering and analyzing data about best
practices can help build tools to select practices that are appropriate for a particular project.
by Dr. Richard Turner

A Project Risk Metric
To provide management visibility into project uncertainty, this author presents a risk metric that
can be applied early and throughout the project.
by Robert W. Ferguson

Agile Software Development for an Agile Force
This article identifies some components of an effective approach to software development and provides
the Army’s Maneuver Control System as an example that is leading the way to a more agile force.
by John S. Willison

Applying Decision Analysis to Component Reuse Assessment
This article proposes a methodology for applying decision analysis to support component reuse assessment.
by Michael S. Russell

Better Communication Through Better Requirements
Here are several techniques that can be used during project analysis to assure that all stakeholders reach a
common level of understanding on the meaning of the requirements.
by Michael J. Hillelsohn

Enterprise DoD Architecture Framework and the Motivational View
This article describes an enterprise architecture that uses a subset of the existing Department of Defense Architecture
Framework views along with another view to capture business, financial, and technical analysis information.
by D.B. Robi

Cover Design by
Kent Bingham.

3

8

11

19

31

DeparDepar tmentstments

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering April 2004

4

9

12

16

20

24

28

From the Publisher

Letter to the Editor
Web Sites

Coming Events

SSTC 2004 Conference
Reminder

BackTalk

CrossTalk
Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions. Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 15.

Ogden ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

AcquisitionAcquisition

Open Open FForumorum

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

Open Open FForumorum



From the Publisher

Iam concerned when I learn about acquisition programs that do not have adequate insights
into development. In a recent discussion, I learned that a government group acquiring

software was developing measurements they would use for their own quality assurance
group. When I pointed out that their measurements were deficient because none of them
tied directly to the software being developed, I was told the acquisition organization had no
authority to obtain insights to the quality measurements from the developers.

As an acquisition organization, it is your right and responsibility to be certain you have all
the data necessary to ensure the program is proceeding as it should. The organization mentioned above
was correct in some respects because the developers are not required to provide this information if it
is not stated as a deliverable in the contract (and apparently it was not stated in this contract). I would
like to send a message now that all new contracts are negligent if they do not require the contractor to
provide the data needed to oversee the contract. While current rules no longer allow acquisition orga-
nizations to stipulate data format, you can still require information related to cost, schedule, quality, risk
management, etc. If the developers consider this to be proprietary information, you can sign a nondis-
closure agreement, but you should require the information.

This also should not result in substantial additional costs to the program. I know of one program
where the acquisition organization simply required a copy of the developer’s software development
plan and access to their databases. The acquisition organization was able to use the development plan
to learn what data was available and where it was located. They then looked for the information as they
needed it. The result was minimal additional cost.

Our first article this month is a discussion on Section 804 of the Bob Stump National Defense
Authorization Act for Fiscal Year 2003. Lisa Pracchia’s Improving the DoD Software Acquisition Processes
discusses some of the issues that resulted in 804 being passed, the intent of 804, and some sugges-
tions for implementing it.

Our next article is Why We Need Empirical Information on Best Practices from by Dr. Richard Turner.
This author’s experience in the Office of the Under Secretary of Defense has given him many oppor-
tunities for insight into programs going right or going wrong. In this article, Turner suggests some
questions we should ask ourselves before jumping onto the latest best practice.

In A Project Risk Metric, Robert W. Ferguson reminds us of the need for managing risks through-
out a project and suggests some values to quantify the actual risks.

In our supporting articles, John S. Willison discusses some benefits his project has seen while
implementing agile development in Agile Software Development for an Agile Force. Michael S. Russell then
provides criteria to use while considering reuse software in Applying Decision Analysis to Component Reuse
Assessment. Michael J. Hillelsohn provides an additional benefit to good requirements management in
Better Communication Through Better Requirements. Requirements management is essential to any software
development. However, have you considered that better requirements’ reviews of requirements could
also aid understanding between the acquisition and development organizations? Finally, D.B. Robi
reminds us that we need a reason for many of the best practices that we are asked to implement. He
states a motivational view should be added to the Department of Defense (DoD) Architecture
Framework in Enterprise DoD Architecture Framework and the Motivational View.

With Section 804 of the National Defense Authorization Act, there is more pressure on acquisi-
tion organizations to take responsibility for taxpayer dollars. I hope they will take this responsibility
seriously and start getting the information they need to oversee a successful project. Four key points
to remember are 1) know the rules for acquisition; the Federal Acquisition Regulation and Defense
Federal Acquisition Regulation Supplement are too long to read and memorize, but an overview and
retention of key points applicable to your project are essential, 2) tailor the data item descriptions for
your needs; do not let the weight of the whole bureaucracy overwhelm the project, 3) work closely with
your Acquisition Center of Excellence and your legal office’s Contract Law Division, and 4) stay cur-
rent on new acquisition approaches and review lessons learned during development. CrossTalk’s
Web sites on Page 8 provide sources to help with these key areas.

Contract Oversight Requires Data

April 2004 www.stsc.hill.af.mil 3

Elizabeth Starrett
Associate Publisher



Acquisition

4 CROSSTALK The Journal of Defense Software Engineering April 2004

Recent military operations around the
world demonstrate the superiority of

U.S. weapon systems developed by the
Department of Defense (DoD).
Furthermore, an ever-increasing percent-
age of the weapon systems’ functionality is
provided by software, which constantly
becomes more sophisticated and complex.
While the DoD has risen to the challenge,
cost overruns and unsatisfactory perfor-
mance have led the General Accounting
Office (GAO) to designate the DoD sys-
tems development and modernization
efforts a high-risk area [1].

Significant risk factors include the enor-
mous size and complexity of the software
within these systems and acquirers’ inade-
quate, inefficient, or unexpected processes
for managing software-intensive system
acquisitions. As one congressional source
said when describing the acquisition of U.S.
weapon systems, “It’s not about bending
metal any more, it’s about routing elec-
trons.”

Software enables a myriad of complex
capabilities from massive data fusion across
geographically disparate large-scale sensor
systems, to decisional systems that auto-
matically select the most appropriate
weapon and platform to attack a given tar-
get, to autonomous systems that operate
without human intervention to destroy
incoming missiles. Software creates the net-
work-centric operation – the cornerstone
of the DoD’s transformation.

Several root causes for the GAO’s des-
ignation point to long-standing cultural
issues (culture being defined as the collec-
tive patterns of behavior exhibited by the
numerous participants in the acquisition
process and the incentives for their behav-
ior). These cultural issues were highlighted
in 1992 GAO reports [2, 3]. Two of these
still-relevant issues are the acquisition com-

munity’s bias toward hardware, and the fact
that the community addresses critical soft-
ware issues too late in the acquisition
process.

In a 1998 CrossTalk article [4],
Capers Jones defined a major DoD system
as having 12.5 million C Statements2

(roughly the size of a major computer
operating system of that day) and a devel-
opment team that numbered in the hun-
dreds. Typically, lack of process and inter-
group communications was a problem;
paperwork and software rework absorbed
the bulk of development costs. Formal
configuration control and change manage-
ment were expensive and poorly imple-
mented for projects that large. The proba-
bility of termination for one of those
major software-intensive systems, Jones
said, was 65 percent; he cited poor project
management and inadequate quality con-
trol as primary factors.

Fast-forward five years to today’s joint-
ly developed system of systems. Take, for
example, the Army’s Future Combat
Systems (FCS), a joint Army/Defense
Advanced Research Projects Agency pro-
gram. The Army’s vision for the FCS is to
create an integrated battlespace where net-
worked information and communications
systems provide a competitive edge to sol-
diers in the field and commanders in the
control room. You would be hard pressed
to even try to estimate the numbers of FCS
developers as its extended team consists of
one prime contractor, eight major subcon-
tractors, and 55 other companies under
contract [5].

According to congressional sources,
“The FCS is estimated at 32 million total
SLOC,” or software source lines of code.
The actual number, however, will likely be
greater as past experience with software
estimation has shown that we typically both
underestimate size and add functionality as
the development progresses.

Successful fielding of the FCS requires
more mature acquisition, development, and

testing approaches than used in the past for
smaller systems. Previous approaches sim-
ply will not be adequate to guarantee that
development cost, schedule, and perfor-
mance baselines are met. Specifically,
greater effort will have to be spent on man-
aging changes to requirements and ensur-
ing that information is shared among all
stakeholders. What does all this mean to
both the program offices and Congress?
Mature processes must be used to ensure
that the system functions as intended, and
that major problems and errors are caught
well in advance of operational tests.

Given that software-intensive projects
are among the most expensive and risky
undertakings of the 21st century, the
investment in weapons from fiscal years
2003 through 2009 will exceed $1 trillion
[6]. Furthermore, many of the DoD’s most
important technology projects will contin-
ue to deliver less than promised unless
changes are made [7]. Improving how we
acquire software-intensive systems is both
long overdue and an imperative.

The History
Software Development Process
Improvement
In the late 1980s, software developers
began investing in process improvement
by adopting best practices. Many public
and private organizations based their
improvement programs on the Software
Engineering Institute’s (SEISM) Capability
Maturity Model® (CMM®) for Software
(SW-CMM). While adoption was slow at
first, by the mid-90s companies with
improvement programs were showing
results.

For example, SEI reported in 1995 [8]
that a major defense contractor that imple-
mented a process improvement program in
1988 had reduced its rework costs from
about 40 percent to about 10 percent of
total project cost, increased staff produc-
tivity by 170 percent, and reduced defects
by about 75 percent over a seven-year peri-

Improving the DoD 
Software Acquisition Processes 

Lisa Pracchia
Naval Air Systems Command

While the U.S. Department of Defense (DoD) weapons are undeniably superior, programs to acquire them continue to expe-
rience cost overruns, schedule slippages, and performance difficulties1. Improving software acquisition processes to address these
issues was mandated in Section 804 of the National Defense Authorization Act for Fiscal Year 2003 and enacted on Dec.
2, 2002. This article explains the history leading to that public law, provides insight into Congressional intent, and outlines
DoD guidance for implementing Section 804.

SM SEI is a service mark of Carnegie Mellon University.
® Capability Maturity Model and CMM are registered in the

U.S. Patent and Trademark Office by Carnegie Mellon
University.



Improving the DoD Software Acquisition Processes 

April 2004 www.stsc.hill.af.mil 5

od. According to a 1999 SEI report [9], a
software development contractor reduced
its average estimated schedule deviation
from 112 percent to 5 percent between
1988 and 1996. During that same period,
SEI reported that this same contractor
reduced its average estimated cost devia-
tion from 87 percent to minus 4 percent.

By 2001, software development units
within the DoD were also showing results
from their improvement programs.
According to one GAO report [10], each
DoD unit with a software process
improvement (SPI) program reported pos-
itive effects on software/systems quality.
The Defense Finance and Accounting
Service, for example, reported that its SPI
program had reduced its overall software
delivery cost by about one-third less than
organizations of similar size; one Navy
software activity reported reduced costs,
improved product quality, and a 7:1 return
on its SPI investment; and an Army activi-
ty reported that it had almost doubled its
productivity in writing software for new
systems because of improvements made
under its SPI program.

Software Acquisition Process
Improvement
While many defense and civilian contrac-
tors developing software-intensive systems
have made performance gains through SPI,
those acquiring these same systems have
lagged behind. In situations where acquir-
ers with a low level of process maturity
contract for software from developers with
a high-level process maturity, problems
occur. For example, acquirers may try to
circumvent development and management
processes because they feel that following
the process impacts their ability to meet the
goal. The result of this process avoidance by
the acquirer can be rework, additional
delays, or unexecutable cost and schedule
quotes – exactly what the process was
designed to avoid had it been followed.

Other problems can occur at the end of
the development process. If cost and deliv-
ery schedules become more important to
the acquirer than having the developer
meet their exit criteria for delivering a qual-
ity product, then the result can be software
delivered with avoidable defects. An acquir-
er with a low process maturity is at a greater
risk of having its program meet schedules
and costs, but fail to deliver required per-
formance.

The GAO has been reviewing weapon
systems investments for more than 20
years. What they have found are consistent
problems – cost increases, schedule delays,
and performance shortfalls – along with
underlying causes such as pressure on pro-

gram managers to promise more than they
can deliver [6]. In recent years, several of
those reports have included consistent rec-
ommendations to implement best practices
for software-intensive systems acquisition,
and to initiate broad improvement pro-
grams.

In a 2001 report to the Armed Services
Committee, for example, the GAO recom-
mended that DoD establish and implement
a department-wide SPI program based on
accepted best practices [10]. In response to
GAO’s recommendations, the DoD identi-
fied two existing groups within the Office
of the Secretary of Defense (OSD)3, 4 as
appropriate places for SPI to be addressed.
The DoD also pointed to a revision of
DoD Regulation 5000.2-R (since cancelled)
as the needed policy guidance for improv-
ing software. The author believes that sub-
sequent DoD inaction in response to
GAO’s recommendations played a pivotal
role in Congress legislating software acqui-
sition process improvement.

On Dec. 2, 2002, Section 804 of the
National Defense Authorization Act for
Fiscal Year 2003 [11] (or simply Section 804)
was enacted. The Senate report accompa-
nying its version of the National Defense
Authorization Act for Fiscal Year 2003 [12]
was clear on its intent and purpose. The
report articulated the Senate’s concerns
with the negative impact of longstanding
software problems on major defense acqui-
sition programs. The Senate noted the rec-
ommendations from [10] and stated that
the purpose of Section 804 was to imple-
ment the GAO’s recommendations.

Section 804:The Law
Section 804 mandates improvement of the
DoD’s software acquisition processes. This

legislation directly instructs the secretaries
of each military department and heads of
selected defense agencies to establish soft-
ware acquisition process improvement pro-
grams – an apparent message of frustra-
tion with the way software improvement
had been handled in the past.

Software acquisition process improve-
ment program requirements include the
following:
• A documented process for software

acquisition planning, requirements
development and management, project
management and oversight, and risk
management.

• Efforts to develop appropriate metrics
for performance measurement and
continual process improvement.

• A process to ensure that key program
personnel have an appropriate level of
experience or training in software
acquisition.

• A process to ensure that each military
department and select defense agency
implement and adhere to established
processes and requirements relating to
the software acquisition.
Section 804 also requires that the assis-

tant secretary of defense for Command,
Control, Communications, and Intelli-
gence, in consultation with the undersec-
retary of defense for Acquisition, Tech-
nology, and Logistics do the following:
• Provide applicable improvement pro-

gram administration and compliance
guidance, and ensure that secretaries of
the departments and selected agencies
comply with that guidance.

• Assist the departments and agencies
with their respective improvement pro-
grams by ensuring they use applicable
source-selection criteria and have
access to a clearinghouse for informa-
tion regarding best practices in software
development and acquisition in both
the public and private sectors.

Congressional Intent 
Norm Brown, founding director of the
former Software Program Managers
Network, and Navy department member
of the 2000 Defense Science Board Task
Force on Defense Software said:

Anyone looking at the past congres-
sional actions and listening to the
frustration expressed in congres-
sional hearings will find the funda-
mental improvements mandated in
Section 804 come as no surprise.
The only surprise is that Congress
has been as patient as they have
been. Now, congressional patience
seems to be turning to impatience;

“Given that software-
intensive projects are

among the most
expensive and risky
undertakings of the 

21st century, the
investment in weapons
from fiscal years 2003

through 2009 will
exceed $1 trillion.”



Acquisition

6 CROSSTALK The Journal of Defense Software Engineering April 2004

an impatience to see significant
improvement in fixing our perenni-
al problems with cost, schedule, and
performance – and in addressing
the underlying drivers that are caus-
ing these problems.

Congressional sources affirm that:

... [the] DoD is going to have to pay
attention from the ground up, in
other words, at the program manag-
er level, or programs will continue
to get tanked. Congress will remain
interested and we’re not going to let
this go until [the] DoD significantly
improves how it acquires software-
intensive systems. The only way it’s
going to get fixed is by people on
the inside – it simply makes no
sense on any level to continue to
ignore it.

Another indication of Congressional
intent is the GAO’s tasking to monitor the
DoD’s compliance with Section 804.
Initially, the GAO was tasked to evaluate
the DoD’s efforts to develop programs for
improving software acquisition processes
and to assess how those efforts compared
with leading commercial companies’ prac-
tices. This initial GAO report (GAO-04-
393) was scheduled for publication in
March 2004. Subsequent GAO assess-
ments will likely focus on compliance with
specific Section 804 requirements.

Implementation 
DoD Guidance
On March 21, 2003, the DoD issued a
memorandum to provide the uniform
implementation guidance that Section 804
requires. This memorandum identified
applicability, delineated organizational roles
and responsibilities for overseeing imple-
mentation, and clarified initial expectations
for improvement programs. It also
instructed military departments and select-
ed defense agencies to establish software
acquisition process improvement pro-
grams. Requirements for these programs
included defining and applying measures,
following applicable methods based on
some structured approach that included an
appraisal method, and determining and
reporting status of process adherence and
performance effectiveness.

The DoD memorandum also gave the
OSD Software Intensive Systems Steering
Group the role of leading a DoD-wide
effort to improve software acquisition

processes. This role entailed providing pro-
gram guidance; identified best practices;
established a clearinghouse of information
regarding best practices and lessons learned
in software development and acquisition;
and provided guidance for documenting,
performing, and continuously improving a
minimum of eight specific software acqui-
sition processes (the original four process-
es called out in Section 804, plus four addi-
tional processes5).

General Approaches
The OSD’s implementation guidance has
not been prescriptive. Component and
agency approaches to compliance vary
widely. That variety is clearly illustrated by
the list of best practice models selected as
the basis for software acquisition improve-
ment programs. Model selections range
from the IDEALSM Model6, to the CMM

IntegrationSM (CMMI®)7, to the Software
Acquisition CMM (SA-CMM®)8, to the
Federal Aviation Administration (FAA)
Integrated Capability Maturity Model
(FAA-iCMM®)9, to hybrid models (i.e.,
combining elements of two or more dif-
ferent models), to no identified model at
all. There is no one right answer, but
instead a variety of approaches are being
tested by the small but growing DoD-wide
software acquisition process improvement
community of practice10.

