

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
CrossTalk. The Journal of Defense Software Engineering. Volume 17,
Number 9, September 2004

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Software Wars
The F/A-18 aircraft platform’s return to the Persian Gulf region has provided the
opportunity to examine the U.S. Navy’s success at providing capability growth through
software upgrades versus hardware changes.
by Susan Weaver

Tomahawk Cruise Missile Control: Providing the Right Tools to the
Warfighter
The Tactical Tomahawk Weapon Control system is a next-generation system for planning and
controlling Tomahawk cruise missile flight in a world of fast-changing targets.
by Marcus Urioste

Service-Oriented Architecture and the C4ISR Framework
This article presents an architecture modeling approach for formulating service-oriented
architectures such as those being developed on the global information grid.
by Dr. Yun-Tung Lau

Executable Specifications: Language and Applications
Here is a formal method based on executable specifications as a way to ensure that
an implementation is consistent with its specifications, including the ability to conduct
automated computer-aided verification.
by Dr. Doron Drusinsky and Dr. J.L. Fobes

Executable and Translatable UML
The Executable and Translatable Unified Modeling Language lets developers formally test
models to reduce defect rates from early execution of target-independent application models.
by Stephen J. Mellor

What You Don’t Know Can Hurt You
Senior managers rely on regular updates from their staff so they know what is going on, but
how effective are these reports? Here is a set of questions that will help managers determine
whether or not they are asking the right questions.
by Douglas A. Ebert

Identifying Essential Technologies for Network-Centric Warfare
This author envisions what technologies will be important for network-centric warfare.
by David Schaar

Cover Design by
Kent Bingham.
Cover Photo

© Image 100 Ltd.

1. MQ-1 Predator. 2. B-52
radar navigator. 3. Joint
Direct Attack Munition,
photo © Boeing. 4. AH-64D
Apache Longbow Helicopter
pilot. 5. A Laser highlights a
target during a weapons
interdiction mission in Iraq.
6. A BGM-109 Tomahawk
cruise missile warhead deto-
nates. 7. U.S.Air Force F-15A
Eagle pilot. 8. New Land
Warrior components. 9.
End-User Terminals field
test. 10. U.S. Marine Harrier
pilot during a SOCEX
workup. 11. AN/PAQ-1 laser
target designator exercise.

For more detailed informa-
tion on this map, visit <www.
stsc.hill.af.mil/crosstalk>.

3

7

25

29

30

31

DeparDepar tmentstments

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering September 2004

4

8

11

15

19

23

26

From the Publisher

Web Sites

Coming Events
Call for Articles

Letter to the Editor

SSTC 2005 Call for
Speakers and Exhibitors

BackTalk

CrossTalk Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions.Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center.All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: stsc.webmaster@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 29.

Ogden ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

TheThe SoftwarSoftwaree EdgEdgee

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

Open Open FForumorum

From the Publisher

Irecently attended a briefing given by an F-16 pilot who had flown many missions
in Operation Iraqi Freedom. He could not have been more complimentary of the

group of software managers and engineers that he was addressing. As he mentioned
numerous times, he flies the planes but it is the engineers who are designing and
coding the software that in turn enables him to do his job better and put “bombs
on target.”
As a software engineer, it is easy to get immersed in the nitty-gritty programming

aspects of your job and lose sight of the bigger picture. In this month’s issue, we highlight the
bigger picture of how software plays an ever-increasing role in the U.S. military’s combat
effectiveness.

In Software Wars by Susan Weaver, we begin with a look at how software has evolved to
become a key enabler for the Navy’s dual-role F/A-18 Hornet aircraft. This article describes the
increased capability made possible through the software of onboard systems such as the dual-
role radar, heads-up and heads-down displays, weapon delivery systems, and the avionic’s digital
multiplex bus architecture.

Next, in Tomahawk Cruise Missile Control: Providing the Right Tools to the Warfighter by Marcus
Urioste, the Tactical Tomahawk Weapon Control System (TTWCS) is described. The TTWCS
program enables a reduction in the Tomahawk timeline by placing the missile’s mission planning
function aboard the firing unit. This article discusses this major software-based reengineering
upgrade program aimed at bringing more capability to officers and sailors onboard U.S. surface
ships and fast attack submarines.

