
Many systems designed today have
very long life cycles, especially in

the military. Often, a software program
is expected to perform for many years,
and undergo frequent updates and
requirements changes. Large-scale soft-
ware systems are prone to quality prob-
lems [1] during development. Constant
changes to existing systems only lead to
additional quality problems.

One way to help control defects and
reduce high maintenance costs is to use
refactoring. Refactoring is the process of
changing a software system in such a way
that it does not alter the external behav-
ior of the code yet improves its internal
structure [2]. Refactoring is an option
during both the development and main-
tenance phases. Unfortunately, refactor-
ing the design can be very resource
intensive, and automated tool support is
considered crucial [3].

This article presents an approach for
automating a large part of the evaluation
and refactoring process. By combining
the use of software metrics and a tech-
nique called program slicing, the refac-
toring process is guided toward a design
with higher quality and more maintain-
ability. First, we discuss how several dif-
ferent software metrics can be used to
evaluate software quality and the effects
those metrics have on defects, testing
effort, and maintenance cost. We then
discuss how program slicing can use
those metrics to guide design-refactoring
decisions. The final section presents our
conclusions.

Software Metrics
We use software metrics to try to quanti-
fy particular characteristics of software
systems, such as quality, maintainability,
or reliability. In general, however, these
characteristics cannot be measured
directly. Instead, we directly measure
particular attributes of software by using

software metrics and then infer informa-
tion about quality from those direct
measurements [4].

Three commonly used software met-
rics are coupling, cohesion, and
McCabe’s Cyclomatic Complexity [5]; all
three have been extended from their
original definitions for use with object-

oriented systems (OOS). In this article,
we discuss our ideas in the context of a
system that was implemented using
structured design techniques, though the
process could also be extended for use
with OOS.

The first metric to consider is cou-
pling, which measures the strength of
the connections between the software
modules that comprise a particular sys-
tem to quantify the dependencies
between the modules. The key idea is
that the more interdependent the mod-
ules in the system are, the more difficult
the system is to understand and the more
likely it is that changes to one module
will affect other modules in the system.

Yourdon [6] originally described sev-
eral different kinds of coupling, includ-
ing data coupling, control coupling,
hybrid coupling, and so on. McConnell
[7] has updated coupling to include class-
es of coupling. In the technique
described in the following section, we
only consider data – or normal – cou-
pling. In other words, the main focus in
terms of coupling is on the information

that flows between the modules in the
system. We measure this coupling by
counting the number of parameters (i.e.,
pieces of information) passed into and
out of each module.

As Yourdon points out, “The cou-
pling between modules in tentative
structural designs can be evaluated to
guide the designer toward less expensive
structures.” Our idea is to provide pre-
cisely this kind of guidance, but to do so
with extensive automated tool support.
This guidance would be useful in both
the design and the maintenance phases,
though we believe most refactoring
occurs in the maintenance phase.

The second metric to consider is
cohesion, which measures how strongly
the elements of each module are related
to each other. Cohesion was originally
defined in an article by Stevens [8], and
the concept has been updated as pro-
gramming languages and their capabili-
ties have evolved. McConnell [7] con-
tains a working definition of the current
classes of cohesion. At a high level, a
module with high cohesion accomplish-
es a single function using only the data
required to accomplish that function. As
with coupling, Yourdon defined multiple
levels of cohesion, though we limit our
interest to functional cohesion in this
article.

Coupling and cohesion are related,
though not perfectly correlated. As we
increase the cohesion of the modules in
the system, we tend to reduce the cou-
pling between those modules. This is an
important consideration, because al-
though researchers have proposed vari-
ous ways to measure cohesion [9], it is
much more difficult to measure than
coupling. In this approach we do not
measure cohesion directly, but instead
rely on the relationship between cou-
pling and cohesion to infer information
about the quality of a module. If we find

Using Software Metrics and
Program Slicing for Refactoring

Dr. A.T. Chamillard
University of Colorado at Colorado Springs

Refactoring can improve the quality of a software system as measured by coupling, cohesion, and cyclomatic complexity, but
knowing which refactoring choices should be implemented is key. This article presents an approach that guides the refactoring
of software systems by combining the use of software metrics and a technique called program slicing. Program slices produced
from a single software module are sorted by the respective values of the metrics; a design that provides the most beneficial met-
ric values can be selected from these. This approach can produce a software system with higher quality and maintainability as
measured by the metrics.

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering July 2004

Dr. David A. Cook
AEgis Technologies Group, Inc.

Dr. Ricky E. Sward
U.S. Air Force Academy

“One way to help
control defects and

reduce high
maintenance costs is
to use refactoring.”