A new tool will soon be available to
help those looking for acquisition best
practices. The CMMI Steering Group, co-
chaired by the DoD and industry, has
sponsored the development of a CMMI-
based guide for acquisition programs. The
CMMI Module for Acquisition11 focuses
on effective acquisition practices used by
first-level acquisition projects (e.g., system
project offices/program managers). It also
provides guidance to acquisition organiza-
tions above the acquisition project level to
support institutionalization of those acqui-
sition practices. In addition to covering the
804 requirements, many of the acquisition
practices and amplifications in the Module

are drawn from existing sources of best
practices including the SA-CMM, the
CMMI, the FAA-iCMM, as well as addi-
tional coverage areas defined by experi-
enced acquisition professionals.

NAVAIR’s Approach
As a key participant in the Naval Air
Systems Command’s (NAVAIR’s) software
acquisition process improvement program,
the author is able to share with readers
NAVAIR’s approach as one data point.
That approach is divided into three phases:
1) requirements determination, 2) gap
analysis and planning, and 3) implementa-
tion, as explained below.

The requirements phase began by
forming a small, command-endorsed team.
That team selected relevant best practice
models, mapped existing command poli-
cies to those practices, and developed and
implemented a communications plan. The
team chose a hybrid improvement model
for mapping policies to practices. For pre-
contract process areas12, it selected the SA-
CMM and for post-contract process areas,
it identified the CMMI13. The team also
added a ninth process area (to the eight
provided by the OSD) – Measurement and
Analysis from the CMMI – in order to
emphasize the importance at NAVAIR of
performance measurement.

The next phase entailed performing a
policy gap analysis and developing a com-
mand-wide improvement plan. Policy
owners identified changes to policy needed
to comply with the selected best practices.
A broader team was then formed – with
representation from all executive program
offices – to develop a NAVAIR software
acquisition improvement plan (SAPIP). In
addition, an existing SPI enterprise team,
the NAVAIR Software Resource Center
(SRC), was tasked to build or identify the
infrastructure to support the SAPIP
through a network of strategic partners.

Phase three was simply stated but rep-
resents a significant, long-term commit-
ment: program managers execute the
SAPIP and comply with revised NAVAIR
policies. During the ongoing implementa-
tion phase, the SRC will work with individ-
ual programs to help them select the best
practice model(s) that best support their
business goals and baseline their processes.

Conclusions
Section 804’s mandate for the DoD soft-
ware acquisition process improvement
programs is here to stay. It is not a one-
time legislation with little or no follow-up,
but the result of a consistent, well docu-
mented, and growing need. Already, con-
gressional sources are considering actively

SM IDEAL is a service mark of Carnegie Mellon University.
® CMMI is a registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.

“... it is imperative that
DoD program managers

understand that their
efforts will be measured

against Section 804
requirements.”



Improving the DoD Software Acquisition Processes 

April 2004 www.stsc.hill.af.mil 7

identifying certain key programs for
greater scrutiny to see if they have ade-
quately implemented the requirements of
the legislation. According to GAO sources,
“The outcome is what’s important, not
which best practice improvement model is
used as a road map to achieve the mandat-
ed requirements.”

Given that the GAO and Congress feel
that the acquisition of systems with major
software components needs to be
improved, it is imperative that DoD pro-
gram managers understand that their
efforts will be measured against Section
804 requirements.

As members of the DoD community,
Section 804 is our collective call to action.
While some DoD components and agen-
cies have already taken steps to improve
their software acquisition processes, others
have not. NAVAIR, for example, has been
addressing software development process
improvement issues well in advance of
Section 804 through an existing framework
of system/software leadership teams. With
the signing of Section 804, NAVAIR
emphasizes its strategic goal to improve its
software acquisition performance, contin-
ue to focus resources on refining policy,
communicate implementation guidance,
and expand its SPI support infrastructure.
To achieve its goal, NAVAIR understood
that top management support and metrics
to gauge implementation effectiveness
were essential.

How will your organization satisfy this
critical need to improve?◆

References
1. U.S. General Accounting Office. “High

Risk Series: An Update.” GAO/HR-
99-1. Washington, D.C.: GAO, Jan.
1999.

2. U.S. General Accounting Office.
“Mission-Critical Systems: Defense
Attempting to Address Major Software
Problems.” GAO/MTEC-93-3. Wash-
ington, D.C.: GAO, Dec. 1992.

3. U.S. General Accounting Office and
National Security and Internal Affairs
Division. “Weapons Acquisitions: A
Rare Opportunity for Lasting Change.”
GAO/NSIAD-93-15. Washington,
D.C.: GAO, Dec. 1992.

4. Jones, Capers. “Project Management
Tools and Software Failures and
Successes.” CrossTalk July 1998:
13.

5. Caterinicchia, Dan. “Firms Added to
Army FCS Mix.” Federal Computer
Week June 2002.

6. U.S. General Accounting Office.
“Defense Acquisitions: Assessment of
Major Weapon Programs.” GAO-03-

476. Washington, D.C.: GAO, May
2003.

7. U.S. General Accounting Office and
National Security and Internal Affairs
Division. “Observations on the
Department of Defense’s Fiscal Year
1999 Performance Report and Fiscal
Year 2001 Performance Plan.”
GAO/NSIAD-00-188r. Washington,
D.C.: GAO, 30 June 2000.

8. Hayley, T., et al. “Raytheon Electronic
Systems’ Experience in Software
Process Improvement.” CMU/SEI-95-
TR-017. Pittsburgh, PA: Software
Engineering Institute, Nov. 1995.

9. Ferguson, Pat, et al. “Software Process
Improvement Works!” CMU/SEI-99-
TR-027. Pittsburgh, PA: Software
Engineering Institute, Nov. 1999.

10. U.S. General Accounting Office. “DoD
Information Technology: Software and
Systems Process Improvement
Programs Vary in Use of Best
Practices.” GAO-01-116. Washington,
D.C.: GAO, Mar. 2001: 12.

11. Public Law PL-107-3146.
12. Senate Report S.2514.

Notes
1. Defense Science Board Task Force on

Defense Software, Nov. 2000.
2. The C Statement count is based on the

average number of C Statements found
within the typical function point.

3. The Independent Expert Program
Review Working Group, established in
Jan. 2001.

4. Software Intensive Systems Steering
Group, chartered in Sept. 2000.

5. Additional process areas included con-
figuration management, test and evalu-
ation, integrated team management,
and solicitation and source selection.

6. Information on the IDEAL Model can
be found at <www.sei.cmu.edu/
ideal>.

7. Information on the CMMI can be
found at <www.sei.cmu.edu/cmmi/
cmmi.html>.

8. Information on the SA-CMM can be
found at <www.sei.cmu.edu/arm/ SA-
CMM.html>.

9. Information on the FAA-iCMM can be
found at <www1.faa.gov/aio/
ProcessEngr/iCMM/index.htm>.

10. See the OSD’s Acquisition Commu-
nity Connection Web site at <www.
acq.osd.mil>.

11. At the time this article was printed, the
CMMI Module for Acquisition was
pending publication. Its document
number will be CMU/SEI-2004-TR-
001.

12. Acquisition planning, and solicitation

and source selection.
13. Requirements development and man-

agement, configuration management,
risk management, project management
and oversight, test and evaluation, and
integrated team management.

Additional Reading 
1. Defense Science Board reports can be

found at <www.acq.osd.mil/dsb/
reports.htm>.

2. General Accounting Office reports can
be found at <www.gao.gov>.

3. Software Engineering Institute reports
and other publications can be found at
<www.sei.cmu.edu/publications/
search.html>.

4. Back issues of CrossTalk can be
found at <www.stsc.hill.af.mil/
crosstalk>.

5. A search function and online archive
for Federal Computer Week can be
found at <www.fcw.com/online
archive.asp>.

6. Section 804 of Public Law PL 107-314
and other related documents can be
found at the STSC Web site at
<www.stsc.hill.af.mil>. Enter Section
804 into the search engine.

7. You can search the Congressional
Record at <www.senate.gov/page
layout/legislative/d_three_sections_
with_teasers/congrecord.htm>.

About the Author

Lisa Pracchia is a
member of the Naval
Air Systems Com-
mand’s Software Re-
source Center. Her
software background

includes process improvement, busi-
ness analysis, project management,
product life-cycle management, and
product marketing in a wide range of
industries (discrete product manufac-
turing, international publishing,
telecommunications, and defense).
Pracchia has a master’s degree in man-
agement from the University of
Redlands.

Commander, NAWCWD
41K300D (L. Pracchia)
BLDG. 1494, STOP 6308
1 Administration CIR 
China Lake, CA 93555
Phone: (760) 939-2188
DSN: 437-2188
E-mail: lisa.pracchia@navy.mil



Departments

8 CROSSTALK The Journal of Defense Software Engineering April 2004

Defense Procurement and Acquisition
Policy
www.acq.osd.mil/dpap
The Defense Procurement and Acquisition Policy Web site
is a complete source for Department of Defense acquisition
information. It features the latest news and events, print
and electronic publications, a Knowledge Management
page of frequently asked questions, the “Defense Federal
Acquisition Regulations Supplement,” workforce training
and career development information, and more.

Procedures for the Acquisition and
Management of Technical Data
www.dtic.mil/whs/directives/corres/pdf/501012m–0593/p5
01012m.pdf
The Procedures for the Acquisition and Management of
Technical Data is the official manual prescribing policies
and procedures for the Department of Defense’s acquisition
and management of technical data.

FARSite
http://farsite.hill.af.mil
FARSite is the Federal Acquisition Regulation (FAR) infor-
mation site sponsored by the Contracting Laboratory at
Hill Air Force Base. The FAR is the primary regulation for
use by all federal executive agencies in their acquisition of
supplies and services with appropriated funds. The regula-
tion is published on FARSite in addition to supplements for
the defense department, Army, Air Force, Navy, Marine

Corps, special operations, and NASA.

ASSIST-Quick Search
http://assist1.daps.dla.mil/quicksearch
ASSIST-Quick Search provides direct access to Department
of Defense (DoD) and federal specifications and standards
available in the official DoD repository, the Acquisition,
Streamlining, and Standardization Information System
(ASSIST) database.  The ASSIST-Quick Search locates doc-
uments available for distribution by the DoD Single Stock
Point for Military Specifications, Standards, and Related
Publications. Retrievable data includes military standards,
specifications, data item descriptions, and more.

Acquisition Management Systems and
Data Requirements Control List
www.dtic.mil/whs/directives/corres/html/501012l.htm
The Defense Technical Information Center (DTIC) is host
for the Department of Defense (DoD) 5010.12-L
“Acquisition Management Systems and Data Requirements
Control List” soon to be published on this Web site. The
DTIC is the central facility for collecting and disseminating
scientific and technical information for the DoD. The
DTIC serves as a vital link in the transfer of information
among DoD personnel, DoD contractors and potential
contractors, and other U.S. Government agency personnel
and their contractors.

WEB SITES

LETTER TO THE EDITOR

Dear CrossTalk Editor,

In my experience, CrossTalk is the best practical software
development journal bar none. I have personally found it
useful on many occasions, and assign it as reading for my
teams.

In the December 2003 issue of CrossTalk, Barry
Boehm is absolutely correct in “People Factors in Software
Management: Lessons From Comparing Agile and Plan-
Driven Methods” in that people are the most important fac-
tors to success. My personal experience with agile methods
leads me to strongly concur in valuing individuals and inter-
actions over processes and tools. However, picking the right
people is not always an option. Too often in either govern-
ment or contractor shops, the front-line team leader has lit-
tle choice regarding team membership – regardless of how
well the current pool of talent matches the new task –
because the first task is always job security for existing
employees. My experience is that in such situations, success
is average, but true excellence is hard to come by.

I also liked Dennis Linscomb’s article “Requirements
Engineering Maturity in the CMMI,” also in December’s
CrossTalk. He has in me a kindred spirit in regards to
the poor state of affairs in requirements engineering. He has
an excellent idea with his requirements engineering maturity
levels, but I disagree that Capability Maturity Model®

Integration (CMMI®) has the cart before the horse in putting

management before technical execution. CMMI is good at
telling us what but less good at telling us how, and even worse
at telling us how to get from where we are to where we need
to be. This was one of my first revelations about CMMI.

In deciding to implement CMMI, the first thing an orga-
nization has to do is figure out and write down what they are
doing in each process area. The second thing to do is figure
out where the organization needs to go. The third thing is
how to get there. Success is achieved one step at a time, one
change at a time. Once the change process is in place, the
organization can work on optimizing technical performance.
Individuals who have the shirt sleeve, dirty-fingernail knowl-
edge of how to implement specific best practice techniques
in the day-to-day work environment are worth their weight
in gold. Few people can give you tips on precisely what best
practices to implement in getting to Level 2 and higher.
When you find such people, pay them a lot to keep working
for you.

Ralph Nebiker
ENWGS Modernization

SPAWAR Systems Center 
nebiker@spawar.navy.mil

CrossTalk invites readers to submit their thoughts, comments, and
ideas on its themes and articles as a “Letter to the Editor.” Simply e-mail
letters to <crosstalk.staff@hill.af.mil>.



April 2004 www.stsc.hill.af.mil 9

Why We Need Empirical Information on Best Practices

Best practices are widely recommended as a way to improve organizational performance, especially in software-related endeavors. This
article takes a skeptical view of the current way best practices are identified and prescribed. It identifies relevant information that
is often missing from best practice discussions and recommends an alternative approach to gathering, evaluating, and applying that
information.

In the history of software development
and acquisition, one of the most often

prescribed curatives for their continuing
infirmities, aches, and agues is the identifi-
cation and implementation of best practices.
Of course, the notion of what defines a
best practice is not clear. Some best prac-
tices, for example configuration or risk
management, are actually disciplines seen
as crucial to success. Other best practices
are broad approaches or philosophies
such as architecture-first development or
Integrated Product and Process Develop-
ment. A third type of best practices, peer
reviews for example, are actually practices
proven to be beneficial in a specific way.
In reality, the term has been so broadly
applied as to be nearly meaningless.

In spite of being definitionally challenged,
best practices continue to arise – some-
times as ephemeral answers du jour and
other times as lasting wisdom. They pop-
ulate the lists and fill the books that we
turn to for guidance. Unfortunately, we all
too often find that the benefit is more in
the eyes of the beholder than in any mea-
surable result of implementing the
enshrined practices. We ultimately do not
know, beyond anecdotes and sales pitches,
whether a practice will work for us. So, to
move from faith toward science, we need
to approach best practices in a skeptical
but constructive manner. I believe that the
best way to do this is through focused
empirical studies and careful analysis that
result in a validated assessment of the
practice’s cost and real benefit.

Some History
My earlier research into the adoption of
best practices in defense acquisitions
uncovered considerable recognition of
the most widely referenced best practices,
but very little real implementation [1].
There were good reasons for the unsuc-
cessful implementation of even the highly
recommended practices, and most had to
do with lack of information.

I found that practices – best or other-
wise – generally do not fall into the one-
size-fits-all category, and it is not easy to

evaluate how appropriate a practice is for
a particular organization or program.
Most practices also have hidden assump-
tions and conditions for use, and there is
little available support for evaluation and
selection. When a practice is chosen, there
is often little information on how to
implement it in the real world.
Consequently, managers often find them-
selves acting on a faith-and-gut feel in
deciding what practices to implement.

There are also the instances of best
practices that are not. A case in point is
the venerated heuristic that the larger a

software module, the more likely it is to
have defects. Surprisingly, empirical study
at NASA’s Software Engineering
Laboratory showed that smaller modules
actually increased the defect rate for a
period, and that there existed a sweet spot
where the module size corresponded to
the fewest defects. The exact placement of
the sweet spot depends on a number of
characteristics about the software being
developed, but Figure 1 illustrates the
general finding, which is in direct conflict
with the previously held best practice.

Applying Empiricism:
Questions Needing Answers
Empiricism, in this context, can be
thought of as a methodical approach to
the gathering and analysis of data about a
specific practice. It is applying, to the best
of our ability, scientific principals to the

evaluation and validation of practices
with the goal of producing usable infor-
mation. This is more than collecting anec-
dotes or drawing general conclusions
from a few unstructured experiences.

Empiricism should not be confused
with quantitative analysis, since there are
ways to methodically collect and mean-
ingfully analyze qualitative data.
Quantitative data is certainly a worthy
goal, but in some cases it is very difficult
to obtain. For that reason, we include sev-
eral qualitative approaches, including
workshops and expert opinion, under our
empirical umbrella.

The primary purpose of methodical
analysis of practices is to gather and
maintain data to answer specific ques-
tions. Using this data, including knowl-
edge gained from lessons learned in actu-
ally implementing practices, we can build
tools to help select practices that are
appropriate for a particular project. Let us
look briefly at some questions to which
empiricism can provide validated answers.

How Much Will It Really
Cost? 
It is usually risky to order from a menu
without prices, so the first thing we need
to know is the size of the bill. Let us con-
sider some of the major costs we need to
define and capture. How many hours of
training are needed? Are there tools or
other infrastructure required? Of course,
these upfront costs might just be the tip
of the iceberg. What are the costs of the
effort and resources needed to actually
apply the practice? Are there license fees
or equipment maintenance associated
with the infrastructure? Unexpected costs

Dr. Richard Turner
The George Washington University

        
Size/Complexity

F
au

lt
 R

at
e

Actual

Hypothesized

Believed

Size/Complexity

Actual
Believed

Note: Based on NASA SEL Experience

Figure 1: Notional Findings on Module Size
versus Fault Rate

“... empirical study at
NASA’s Software

Engineering Laboratory
showed that smaller

modules actually
increased the defect rate

for a period ...”



Acquisition

10 CROSSTALK The Journal of Defense Software Engineering April 2004

can doom any benefit that might be
achieved. Maintaining information on
how much a practice costs to implement
is a key empirical characteristic.

What Is the Actual Benefit? 
OK, we have an idea of the cost but real-
ly, how good is that best practice entree?
What exactly do we expect from imple-
menting the practice? Will it shorten the
schedule, raise quality, or lower cost? If
so, by how much? What specific risks

could it mitigate? How are benefits mea-
sured? Sometimes there are hidden
benefits or ones that surface late in the life
cycle. On the other hand, even obvious
benefits might need actions outside of the
project’s control to be fully realized.