Software also plays a key role in the move toward a joint net-centric warfare capability. As an
information infrastructure, the Global Information Grid (GIG) will improve data routing and
shared situational awareness. In Service-Oriented Architecture and the C4ISR Framework, Dr. Yun-
Tung Lau presents a modeling approach that has been applied to the architecture development
of Net-Centric Enterprise Services (NCES). The NCES provides the core enterprise services
supporting various communities of interest to the GIG.

In our Software Engineering Technology section, we bring you three articles that describe
technology advancements to further sharpen the software edge. First, in Executable Specifications:
Language and Applications by Dr. Doron Drusinsky and Dr. J.L. Fobes, a formal method of ver-
ification is described that can be applied to requirements simulation before software imple-
mentation, as well as to a variety of other defense applications to ensure safety and security.
Second, in Executable and Translatable UML by Stephen J. Mellor, learn the fundamental ideas
behind Executable and Translatable UML and how it works in practice to accelerate develop-
ment and improve the quality of systems. Many senior level managers rely on project managers
to present pertinent measurement data that enables the decisions they make. In What You Don’t
Know Can Hurt You, the third article in this section, author Douglas A. Ebert provides helpful
questions for senior managers to ask their project managers to ensure the proper set of met-
rics is being collected for them to act upon.

Finally, Identifying Essential Technologies for Network-Centric Warfare by David Schaar is our
Open Forum article that shares this author’s opinion and research on network-centric war-
fare (NCW). Schaar discusses NCW from its concept definition to its role in the battlespace
to the technologies needed to enable concepts, including better awareness of the enemy and
friendly forces.

As shown in this set of articles, it is clear that software plays a big role in increasing the
warfighter’s combat effectiveness. The F-16 pilot I listened to showed obvious joy in describing
what software brings to his job today. I can only imagine what he might be saying about its
impact 10 years from now.

Greater Combat Effectiveness

September 2004 www.stsc.hill.af.mil 3

Tracy L. Stauder
Publisher

The Software Edge

4 CROSSTALK The Journal of Defense Software Engineering September 2004

The U.S. Navy’s F/A-18 Hornet is a sin-
gle- and two-seat, twin engine, multi-

mission fighter/attack aircraft that can
operate from either aircraft carriers or land
bases [1]. The F/A-18 relies on two prima-
ry mission computers for navigational con-
trol and weapons employment. The origi-
nal F/A-18 A/B model aircraft mission
computers use 1970s software technology
with 32 thousand (K) of memory in each
computer. From the start, the F/A-18
Hornet was designed to perform both the
fighter and attacker roles. To support these
dual roles, multi-function programmable
radar was created. Instead of being wired
to do just one job, the radar would be soft-
ware reprogrammable.

A programmable radar signal processor
and data processor provide the flexibility to
change missions and select radar mode
based on pilot inputs. For example, the
F/A-18 uses the same radar for air-to-air
target acquisition and tracking, as well as
air-to-ground Doppler beam sharpened
target mapping. Another key element was
breakthrough technology in human factors
and the pilot-to-vehicle interface allowing
an effective one-man operation.

A concern in designing a dual role air-
craft was how to provide all the informa-
tion the pilot needed to effectively perform
the mission without overwhelming the
pilot with information. An innovation
incorporated into the Hornet for one-man
operation is the combination of the heads-
up display (HUD) and three heads-down dis-
plays. As the pilot looks through the HUD
toward the sky, the land, or the sea, dynam-
ic symbols are presented displaying every-
thing the pilot needs to safely fly the plane
and deliver weapons. The HUD displays
symbols that are projected at infinity, elim-
inating the need for the pilot’s eyes to refo-
cus from long distance, or infinity, to the
instrument panel, which reduces incidences
of vertigo.

Twenty buttons used to manipulate
information presented on the screen sur-
round each heads-down display. By push-

ing one button, the pilot can see a menu of
available choices. Then, by pushing addi-
tional buttons, a diagram of the weapons
being carried is displayed. The pilot selects
a weapon for use and enters a delivery pro-
gram (e.g., number of weapons to be
released, release interval, fusing options).

Two of the three heads-down displays
are identical, allowing one display to back
up the others in a malfunction. The third

display can project a moving groundmap
combined with additional situational
awareness or navigational data. This map is
programmed to follow aircraft movement
showing aircraft position relative to specif-
ic ground features (e.g., roads, railroad
tracks, cities).

