
June 2000 www.stsc.hill.af.mil 7

Dozens of books address the concept
of software risk management and, it
seems, there are even more software tools
than books on this topic. Risk manage-
ment tools can be as simple as a list of
risks brainstormed during the start of a
project and reviewed occasionally. They
can also be as complex as a 100-page Risk
Management Plan with risks and their
associated prioritization, likelihood,
impacts and mitigation strategies, along
with a Web-based risk browser to track
the plan. Still, the basic approach for all
of these methods is the same: risks are
identified early in the project, planned
for, monitored, and handled. TSP takes a
middle-of-the-road approach to risk man-
agement, doing what makes sense for the
project with as little paperwork and tool
upkeep as possible. Although the
approach was originally designed for
teams of fewer than 20 people, the prin-
ciples can be applied to much larger
groups, with equally effective results.

Identification
The TSP handles a project the way

you eat an elephant—one bite at a time.
The TSP team estimates projects in a top-
down approach, using overall size and
average team productivity to determine
overall schedule. This schedule is broken
into manageable phases and the phase cur-
rently being worked is thoroughly estimat-
ed and tracked using a bottom-up
approach wherein each engineer estimates
his or her own schedule using individual
data. Each time a phase begins, whether at
the start of the project or at the transition
from one phase to the next, there is a
project launch (Figure 1). At these launch-
es, the tasks for the current phase are thor-
oughly defined and each task is estimated
using the rigorous methods of the Personal
Software Process (PSPSM). These estimates
are used to produce a detailed next phase
earned value plan, against which the proj-
ect will be tracked and managed. Project
goals, quality criteria and risks are also
identified during the launches.

A portion of each launch is dedicated
to brainstorming risks the project may
face. These sessions can last from a dozen
minutes to a few hours, depending upon
the size of the project and the team’s
knowledge and maturity. The risks that
are identified are serious problems that
may occur during the life cycle of the
project, not just a list of all maladies that
are possible. For example, it makes little
sense to manage the risk of your software
being destroyed by a bomb or abducted
by aliens unless, of course, you work for
Special Agents Fox Mulder and Dana
Scully. Barring that circumstance, most
projects make a list of all the real-life
problems that can be foreseen. Some com-
mon risks identified during these meetings
include a lack of proper documentation, a
development environment that may not
support the size or type of program being
developed, an impossible schedule or

inadequate computer, office, or personnel
resources. Each risk is assigned a likeli-
hood of occurrence, a severity if it does
occur, and a person responsible to moni-
tor the risk. The TSP team assigns each
member a role, such as Design Manager,
Planning Manager, Implementation
Manager, Customer Interface Manager,
Quality Manager, Process Manager,
Support Manager, Test Manager, or Team
Leader. Typically, the team member with
the appropriate role is assigned to monitor
a risk. For example, a risk involving nego-
tiations with the customer would be
assigned to the Customer Interface
Manager. This information is documented
so that it can be regularly referenced.

Review and Mitigation
The TSP requires a weekly status

meeting where team progress is compared
to the team plan in terms of earned value
and quality. If there are deviations from
the plan, the reasons for these deviations
can be determined and actions taken to
bring the team’s performance in line with
the plan. It is also during these weekly
meetings that the team reviews the risks
brainstormed during the launch. The team
removes risks from the list that no longer
pose a threat, while the assigned engineers
report on those that are still potential
problems. If the mitigation strategy for a
risk has failed and the risk has occurred, or
is likely to occur soon, the risk is renamed
an “issue” and immediate action is taken
to address it. The risk list subsequently
becomes a living, breathing document that
changes size and shape each week. It also
becomes a used document that helps the
team focus on risks that need to be
addressed when they need to be addressed.

Risks That Are Not
Three of the most common risks to

any project are schedule overruns,
requirements creep, and quality problems.

Managing Risk with TSP
by David R. Webb

Hill Air Force Base

One of the most important aspects of applying the Team Software Process (TSPSM) to software projects of any size is the
increased success of identifying, tracking, and mitigating risk. The Mission Planning Software Section of the Software
Engineering Division of Hill Air Force Base (TISHD), has found the TSP’s simple strategy for identifying, tracking, and
handling risks to be extremely effective. In fact, many common software project risks are managed purely by adopting the TSP.