For example, peer programming can
provide higher quality and shorter devel-
opment times, but successful implementa-
tion might require changes to corporate
policy regarding reward structure, office
space, or equipment allocations. Validat-

ing the benefit ensures that recommended
practices have a fighting chance of help-
ing programs that implement them.
Benefits may not be explicitly captured in
dollars, but the type, nature, and magni-
tude can be collected and analyzed.

What Is the Pedigree? 
It is always good to know where the prac-
tice came from and who actually estab-
lished it as a best practice. Is it technolog-
ically mature? Are there studies that sug-
gest it works? Who has successfully imple-
mented it? This is especially true when
proprietary components such as tools or
processes are part of the practice. Caveat
emptor is a pretty good mantra for our
empirical activities. Data on the number
of implementations, breadth of applica-
tion, and the level of consensus on the
practice’s value by experts are means to
address pedigree empirically.

Is the Environment a Critical
Success Factor? 
Every practice does not apply to every
type of project. Does the practice assume
a particular type of development or acqui-
sition environment? Does it only work for
small projects? Was the best practice iden-
tified in an environment of stable require-
ments or is its primary benefit only real-
ized in a situation of constant change?
When in the product life cycle is it best
applied? It might not be helpful to imple-
ment a requirements practice when the
program is knee-deep in integration test-
ing. What is the size or criticality threshold
at which the practice begins to pay off ?
What is reasonable for the F-35 or a
Missile Defense Agency component
might not be appropriate for a commer-
cial off-the-shelf-based, Web-enabled
training application. Maintaining the char-
acteristics of the environments where a
practice has been implemented and the
associated results is one way to capture
this data.

How Long Before It Works? 
Knowing the time it takes for a benefit to
be realized is one of the subtlest questions
to answer. Does the practice provide
immediate benefit, or do its effects have
to trickle down through the development
or acquisition process for months (or
years) before actually helping? Compare
the benefit latency of peer reviews with
that of a process improvement program.
The first pays dividends immediately
while the second takes months to show
measurable value. Knowing the benefit
latency also has an unfortunate down side

The Department of Defense Best Practices
Clearinghouse — First Steps Toward Empiricism

The Office of the Under Secretary of Defense (Acquisition, Technology and
Logistics) Defense Systems has initiated an activity to define an empirically-
informed clearinghouse for software acquisition and development best practices.
The Data Acquisition Center for Software (DACS), the Fraunhofer Center at the
University of Maryland, and the Center for Software Engineering at The
University of Southern California are specifying the infrastructure and processes
required for a centralized, empirically-based resource for acquisition and devel-
opment projects as shown in the Conceptual Best Practices Clearinghouse Data
figure, below.

The clearinghouse is envisioned to maintain validated practice information,
support user-driven selection of practices, provide step-wise implementation guid-
ance, and track implementation results. Easy-to-use, informative tools will sug-
gest appropriate practices based on goals, risks, life-cycle phase, and program
environment. Support for evolving from basic to advanced practices could also be
included. Web-based access tailored to user needs is planned, as well as an
active infrastructure to link expertise and information providers to users via com-
munities of practice, courses, workshops, publications, and shared pilot projects. 

A user advisory group is being established to ensure that the products and
tools to be provided will meet the needs of developers and acquirers. The clear-
inghouse team is seeking submission of best practices, implementation and
results data, and lessons learned from development and acquisition organiza-
tions. Coordination with service and agency best practice and lessons learned
repositories is underway. For more information, contact Kathleen Dangle of the
Fraunhofer Institute at <kdangle@fc-md.umd.edu>, or Tom McGibbon of the
DACS at <tom.mcgibbon@itt.com>.

Characteristic data

Experience data

Best practice Formal inspections

Source

"Report on the Loss of the Mars Climate Orbiter
Mission", [JPL D-18441, JPL Special Review 
Board, Nov. 11, 1999]

The use of software inspections will ensure a high level of system quality.

Case Study # 24

Theory/Expectation

What happened

Lesson Learned
Attention must be paid that inspections are practiced correctly, with 
appropriate formality, to ensure defect removal benefits.

Breakdown in the use of inspections:
- Contrary to typical practice, there was not a requirement for a
navigation (end-user) representative to be present at any of the
walkthroughs or the acceptance test.
- The Sm_forces software program was misclassified as non-mission
critical, which reduced the number of reviews done on the software
compared to mission critical software.

BP Interrelationships

Architecture-
First

Approach

Ensure
Interoperability

Develop/Maintain

A Life Cycle
Business Case

Common
Management

And
Manufacturing

Systems 

Commercial 
Specifications

And Standards/
Open Systems

Capture Artifacts

In Rigorous
Model- Based

Notation

Assess Reuse
Risks and

Costs

Agreement

On 
Interfaces

Acquisition
Process

Improvement

Requirements

Trade - Offs
Negotiations

Plan for 
Technology

Insertion

Manage

Requirements

Leverage
COTS/NDI

Integrated Product
And Process

Development
(IPPD)

Independent Expert

Reviews/SCEs

Formal

Risk Management

Enables

Provide a basis 
for decisions 

Documents/communicates 
the architecture

Requires 
architecture be 

evaluated by

Assesses the 
value of 
adopting

Is a 
required 

part of

Is  part of

Business goals  & 
requirements drive  

architecture decisions

Risks are 
identified 
and drive 
decisions

Is 
necessary 

for

Architecture-
First

Approach

Ensure
Interoperability

Develop/Maintain

A Life Cycle
Business Case

Common
Management

And
Manufacturing

Systems 

Commercial 
Specifications

And Standards/
Open Systems

Capture Artifacts

In Rigorous
Model- Based

Notation

Assess Reuse
Risks and

Costs

Agreement

On 
Interfaces

Acquisition
Process

Improvement

Requirements

Trade - Offs
Negotiations

Plan for 
Technology

Insertion

Manage

Requirements

Leverage
COTS/NDI

Integrated Product
And Process

Development
(IPPD)

Independent Expert

Reviews/SCEs

Formal

Risk Management

Enables

Provide a basis 
for decisions 

Documents/communicates 
the architecture

Requires 
architecture be 

evaluated by

Assesses the 
value of 
adopting

Is a 
required 

part of

Is  part of

Business goals  & 
requirements drive  

architecture decisions

Risks are 
identified 
and drive 
decisions

Is 
necessary 

forImplementation data/guidance

Planning

Preparation

Defect
Report
Form

Meeting

Follow -
through

Software
Artifact

Planning
Form

Defect 
Correction

Form

1

2

3

4

organizer

inspector

moderator
inspectors
author

author

Corrected
Software
ArtifactSoftware 

Inspection

Defect
Collection

Form

Roles

Activities

Products

Roles

Activities

Products

Roles

Activities

Products

Inspection process overview
Phase 1: Planning

Inspectors should have vested interests

in work product. Inspectors should

invest no more than 15% of their time in

inspections (don't overwork good

inspectors!).

Phase 2:  Preparation

Inspectors should spend at least as

much time in preparing as is required

for the inspection meeting. Provide

adequate lead time for inspectors to

perform preparation (3 - 5 work days).



– if it will not help by the end of some-
one’s watch, it may be more difficult to
gain support for implementation. Benefit
latency can be characterized based on
lessons learned and experience reports.

Are There Other Barriers? 
Practices are implemented by people, so
they imply change. The project team’s atti-
tude, capabilities, and personality can raise
all sorts of problems. Will they accept and
adopt the practice or just go through the
motions? As with any change, corporate
culture also plays a part. Will management
buy in or fight it every step of the way?
How will the practice impact the organi-
zational infrastructure? Knowing what
barriers have historically manifested is a
major advantage in planning successful
implementation. Barriers can be identified
from experience, rated as to impact, and
organized into useful categories.

Can We Implement This? 
Finally, we need to understand the prob-
ability of successfully bringing the prac-
tice to our particular program. Are the
existing resources and authority sufficient
to implement the practice? It is usually
possible to implement something that
affects the way a team works internally,
but implementing something like
Integrated Product and Process
Development with all of the significant
impacts on other stakeholders requires
enormous resources and power. Is there
sufficient time left in the project to
achieve any benefit? Clear instructions as
to how to implement the practice are also
priceless. Knowing about available tools
or consultants or classes can save the
effort of making it up as you go.

There has to be an honest assessment
of the implementation requirements and
the ability to meet them, or its likely
implementation will be incomplete or
shoddy, and the project possibly worse off
than before. Capturing the scope of con-
trol and other requirements for imple-
mentation is relatively straightforward and
can support implementation guideline
development.

Conclusions
You probably recognized that answering
these questions could be extremely diffi-
cult. It will take a focused, ongoing effort
to gather and maintain the data required
to validate the effectiveness and costs of
practices. This will be ongoing because
the data, as well as the practices, will
change continuously over time. We know
that every practice has associated cost and
benefit, maturity and pedigree, preferred

environment, benefit latency, organiza-
tional barriers, and required competencies
for successful implementation. We need
to seize the opportunity to capture, ana-
lyze, and package the precious informa-
tion of others’ experiences. There is so
much knowledge and experience being
gained daily by Department of Defense
programs that it is a travesty to let it sim-
ply vanish when the technology exists to
make it useful and available.

Consider the impact to projects of a
successful effort to empirically gather data
and validate best practices. How mar-
velous to be able to pick vetted, proven
practices that apply to our particular
needs and resources, reasonably confident
that the implementation will bring about
predictable benefits. The reduction of
rework and wasted effort could well dwarf
the expenses associated with the valida-
tion effort. Above all, projects would have
another means to increase their probabili-
ty of success in an environment that has
seen all too many failures.◆

Reference
1. Turner, Dr. Richard. “A Study of Best

Practice Adoption by Defense
Acquisition Programs.” CrossTalk,
May 2002: 4-8.

April 2004 www.stsc.hill.af.mil 11

Why We Need Empirical Information on Best Practices

About the Author

Richard Turner, D.Sc.,
is a research professor in
Engineering Manage-
ment and Systems Engi-
neering at The George
Washington University.

He is currently supporting the Office of
the Under Secretary of Defense for
Acquisition, Technology, and Logistics,
Defense Systems. Turner is a co-author
of “CMMI Distilled” and “Balancing
Agility and Discipline: A Guide for the
Perplexed.” Turner has a Bachelor of
Arts in mathematics from Huntingdon
College, a Master of Science in comput-
er science from the University of
Louisiana at Lafayette, and a Doctor of
Science from George Washington
University.

George Washington University
1931 Jefferson Davis HWY
STE 104
Arlington,VA 22202
Phone: (703) 602-0851 ext. 124
E-mail: rich.turner.ctr@osd.mil

April 19-22
2004 Systems and Software 

Technology Conference 

Salt Lake City, UT
www.stc-online.org

May 11-13
Technet International 

Washington, DC
www.technet2004.org

May 17-21
STAREAST
Orlando, FL

www.sqe.com/stareast/

May 23-28
26th International Conference on

Software Engineering

Edinburgh, Scotland
www.jupiterevents.com

June 2-4
Sacmat 2004

Yorktown Heights, NY
www.sacmat.org

June 11-13
ACM Sigplan 2004 Conference on

Language Compilers and Tools
for Embedded Systems

Washington, DC
http://lctes04.flux.utah.edu

June 23-26
Agile Development Conference 2004

Salt Lake City, UT
www.agiledevelopment

conference.com

June 27- July 2
USENIX Annual

Technical Conference
Boston, MA

www.usenix.org/events/usenix04

COMING EVENTS



12 CROSSTALK The Journal of Defense Software Engineering April 2004

The Standish Group published its orig-
inal “Chaos Report” [1] in 1994

declaring that American companies spent
$81 billion on cancelled projects.
Additional Standish Group data in Figure
1 shows that the situation has not
improved as much as one would hope.

Even projects that are not cancelled
may deliver such reduced functionality
that most people would not count them as
successful projects. Often there has been
early evidence that the project was headed
for disaster. The project manager may
even have issued warnings to senior man-
agement or sponsors about the problems.
There simply seemed to be no way to pull
the plug until the project was already over
budget, late, and at the point where the
customer was ready to give up or worse.

The problem may be a failure to exam-
ine the risks of the project from a sys-
temic view. When risks are faced one
problem at a time, the management team
may convince themselves that every prob-
lem can be addressed, or that each prob-
lem has a low probability of occurrence.
However, the collected problems may still
be too much to manage. By its very nature,
risk is statistical. It is possible to examine
the collection of risks and make some
projections about the project’s likely suc-
cess or failure. The result can even suggest
that certain projects should be cancelled
very early. Such projects can be rescoped
and rebudgeted in a way that improves the
focus and likelihood of success.

Risk Management Process
The Project Management Body of
Knowledge (PMBOK) [2] includes a
chapter on risk management. It describes
the process steps as follows:
1. Risk Planning.
2. Risk Identification.
3. Qualitative Risk Analysis.
4. Quantitative Risk Analysis.
5. Risk Response Planning.
6. Risk Monitoring and Control.

The metric proposed in this article fits
the Qualitative Risk Analysis stage so it
can be used as early as possible through-
out the project duration. Rough estimates
are available at this step, and are sufficient
for an assessment of the overall project
risk. However, the rough estimates will
not suffice for risk items requiring real
risk-response strategies such as mitigation
and avoidance plans where more detailed
work is needed.

In this metric, the distinction between
steps three and four of the process model
is important. The metric supports the
viewpoint of senior management who
wants to determine which of several pro-
jects has significant uncertainty. The pro-
ject itself must deal with specific risks and
quantitative analysis. As such, a risk man-
ager on a large project will not find this
metric as useful. He or she must have
much more specific information.

History and Metric Definition
Risk is both old and new. The written his-
tory of risk begins in 1491 with the

“Pacioli Puzzle,” which arises from gam-
bling when the game is stopped before
completion [3]. The problem was solved
by Pascal and Fermat in 1654 and so
began the use of risk in forecasting. Today,
risk is the core concept in insurance and
has become a major focus in project man-
agement.

A standard definition of risk is an
uncertain event that would cause an
uncertain impact on project schedule,
cost, or quality. Both the event and the
impact have the element of uncertainty.
The definition from probability theory is a
bit more restrictive but it provides us with
the metric:

R = P x V

The metric value of risk (R) is the
product of the probability (P) of the event
with the most likely value (V) of the out-
come. If the risks are independent, we can
add these estimates together for a com-
bined estimate. So overall project risk is
the sum of the separate risks.

Total Risk = Sum of all (P x V)

The Total Risk value and trends of
Total Risk provide a picture of the project,
making it easy for people to see some good
and bad project patterns without delving
into the statistical theory. The assumption
about independence is necessary for the
theory. However, in practice, risk manage-
ment experts are aware that risks are not
always independent. The metric is based
on the theory derived from gambling
where the assumption holds true.

Getting the Probability
There have been a few sociological studies
showing the range of errors people
demonstrate in estimating risk. Choosing
an appropriate range helps when no his-
torical data is available. Table 1 and its
heuristics have been useful in avoiding the
problems of underestimating and overesti-
mating risk. Remember, most project man-
agers see only three to five projects in their

A Project Risk Metric

Robert W. Ferguson
Software Engineering Institute

A risk metric is proposed that is normalized across projects. The purpose of the metric is to provide management visibility
into project uncertainty. This works best in an organization that manages multiple projects. The proposed metric can be
applied early and throughout the project. It has been useful for identifying or canceling projects in trouble. It has also been
useful for identifying projects that do not yet have a satisfactory risk plan. 

16%

27%

26%

28%

31%

40%

28%

23%

53%

33%

46%

49%

0% 20% 40% 60% 80% 100%

1994

1996

1998

2000

Software projects completed on time 
Projects canceled before completion
Late and over budget

Figure 1: Standish Group Project Results

“A standard definition
of risk is an uncertain
event that would cause
an uncertain impact on
project schedule, cost,

or quality.”



A Project Risk Metric

April 2004 www.stsc.hill.af.mil 13

career at any one company so they work
from a very restricted sample. They need
heuristics for estimates.

Five levels of probability seem to work
well. Colleagues have not had a problem
assigning an event to one of the recom-
mended levels, so the suggested ranges
provide good separation.

Analyzing the Impact
The impact of a project risk-event needs
to be similarly divided into a few classifica-
tions and assigned a numeric value to man-
age risk. Making the numbers match con-
ceptually when one risk affects schedule,
another cost, and another quality or scope
can be a bit of a stretch so a method is
required to normalize the numbers.

A quick simplifying assumption works
for the qualitative analysis stage: assign a
single impact type. Choose from one of
the following three image types: schedule,
cost, or customers (sales). It is true that a
risk event may affect more than one of
these, however, coming up with a value for
all the possible effects is challenging and
probably not a worthwhile exercise until
quantitative analysis. Narrowing the dis-
cussion of a risk event to a single type
impact also focuses attention on the most
useful response plans. This approach helps
to avoid the problem of overthinking the
impact of a risk. Here is an example of the
kind of thinking to avoid at this early
stage.

Some employees are due for sab-
batical leaves of two months. One
may take that sabbatical during the
project. You propose that turnover
is a risk for the team. If this risk
event occurs, it may cost some
additional schedule time and addi-
tional re-source cost to hire and
train staff. If you lose schedule
time, you may also lose some sales.
What is the appropriate impact for
this event – schedule, cost, or sales?

Experienced risk managers will under-
stand that additional impacts will have to
be considered when developing the risk-
response plans.

Normalizing Risk Impact
The next challenge is normalizing the var-
ious impacts to arrive at a single numeric
value for schedule, cost, and sales. Capers
Jones reported that in 1996 “the typical
project is 100 percent over budget when it
is cancelled” [4]. This suggests that a use-
ful normalizing factor is to set maximum
risk impact at project cancellation. That
impact value should be cost or schedule

overrun of 100 percent, or when there is
no customer or no potential first-year sale.

Of course, no project will be allowed
to overrun to such an extent without
senior management intervention, but that
is precisely the point. Senior management
should intervene when the uncertainty
suggests the project is in trouble. Since the
metric is applied at qualitative analysis,
there is time to recover.

A Second Aside
Why would we develop a product
without customers? No one plans a
project for a non-existent market,
but the market can disappear or be
misjudged. It happens all the time.
Some well-known examples are the
Newton tablet computer, the
Iridium satellite telephone, and
New Coke. Everyone also has an
example of the pet project that was
developed but was never used.
Many organizations are surprised
to learn that it is possible to cancel
a project when sales or number of
customers are factored into the risk
management effort.