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Using Software Metrics and Program Slicing for Refactoring

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Using Software Metrics and Program Slicing for Refactoring

that we also need to directly measure
cohesion to make our approach more
effective in practice, we can extend the
metrics calculated by the tool to include
cohesion as well.

The final metric, which is probably
the most commonly used metric of
those discussed here, is McCabe’s
Cyclomatic Complexity. At the module
level, this metric is the number of linear-
ly independent paths through the mod-
ule. Modules that contain many possible
paths are more complex than those with
fewer paths, so as the cyclomatic com-
plexity of a module increases, so does its
complexity. We note that this metric is
equal to one more than the number of
decisions contained in the module.

Based on the discussion above, our
approach uses coupling and cyclomatic
complexity metrics as described in the
following section. The coupling metric
provides insight into the interaction
between the modules in the system,
while the cyclomatic complexity metric
gives insight into the complexity of each
individual module. Remember that we do
not directly include cohesion, though we
could extend our approach to do so if it
proves to be helpful in practice.

As stated in the introduction, our
goal is to use software metrics to provide
guidance to those undertaking refactor-
ing efforts. It is important to note, of
course, that we do not refactor code sim-
ply for the sake of better code; rather, we
expect some return on the investment
expended on any refactoring efforts. We
must therefore consider some of the
important relationships between our
software metrics and software quality,
testing costs, and maintenance costs.

Intuitively, we expect software with
high coupling and low cohesion to be of
lower quality than software with low
coupling and high cohesion. The addi-
tional programmer effort required for
understanding highly interrelated mod-
ules and their effects on each other leads
to a higher potential for mistakes.
Similarly, a programmer working on a
module with low cohesion needs to keep
track of multiple functions being per-
formed by the module rather than on a
single function, which also increases the
potential for programmer error. Our
intuition turns out to be true in practice.
Research on operational systems has
shown that modules with high cou-
pling/low cohesion contained seven
times as many errors as modules with
low coupling/high cohesion [10]. In
addition, programmers spent almost 22
times as many hours correcting the

errors in those modules with high cou-
pling/low cohesion. Clearly, coupling
and cohesion have a significant impact
on both the quality of the software and
the effort required to fix errors in the
software.

We also expect all three metrics to
have an impact on the amount of effort
associated with software testing. Because
coupling measures the dependencies
between modules, higher coupling
implies the need to expend more effort
accomplishing integration testing of the
modules. Modules with low cohesion
implement more than one function; test-
ing the functionality of that module (typ-
ically during unit testing) requires more
test cases to cover all of that module’s
functionality. Cyclomatic complexity
essentially measures the number of
paths through a module, so modules
with higher cyclomatic complexity will
require more test cases to cover all the
paths.

Discussions of software quality and
testing effort apply both to the original
development of a system and mainte-
nance of that system. We are also con-
cerned, of course, with the cost of main-
taining systems. Research shows that we
can account for more than half of the
variability of maintenance productivity
by taking cyclomatic complexity into
account [11]; in other words, we can sig-
nificantly improve our estimates of
maintenance costs through considera-
tion of the cyclomatic complexity (and
lines of code) for the system to be main-
tained. Perhaps even more importantly,
we know that modules with higher cyclo-
matic complexity are more difficult to
maintain, so if we can reduce the com-
plexity of the modules we can reason-
ably expect a corresponding reduction in

maintenance costs.
It is clear that refactoring software to

improve coupling, cohesion, and cyclo-
matic complexity of the software yields
improvements in overall software quality
and reductions in testing and mainte-
nance costs. Despite the clear benefits
associated with refactoring, the amount
of effort required to refactor large sys-
tems without tool support is generally
prohibitive [3]. Metrics and other meth-
ods have been proposed to help guide
program refactoring [12, 13, 14, 15]. One
problem with traditional metrics is that
they are often not useful for making fine
distinctions between routines and mod-
ules [7, 16]. Refactoring does not have
this limitation. The following section
describes our approach for guiding the
refactoring process through the use of
program slicing and software metrics.

Program Slicing, Metrics, and
Refactoring
When considering options for refactor-
ing, a technique known as program slic-
ing can be used to isolate portions of a
software system. A program slice is a
projection of the behavior from a soft-
ware module that is needed to produce a
particular value in the module [17]. By
slicing a particular variable or parameter
in a software module, only the lines of
code required to produce that variable or
parameter are extracted from the mod-
ule. The resulting lines of code can be
built into a separate module with vari-
ables and parameters of their own.