Figure 1. Risks are identified at each TSP launch.

Launch

Relaunch

Relaunch

Relaunch

Postmortem

Initial Phase
(e.g. Requirements, Build 1)

Second Phase
(e.g. Design, Build 2)

Third Phase
(e.g. Code, Build 3)

Final Phase
(e.g. Acceptance Test)

•
•
•

•
•
•

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Managing Risk with TSP

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

8 CROSSTALK The Journal of Defense Software Engineering June 2000

A project properly using the TSP already
has the tools to handle these risks.

A TSP team determines its own
schedule and coordinates it with manage-
ment, marketing, and the customer, as
appropriate. While outside influences
may have strong impacts on the delivery
date of any piece of software, the TSP
team knows its productivity rates, has a
rigorous estimating process, and can con-
fidently tell management how much can
be accomplished within a given time
frame. The TSP launch is not successfully
concluded until the team and manage-
ment agree upon a list of requirements
and a schedule that is satisfactory to both
parties. Once this realistic schedule has
been determined, it is used as the basis
for measuring personal and team-earned
value and is tracked daily at the personal
level and weekly at the team level (Figure
2). Any deviations from the plan are
identified early in the project and are
dealt with by negotiating with manage-
ment and the customer. The TSP virtual-
ly eliminates schedule risks.

The TSP also requires replanning, or
at least updating, a project when the basic
assumptions of the plan change. This
means that when (not if) the requirements
change during the course of the project,
the team renegotiates schedule, delivered
functionality and, if appropriate, cost. This
becomes the new plan that the team tracks
and the requirements creep risk is effec-
tively dealt with, if not completely elimi-
nated. Another great thing about this tech-
nique is that it ensures management and
the customer are involved every step of the
way so that no one is surprised by the pro-
ject’s performance, least of all those who
are anticipating the product.

Finally, problems with quality can,
over time, be virtually erased using the
TSP. Since the quality methods used by
the TSP are based upon the strict quality
processes of the Personal Software Process,
individual engineers perform their own
extensive reviews of both detailed design
and code prior to exhaustive team inspec-
tions. Defect densities at personal reviews,
team inspections, compile and unit test,
are used as yardsticks to determine if the
finished code is of high enough quality to
be passed on to integration and system
test, or if the code should be pulled back
and reinspected or rewritten. This ensures

the quality of the code, but not always the
quality of the requirements upon which
the code is based. Often, requirement
problems are uncovered during acceptance
testing. When such defects are discovered,
the TSP team adds them to team and per-
sonal review checklists to ensure such
problems are never allowed to pass
through the process again. An experienced
TSP team can, therefore, eliminate virtu-
ally all quality risks, particularly expensive
defects found during qualification and
acceptance testing.

Some Examples in TISHD
TISHD has trained nearly 20 engi-

neers in the PSP and has launched three
separate mission planning projects using
TSP version 0.3. These projects are an Air
Tasking Order parser named TaskView [1],
an A-10 Aircraft/Weapons/Electronics
(AWE) software program, and an F-16
Block 30 AWE program. Of these three
projects, TaskView and A-10 AWE have
been using the TSP long enough for us to
draw some conclusions about the useful-
ness of the TSP and the success rate of
using the TSP risk management strategy.

TaskView
The TaskView project was the first

TISHD group to pilot test the TSP. Just
prior to the initial launch, the TaskView
customer decided to participate in an Air

Force Expeditionary Force Experiment
(EFX). This new goal required the
TaskView 3.0 product to be delivered one
month earlier than originally planned.
The team added this risk to its risk list
and assigned it to the Planning Manager.
With this in mind, the team adjusted the
plan to meet the new schedule.

As work progressed, the team-earned
value projected that TaskView 3.0 would
be delivered more than a month earlier
than anticipated, even with the new
schedule. At this point, the first risk was
closed out and another risk—that of
being too early and losing revenue—was
added to the list and assigned to the
Customer Interface Manger. The cus-
tomer was approached with the option of
receiving the product early and getting a
refund, or adding new capability to
TaskView 3.0. The customer was delight-
ed with this information and chose to
keep the current level of funding and add
in new capabilities to the software. Even
with the new functionality, TaskView 3.0
was delivered well within time to partici-
pate in the EFX experiment.