Using the possibility of cancellation as
the highest risk impact, assign a value of
five to cancellation. Five levels of risk
should be enough. Creating the other lev-
els again requires a bit of psychology. The
PMBOK states an order of magnitude
estimate is plus or minus (±) 35 percent of
the base estimate. Using a range of 1 ±
0.35 is a range of 0.65 to 1.35. The ratio of
these two numbers is 1.35/0.65 = 2.08,
approximately a factor of two.

Thus to have a range that clearly sepa-
rates the estimates, we must use a larger
value. Using ±50 percent yields a ratio of
1.5/0.5, which equals a factor of three.

Experience suggests the psychology
works, and people are comfortable with
the results. Therefore, assign five to cancel-
lation and divide the cancellation level by
three successively to arrive at the other val-
ues. The following example points the way.

Consider a project that is scheduled for

18 months with a projected cost of $30
million and projected first-year sales of
$27 million. This would be a project of
about 100 people with about $5 million in
external expenses. A risk event with an
impact level of five would cause the fol-
lowing:
• Overrun by 18 months.
• Overspend by $30 million.
• Achieve no first-year revenue.
A risk event with an impact level of four
(divide by three) would cause the follow-
ing:
• Overrun by six months.
• Overspend by $10 million.
• Lose $9 million in sales (achieves $18

million).
A risk event with an impact level of three
would cause the following:
• Overrun by two months.
• Overspend by $3.3 million.
• Lose $3 million in sales.
A risk event with an impact level of two
would cause the following:
• Overrun by three weeks.
• Overspend by $1.1 million.
• Lose $1 million in sales (one cus-

tomer).
A risk event with an impact level of one
would cause the following:
• Overrun by one week.
• Overspend by $300,000.
• Lose $300,000 in sales (customer

delays six months).
A useful interpretation is to say that the

project manager can manage one or two
risk events of impact level one within the
project contingency and without unusual
reporting. It would be necessary to gener-
ate a special report for any occurrence of
impact level two. Any risk event at impact
levels three or higher will require senior
management’s involvement to determine
the response.

There is one more step in calculating
the final impact. The numbers one
through five were calculated by successive
division by three. The final value has to put
that back into a geometric scale.

Impact = 3^(level-1)

Label Description Value
Very Low In your career, you have never seen this happen, 

but it could.
5%
Range 1-9%

Low It has happened on occasion. 25%
Range 10-29%

Moderate Sometimes it happens and sometimes not. 50%
Range 30-69%

High Most of the time this event will occur. 75%
Range 70-89%

Very High It has happened on every project, and you think it always
will, but there is a chance of escape.

95%
Range 90-99%

Table 1: Risk Event Probability Estimates



Acquisition

14 CROSSTALK The Journal of Defense Software Engineering April 2004

So a risk event with an impact level of five
has an impact value of 3x3x3x3=81, as
shown in Table 2.

The factor three is not arbitrary but is
derived from the observation that order-
of-magnitude estimates use a factor of two
for the error range.

There is a temptation to turn the num-
bers back into dollars. This is a lot of work
as revenue dollars are not the same as cost
dollars or schedule days. The extra work
makes sense for the top risks but not in
general. Using the impact number instead
of a dollar value also normalizes the risk
metric across projects.

Risk Calculation
The final risk calculation follows the origi-
nal equation:

Risk = Probability x Impact Value

The highest risk is 95% x 81 = 76.95
The lowest is 5% x 1 = 0.05

Normal usage is the sum of the highest
20 project risks. It seems that 20 risks at a
time is a sufficient number to track for all
but some mega-projects (over three years
and more than 500 people). Barry Boehm,
TRW professor of software engineering at
the University of Southern California and
author of the COCOMO estimating
model, has suggested that projects manage
the top 10 risks. There are two reasons this
metric recommends watching the top 20.

The first is that 20 risks x 5% = 100%. That
is the recommended cancellation level so it
makes for a convenient metric. The second
reason is to make certain the project team
investigates more than the first 10 risks to
be certain that it manages the top 10.

Project Risk Score = 
Sum (highest 20 project risks)

Implications
The Project Risk Score should be charted
so senior management can see scale and
trends. Since there is a threshold (threat-
ened cancellation) implicit in a risk with
impact level five, that threshold should also
appear on the chart. An impact level equal
to five translates into an impact value of
81. Figure 2 is a sample chart from an actu-
al project.

There are many implications in the
chart and its use. The threshold is a power-
ful concept. Senior management will focus
a lot of attention on a project that is above
the threshold. The fact is, projects with risk
higher than the threshold simply will be
late, over cost, or fail to meet project qual-
ity goals. Some projects have risk levels that
are astronomically high. It is theoretically
possible to see a value of 1,539 with 20
risks that are very likely to occur and have
an impact rating of five. Of course, such a
project should be cancelled and restarted. I
have actually seen only one project risk
value over 400. That project had to make
major changes to deliver even a subset of
the desired functionality. If the threshold
concept had been introduced at the start of
that project, it would never have gotten
into so many problems.

A somewhat opposite situation also can
occur when a project shows particularly low
risk. The project manager or senior man-

agement may have a sense that a project is
at significant risk, but the metric does not
show it. Use that low number as a signal
that a risk collection effort is needed. The
project manager must gather a wider audi-
ence and run a facilitated session to identify
those other risks. Make sure to include
stakeholders from other locations and
groups outside the development team.
Develop the organization taxonomy for
risks like the one in the “Continuous Risk
Management Guidebook” [5] from the
Software Engineering Institute to make the
data collection more complete and rigorous.

A normal response when the project
risk is high is to manage that risk down.
This can happen several ways:
• The time for the risk event may pass

without incurring the problem.
• The team may adopt an avoidance plan

so that the event cannot occur.
• The team may adopt a mitigation plan

to reduce the impact.
• The team may transfer the risk to

another organization.
• The event may occur and the project

eats the contingency.
The last four responses cause the pro-

ject to incur a specific cost that should
appear in the project planning and report-
ing. Each of the responses requires the
project manager to make some update to
the risk database.

Finally, product managers (not project
managers) should be hesitant to select a
project of very low risk. If the risk is so
low, why not address a more aggressive
product plan? Risk avoidance is not gener-
ally a winning strategy in the marketplace.
The point is to manage risk to appropriate
levels for the organization, product, and
project. Risk management is a systemic
study and not a technological one.

Implementation
There are several challenges in adopting
the project risk metric. The following is a
list of the top challenges:
• A database for collecting and man-

aging risks. There are a number of
products that will do the job. Imple-
menting one will require the addition
of project and sub-project identifica-
tion and organizational process sup-
port. This work cannot be institution-
alized without an automated system.

• A process model. The basic frame-
work is available in the PMBOK, the
Continuous Risk Management Guide-
book, or the Institute of Electrical
and Electronic Engineers standard for
risk management [6]. The process
model has to be extended to cover a
risk taxonomy that is appropriate to

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

12/2
/0

5

12/1
6/0

5

12/3
0/0

5

1/1
3/0

6

1/2
7/0

6

2/1
0/0

6

2/2
4/0

6

3/1
0/0

6

3/2
4/0

6

4/7
/0

6

4/2
1/0

6

5/5
/0

6

5/1
9/0

6

Risk
Threshold

Figure 2: Sample Project Risk Score

Impact Level Impact Value
5 81
4 27
3 9
2 3
1 1

Table 2: Impact Value Adjustment



the organization.
• Automated reporting. Chances of

success are better if the project risk
chart is automated and is required as a
part of the regular project manage-
ment review. The risk metric should be
checked at least monthly.

• Training. Training is a big effort.
Training project managers to do risk
management takes days, not hours.
Writing good risk scenarios requires at
least eight hours of training and much
practice. Learning the organization
taxonomy of risk takes time.
Evaluating impacts probably takes
three hours of training. Directors and
senior managers also need at least
three hours of training. Do not
attempt to implement a project risk
metric without decent training on risk
management.

Summary
Many seasoned project managers say that
advanced project management is mostly risk
management. This metric makes that state-
ment visible and concrete to a much larger
audience. It provides fast visibility and has a
high emotional impact on managers.

The project risk metric, however, has
been tested in only one location and on
only a dozen projects. The simplifying
assumptions made in order to develop and
use the metric make it suspect for use by
risk practitioners who must perform
detailed quantitative analyses and develop
risk mitigation and avoidance plans.

It does provide a comparison between
projects that is useful to senior manage-
ment. If senior management is presented
with one risk at a time, they are likely to
develop a confidence that they can deal
with each risk as it comes. Dealing with
each risk separately and successfully may
convince them that the project cannot real-
ly be in trouble. Management may then
come to believe that the project team is
whining about problems instead of dealing
with problems, and real risks may not be
addressed in a timely fashion. Presenting
senior management with a picture of the
total project risk will encourage them to
take appropriate systemic actions when
these are necessary. Product managers on
projects with high risk will need additional
justification and resources to add scope.
The development team may have an easier
time getting training or adding consultants
when needed.

The key is presenting senior manage-
ment with better visibility into the project
so that project change-management be-
comes faster and easier, and finally, so that
product delivery becomes predictable.◆

References
1. The Standish Group International, Inc.

CHAOS Chronicles Ver. III. West
Yarmouth, MA: The Standish Group,
2003 <www.standishgroup.com/chaos
-resources/chronicles. php>.

2. Project Management Institute. A Guide
to the Project Management Body of
Knowledge (PMBOK Guide). Newton
Square, PA: Project Management Insti-
tute, 1996 <www.pmibookstore.org/
productdetail.asp?productid= 4106>.

3. Bernstein, Peter L. Against the Gods:
The Remarkable Story of  Risk. Hobo-
ken, NJ: John Wiley and Sons, 31 Aug.
1998 <www.wiley.com/Wiley CDA/
WileyTitle/productCd-0471295639.
html>.

4. Jones, Capers. Patterns of  Software
Failure and Success. Boston, MA:
International Thompson Computer
Press, 1996.

5. Durofee, Audrey J., et al. Continuous
Risk Management Guidebook. Pitts-
burgh, PA: Software Engineering
Institute, 1996 <www.sei.cmu.edu/
publications/books/other-books/crm
guidebk.html>.

6. Institute of Electrical and Electronic
Engineers. “Software Engineering:
Soft-ware Life-Cycle Processes, Risk
Management.” Proposed Standard.
New York: IEEE, 2004 <http://
standards.ieee.org/announcements/
pr_p1540. html>.

About the Author

Robert W. Ferguson is
a member of the
Technical Staff at the
Software Engineering
Institute. He has more
than 30 years of soft-

ware development and management
experience in several industries.
Ferguson is a member of the
Computer Society of the Institute of
Electrical and Electronic Engineers
and the Project Management Institute.
He has been active in the software
process improvement community for
several years and is past chairman of
the Chicago Software Process
Improvement Network.

Software Engineering Institute
Carnegie Mellon University
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-9750

April 2004 www.stsc.hill.af.mil 15

A Project Risk Metric

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

FEB2003 � PROGRAMMING LANGUAGES

MAR2003 � QUALITY IN SOFTWARE

APR2003 � THE PEOPLE VARIABLE

MAY2003 � STRATEGIES AND TECH.

JUNE2003 � COMM. & MIL. APPS. MEET

JULY2003 � TOP 5 PROJECTS

AUG2003 � NETWORK-CENTRIC ARCHT.

SEPT2003 � DEFECT MANAGEMENT

OCT2003 � INFORMATION SHARING

NOV2003 � DEV. OF REAL-TIME SW

DEC2003 � MANAGEMENT BASICS

JAN2004 � INFO. FROM SR. LEADERS

FEB2004 � SOFTWARE CONSULTANTS

MAR2004 � SW PROCESS IMPROVEMENT

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.



16 CROSSTALK The Journal of Defense Software Engineering April 2004

It is necessary to provide a characteriza-
tion of the current U.S. Army business

environment to set the context for the rec-
ommended components for good busi-
ness. Historically, the Army acquisition and
development processes have been driven
by the attempt to institutionalize success
and avoid failure. The Army management
and acquisition processes are based pri-
marily on hardware models that, in turn,
are based on the value-added discipline of
risk management.

With hardware, it is critical to mitigate
risk and get it right the first time, particu-
larly prior to entering any stage that
involves significant expense such as pro-
duction. The Army has evolved into using
a rigid approach where requirements are
defined and then used as the basis for
development, testing, and determining suc-
cess. Further, as development and hard-
ware sustainment are different activities,
the Army has defined different processes
and funding strategies for these distinct
activities.

With software, the processes and
investment strategies are different than
hardware; the risks are also different, and
yet we attempt to manage them the same
way. Software sustainment to a large degree
is simply doing more development; howev-
er, development and sustainment are often
managed by different organizations and
funded differently. The risks associated
with software are different as well; and yet,
we attempt to manage them the same as we
work through a sequential series of mile-
stones. The real risks with software are in
taking too long before giving the user
something that knowingly will evolve over
time, and in measuring success as meeting
predefined requirements as opposed to
getting the user something he or she wants
and likes.

There are other factors that influence
the way the Army acquires and develops
software. For the increasing percentage of
Army capabilities that are hosted on com-
mercial off-the-shelf (COTS) hardware

platforms, competition to provide soft-
ware is expanding and the barrier to enter
the competition is low. Users have access
to a wide range of sources, and more
importantly, a wide range of sources have
access to users. Increasingly, initial and
incremental capabilities can be provided
to users as software-only releases, and in
some cases simply can be downloaded
over the network.

Finally, there is this question: how
much alike or different should the Army
software community be from the commer-
cial software industry? Clearly there are
some differences. Most notably, the Army
software community’s priority is capability
and readiness whereas the commercial
software industry’s priority is profit. Those
different priorities have historically been
used to rationalize the need for unique and
rigid approaches to software.

Components for Good Business
The Army develops, integrates, and
employs as wide a range of software-based
capabilities as any other organization.
While no single method for improving the
Army’s approach to software development
would suffice, there are some common
components for improvement.

Balance Between Plan-Driven and
Agile Development
The October 2002 edition of
CrossTalk [1] did an excellent job of
contrasting the plan-driven [2, 3] and agile
development approaches to software, and
the spectrum between these two perceived
extremes. There is much to be gained
from both approaches.

The Software Engineering Institute’s
Capability Maturity Model®, for example,
has done much to address software as an
engineering discipline and the need for a
plan-driven approach. Agile development,
as characterized by the Agile Alliance [4],
finds:

… more value in individuals and

interactions over processes and
tools, working software over com-
prehensive documentation, cus-
tomer collaboration over contract
negotiation, and responding to
change over following a plan.

Historically, the Department of Defense
and the Army have emphasized process.
To produce a more agile force, the Army
needs a software community that has
process discipline, but is more agile as
well.

Get as Close to the User as Possible
The only one who truly knows what the
user wants or needs is the user himself.
The closer you get to the user, the closer
you will get to developing software that he
or she will accept and adopt; it is never too
early to do this.

Show Them, Ask Them, and 
Repeat Often
The Army is very good at generating
requirements, and generating endless
cycles of life-cycle events aimed at meet-
ing those requirements. Instead of asking
users what they need and then getting back
to them only after developing the solution,
the Army should be prepared to show
users what they could get up-front. If
nothing else, this builds the users’ confi-
dence that the Army is able to deliver
something. The focus should be on early
and continuous software delivery.

Architecture,Architecture,
Architecture
Architect Frank Lloyd Wright is believed
to have said that no matter what you are
building, always remember:

It will take longer than you plan, it
will cost more than you figured,
and it will be messier than you
could have ever have anticipated.
But remember the most important
thing is not what is visible. What’s

Agile Software Development for an Agile Force

I remember in a meeting I attended, an Army general arguing the need for the software community to fall in-line, saying that
“Software itself has never killed anyone.” Maybe, maybe not, but I have seen software kill many Army programs and careers.
As the Army transforms itself into a more agile force, the Army software community continues to struggle with the challenge
of effectively providing software to support that force. This article identifies some components of an effective approach to soft-
ware development and provides an example that is leading the way.

John S. Willison
U.S. Army CECOM Software Engineering Center

Software Engineering Technology



April 2004 www.stsc.hill.af.mil 17

Agile Software Development for an Agile Force

most important is the foundation.

Bad software products do not neces-
sarily have bad software architectures.
However, good software products are like-
ly to have good software architectures.
While the Army, and everyone else for that
matter, has increased the amount of atten-
tion and discussion surrounding software
architectures, the understanding and prac-
tices associated with software architectures
are still not sufficient.

Senior Army leaders echoed the need
for the Army’s development approach to
be more agile and responsive at a recent
Association of the United States Army
Symposium [6]. Lt. Gen. John Caldwell,
military deputy to the assistant secretary of
the Army (ASA) for Acquisition, Logistics,
and Technology (ALT) said, “If you wait
to put a perfect capability in the field, you
will never put anything in the field,” and,
“People are the key to our business.”

Col. Bruce Jette, director of the recent-
ly established Rapid Equipping Force, said
that the goal is to go from “idea to equip-
ping” in two to three months and that,
“field commanders are tremendously
accepting” of this approach.

Col. Nick Justice, director Future
Force ASA ALT said, “The best way to
find out how to engineer solutions is to get
out with the guy who uses them.” These
principles are captured in the components
for good business.

Maneuver Control System
Light Program
The feasibility and benefits of applying the
components for good business can best be
illustrated by way of example. The Army’s
Maneuver Control System (MCS) program
is part of the Army Battle Command
System and provides the commander with
the capability to plan and monitor the bat-
tle. The MCS program is managed by the
product manager (PdM) MCS, under the
program manager Ground Combat
Command and Control and Program
Executive Officer Command, Control,
Communications – Tactical. Development
is led by the Air Mobility Command
Communications-Electronics Command
(CECOM) Software Engineering Center
and supported by Shonborn-Becker
Systems Inc., L3 Ilex, Lockheed Martin,
CECOM Research Development and
Engineering Center, and others.