For example, consider the Ada proce-
dure shown on the left side in Figure 1
(see page 22). This procedure produces
both the Highest_Max parameter and
the Lowest_Min parameter. The Ada
procedure shown in the upper right side
of Figure 1 shows the program slice
built by slicing on the Highest_Max
parameter. The Ada procedure shown in
the lower right side of Figure 1 shows
the program slice built by slicing on the
Lowest_Min parameter. Note that only
those parameters needed to produce
either Highest_Max or Lowest_Min are
included in their respective program
slices.

Program slicing is useful for refactor-
ing software systems [18] because it iso-
lates portions of the software. For exam-
ple as shown in Figure 1, instead of a
single procedure that produces both the
Highest_Max value and the Lowest_Min
value, we now have two procedures that
each produce a single value. The chal-
lenge with using program slicing for

July 2004 www.stsc.hill.af.mil 21

“The coupling metric
provides insight into the
interaction between the
modules in the system,
while the cyclomatic

complexity metric gives
insight into the

complexity of each
individual module.”

Software Engineering Technology

refactoring is determining how to slice
the software system properly in order to
maximize maintainability and quality.

Since we want to refactor our soft-
ware to improve coupling, cohesion,
and cyclomatic complexity, software
metrics can guide our choices when we
use program slicing for refactoring.
Each time we produce program slices,
we can compare the values of the met-
rics from the original procedure to the
resulting program slices. Clearly, pro-
gram slices that produce better cou-
pling, cohesion, and cyclomatic com-
plexity are better than the original pro-
cedure and should be included in the
refactored software system.

During refactoring, program slicing

may reduce the coupling between mod-
ules in the software system. For example,
in Figure 1 the original procedure
includes five parameters, but each pro-
gram slice includes only three parame-
ters. As we discussed previously, the
number of parameters in a software
module can measure coupling, so in this
case, program slicing has reduced the
coupling between modules.

Program slicing may also improve the
cyclomatic complexity of a software
module during refactoring. For the pro-
cedure shown on the left side of Figure
1, the value of the cyclomatic complexi-
ty metric is three. For each of the pro-
gram slices, the value of that metric is
two. In this case, refactoring using pro-

gram slices has resulted in software mod-
ules that have a lower value for the cyclo-
matic complexity metric.

Using program slicing for refactoring
can therefore improve the quality and
maintainability of software modules as
measured by coupling, cohesion, and
cyclomatic complexity. Admittedly, the
example shown in Figure 1 is simplistic,
but it demonstrates how using program
slicing and metrics can guide the refac-
toring process.

Slicing on Combinations of
Variables
As is often the case, software systems
contain modules that are much more
complicated than the one shown in
Figure 1. Software modules often have
many different parameters (high cou-
pling) and contain high levels of cyclo-
matic complexity. These modules pres-
ent an opportunity to improve overall
system quality by refactoring using the
program slicing technique on different
combinations of the parameters.

For example, consider a module that
produces four values. For illustration, we
will call the module Produces_Four and
call the four parameters A, B, C, and D.
By using program slicing, we can build
15 different software modules, including
the original module, from the possible
combinations of these parameters. We
can then calculate the coupling and
cyclomatic complexity metric for each of
the 15 modules individually.

Figure 2 shows the values of the cou-
pling and cyclomatic complexity metrics
for the 15 modules. The reader should
realize that these are the values for pro-
gram slices that were built from the
Produces_Four module that we used in
our example. These values would differ
for other program slices built from other
modules depending on the code con-
tained in those modules. Note that in
Figure 2, the ABCD column represents
the Produces_Four module.

The following discussion shows how
the information in Figure 2 helps to
guide refactoring decisions. As we can
see from the figure, slicing the original
module into four separate modules for
A, B, C, and D results in the lowest aver-
age coupling and cyclomatic complexity
for the overall system. The average cou-
pling and complexity of these four sepa-
rate modules is lower than that of the
original module, so breaking this module
into four separate modules would be the
best refactoring choice. The point is to
lower the overall complexity of the sys-

22 CROSSTALK The Journal of Defense Software Engineering July 2004

Figure 2: Metrics for Program Slices

Figure 1: A Predictable Substation Assembly

Using Software Metrics and Program Slicing for Refactoring

July 2004 www.stsc.hill.af.mil 23

tem. By replacing the Produces_Four
module, which has high complexity and
high coupling, with four new modules
that have lower complexity and lower
coupling, we can lower the average com-
plexity and coupling for the system. We
focus on the average of the metrics
because we want to show that it will be
easier to maintain the four new modules
instead of one legacy module.