TaskView has also experienced a sig-
nificant reduction in the risks associated
with defects, as a result of adopting the
TSP. TaskView has had three major releas-
es since TISHD started working on the
project in 1997. TISHD has added new
capability and robustness to each release,

PSP/TSP

Figure 2. TSP Team Earned Value for TISHD A-10 AWE

June 2000 www.stsc.hill.af.mil 9

at times rewriting major portions of the
code to do so. Compared to data from
similar projects completed in the past
(using the TISHD CMM Level 5 organi-
zational process), the TaskView projects
have seen a substantial decrease in defects
and test time (see Figure 3 and Figure 4).

One interesting outcome of the
defect data analysis was the increase in
defect density experienced by the
TaskView 3.1 project. Although the defect
density found during Customer
Acceptance Testing was steadily decreas-
ing, defects found in earlier test phases
increased. This was of some concern to
the team, until it began to filter the list by
defect priority (Figure 4). Once that was
done, it was obvious that the TaskView
team, as it had grown more confident in
the use of the TSP, had begun to record
more development defects than ever
before; remember, TSP teams count every
defect found in every development and
test phase, including compile. However,
despite this increase in defect recording,
high-priority defects became nonexistent

using the TSP. This does not mean that
no issues were discovered during customer
acceptance testing, but the issues dealt
almost exclusively with the addition of
new requirements and limitations of the
operational environment, and were not
defects in the delivered code. Note also
that TaskView 3.1S (a special project
developed in support of another mission
planning tool) had zero high-priority
defects at every test phase.

As most software project managers are
well aware, the greatest risk to any pro-
ject’s schedule is the risk of finding defects
during test, especially final or customer
acceptance testing. The causes of these
defects are often difficult to trace and fix
and can cause significant slips in schedule.
In order to eliminate this risk, test time
needs to be reduced and become more
consistent. Although TISHD was already
seeing very low test days/thousand lines of
code rates using its Level 5 process, the
adaptation of the TSP reduced the test
time further and made the variation much
smaller (see Figure 5).

A-10 AWE
While the TaskView project was still

evaluating the effectiveness of the TSP, the
A-10 AWE team decided to use some of
the concepts (planning, tracking, weekly
updates) without employing the rigorous
techniques of the Personal Software
Process. Each A-10 AWE engineer was
provided a spreadsheet for each code
change he or she was working. These
spreadsheets covered the estimate of size
(lines of code or LOC) and time (days) as
well as the actuals for LOC and time.
Time was measured at distinct milestones,
such as inspections, unit test, and code
check-in. An earned value plan was created
from the estimates provided by the engi-
neers and used to refine the schedule.
Although the engineers were not required
to be PSP trained, all any engineer had to
do, after estimating, was to check a box on
the tracking spreadsheet once a milestone
was reached. The spreadsheet would calcu-
late how long the tasks took and export
that data to the earned value tracking tool.

Sounds like a good plan, right? It did
not work very well.

Estimates were often wildly inaccu-
rate. Tracking was not consistent. Entire
new capabilities would move from 0 per-
cent complete to 100 percent complete
overnight. All of these problems gave the
team a false impression of the team-earned
value. The earned value was, therefore, not
trusted and soon ignored by most of the
team members. The team reverted to the
higher-level tracking process used by non-
TSP projects in TISHD, which were suffi-
cient to prevent the team from missing
schedule. (Note that TISHD is part of a
SW-CMM® Level 5 organization, and
typically meets cost and schedule estimates
anyway.) However, any advantage of using
the TSP-like process disappeared.

The one thing that did work, was
risk identification and tracking, the
process that we copied directly from the
Team Software Process.

For example, the A-10 AWE team
determined that a required piece of core
software, developed by a third-party ven-
dor, might not be released in time to
meet schedule. This risk was assigned a
high likelihood and a high impact. A mit-
igation plan of reverting to an earlier
release of the core was determined and an
engineer was assigned to track the status

Managing Risk with the Team Software Process

Figure 3. TISHD Total Defect / Non-TSP Projects vs TaskView

Figure 4. TISHD High Priority Defects / Non-TSP Projects vs TaskView

10 CROSSTALK The Journal of Defense Software Engineering June 2000

of the core software. As it turned out, the
third-party software did slip its schedule
by several months, which would have, in
turn, caused our software to slip its
release date had we not planned for this
risk early in the program. Due to early
risk identification, planning and tracking,
the A-10 AWE was able to mitigate this
risk and revert to the earlier version of
the core software.