MCS Light was born out of opportu-
nity and necessity. The MCS Light product
implements command-and-control func-
tionality on a PC/Notebook/Windows
platform. The MCS Light product has

gained widespread acceptance within the
Army command-and-control user com-
munity. Representative of the success of
the product are comments made by Lt.
Gen. John Vines, previously the comman-
der of the 82nd Coalition Task Force
(CTF82) in Afghanistan and currently the
commander of the 18th Airborne Corps,
who wrote:

MCS Light is the best tool available
today … recommend the Army
adopt CTF82’s employment of
MCS-Light as its strategy to rapidly
deploy a standard, interoperable,
digital command-and-control sys-
tem Army-wide. [7] 

MCS Light has become the planning
tool of choice for nine out of 10 active
Army divisions. Much can be learned from
examining this success.

The MCS Light development process is
the result of several years of direct experi-
ence developing software in a very dynam-
ic environment. The process is well
defined and has been, in fact, in use for
several years. And the process has resulted
in a high-quality product that has been
widely accepted by the user community.
Figure 1 is a graphical representation of

the defined process.
One of several key aspects of the

process is the notion of iterations and
releases. The MCS Light project has adopt-
ed a four-week iteration and a three-month
release cycle. Within an iteration, a team
may cycle through the design, construct,
integrate, and demo steps several times.
This can be done within a team and also
across teams within the project. It is also
important to note the level at which the
definition of what is in a release and what
is in an iteration is managed. At the release
level, agreement is reached with the PdM.
Definition and modification at the itera-
tion level is managed at the project-leader
level. Again, this provides for the flexibili-
ty needed to effectively manage in a very
dynamic environment

Balance Between Plan-Driven and
Agile Development
The MCS Light software process has
struck a balance between agile develop-
ment and plan-driven development, or
planned agility in the following ways.

Individuals and Interactions Over
Processes and Tools
The MCS Light project and its broader
organization have consistently placed sig-

Note: 1Documents are created for critical, high-risk, unclear, complicated tasks, and external interfaces.

Mission
Analysis

Architecture
-Requirements Review
-Arch. Development and
 Assesment Tech Eval

-Research
-Evaluation
-Prototyping

Release
Planning

-Req'ts Analysis
-Schedule and
 Resource Review

Deliver

User Stories

Design
-Code Structure
-User Interface

Construct
-Code
-Product Integration
-Unit Test

System
Integration

-Build
-System Test

Product Development

Release - 3 Months

Iteration - 4 Weeks

Demo

Adapt and 
Clarify

Mission Goals

M
is

si
on

 G
oa

ls

Architecture

PdM, TSM, and
Developer
Decision

Installation Configuartion
Management Version of Code

Release
Objectives -Use Flow

 Diagrams

Development
Team Decision

-White Board Diagrams
-Documents1

-User Interface

-Built Code
-List of Changes

A
da

pt
 a

nd
 

C
la

rif
y

A
da

pt
 a

nd
 C

la
rif

y
Id

en
tif

y 
B

ug
s 

an
d 

F
ix

Figure 1: The Defined Process



nificant emphasis on individuals and have
backed up this emphasis with investment.
Roughly half of the development team
are government civilian employees, the
other half are contractors working on-site
as an integral part of the team. Software
developers represent more than 85 per-
cent of the project staff, and all civilian
engineers have either completed or are
pursuing advanced degrees in software
engineering.

Consistent with agile development
approaches, the overall development team
is comprised of smaller teams. These
teams typically consist of three to 10 indi-
viduals who are co-located within the
same office. Interaction is informal, con-
stant, and essential to the approach.

Working Software Over
Comprehensive Documentation
The MCS Light project has placed consid-
erable emphasis on the software product
and has considered extensive documenta-
tion as a significant distraction from devel-
oping the end product (more than 800,000
source lines of code). Therefore, it con-
cludes that developing such documenta-
tion represents an even greater risk than it
is intended to avert.

The architecture is extensively docu-
mented and that documentation is main-
tained. In addition, an “MCS Light For
Dummies Guide” has been developed as a
training guide for users. Additional train-
ing documentation has been and will be
developed to an even-greater degree as
fielding of the MCS Light product pro-
gresses. There is also documentation that
traces planned and delivered functionality
back to the system Operational Require-
ments Document.

The product itself, as opposed to
extensive documentation, has served as
the basis for interactions between the user
and the development team. Relatively
speaking, little documentation has been
developed on the MCS Light project, and
no one has missed what has not been
developed, including those paying the
bills.

Customer Collaboration Over
Contract Negotiation
A heavy emphasis has always been placed
on collaborating with the user. For the
MCS Light development team, there is
also another customer: the PdM MCS.
Interactions with the PdM are frequent
and less formal than the requirements-
based contracting approach so often
implemented within the Army. The over-
head associated with detailed contract
negotiation – and renegotiation every time

a change is necessary – is overly burden-
some to any development effort looking
to rapidly respond to a customer’s needs.
The project has adopted the equivalent of
a level-of-effort agreement with the PdM.
Within this approach, it can measure
progress at the standard milestones and
measure earned value.

Responding to Change Over Following
a Plan
The Army as an institution is well versed
in the development of plans. Fortunately,
the Army also recognizes that no plan,
even the best plan, survives long in a
dynamic environment before needing to
be revised. Planning for software develop-
ment is not significantly different than
planning for a battle. The MCS Light
effort has consistently placed an emphasis
on responding to change. This emphasis
gives the team the flexibility to respond
effectively to the constant evolving and
changing user needs.

Get as Close to the User as Possible
On the MCS Light project, the team has
been accused in the past of listening too
much to the user and the surrogate user,
Training and Doctrine Command System
Manager (TSM), as opposed to strictly
adhering to requirements definitions and
programmatic structures. Doing so has
served the project well. As stated earlier,
as a developer the closer you are to the
user, the more likely you will develop
something useful. Simply put, that means
having software developers and end users
working side by side.

On MCS Light, the project leader, all
team leaders, and a significant number of
project engineers have spent a significant
amount of time in the field with users.
MCS Light software engineers have
worked side by side with users in garrison,
at war-fighting exercises, and have even
deployed with units to Afghanistan and
Iraq. Being that close is harder than not,
but it is the only way to develop a useful
product.

Show Them,Ask Them, and
Repeat Often
Key to the MCS Light success has been

establishing a Beta Site concept.
Leveraging industry practices, some oper-
ational units were identified as official
Beta Sites. As a Beta Site, the units were
provided with developmental releases of
software. The premise was simple: the
team would provide incremental releases
of software, the user would provide feed-
back, and the team would respond rapidly
where possible with another incremental
release.

Instead of having to wait years for a
new version of software that would likely
not satisfy their needs, users were rapidly
and frequently given developmental
releases of software that, incrementally,
met more and more of their needs.
Confidence and trust between the devel-
opers and the users were formed. With
trust comes the need for less bureaucracy,
thereby enabling the streamlining of the
approach even more. Since its inception,
every active Army division has come on-
line and requested to become an MCS
Light Beta Site.

The benefits of this approach cannot
be overstated. Through this approach, it
is worth noting that Army units have
demonstrated a willingness to accept
good enough software much sooner over
the promise of better quality software
much later. If they do not like the prod-
uct delivered, or the product delivered
does not work, the user has no problem
saying so.

The best case is that the team rapidly
responded to the user’s need and got valu-
able feedback as to what else was needed.
The worst case is that the team learned
what the user did not want or need, and
only lost the time invested since the previ-
ous release. In that respect, the Army is
no different than commercial industry –
time to market or time to field is a priori-
ty, and only an agile approach will do.

Architecture, Architecture,
Architecture
It would not have been enough to simply
be close to the user and provide early and
frequent development releases. The prod-
uct also needed to be sound and evolv-
able. From the onset of the project, archi-
tecture definition and evolution has been
a cornerstone of the development effort.
Software architecture was defined almost
from day one, and a well-defined architec-
ture has been kept up to date and has
served as the basis for all development
efforts.

Also key to the success of the project
has been a well-structured architecture. In
the case of MCS Light, a three-tier archi-
tecture was defined and adopted. This

18 CROSSTALK The Journal of Defense Software Engineering April 2004

Software Engineering Technology

“The MCS Light effort
has consistently placed

an emphasis on
responding to change.”



Agile Software Development for an Agile Force

April 2004 www.stsc.hill.af.mil 19

architecture has served the project well in
allowing developers to leverage COTS
products and tools across the different
tiers as well as in providing a powerful
approach to managing data. While every-
one talks about how important architec-
tures are, MCS Light as a project has actu-
ally implemented an architecture-based
approach to development, and the contin-
ued evolution of the product is the best
testimony to that case.

Summary
Insanity has been defined as doing the
same thing over and over again and
expecting different results. If the Army
software community is to truly, that is
truly, achieve gains in effectiveness and
efficiencies, it must be willing to abandon
those practices that have not served it
well. The Army must be willing to adopt
practices that strike a balance between dis-
cipline and agility.◆

References
1. U.S. Air Force Software Technology

Support Center. “Agile Software
Development.” CrossTalk 15.10
(Oct. 2002) <www.stsc.hill.af.mil/
crosstalk/2002/10/index.html>.

2. Paulk, Mark. “Agile Methodologies
and Process Discipline.” Cross-

Talk 15.10 (Oct 2002): 15-18
<www.stsc.hill.af.mil/crosstalk/2002/
10/paulk.html>.

3. Boehm, Barry. “Get Ready for Agile
Methods, With Care.” IEEE
Computer Jan. 2002.

4. Agile Alliance. “Agile Software
Development Manifesto.” 13 Feb.
2001 <www.agilealliance.org>.

5. U.S. Army. “Transforming Current

Operations.” Association of the
United States Army Acquisition
Symposium, Falls Church, Va., 8 Sep
2003.

6. Vines, M.G. John. “Commander
CTF82, Memorandum Thru Com-
mander CTF180 and Commander U.S.
Central Command For U.S. Army
Deputy Chief of Staff for Plans and
Operations.” 15 Jan 2003.

About the Author

John S. Willison is
director of Advanced
Battlespace Solutions
for the U.S. Army Com-
munications Electronics
Command (CECOM)

Software Engineering Center, Fort
Monmouth, N.J. CECOM is responsi-
ble for developing software architec-
tures and products for Communi-
cations, Command, Control, Com-
puter, Intelligence, Electronic Warfare
and Sensors systems. Willison is expe-
rienced in the application of software
technology, software architecture, pro-
totyping, and management. He has
received numerous awards, including

the Army’s Distinguished Service
Award, the Secretary of the Army
Award for Outstanding Achievement,
the Federal Technology Leadership
Award, and the Federal 100 Award.
Willison has a Bachelor of Science in
electrical engineering from Lafayette
College and a Master of Science in
software engineering from Monmouth
University.

CECOM Software 
Engineering Center
ATTN:AMSEL-SE-AT
Fort Monmouth, NJ 07703
Phone: (732) 532-2342
E-mail: john.willison@us.army.mil



20 CROSSTALK The Journal of Defense Software Engineering April 2004

New system development has been dri-
ven toward component reuse by

many factors, including the emergence of
rapidly changing technology, faster devel-
opment timelines and limited budgets, the
inability of stove-piped legacy systems to
deal with information-/network-centric
warfare, and the emergence of new system
acquisition policies. Reusing components
of existing systems is a viable method to
overcome these factors. Effective reuse
allows system development to stay current
with technology, react to tightening sched-
ules and budgets, and manage develop-
ment risks.

Realizing the benefits of component
reuse for the federal government is one of
the U.S. Chief Information Officers (CIO)
Council’s focus areas. The council is cur-
rently developing overarching guidance to
define component-based architecting for
the federal government and the role of
component reuse within it [1]. However,
the CIO council’s objective is not to dic-
tate explicit reuse assessment procedures,
rather, it hopes to provide the high-level
guidance necessary to set out the scope of
such a program.

Similarly, the U.S. Navy is in the midst
of developing a component-based ship-
board computing environment called the
Open Architecture Computing Environ-
ment [2]. The program seeks to specify a
broad range of reusable components and
entire applications upon which to build
new systems. In both cases, and for the
engineering community at large, a stan-
dardized reuse assessment process would
be beneficial.

Upon implementing a component
reuse assessment process, the first ques-
tion that comes to the developer’s mind is
usually: “Which components should I
evaluate for reuse potential?” For almost
any system development effort, there are
an overwhelming number of reusable
components that might be considered, and
attempts to exploit these components
through using traditional engineering
approaches have been disappointing [3]. A

structured and tailorable decision-making
process, incorporating both qualitative and
quantitative analysis, is needed to filter out
components to be evaluated, select the
right reuse candidates, and justify reuse
decisions.

This article advances the current state
of research in the application of decision-
making processes for component reuse by
focusing both on the actual evaluation
processes and the filtering mechanisms

that must be in place to support a success-
ful process application. Most programs
have an extremely large group of poten-
tially reusable hardware and software com-
ponents from which to choose. Being able
to objectively filter this group and develop
a shorter list of the most likely reuse can-
didates for in-depth evaluation is critical to
meeting budget and schedule constraints.

Methodology
The methodology expands upon previous
work sponsored by the Software
Productivity Consortium (SPC) [4], the
Institute of Electrical and Electronic
Engineers (IEEE) [5], and others [3, 6, 7].
The SPC's Comparative Evaluation
Process (CEP) is a method for quantita-
tively evaluating software reuse compo-
nents. IEEE Standard 1517 defines reuse
evaluation considerations as part of a soft-
ware engineering life cycle, and lays out a
method for establishing a software code
reuse library.

The methodology uses aspects of the

CEP and life-cycle implementation guid-
ance from the IEEE. It adds qualitative
assessments as an initial reuse candidate
filter, extends the method to add hardware
component assessment, and defines
assessment criteria categories covering
functional, technical, and programmatic
evaluation issues.

The methodology is comprised of the
following steps: bounding the evaluation
effort, identification of candidate compo-
nents, defining evaluation criteria, evaluat-
ing alternatives, and analyzing assessment
results.

Bounding the Evaluation Effort
The first step is to define the scope of the
reuse effort. This presupposes the creation
of an operational concept, requirements
specification, architecture, or other state-
ment of expected system functionality,
interfaces, and deployment concept. These
specifications form the framework upon
which reuse decisions are built. In the
specification, the developers will have allo-
cated desired system functional require-
ments to objective or conceptual hardware
and software system components. This
allows the assessment team to generate a
list of candidate components during the
next step.

During a typical system life cycle, the
system specification will normally stop shy
of identifying design-level details or man-
dated implementations that overly con-
strain the developers design space, while
including enough detail to ensure compli-
ance with desired technical standards, lega-
cy interfaces, and other constraints.
However, heavy reuse of existing compo-
nents mandates some changes to this
approach. The specification for a system
featuring reuse will have many of its design
elements predetermined from the start.

These constraints should be identified
early in specification development if
known. Most likely, some reusable compo-
nents will be known at this time and will
influence specification development.
However, it is just as likely the developers

Applying Decision Analysis to 
Component Reuse Assessment

Reusing and combining components of existing systems to create new ones provides a cost effective and flexible method for
developing new systems, and is one of the keys behind component-based architecting. However, achieving these benefits in the
real world is never easy. The challenge to system developers is not only determining which reusable components to evaluate for
possible incorporation into the new system, but also defining what constitutes a reusable component for that system. This arti-
cle proposes a methodology for applying decision analysis to support component reuse assessment.

Michael S. Russell
The Anteon Corporation

“... the assessment
process is designed

to be used as a decision
aid to the development

team, not to dictate
the decision.”



Applying Decision Analysis to Component Reuse Assessment

April 2004 www.stsc.hill.af.mil 21

will not know or only have a general idea
about what types of reusable components
they want to incorporate into the system.
This mandates a system life-cycle model
that allows the specification to be modi-
fied after the best reuse component candi-
dates have been identified, assessed, and
selected for incorporation into the system.
Additionally, the integration of many
reusable components may bring up com-
patibility and interface problems that were
not readily apparent even after several sys-
tem design iterations. So a program man-
ager desiring to use any level of reuse must
be willing to revisit the original specifica-
tions as needed to ensure the resulting sys-
tem meets the customer’s requirements.

Identification of Candidate
Components
Individual system requirements, allocated
through the systems architecture, could
potentially be met with different combina-
tions of hardware, software, and business
processes. Programmatic requirements to
maximize using reusable components
complicates system design by adding addi-
tional variables such as proprietary proto-
cols, hidden or inaccessible algorithms,
and emergent functionality that appears
after the system is wired together.

Additionally, developers have to deter-
mine which portions of the system are
best built using reusable components,
which should be based on custom devel-
opment and how business processes are
supported by each. Together, potential
combinations of process and technology
form a multi-variable quandary for system
developers.

Identification of candidate-reusable
components should start by deciding what
required functionality should be instantiat-
ed by reusable components. The function-
ality to be replicated forms the basis for
the initial selection of candidate reuse
components. Second, programmatic or
legal requirements such as a mandate to
use component X for all new systems devel-
opment, will flesh out the initial list.

The initial list of candidates will take
some research and may result in an
extremely large set of components. In
some cases the desired functionality may
be replicated using reusable hardware
only, reusable software only, or some com-
bination of both. At this point in the
process, the developers should not filter
out potential reusable components on an
ad-hoc basis; rather, developers should
seek to identify as many potential compo-
nent options as possible to support a vari-
ety of systems design options and objec-
tive decision-making.

Defining Evaluation Criteria
There are four categories of criteria that
will be used to assess each reuse candidate.
Due to the variety of reuse candidates
being assessed, some candidates may not
receive an evaluation in each category;
however, this will be the exception.
Furthermore, these categories serve as the
starting point. Since each project is differ-
ent, additional categories may need to be
defined to evaluate required component
functionality – or functionality that the

component should not exhibit. Table 1
defines these categories.

Functional and non-functional
requirement criteria are derived from the
system’s specification document or other
document that outlines the system’s
requirements. If the criteria were derived
from a functional decomposition, assess-
ments will be generated for the lowest
level of decomposition (the leaf node
level). Ensure the matrix contains the
entire functional decomposition; other-
wise, dependencies relationships between
functions will be missing, and the assess-
ment results may become skewed.

Technical and programmatic category
criteria are derived from industry stan-
dards, government policies, best practices,
and other documents. This set of criteria
tends to focus more on the hardware and
physical interoperability of the reuse can-

didates. For reuse candidates that can be
separated into hardware and software
components, separate assessments will be
conducted. Conversely, reuse candidates
that cannot be separated into hardware
and software components will be assessed
as one system. The reusability criteria in
these sections generally try to answer the
following types of questions:
• Are the reuse candidates compatible

with existing government and industry
technology standards and mandates?