It could be the case, however, that
organizational or management policies
prevent you from selecting this option.
For example, limits on the total number
of modules in the system – or lower lim-
its on the size of those modules – could
preclude breaking the original module
into four separate modules in our exam-
ple. Effort should be expended to
change such policies, especially when
compliance will result in systems that are
less maintainable than they could be. We
also recognize, however, that some
organizations will impose those policies
regardless of the resulting impacts.

In this scenario, which refactoring
option should you choose? In the fol-
lowing discussion, we assume that our
policies constrain us to select exactly two
modules in refactoring the original mod-
ule.

As shown in Figure 2, the module for
values CD has the same coupling and
complexity as the modules for values
AB, AC, and AD. All of these modules
have lower coupling and complexity than
the modules for BC and for BD.
Selecting the module for AB along with
the module for CD is a reasonable
choice to replace the original module.
The average coupling for this choice is 4
and the average complexity for this
choice is 3. This option results in a lower
average coupling and complexity for the
overall system. It is also a better choice
than selecting the module for AD along
with the module for BC because the
module for BC drives up the average
coupling to 4.5. The values of the met-
rics for these program slices can help the
software engineer select the best possible
refactoring option that fits within the
constraints placed on a software system.

Further analysis shows that the opti-
mal choice in this situation is to choose
the module for B along with the module
for ACD. The average complexity for
this choice remains at 3, but the average
coupling is reduced to 3.5. This is a bet-
ter choice than selecting the modules for
AB and CD, since the average coupling
and cohesion are less. Clearly, this is the
best choice if the developer is con-
strained to selecting exactly two modules

in the refactoring process.
This illustrates how refactoring deci-

sions can be guided by using program
slicing and the values of metrics of the
resulting program slices.

Conclusion
Coupling, cohesion, and cyclomatic
complexity have become accepted met-
rics for measuring the maintainability
and quality of software systems.
Refactoring can improve the quality of a
system as measured by these metrics, but
which refactoring choices should be
implemented? We suggest using pro-
gram slicing in conjunction with soft-
ware metrics to guide the refactoring
process. By slicing the software system

on one or more variables, different refac-
toring options can be examined and eval-
uated using these metrics. The choices
that program slicing provides can be
sorted by the respective values of the
metrics, and a design that provides the
most beneficial metric values can be
selected. It is the combination of pro-
gram slicing and software metrics that
guides the refactoring process.

A software system that has gone
through this refactoring process has high-
er quality and is more maintainable. The
return on investment in this refactoring
process can be measured in lower error
rates, fewer test cases per module, and
increased overall understandability and
maintainability. In both the design and
maintenance phase, these advantages can
be realized almost immediately.◆

References
1. Jones, Capers. Assessment and

Control of Software Risks. Prentice
Hall, 1994.

2. Fowler, Martin. Refactoring:
Improving the Design of Existing
Code. Addison-Wesley, 1999.

3. Tahvildari, L., and K. Kontogiannis.
“First International Workshop on
Refactoring: Achievements, Challen-
ges, and Effects.” REFACE ’03,
Victoria, British Columbia, 13 Nov.
2003 <http://swen.uwaterloo.ca/~
ltahvild/Publications/REFACE03.
pdf>.

4. Fenton, Norman E., and Shari L
Pfleeger. Software Metrics: A
Rigorous and Practical Approach.
2nd ed. Boston: PWS Publishing Co.,
1997.

5. McCabe, Thomas J. “A Complexity
Measure.” IEEE Transactions on
Software Engineering 2 (1978): 308-
20.

6. Yourdon, Edward, and Larry L.
Constantine. Structured Design. 2nd
ed. New York: Yourdon Press, 1978.

7. McConnell, Steve. Code Complete.
Microsoft Press, 1993.

8. Stevens, Wayne, G. Meyers, and L.
Constantine. “Structured Design.”
IBM Systems Journal 13.2 (May
1974): 115-39.

9. Bieman, James M., and Linda M. Ott.
“Measuring Functional Cohesion.”
IEEE Transactions on Software
Engineering 20 (1994): 644-57.

10. Selby, Richard W., and Victor R.
Basili. “Analyzing Error-Prone
System Structure.” IEEE Trans-
actions on Software Engineering 17
(1991): 141-52.

11. Gill, Geoffrey K., and Chris F.
Kemerer. “Cyclomatic Complexity
Density and Maintenance Produc-
tivity.” IEEE Transactions on
Software Engineering 17 (1991):
1284-88.

12. Simon, F., F. Steinbruckner, and C.
Lewerentz. Metrics-Based Refactor-
ing. Proc. of the European Confer-
ence on Software Maintenance and
Reengineering, Mar. 2001.