One risk that was not identified was
the hazard of using the TSP-like process,
instead of the TSP. During project post-
mortem, it was determined that the reason
the modified process did not work as well
as a traditional TSP team was that the
engineers were not PSP trained and did
not understand how the data they were
collecting was being used. At that point,
we determined to use TSP on the next A-
10 AWE project and immediately sched-
uled a PSP course for those engineers.

The results in earned value tracking
alone were astounding (see Figure 3).
Code was accurately estimated and
tracked; it was very easy to see how close to
our schedule we were running. TISHD
learned an important lesson: TSP does not
work well without the proper data, and
that data is almost impossible to gather
without the rigors of the PSP. That is one
risk TISHD has completely eliminated.

Conclusion
While there are many tools for soft-

ware risk management, TISHD has
found that utilizing the planning, track-
ing, and defect prevention techniques of
the Team Software Process is a simple and
effective way to identify, track, and miti-
gate most software project risks. In

TISHD we have learned that, over time,
TSP teams become experts at risk mitiga-
tion and management; they also become
very good at writing code that is nearly
free of defects, and that TSP is a risk mit-
igation strategy any software project
should strive to adopt.

Reference
1. Webb, David and Humphrey, Watts S.

Using the TSP on the TaskView Project,
CROSSTALK, February 1999, pp. 3-10.

PSP/TSP

Figure 5. TISHD Test Duration / Non-TPS vs TaskView

About the Author
David R. Webb is a
Technical Program
Manager for the Mission
Planning Software sec-
tion at Hill Air Force
Base, Utah, and a part-
time visiting scientist for

the Software Engineering Institute (SEI).
He is a member of the Software Division
of the Technology and Industrial Support
Directorate (TIS), which was assessed a
CMM® Level 5 organization in July
1998. He has 12 years of technical and
program management experience with
software in the Air Force. Webb also has
spent five years as a software test engineer,
two years as a software system design engi-
neer, and three years as a member of TIS’s
full-time Software Engineering Process
Group (SEPG). He is a SEI-certified PSP
instructor. He received a bachelor’s degree
in electrical and computer engineering at
Brigham Young University.

OO-ALC/TISHD
6137 Wardleigh Road
Hill Air Force Base, Utah 84056
Voice: 801-775-2916 DSN 775-2916
E-mail: david.webb@hill.af.mil

Coming Events
June 4-7

9th Biennial IEEE
http://cefc2k.aln.fiu.edu

June 4-11
22nd International Conference on Software

Engineering
www.ul.ie/~icse2000

June 5-7
2000 IEEE International Interconnect

Technology Conference
www.his.com/~iitc

June 10-14
ISCA2000: 27th International Symposium

on Computer Architecture
www.cs.rochester.edu/meetings/ICSA2K

June 18-22
ICC 2000—IEEE International
Conference on Communications

www.icc00.org/

July 11-13
5th Annual Conference on Innovations and
Technology in computer Science Education

www.cs.helsinki.fi/events/iticse

July 16-18
7th IEEE Workshop on Computers in

Power Electronics
www.conted.vt.edu/compel.htm

July 16-19
Congress on Evolutionary Computation

http://pcgipseca.cee.hw.ac.uk/cec2000

August 6-11
6th Annual International Conference on

Mobile Computing and Networking
www.research.telcordia.com/mobi-

com2000

August 7-8
IEEE Workshop on Memory Technology

Design and Testing
http://pcgipseca.cee.hw.ac.uk/cec2000

August 17-19
Designing Interactive Systems (DIS)

September 10-12
Collaborative Virtual Environments (CVE)

September 10-14
Very Large Databases (VLD)

Visit www.acm.org/events for infor-
mation on VLD, DIS, & CVE 2000.

April 29-May 3, 2001
STC 2001: The Premiere Department of
Defense Software Technology Conference

www.stc-online.org