• Are the reuse candidates compatible
with existing organizational standards,
processes, and other organizational-
specific mandates?

• Are the reuse candidates mature and
stable enough to ensure their long-
term viability as a part of the system’s
design?

• Are the reuse candidates sufficiently
documented to allow rigorous analysis
of their functionality, interfaces, and
potential for integration with other
components?

• Have all schedule and budget issues
associated with the reuse candidates
been considered and documented?
Next, each evaluation criteria is

assigned a weight. This weight is used to
judge the relative importance of a specific
criterion to other criteria regardless of cat-
egory. For example, if the system has five
functional requirements, only four may be
deemed critical giving them a weight of
0.9. Table 2 contains the criteria weights
and definitions.

A system specification typically
addresses many requirements that are nice
to have versus essential for system success.
For instance, the ability of a word proces-
sor program to check the spelling of a
document may be critical (a score of 0.9),
while the ability to check document
spelling in real time while the user types

Category Definition
Functional
Requirements

Those requirements that outline the expected behavior of the system.
This behavior is required for the system to perform its intended purpose.

Non-Functional
Requirements

Those requirements that address expected behavior or other aspects of
the system that are not required for the system to perform its intended
purpose but serve as an enabler.

Technical
Requirements

Requirements that specifically define technical constraints and interfaces
that the components must adhere to.

Programmatic
Requirements

Requirements arising from budgetary, schedule, or resource constraints.
For instance, a component that will not be available until after the system
is delivered would not meet a schedule requirement.

Table 1: Evaluation Criteria Categories

Weight Definition
0.1 Failure to meet this criterion is minimal, or its impact on the system can be mitigated.
0.5 This criterion is an important contributor to system capability, but not essential.
0.9 This criterion is critical to system success

Table 2: Criteria Weight Definition

“The determination
of which evaluation

category takes precedence
will be different for
each system ...”



22 CROSSTALK The Journal of Defense Software Engineering April 2004

Software Engineering Technology

the document may not be critical (a core of
0.5). The correct weighting for each criteri-
on may be derived from many sources,
including:
• Customer requirements and expecta-

tions.
• System requirements volatility.
• Technical maturity of the system

domain.
• Statements of must have features versus

nice-to-have features.
Once the criteria have been defined

and weighted, evaluation matrixes listing
each criterion will be generated. The pur-
pose of the matrix is to standardize the
evaluation process, thus providing a clearer
and more defendable reuse evaluation
result and component recommendation.
Example matrixes are discussed in the next
section.

Evaluating Alternatives
Initial Assessment: Qualitative
The initial assessment is qualitative and
used as a mechanism to filter the set of
reuse candidates to select the two or three
candidates that offer the best match to the
system’s requirements. The actual number
selected will depend on the amount of
resources the program can expend to sup-

port more detailed assessments. To con-
duct the initial assessment, the evaluator
must first identify the modules (subcom-
ponents, software segments) of the reuse
candidate. The individual modules, rather
than the component as a whole, should be
assessed against the criteria. The objective
is to understand which portion of the
reuse candidate fulfills the criteria.

The evaluator will fill out a separate cri-
teria assessment matrix for each reuse can-
didate. For instance if there are four candi-
dates, the evaluator should have four com-
pleted matrixes at the end of the assess-
ment. The assessment matrixes will be
used to help the system developers filter
though the complete set of reuse candi-
dates, thus providing them with a rationale
for choosing the most likely reuse candi-
dates for further analysis. Figure 1 contains
an example initial assessment matrix.

To record the assessment, a 1 is put
into the Assessment Result column if the
reuse candidate fulfills the criteria; a 0 is
inserted if not. In general, the criteria
should be rather loosely interpreted, as this
qualitative assessment is designed to deter-
mine only if the reuse candidate should be
assessed in more detail later on.

After the evaluation team has finished

the initial assessments on each candidate
component, the system’s stakeholders will
use this evaluation as a decisional aid to
select the most likely reuse candidates. The
selected reuse candidates will undergo a
more thorough evaluation during the
detailed, quantitative assessment.

Detailed Assessment: Quantitative
The detailed assessment is quantitative in
nature and is used to select the optimal
reuse candidate to fulfill each system
requirement. Each reuse candidate selected
for further assessment during the initial
analysis will be evaluated again using one
of the methods in Table 3. The selected
assessment method will have a significant
bearing on the overall evaluation of that
reuse candidate, and becomes one of the
variables that figures into the component’s
overall evaluation. For instance, a hands-on
evaluation of a candidate component will
render better information than simply
reviewing marketing literature on the same
component.

For large reuse candidates, candidates
with many subsystems, or candidates that
encompass a mixture of hardware and
software, it is conceivable that multiple
assessment methods may be justified.
Another situation in which multiple assess-
ment methods might be used is when the
reuse assessment must be conducted under
a compressed timeline. In this case, the
evaluators may decide to conduct hands-
on testing on the most critical functionali-
ty that the reuse candidate must exhibit.

To perform the detailed assessment,
the evaluator will determine a score based
on the assessment results that indicate the
extent to which the reuse candidate fulfills
the requirements and metrics of each sys-
tem criterion. The scores and their defini-
tions are included in Table 4.

This assessment will result in two
scores: a criteria score and a composite
score. The criteria score is a weighted
assessment of the reuse candidate’s ability
to meet the requirements of each individ-
ual criterion. The composite score is the
overall score for each category. The
process for deriving the criteria score is as
follows:

criteria score = 
(criteria score) x (criteria weight) x

(assessment method) 

The composite score is derived in this
way:

composite score ΣΣ
i

= (criteria score i)

where:

     Component Name: (My Component) Reviewer: (Name)

Criteria
Number

Functional Requirements
Category

Assessment
Result Reviewer Notes

1 Component Cost  

2 Size of User Community  

3 Maturity  

4 Integration Cost

5
Schedule Delay Imposed by
Using That Component

Figure 1: Initial Assessment Matrix Example

Assessment
Method Weight Definition

Verified 1.0 Verified by the evaluator using hands-on examination in a lab
environment.

Demonstrated 0.7 Witnessed by the evaluator in a focused demonstration by an
experienced user.

Observed 0.5 Seen by the evaluator but not studied in any depth.
Reported 0.3 Described by a user, associate, or vendor, or seen in vendor or

third-party literature.

Table 3: Assessment Methods

Score Definition
0.1 No capability to meet the criteria demonstrated.
0.3 Meets <50% of requirements and/or customization not possible.
0.5 Meets 50% of requirements and customization is possible.
0.8 Meets 90% of requirements and customization is possible.
0.9 Meets all system requirements.
1.0 Exceeds system requirements and allows further growth opportunities.

Table 4: Reuse Candidate Scoring



April 2004 www.stsc.hill.af.mil 23

Applying Decision Analysis to Component Reuse Assessment

criteria score i = 
(criteria score1 � criteria score n)

The component’s detailed assessment can
be captured in a matrix similar to Figure 2.

Analyzing Assessment Results
The final step in the process is to analyze
the assessment results and select the
reusable components that become part of
the new system. At this point, the system
developers will have to make a critical
determination. What is more important:
integration flexibility, functionality, pro-
grammatic mandate adherence, or some
other concern? 

For instance, a candidate that imple-
ments a required function, but faces inte-
gration challenges, may be chosen over a
competing candidate that does not imple-
ment the function as well but is easier to
integrate into the overall system. The
determination of which evaluation cate-
gory takes precedence will be different for
each system, and will result in category-
specific weights – i.e., functionality is
twice as important as programmatic man-
date adherence.

The candidate score represents the
summation of the functional, non-func-
tional, technical, and programmatic cate-
gories with program-specific category
weighting. It is used along with the other
component scores as an aid to the system
developers so they can decide which reuse
candidates to incorporate into the system.
The procedure used to calculate the scores
is the following:

candidate score = ΣΣ
i

(composite
score i) x (category weight) 

where:

composite score i = (functional
composite score, non-functional

composite score, technical
composite score, programmatic

composite score)

At this point, determining the best
reuse candidate seems as simple as select-
ing the reuse candidate with the highest
candidate score; however, this can be mis-
leading. The process is only designed to
guide the selection of components by
mathematically assessing those compo-
nents and providing a means by which a
reasonable comparison between compo-
nents can be made. As such, the assess-
ment process is designed to be used as a
decisional aid to the development team,
not to dictate the decision. The benefit of
the process to the decision maker is a
structured, repeatable, and defendable

process on which to base system design
decisions.

Conclusion
The Missile Defense Agency’s National
Team for Command, Control, and Battle
Management successfully implemented
this approach as part of their block 2004
systems development [8]. This project
demonstrated that the ability to objectively
judge the suitability of individual compo-
nents is a critical part of the design
process. Achieving the full benefits of
component-based architecting depends
upon making objective and optimal reuse
decisions. System developers must imple-
ment decision analysis into their compo-
nent reuse assessment process, and use this
assessment to guide their component reuse
decision-making process.◆

References
1. Chief Information Officers Council.

Component-Based Architectures and
the Federal Enterprise Architecture;
draft v1.6. Washington, D.C.: Federal
Enterprise Architecture Components
Subcommittee, 2003.

2. Program Executive Office, Integrated
Warfare Systems. Open Architecture
Computing Environment Design
Guidance, v1 (Interim). Washington,
D.C.: U.S. Navy, 2003.

3. Albert, C., and L. Brownsword.
“Evolutionary Process for Integrating
COTS-Based Systems: An Overview.”
Technical Report CMU/SEI-2002-TR-
009. Pittsburgh, PA: Software
Engineering Institute, July 2002.

4. Phillips, B., and S. Polen. “Add
Decision Analysis to Your COTS
Selection Process.” CrossTalk April
2002 <www.stsc.hill.af.mil/
crosstalk/2002/04/phillips.html>.

5. Institute of Electrical and Electronics
Engineers. IEEE 1517-1999: IEEE
Standard for Information Technology
– Software Life Cycle Processes-Reuse
Processes. New York: IEEE Standards
Board, Jun. 1999.

6. Kang, K., et al. “A Reuse-Based
Software Development Methodology.”
Special Report CMU/SEI-92-SR-4.
Pittsburgh, PA: Software Engineering
Institute, Jan. 1992.

7. Griss, M. Architecting for Large-Scale
Systematic Component Reuse. Palo
Alto, CA: Hewlett-Packard Company
Laboratories, 2000.

8. National Team for Command and
Control, Battle Management, and
Communications. NTB Program Di-
rective: Component Reuse Assessment
Process. Washington, D.C.: Missile
Defense Agency, Nov. 2002.

  Component Name: (My Component)  Reviewer: (Name) Component Source:

Criteria
Number

Functional Requirements
Category

Quantitative
Assessment

Criteria
Weight

Weighted
Assessment

Assessment
Method

Criteria
Score

1 Component Cost  

2 Size of User Community  

3 Maturity  

4 Integration Cost  

5 Schedule Delay Imposed
by Using That Component  

Composite Score

Figure 2: Evaluation Matrix Example

About the Author

Michael S. Russell is
chief architect and tech-
nical director for the
Anteon Corporation’s
Center for Missile
Defense. He currently

supports the U.S. Navy’s Open
Architecture Program, and has served
as lead architect on numerous federal,
Department of Defense, and industry
enterprise architecture efforts. He is a
visiting lecturer with the Federal
Enterprise Architecture Certification
Institute, and is a member of the
International Council on Systems
Engineering’s central Virginia chapter.
Russell has taught courses in Systems
Engineering and Architecture Devel-
opment for the past seven years. He has
a master’s degree in system engineering
from George Mason University.

The Anteon Corporation
2231 Crystal DR 
STE 600
Arlington,VA 22202
Phone: (703) 864-1258
Fax: (703) 521-1027
E-mail: mrussell@anteon.com



24 CROSSTALK The Journal of Defense Software Engineering April 2004

What makes a requirement effective?
The question hangs in the air of the

requirements class I am teaching. This is how
I start the class, with this simple question.
Participants eventually, cautiously give
answers that cover the usual array of what
makes for a good requirement: unambigu-
ous, testable, clear statement of need, mea-
surable, functionally worded, etc. All cor-
rect, but rarely do I get the answer I am real-
ly looking for: An effective requirement
communicates clearly to all parties who
read/ hear it what a piece of software needs
to do to satisfy the user’s expectations.
When your goal for well-written require-
ments is to communicate clearly, then you
can use some techniques to enhance the
communicability of the requirements.

The entire requirements definition
process is, intrinsically, an ongoing commu-
nications process. The customer states the
problem that needs to be solved, then
explains the job that system users will per-
form when solving the problem. The devel-
oper translates these statements into func-
tional requirements then asks the customer,
“Did I understand you correctly?”

Through a series of successive approxi-
mations, the developer’s documentation of
the required system functionality closely
approximates the customer’s expectation of
operational system performance. Yet in
some instances, the communication process
breaks down. By applying some simple, very
specific techniques, the risk of misinterpre-
tation is effectively reduced along with the
resulting expensive rework later during the
project’s development life cycle. Here are
four techniques that Software Performance
Systems uses to foster communication dur-
ing the requirements definition process:
• Train the requirements analysis team on

project standards.
• Build a requirements reserved word list.
• Clearly define quality requirements with

the customer.
• Conduct requirements scrubs.

Used by all parties in the requirements
definition process, and regardless of the
form of requirements documentation, these
techniques enhance communication
throughout the project and assure quality
output.

Train the Requirements Team
on Project Standards
Project standards for requirements include
processes and procedures for requirements
management activities as well as formats
and templates for outputs. Using an event-
driven learning (EDL) approach, short
training experiences are interjected in the
process immediately prior to executing a
process step. The training experiences
focus on performing the next step in the
requirements elicitation, documentation,
and management process so that everyone
is on the same page when the process activity
takes place. It is particularly helpful if both
the customer and developer participate in
these training experiences. That way, the
customer has an opportunity to influence
the way the activity is carried out in his or
her organization.

The process for developing and con-
ducting these training sessions starts with
the selection of requirements’ formats.
Involving the customer in template selec-
tion communicates what to expect as a final
product of the requirements definition
effort. As usual with process definition,
looking at the output of the requirements
definition process provides an indication of
what the templates need to contain. For
example, if the output is going into a
requirements management tool then a deci-
sion needs to be made whether to let the
tool number the requirements or whether
to assign numbers to each requirement
regardless of the tool’s numbering strategy.

In general, the templates will come
either from the artifact templates of the
selected software development life cycle or
an industry standard such as IEEE 830-
1998. In either case, there is a likelihood the
template will be tailored to suit the project
needs such as defining additional attributes
(i.e., priority, source, status, planned release,
etc.) for the requirements. Once the tem-
plates are defined, then EDL is used to
communicate the formats and contents to
all participants. With all stakeholders on the
project working from a common set of
templates, everyone knows what to expect,
in terms of artifacts, and is familiar with the
contents of each section.

A variety of training experiences need
to be tailored to the expected artifacts from
the requirements management process. If a
requirements management plan is being
prepared, the training may consist of little
more than reviewing the template and dis-
cussing sections of the document with the
authors before it is written. If the interim
artifact is going to be a use-case or software
requirements specification (SRS), then
more extensive training experiences are
warranted.

The classes will have much similar con-
tent such as properly formatting the
requirements statement as a single action
without using any conjunctions, except in
the case of Boolean logic. Instruction is tai-
lored to conventions used for each of the
different artifacts. For example, to easily
interpret the flows in a use case the labeling
conventions are defined to uniquely identi-
fy each action in the use case. Thus the use-
case writer encloses alternate flow identi-
fiers in parentheses next to the primary
flow statement. Figure 1 shows some of
the conventions adopted for writing use
cases, and taught in the Defining
Requirements with Use Cases class.

Adopting such conventions — and
ensuring that everyone on the project
knows how they are used and what they
mean — allows the project to develop its
own notation while ensuring that everyone
can read and unambiguously understand
the artifacts. During training, the require-
ments analysts have an opportunity to
apply these conventions as they practice
writing use cases immediately before they
write the actual ones. SRS authors, on the
other hand, spend more of their training
time practicing writing and decomposing
properly prepared, testable shall statements.

Regardless of the class, the emphasis is
on writing requirements that clearly convey
to users, testers, and designers what is to
happen on the system. The total quality
management concept of preparing output
that is usable by internal and external cus-
tomers is especially valid when training
people to write better requirements. All
potential requirements’ customers are consid-
ered as the requirements are written and
reviewed.

Better Communication Through Better Requirements
Michael J. Hillelsohn

Software Performance Systems

Everyone involved with a software development effort needs to have the same understanding of the meaning of the require-
ments for the application under development. This article describes several techniques that can be used during analysis to assure
that all stakeholders reach a common level of understanding.



Better Communication Through Better Requirements

April 2004 www.stsc.hill.af.mil 25

Build a Requirements Reserved
Word List
Words and terminology are the primary
communication among people. Word-based
communication can be imprecise because
the same word heard/read by different peo-
ple can have different meanings, different
words can mean the same activity or thing,
and different groups of people have their
own jargon. Unified Modeling Language
attempts to address these issues with heavy
use of diagrams with well-defined compo-
nents; however, this approach does not help
with textually expressed requirements.

The inclusion of a glossary as an artifact
in the Rational Unified Process defines
domain-specific terminology, but does not
provide for unambiguous expression of
what the system shall do when it is built.
Some early programming languages either
specified or allowed the programmer to
define a set of reserved words for the pro-
gram. They allowed the programmer to
communicate unambiguously with the com-
puter to perform specific operations consis-
tently. This concept transfers effectively to
requirements engineering.

A reserved word list for requirements
contains both general and domain-specific
terms. General terms select a single word to
describe a specific operation. For example,
you can specify that the system needs to
append information to a database by saying
that it shall save, record, capture, or store a data
element. A team of requirements analysts
may use any or all of these words in their
requirements; when the tester, designer, or
customer reads the requirements, they may
or may not interpret each word differently
with different tests, designs, or acceptance
criteria for each requirement. It would be
clearer to define record as the only verb to be
used to update a database that maintains his-
torical information for the system. A clearly
bounded definition like this also makes the
other verbs available for things like tempo-
rary and local information storage by the
user.