13. Tahvildari, L., K. Kontogiannis, and
J. Mylopoulos. “Quality-Driven
Software Reengineering.” Journal of
Systems and Software 66.3 (June
2003): 225-239.

14. Tourwe, T., and T. Mens. Identifying
Refactoring Opportunities Using
Logic Meta Programming. Proc. of
the European Conference on
Software Maintenance and Reengi-
neering Mar. 2003.

15. Kataoka, Y., T. Imai, H. Andou, and
T. Fukaya. A Quantitative Evaluation
of Maintainability Enhancement By
Refactoring. Proc. of the IEEE

“The return on
investment in this

refactoring process can
be measured in lower
error rates, fewer test
cases per module, and

increased overall
understandability and

maintainability.”

24 CROSSTALK The Journal of Defense Software Engineering July 2004

About the Authors

David A. Cook,
Ph.D., is a senior
research scientist at The
AEgis Technologies
Group, Inc., working as
a verification, valida-

tion, and accreditation agent in the
modeling and simulations area. He is
currently supporting the Airborne
Laser program and has more than 30
years experience in software develop-
ment and management. He was for-
merly an associate professor of com-
puter science at the U.S. Air Force
Academy, a deputy department head of
the Software Professional Develop-
ment Program at the Air Force
Institute of Technology, and a consult-
ant at the U.S. Air Force Software
Technology Support Center. Cook has
published numerous articles on soft-
ware-related topics. He has a doctorate
in computer science from Texas A&M
University.

AEgis Technologies Group, Inc.
6565 Americas PKWY NE
STE 975
Albuquerque, NM 87110
Phone: (505) 881-1003
Fax: (505) 881-5003
E-mail: dcook@aegistg.com

A.T. Chamillard, Ph.D.,
is an assistant professor
of Computer Science at
the University of
Colorado at Colorado
Springs where he teaches

the core Master of Engineering in soft-
ware engineering courses. He also cur-
rently provides software engineering
consulting services to a Department of
Defense agency. Chamillard spent over
six years as a project manager in the U.S.
Air Force, and was also an associate pro-
fessor of computer science at the U.S.
Air Force Academy where he taught for
six years. He has a doctorate in comput-
er science from the University of
Massachusetts, Amherst.

Computer Science Department
University of Colorado at
Colorado Springs
1420 Austin Bluffs PKWY
Colorado Springs, CO 80933-7150
E-mail: chamillard@cs.uccs.edu

Lt. Col Ricky Sward,
Ph.D., U.S. Air Force, is
an associate professor
of Computer Science at
the U.S. Air Force
Academy. He is current-

ly the deputy head for the Department
of computer science and the course
director for the senior-level two-semes-
ter Software Engineering capstone
course. Sward has a doctorate in com-
puter engineering from the Air Force
Institute of Technology where he stud-
ied program slicing and reengineering
of legacy code.

Department of Computer Science
2354 Fairchild DR
STE 6G101
USAF Academy, CO 80840
E-mail: ricky.sward@usafa.af.mil

International Conference of
Software Maintenance, Oct. 2002.

16. Shepperd, M., and D. Ince. “Metrics,
Outlier Analysis, and the Software De-
sign Process.” Information and Soft-
ware Technology. Mar. 1989: 91-98.

17. Weiser, M. “Program Slicing” IEEE
Transactions on Software Engineer-

ing SE-10 (4) (July 1984): 352-357.
18. Verbaere, Mathieu. “Program Slicing

for Refactoring.” Masters Thesis.
University of Oxford, Sept. 2003
<http://web.comlab.ox.ac.uk/oucl/
research/areas/progtools/projects/
nate/doc/MScThesis.pdf>.

Software Engineering Technology

August 14-17
CCCT Conference: Computing,

Communications, and Control Technologies
Austin, TX

www.iiisci.org/ccct2004

August 19-20
2004 ACM-IEEE International

Symposium on Empirical Software
Engineering

Redondo Beach, CA
www.isese.org

August 23-27
International Conference on Practical

Software Quality Techniques
PSQT 2004 North
Minneapolis, MN

www.qualityconferences.com

September 11-17
20th IEEE International Conference on

Software Maintenance
Chicago, IL

www.cs.iit.edu/~icsm2004

September 13-16
Embedded Systems Conference

Boston, MA
www.esconline.com/boston

September 20-23
Software Development Best Practices

Boston, MA
www.sdexpo.com

September 24-26
IPSI 2004 Stockholm
Stockholm, Sweden

www.internetconferences.net

April 18-21, 2005
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