There are no synonyms in the reserved
word list because they compromise precision
of expression. In case-management opera-
tions, for example, the terms case, file, and
work-item are often used interchangeably.
Sometimes in the user community, these
terms are used differently in different parts
of the organization. It is critical that a single
term is used to define the object that is being
manipulated by the system so that everyone
knows what the requirement is acting upon.
In this instance, discussions with the user
community will arrive on a consensus term
and its definition. Occasionally the discus-
sions with the user may result in nuanced

definitions where multiple terms are used
but each has a unique attribute. For example,
case may be used to refer to the offline ver-
sion while file refers to the online version of
the same information.

Most words in the reserved word list are
verbs with very specific meanings. Table 1
shows three specific terms for user/system
interactions (from the user/actor perspec-
tive) that clearly communicate the nature of
the interaction. The fourth allows for the
interaction to be more clearly defined during
design. Thus when the interaction is known
during requirements definition, it is docu-
mented within the requirement/use-case so
that it can be confirmed during requirements
review cycles. If the interaction is not prede-
termined, a method of documenting the
requirement is available that does not pre-
clude design options.

Adverbs such as automatically and may are
also useful additions to the list; they can be
shorthand for describing some common
constructs in applications systems. For
example, automatically can be used before a
system action when there is no intervening
or triggering action by the user; may can indi-
cate that the user action described in the
requirement is optional. Constructs such as
optional user actions and automatic system
actions are easily captured and communicat-
ed by designating specific reserved words to
represent the ideas. If reserved words are
not designated or defined, then the repre-
sentation of the constructs can become con-

voluted in requirements documentation.
Occasionally, an analyst may use a word

that is not on the reserved word list as a sys-
tem or user/actor action. This is usually
detected during the quality assurance (QA)
review of the requirements artifact. In that
instance, the reviewer should give the analyst
the option of either using a word from the
reserved word list, or if there is no term that
adequately and accurately describes what is
going on, then the analyst is asked to add the
term and its definition to the list. Over time,
the list will grow to meet the exact needs of
the application domain. In general, the
reserved word list does not grow too large
because systems can only do a limited num-
ber of things (e.g., print, display, record, cal-
culate, verify, etc.). The reserved word list is
included as an appendix with the document-
ed requirements in the SRS or with the sup-
plementary requirements.

Define Quality Requirements
With the Customer
The statement “I know quality when I see it”
is not a viable means of defining the quality
of software applications. Quality require-
ments must be defined in the beginning of a
project so that they are considerations in the
design of the architecture and application
features. Software quality factors were
defined by the Department of Defense to be
used in the acquisition process.

Software Performance Systems uses
quality factors as a means for customers and

AUS-BF.2.1.4 System displays Main Menu Screen. Unused menu
  choices are grayed out. Current menu choices are
  shown in Table AUS-APA (AUS-AF3).

Comment indicating
location of data

Alternate Flow
Identifier

Use Case
Mnemonic

Basic Flow
Step Number

Requirement Decomposition

Figure 1: Defining Standard Notations for Use Cases 

Reserved
Word Definition

Enter A situation where there is a non-specified form for the user to provide
information to the system. Enter is used where the specific entry method
(typing, indicating) is either to be defined during design or when there is
more than one way to provide the information. In the latter case, the
comment field should contain the acceptable alternate forms by which the
user can provide the information.

Indicate The user makes a binary choice by setting an online Yes/No, On/Off, or
other type of flag (e.g., by marking or inserting a symbol such as comma
[,] in a check box), or otherwise select a setting from an online indicator. A
single mouse click or screen touch is a typical method of interaction.

Input Keyboard entry of information by a user (e.g., typing) requiring an end-of-
input signal (i.e., [Enter]).

Select Choose from a set of options displayed on a list.

Table 1: Using Reserved Words



Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering April 2004

end users to express how a system satisfies
their highest priority, non-functional needs
when it is in production. The basis for defin-
ing what quality really means to the customer
is to have the customer select the quality fac-
tors that are most critical to the effort, and
then define requirements that set clear,
meaningful, attainable, and measurable qual-
ity attributes for the application. When these
requirements are met, the customer will have
a quality product as defined in their own
terms for this specific application.

The 11 quality factors shown in Table 2
are derived from the work sponsored by
Rome Air Development Center (performed
by Boeing Aerospace) in the mid-80s. The
user is asked to prioritize the factors since
the application cannot consider all of them
as the most important. Prioritization
involves discussing each of the factors
among the group, then each group member
selects their three most important factors.

Customers may balk at having to select
just a few factors, but the process of prioriti-
zation makes them focus on what is critical
for the system’s success in their environment.
For example, although correctness is always
important, it may not be as critical for a case-
management system as it is for a financial sys-
tem. Likewise usability is a higher priority
when there will be a large user base than
when there are only a few trained users.

After the votes are tallied and presented
to the group, another discussion ensues to
arrive at a consensus of the three most
important quality factors. These discussions
may be the first time that members of the

customer/user community really try to artic-
ulate how quality is defined for their applica-
tion. While the development team certainly
does not ignore factors that are not the high-
est priority, their importance is secondary;
they are not decomposed and measured the
same way as the high priority quality factors.
By going through the selection and prioriti-
zation process, the user community commu-
nicates among themselves and to the devel-
oper those factors that are most critical and
a little less important in the final product.

Quality requirements now need to be
defined so everyone agrees on observable
criteria for determining if the high-priority
quality factors have been achieved. This step
requires the user to translate the abstract def-
inition of the quality factor into operational-
ly meaningful terms. When defining reliabili-
ty, the facilitator (F)/user (U) interaction typ-
ically goes something like this:
F: You decided that you need a reliable sys-

tem. How reliable does it have to be?
U: Oh, very reliable.
F: Can it go down for an hour once a year?
U: Sure, no problem.
F: How about if it goes down once a

month? Does that endanger you accom-
plishing your mission?

U: I suppose once a month may be accept-
able, but it depends when.

F: What activity is so important that it
absolutely cannot go down during the
activity?

U: When agents are uploading case files.
F: Okay, so with the exception of the time

when the agents are uploading case files,

would it be acceptable if it goes down
once a week?

U: That would be the absolute most that
we could tolerate, but only if it was
down for a very short period of time.
And so on.
Now requirements define when the sys-

tem cannot have a failure and that the mean
time between failures is at least 40 opera-
tional hours. Continued discussion defines
the acceptable time limits on repair/down
time under various circumstances and other
aspects of system reliability. Shown below
are samples of requirements that a specific
user group arrived at when defining reliabili-
ty for their system.
• QFR.1: Each iteration of the system

shall be verified before it is put into
production.

• QFR.1.1 Each iteration of the system
shall have no critical system failures
after it is placed in production.

• QFR.1.2 Each system iteration shall
have one or less major defects arise dur-
ing the next six months in production.
All of these requirements are observable

and measurable. Some can be verified during
testing, but most must wait until the system
is in production to verify that they have been
satisfied. They clearly communicate to all
parties what the user means by saying the
quality system is reliable. The developer uses
these requirements during design to specify a
system that is most likely to meet these qual-
ity requirements (e.g., degree of component
architecture, redundancy, etc.). If these and
other quality requirements are not communi-
cated to the development team early in the
development life cycle, then the probability
that the delivered system meets the users’
quality expectations is reduced.

The biggest benefit of defining quality
requirements in such specific terms during
analysis is to communicate these require-
ments within the user community. It is com-
mon that the developer’s client and the end-
user of the system are different parts of the
sponsoring organization. It is critical for sys-
tem success that the entire sponsoring orga-
nization agrees on what constitutes a quality
delivered system. Reducing ambiguity in
defining quality among all system stakehold-
ers leads to better assurance of achieving
customer satisfaction when the system goes
into production.

Conduct Requirements Scrubs
Inspections and walkthroughs are proven
techniques for early defect detection and are
considered to have a significant positive
impact on the cost of quality of software prod-
ucts. We should do formal inspections on
requirements artifacts, but often the poten-
tial participants are put off by the formality

Quality Factor Definition Components
Efficiency Relative extent to which computer resources

are utilized.
Communication,
Processing, Storage

Integrity Extent to which security protocols are
implemented to guard against unauthorized
use and access to software and data.

Access Control, Virus
Prevention

Reliability Extent to which the software can perform
without any failures.

Accuracy, Anomaly
Management, Simplicity

Usability Relative effort required by the user
community to use the application.

Operability, Training, User
Support

Correctness Extent to which the software conforms to its
standards and specifications.

Completeness,
Traceability, Accuracy,
Consistency

Maintainability Ease of effort associated with finding and
fixing a software failure.

Consistency, Visibility,
Modularity, Simplicity,
Documentation

Verifiability Relative effort required to test the software
operation and performance.

Visibility, Traceability,
Documentation, Simplicity

Expandability Relative effort to increase the application's
capabilities and functionality.

Functional Scope,
Virtuality, Modularity,
Documentation

Interoperability Ability of the software to function on a variety
of platforms and operating systems.

Commonality, Common
Functions, Independence,
System Compatibility

Portability Relative effort required to transport the
system to another environment.

Independence, Modularity,
Documentation

Reusability Relative ease of using software components,
unchanged in other applications.

Application Independence,
Clarity, Document
Accessibility, Modularity

Table 2: Selecting Quality Requirements During Analysis



Better Communication Through Better Requirements

April 2004 www.stsc.hill.af.mil 27

of the process. So Software Performance
Systems introduced the term scrubbing the
requirements, which is less formal but
achieves the same end as formal inspections.

During a thorough requirements reading
in a group setting, many defects are detected
and corrected. In addition, Software
Performance Systems often has a naviga-
tional prototype available to the participants
to help them visualize how the words trans-
late into an actual application.

Where formal inspections rely on a small
focused cadre of reviewers (generally set at
three to five people), it is imperative that
multiple perspectives are represented at
requirements scrubs. People present at the
scrub should include the following:
• Producer. The person(s) who actually

wrote the requirements. During the
scrub, the producer will read each
requirement aloud.

• Customer. The requirements are a
description of what the customer will
receive when the application is delivered,
so the customer needs to be present to
hear and provide input to the detailed
application description. The customer is
also the referee when requirements
changes are suggested (generally by the
user) that may be out of scope.

• End-User. The specifics of what can be
done with the application are represent-
ed by the functionality described in the
requirements, so the scrub gives users
the opportunity to correct misconcep-
tions about how they do their job. Just a
few knowledgeable user representatives
who can make decisions for the func-
tional area being reviewed will be pro-
ductive. Too many users at a scrub leads
to long discussions without resolution.

• Tester. The tester will determine
whether there is enough information
present in the requirements to develop
test cases to verify that the requirement is
adequately satisfied when the application
is delivered. It is important that the tester
ask for clarification in the presence of
the customer and user so that a common
understanding about the acceptance cri-
teria for each requirement is established.

• Quality Assurance. The scrub is an
early opportunity for QA to correct
defects related to noncompliance with
standards for writing well-crafted require-
ments. QA can also facilitate the scrub.

• Technical Lead. As the user discusses
how the requirements are satisfied on the
job and the analyst describes the require-
ments, it is helpful to include technical
representation at the scrub to get a feel
for how the requirements translate into
the real world of the user, and to deter-
mine the feasibility of implementing the

requirements as stated.
• Project Manager. Since the user and/or

customer may raise concerns about func-
tionality that may either be in or out of
scope for the effort, the project manager
may want to attend the scrub.
Alternatively, any questions regarding
scope may be deferred until consultation
with the project manager is possible. In
most cases this is preferable rather than
discussing scope issues during the scrub.
The scrub is conducted very similarly to

a formal inspection. The requirements are
distributed to the participants in advance,
and they are encouraged to review them and
be prepared with comments. In reality, task-
ing customers and users – key participants in
the scrub – to do the review prior to the
scrub is problematic. Preparation will make
the scrub more efficient, but unlike an
inspection it is not cancelled if the partici-
pants do not prepare adequately.

At the scrub, each requirement or step in
a use case is read aloud and comments are
provided immediately after the reading. For a
use case, alternative flows are read at the
point where they would diverge from the
main flow. The comments are recorded
either by the producer and QA or a scribe. At
this point, the facilitator’s task is to keep the
discussion focused and brief. It is important
to maintain a good tempo at the scrub and
not allow it to get bogged down in long dis-
cussions on a single requirement.

When the navigational prototype is used
at the scrub, the facilitator should steer the
discussion and comments away from design
issues (how the screen looks) and maintain
the focus on requirements and functionality.
In general, each session should last for no
more than two hours; otherwise, it is hard to
stay focused. If more time is needed, break
the scrub into multiple sessions. The ideal
outcome of each discussion is a reworded
requirement that everyone agrees is accurate,
verifiable, and feasible. If that end-state can-
not be reached quickly during the scrub,
defer the discussion for offline resolution.

The dynamics of the scrub foster com-
munication among all the stakeholders in the
system. As participants attend multiple
scrubs, they get a good appreciation for the
overall functionality of the planned applica-
tion and how the pieces fit together. Like an
inspection, scrubs serve an important role in
fostering a common understanding and
knowledge base about the application early
in the product’s life cycle. This way misun-
derstandings can be clarified and issues relat-
ed to functionality shared among stakehold-
ers, and resolved.

Scrubs also are excellent training vehicles
for improving the requirements analyst’s
knowledge and skills relative to writing well-

constructed requirements. At one recent
scrub, right after the analyst read the require-
ment aloud, before anyone could comment,
she covered her face with her hands and said,
“That was a terrible requirement, I’ll fix it.”
Everyone laughed and the scrub continued.
The most recent SRS submitted by this
author-analyst, to QA, had only .02 defects
per page compared with the .80 defects per
page before Software Performance Systems
implemented these techniques in 1999.

Conclusion
Generally, the systems built by Software
Performance Systems are used by people
when they perform their jobs or by the pub-
lic when they provide input to an agency. If
the delivered system is not correct, then the
agency is crippled in achieving its mission.
That is why Software Performance Systems
has focused on the importance of using
requirements to assure that communications
between the developer and the customer are
an accurate reflection of functionality that is
required when a system goes into produc-
tion. Using multiple techniques to enhance
the communications process during the
inception of a software development effort
ensures that the delivered application meets
the user’s quality expectations and is fit for
use by the intended audience.◆

About the Author

Michael J. Hillelsohn
is a director of Product
Assurance at Software
Performance Systems
in Arlington, Va. He is a
certified quality profes-

sional with more than 30 years of
experience doing development, man-
agement, and performance improve-
ment in software and systems develop-
ment environments. His multi-discipli-
nary approach combines quality sys-
tems and training expertise to improve
the performance of organizations and
individuals. Hillelsohn’s process-orient-
ed performance-engineering methods
facilitate adoption of external frame-
works (Capability Maturity Model®,
ISO, Baldrige) to improve the quality of
organizational products and services.

3141 Fairview Park DR 
STE 850
Falls Church,VA 22042
Phone: (703) 839-4055
E-mail: mhillelsohn@goSPS.com

hillelsohn@erols.com



Open Forum

28 CROSSTALK The Journal of Defense Software Engineering April 2004

In performing any modernization task,
there are typically four questions that

must be answered: “Where am I now;
what is my current as-is architecture?”
“Where do I need to be; what is my target
to-be architecture?” “What is the gap or
differences between the two?” and “How
do I get to the to-be state; what is the tran-
sition plan?”

This article describes a hybrid
approach to answering these questions by
using a subset of the existing Department
of Defense (DoD) Architecture
Framework (DoDAF) [1] views and
adding an additional view to capture all
the important and missing business, finan-
cial, and technical analysis information.
This extension to the DoDAF is defined
as the Motivational View (MV).

The Enterprise and
Enterprise Architecture
An enterprise’s competitive edge and ulti-
mate success are enabled by its ability to
rapidly respond to changing business
strategies, governances, and technologies.
The DoD environment spells this com-
petitive edge as victory. The competitive
edge translates into higher levels of cus-
tomer satisfaction, shorter work cycles,
and reductions in schedules, maintenance
costs, and development time, all resulting
in lower overall costs of ownership.

Enterprise architecture is the key facil-
itating ingredient providing a holistic view
and a mechanism for enabling the design
and development as well as the communi-
cation and understanding of the enter-
prise. The overarching goals of enterprise
architecture are to manage the complexity
of the enterprise, align business strategies
and implementations, and facilitate rapid
change in order to maintain business and
technical advantages.

Lockheed Martin’s view of an enter-
prise is a collection of business systems
that control and manage the enterprise’s

functional areas. Enterprise architecture
describes these systems in terms of their
behaviors, methods of communications,
and constraints.

Enterprise architecture enables the
high-level prospective and views needed
to transform as-is legacy systems of dis-
parate stovepipe applications into the to-
be set of modernized, agile, and integrat-
ed business processes. Lockheed Martin
starts its enterprise architecture documen-
tation by using a subset of the existing
DoDAF views.

DoDAF Enterprise
Architecture
Enterprise architecture is documented as
an organized collection of information in
three divisions: driving strategies, baseline,
and transition plan. The driving strategies
depict goals and objectives and show the
way forward, indicating where the enter-
prise needs to go based on business dri-
vers, policies, rules and regulations, and
advancing technology. This provides the
to-be target model. The baseline is the
current, as-is enterprise architecture docu-
mented in graphical models and text
describing the current position in terms of
organizations, business processes, infor-
mation, applications, and technologies.
The transition plan is the set of initiatives
set to a timeline to sustain and maintain
the enterprise architecture as vital to
accomplishing the strategic missions of
the enterprise and transition from the as-
is state to the to-be state.

The DoDAF describes a set of 26
work products to ensure uniformity and
standardization in the documentation and
communication of architecture. A previ-
ous version of the DoDAF divided this
list into two major categories: essential
and supporting. Essential products consti-
tute the minimal set of artifacts required;
supporting products constitute informa-
tion that may be needed depending on the

specific drivers of the architecture.
The list of products is further refined

into four views: all views (AV) and three
architectural views that include opera-
tional view (OV), system view (SV), and
technical standards view (TV). Briefly
characterized, the AV is the overarching
information describing the architecture
plans, scope, and definitions. The OV
focuses on the behaviors and functions
describing the DoD mission aspects, both
warfighting and business. The SV
describes the systems and applications
supporting the mission functions. The TV
describes the policies, standards and con-
straints. The current DoDAF version indi-
cates a subset of work products that
should be developed at a minimum
(essential). These include the following:
• AV-1: Overview and Summary

Information.
• AV-2: Integrated Dictionary.
• OV-2: Operational Node Connectivity

Description.
• OV-3: Operational Information Ex-

change Matrix.
• OV-5: Operational Activity Model.
• SV-1: Systems Interface Description.
• TV-1: Technical Standards Profile.

The 26 DoDAF views are designed to
document the entire architecture, from
requirements to implementation. What is
the subset of views from the DoDAF
needed to document enterprise architec-
ture? We answer this by building on the
work of Sowell [2], Brundage [3],
Zachman [4, 5], and Spewak [6]. In a nut-
shell, the Zachman Framework is an index
of architectural information arranged as a
five-by-six matrix, documenting a com-
plete architecture. Sowell and Brundage
provided a mapping of the DoDAF work
products onto this framework. Spewak
identified the top two rows of the
Zachman Framework as the significant
enterprise level information. Leveraging
this work collectively, we quickly arrive at

Enterprise DoD Architecture Framework
and the Motivational View

D.B. Robi
Lockheed Martin Integrated Systems and Solutions

There is a growing movement toward developing enterprise architectures within the Department of Defense (DoD) and other
federal arenas. This typically takes the form of documenting the as-is state, defining the to-be state, and developing a transi-
tion plan. To use the DoD architecture framework (DoDAF), the models appropriate to enterprise architecture need to be
identified and the shortcomings in business and financial considerations need to be addressed. This article describes using the
DoDAF, including the addition of the motivational view to address the shortcomings to accomplish a complete description of
enterprise architecture.



Enterprise DoD Architecture Framework and the Motivational View

April 2004 www.stsc.hill.af.mil 29

a subset of eight DoDAF views that are
required to represent the enterprise archi-
tecture. This subset includes the same
views as listed in the DoDAF recom-
mended minimal set plus OV-7: Logical
Data Model.

Of course, this subset of eight views
may be supplemented with additional
DoDAF views as required by the specific
needs of the enterprise architecture being
developed. Still, conspicuously absent are
the all-important business, financial, and
technical analyses of alternatives – infor-
mation needed to drive architectural deci-
sions. How do we answer the questions of
why one approach or technology was
selected over another? Most significantly,
how do we illustrate sound business rea-
sons for our decisions? To remedy this,
we have enhanced the DoDAF by adding
the MV.

The MV draws in part from the
Zachman Framework, and also includes
the business metrics and investment deci-
sion models required to evaluate transition
and modernization plans. In short, given
the method of enterprise architecture
development, in terms of strategies (to-
be), baseline (as-is), and transition plan,
we need mechanisms and work products
to capture the trade-offs, analyses of alter-
natives, business metrics, financial consid-
erations, and returns on investment to
support architectural decision making; we
need the MV.

Motivational View 
What comprises the MV? Our MV
includes the necessary business, financial,
and investment models required to evalu-
ate and prioritize the transition alterna-
tives and modernization plans, thus pro-
viding a solid business foundation and
rationale of why changes need to be
made. These models address the issues of
metrics, risks, and best value. The work
products included are as follows:
• MV-1: Business Case.
• MV-2: Investment Decision Model.
• MV-3: Risk Analysis Model.
• MV-4: Best-Value Low-Risk Model.
• MV-5: Balanced Scorecard Model.

MV-1: Business Case
The Business Case addresses the rationale
for investing the time and resources into
making the necessary changes to trans-
form the current as-is to the targeted to-
be enterprise architecture. The Business
Case starts with the strategies, goals, and
objectives regarding how the improve-
ments fit into the enterprise, and why they
are significant. The business case also
defines the all-important financial ration-

ale measured in dollars and captured as
the return on investment (ROI) and
break-even time (BET).

The Business Case evaluates a variety
of criteria to arrive at a business decision
to make the investment required in order
to perform the work necessary to gain the
projected benefits. Some of the criteria
used in crafting a Business Case include
business strategic plan, competitive analy-
sis, customer analysis, risk assessment, and
financial factors. A sound business plan
will illustrate how a reasonable one-time
capital expense can achieve a significant
recurring cost savings over an acceptable
time period. This is the ROI and BET and
is typically the driving, if not the only, rea-
son for making changes to the existing
architecture. The Business Case is a text
document that includes appropriate
graphics and financial spreadsheets as
needed.

MV-2: Investment Decision
Model 
The Investment Decision Model provides
a mechanism to perform an analysis of
cost versus benefit to drive the decision-
making process. All alternatives are
viewed with regard to costs as compared
with benefits. Typical considerations for
cost include business process impacts,
development method, integration issues,
and education needs. Similarly, benefits
may include increased capabilities,
reduced costs, and productivity improve-
ments.

The decision is driven by the compar-
ison of cost to implement against the
business impacts. The positive impacts
realized by the business may be in the
form of cost avoidance, greater market
share, and/or lower risk. Based on the
analysis of the supporting data, a model is
generated. This model may be viewed as a
four-quadrant graph (see Figure 1) labeled
as follows: 1-Low Cost/High Benefits, 2-
High Cost/High Benefits, 3-High
Cost/Low Benefits, and 4-Low Cost/Low
Benefits.

MV-3: Risk Analysis Model 
The Risk Analysis Model provides a vehi-
cle to identify and analyze risk. Risk is
viewed with regard to the probability of
occurrence and impact on occurrence.
This facilitates a basic three-by-three
matrix to evaluate risk (see Figure 2). The
table is color-coded and ranges from red
to yellow to green. Red indicates high
probability of occurrence and high impact
on occurrence, and green indicates low
probability of occurrence and low impact

on occurrence.
This is a basic view of the risk table. It

may be enhanced to use percentages
and/or additional categories as needed. In
addition to the table, a risk-mitigation plan
is typically generated for each of the iden-
tified risks, or a subset (i.e., only high)
describing the contingencies when the risk
occurs.

MV-4: Best-Value Low-Risk
Model
This model provides the next step in
selecting the best alternatives by taking a
second look at the Investment Decision
Model, now comparing the best-value
candidates (lowest cost/highest benefits)
on the basis of risk. Risk considerations
include technology maturity, numbers of
interfaces, mission criticality, business
process maturity, change management,
and training issues. This model is typically
represented as a four-quadrant graph
labeled as follows: 1-Low Risk/High
Value, 2-Low Risk/Low Value, 3-High
Risk/High Value, and 4-High Risk/Low
Value (see Figure 3 on the next page).

MV-5: Balanced Scorecard
Model
The Balanced Scorecard (BSC) [7] is used
to provide a common standard model to
manage the business and the enterprise
architecture, as shown in Figure 4 (see
next page). The strength of the BSC is its
coupling of leading (operational) and lag-
ging (financial) indicators as well as the
alignment of various enterprise capabili-
ties. The BSC integrates various aspects of
the enterprise using a set of key perfor-
mance indicators (KPI).

Impacted

Probability

Low Medium High

Low

Medium

High

Green Green

Green

Yellow

Yellow

Yellow

Red

Red Red

Figure 2: MV-3: Risk Analysis Model

Cost

B
e
n
e
f
it 11

44

22

33

Target

Target

Cost

B
e
n
e
f
it

11

44

22

33

Target

Target

Figure 1: MV-2: Investment Decision Model



Open Forum

30 CROSSTALK The Journal of Defense Software Engineering April  2004

The selection of an appropriate set of
KPI is critical. The KPI should map to
key business metrics, i.e., the specific mea-
sures that drive the business. Examples of
these types of metrics for their industries
include dollars per flying hour for the air-
line industry, time to process a claim for
the insurance industry, and errors per
source line of code for the software
industry. It is critical to identify and docu-
ment the appropriate metrics to use for
each aspect of the BSC. These metrics
become the basis for declaring success
and confirming improvements such as
BET, ROI, and other aspects of the busi-
ness case.

The BSC relates and aligns the enter-
prise vision and strategy into four views:
Customer View, Process View, Innovation
and Learning View, and Financial View.
By doing this, the model helps facilitate
translating the vision and strategy into
action. The four views define, describe,
and capture the goals, key performance
indicators, and initiatives for each of the
specific area views thus providing the con-
trol and alignment needed to manage the
enterprise and supporting architecture.

Summary
The DoDAF views, although adequate for

describing enterprise architecture, lack the
business perspective needed to develop a
sound, transitional plan from as-is to to-
be as required in today’s architectural pro-
jects. The missing business perspective is
captured via the addition of the Moti-
vational Views, including the Business
Case, Investment Decision Model, Risk
Analysis Model, Best-Value Low-Risk
Model and Balanced Scorecard Model.
These views facilitate the business ratio-
nale and trade-offs required to develop a
valid and achievable transition plan to
transform the enterprise from its current
as-is state to the future to-be state. The
Motivational View complements the exist-
ing DoDAF views, providing a complete
holistic view of enterprise architecture.◆

References
1. Department of Defense Architecture

Framework Working Group. “DoD
Architecture Framework Ver. 1.0.”
Washington, D.C.: Department of
Defense, Oct. 2001 <http://aitc.
aitcnet.org/dodfw>.

2. Sowell, P. Kathie. “The C4ISR
Architecture Framework: History,
Status, and Plans for Evolution.”
McLean, Va.: The MITRE Corpo-
ration, 1999 <www.mitre.org/work/
tech_papers/tech_papers_00/sowell
_evolution/sowell_evolution.pdf>.

3. Brundage, George. “Federal Enter-
prise Architecture Framework Presen-
tation.” Washington, D.C.: Depart-
ment of the Treasury, July 2001
<www.gsa.gov/Portal/gsa/ep/home.
do?tabId =0>.

4. Zachman, John A. “A Framework for
Information Systems Architecture.”
IBM Systems Journal 26.3 (1987)
<www.research.ibm.com/journal/sj/
382/zachman.pdf>.

5. The Zachman Institute for

Framework Advancement <www.
zifa.com>.

6. Spewak, Steve H. with Steven C. Hill.
Enterprise Architecture Planning:
Developing a Blueprint for Data,
Applications, and Technology. New
York: John Wiley & Sons, Sept. 1993.

7. Kaplan, Robert S., and David P.
Norton. Translating Strategy into
Action: The Balanced Scorecard.
Cambridge: Harvard Business School
Press, Sept. 1996.

Additional Reading 
1. Deming, W. E. Out of  the Crisis.

Cambridge, MA: Massachusetts
Institute of Technology Press, Aug.
2000.

2. Hammer, Michael, and James Champy.
Reengineering the Corporation. New
York: Harper Collins Publishers, Inc.,
1993.

3. Womack, James P., and Daniel T.
Jones. Lean Thinking. New York:
Simon & Schuster, 1996.

Financial View
– How do we 
look to our 
Shareholders?

• Goals
• Metrics
• Initiatives

Customer View
– How do 
Customers see 
us?

• Goals
• Metrics
• Initiatives

Process View 
– What must  
we excel at?

• Goals
• Metrics
• Initiatives

Innovation and 
Learning View 
– How do we 
continue to 
create value?

• Goals
• Metrics
• Initiatives

Vision and 
Strategy

Figure 4: MV-5: Balanced Scorecard Model

About the Author
D.B. Robi is a Lock-
heed Martin Qualified
Architecture and Cert-
ified Lean Six Sigma
Black Belt. His career,
spanning 19 years, has

afforded him opportunities to work in
both the commercial and the
Department of Defense/federal sec-
tors. Robi has performed as the lead
architect on several projects as well as
severing as the business architect on
efforts in business process moderniza-
tion, reengineering, and optimization.
He is currently the technical lead for
Lockheed Martin’s Enterprise
Architecture Center of Excellence
where he leads the development and
enhancement of Lockheed Martin’s
internally developed ARQuest™
Blueprint Process, an approach to
developing enterprise architectures.
The motivational views described in
this article have been incorporated and
implemented in ARQuest.

Lockheed Martin Integrated 
Systems and Solutions (IS&S)
1801 RTE 17C
Owego, NY 13827-3998
Phone: (607) 751-7781
E-mail: dennis.robi@lmco.com

Risk

V
a
lu
e 11

22

33

44

Target

Target

Risk

V
a
lu
e

11

22

33

44

Target

Target

Figure 3: MV-4: Best-Value Low-Risk Model 



BACKTALK

April 2004 www.stsc.hill.af.mil 31

Iheard a good joke the other day. The
story goes that while in a Third World

country, a guy grabbed a taxi to go to
the airport. At the first red light, the taxi
driver just whizzed through without
even slowing down. When the passen-
ger complained, the driver said, “Oh,
my brother runs red lights all the time.
He never has a problem!”

At a stop sign, the driver again
whizzed through, never even bothering
to look at the cross traffic. When the
passenger complained again, the driver
replied, “Oh, my brother never bothers
to stop at stop signs. He never has a
problem!”

Finally, the taxi approached a green
light at an intersection. The driver
slowed, them came to a full stop, and
looked both ways. When the passenger
asked why the driver was stopping now,
the driver replied, “Well, you never
know when my brother is coming! That
makes it our problem.”

The CrossTalk theme this month
is acquisition and supporting articles
discuss software process improvement.
Now, I’m the first to tell you that I don’t
really need a process, because I don’t
have a problem. After all, I’m Dave
Cook! You don’t know how great I am?
Just ask me – or better yet, check out
some examples of my work! Best cod-
ing you’ll ever see. Other programmers
blush in shame when they see the crafts-
manship of my code. Design? Shoot, I
can literally see the interfaces in my
head. I’ll make the code work, and get it
to interface with your substandard code
without any problems.

Requirements? Well, you just tell me
what you want and I’ll write it. You want
to change the requirements? Just tell
me. I’ll fix it. I’m smart enough to
understand the rules, and when neces-
sary, to break them. If I violate the con-
figuration management process occa-
sionally, it’s because it’s in the best inter-
est of the project.

Now, am I really that good? Well,
those folks who have had the privilege
of working with me will tell you I’m
not1. And indeed, while I know that I
am a good software engineer, I’m

almost definitely not as good as I think
I am. But the key is, I do think that I am!

Everybody is in favor of process
improvement because other people
need process discipline. I don’t need it,

not me. I’m good. It’s the others.
Not that I’m a prima donna – I just

think that I’m a darn good developer.
All developers think that about them-
selves. In fact, not a single developer
gets up in the morning, looks at himself
or herself in the mirror and says, “You
know, I’m really not that good.” Far
from it. If asked, each developer would
honestly think they are above average.
Many think they are far above average.

Process improvement is something
you do to protect yourself from others.
If you don’t require anybody to manage
requirements, record and coordinate
designs, etc., then nobody will.

How do you incorporate good soft-
ware discipline and software processes?
Well, I can sure give you some very
good hints:
1. Start off with a meeting. Make sure

it’s two or three hours long. Grab the
most boring, monotonous speaker
you can find. Spend two or three
hours droning on and on about how
great the new process is – giving
examples that have little or no rele-
vance to what your particular devel-
opers do.

2. Tell your developers that they have
to follow the process – or else! Give

them no way to tailor the process to
fit their needs. Don’t dream of moti-
vating them; just tell them what to
do.

3. Implement the new process immedi-
ately throughout the company. For
best results, require the use of a new
software tool that no one really
understands yet. Make sure that no
one has more than minimal training
on the tool, and that the experts on
it are not on-site. In fact, the only
available help should be restricted to
a poorly designed Web page.

4. As mentioned earlier, make sure that
if problems occur, change the work
to make it fit the process. After all,
the 20-plus years of experience your
folks have are no match for a
process or tool designed last month
by somebody who once took a Java
class in college. Don’t consider that
perhaps common sense is more
important than blindly following the
process.
Of course these are good hints. Not

for you – for me! I’m a consultant, and
I can use the work.

See you at the Systems and Software
Technology Conference 2004.

— David A. Cook, Ph.D.
Senior Research Scientist

AEgis Technologies Group
dcook@aegistg.com

Software Process Improvement – 
A Good Idea for Other People

1. In fact, the associate publisher of CrossTalk will
probably go out of her way to tell you I’m not. Make sure
you go to the Systems and Software Technology
Conference  2004  and ask her!

Can You BackTalk?

Here is your chance to make your
point, even if it is a bit tongue-in-
cheek, without your boss censoring
your writing. In addition to accepting
articles that relate to software engi-
neering for publication in
CrossTalk, we also accept articles
for the BackTalk column.
BackTalk articles should provide a
concise, clever, humorous, and insight-
ful article on the software engineering
profession or industry or a portion of
it. Your BackTalk article should be
entertaining and clever or original in
concept, design, or delivery. The length
should not exceed 750 words.

For a complete author’s packet
detailing how to submit your
BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.



CrossTalk / MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Published by the
Software Technology

Support Center (STSC)

THE DOOR TO THE CMMI IS 
WAITING FOR YOU ...

DO YOU HAVE THE RIGHT KEYS?

THE DOOR TO THE CMMI IS 
WAITING FOR YOU ...

If you want your organization to use common, integrated, and 
improved processes for both Systems and Software, we can help.             
The Software Technology Support Center will show your organ-
ization how to implement the process improvement method-
ology of the Capability Maturity Model® IntegrationSM (CMMI®), which 
addresses productivity, performance, costs, and stakeholder 
satisfaction. Make sure you have the right keys. Call us.

Software Technology Support Center
MASE • 6022 Fir Avenue • Building 1238 • Hill AFB, UT 84056 5820
801 775 5555 • DSN 775 5555 • FAX 801 777 8069  • www.stsc.hill.af.mil

®  Capability Maturity Model and CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.


	Front cover
	Table of contents
	Acquisition
	Improving the DoD Software Acquisition Processes
	Why We Need Empirical Information on Best Practices
	A Project Risk Metric

	Software Engineering Technology
	Agile Software Development for an Agile Force
	Applying Decision Analysis to Component Reuse Assessment
	Better Communication Through Better Requirements

	Open Forum
	Enterprise DoD Architecture Framework and the Motivational View

	From the Publisher
	Letter to the Editor
	Web Sites
	Coming Events
	SSTC 2004 Conference Reminder
	BackTalk
	Back cover