The HUD and three heads-down dis-
plays work in concert via their software
programming. For example, air-to-air tar-
gets may be displayed from a bird’s eye view
on one of the heads-down displays, while
the HUD displays a line-of-sight cue (from
the pilot’s viewpoint) outlining the highest
priority target and current weapon selected.
In all cases, critical information on the
heads-down display screens also appears

via the HUD, usually in a graphical format
designed for rapid pilot comprehension.

The center instrument panel contains
the up-front-control panel. The aircrew
uses the 10-digit keypad panel to change
radio frequencies or enter data such as tar-
get latitude/longitude. A pilot sometimes
changes radio frequencies as many as 40
times an hour. After a little practice, this
placement allows the pilot to change fre-
quencies without looking.

During a dogfight maneuver, push-
button selection may be difficult due to
the number of G-forces being endured by
the pilot. Therefore, all controls needed to
manipulate the Hornet during stressful
maneuvers are located on the engine
throttles and the flight control stick. This
convention is termed hands-on throttle and
stick. This enables the pilot to select radar
modes, weapons, and targets and control
engine power, all with the touch of a fin-
ger. Designers of the F/A-18 knew a
pilot’s survival might depend on a swift
response in dealing with attacks from a
hostile fighter.

Deployment
The first real test of the F/A-18 A/B came
in 1986 with air strikes against Libya. An
F/A-18 aircraft attached to the U.S.S. Coral
Sea launched high-speed anti-radiation
missiles against Libyan air defense radars
and missile sites, effectively silencing them
during the attacks on Benghazi facilities [1].
After the attack, the F/A-18s were armed
and ready to counter any air-to-air or air-to-
ground threat the Libyans may have
planned.

During this timeframe, the entire air-
craft contained approximately one million
lines of code. Early F/A-18s contributed
in multiple areas, primarily the air defense
role in the form of combat air patrol and
suppression of enemy air defense. Like all
later model F/A-18s, all necessary infor-
mation to land on the aircraft carrier is
available on the HUD. This eases the effort
required by the aircrew to get aboard and

Software Wars
Susan Weaver

L-3 Communications Government Services, Inc.

The basic premise behind the F/A-18 aircraft design was that capability growth could be achieved through software upgrades
rather than requiring frequent hardware changes to increase functionality. At least that was the vision back in the late 1970s
when the concept for the F/A-18 aircraft was first developed. The F/A-18 platform’s recent return to the Persian Gulf
region has provided us with a rare opportunity to examine the extent to which we have been able to achieve capability growth
through software upgrades, and to consider the lessons we have learned as a major military system.

“The efficiency and
effectiveness of the

weapons were increased
through minor upgrades
to software. Our ability

expanded from delivering
multiple weapons on a

single target to delivering
multiple weapons on

multiple targets.”

Software Wars

September 2004 www.stsc.hill.af.mil 5

land safely on the carrier.

Operation Desert Storm
In 1987, the next major variant of the
Hornet (F/A-18 C/D) was released to the
fleet. The early F/A-18 C/D models uti-
lized 256K processing power in each of its
primary computers, with later model C/D
aircraft possessing 2,112K memory for
each primary processor, and a total of six
million lines of code in the aircraft.

To understand the significance of the
F/A-18 C/D’s dual role, lone operator, and
system capabilities, it is useful to imagine
what it is like for a pilot to bomb an enemy
target. The following is Navy Lt. Nick
Mongillo and Lt. Cmdr. Mark Fox’s recol-
lection of an event that occurred during
Desert Storm.

Fox and Mongillo had launched
their first combat mission. Carrying
four 2,000-pound bombs, two
AIM-9 heat-seeking Sidewinder
missiles, two AIM-7 Sparrow radar-
guided missiles, and a centerline 330
gallon external fuel tank, the F/A-
18s made their way toward the des-
ignated target approximately 550
miles from the carrier.

As they approached the target area,
the pilots had their radar in air-to-
ground mode when they suddenly
received word of approaching
enemy fighters. “The E-2 (early
warning aircraft) gave us a call say-
ing, ‘Bandits on nose at 15,’ which is
a confirmed bad guy at 15 miles,”
recalled Fox. “We quickly went back
to our radar search mode, got locks
on them, confirmed they were bad
and shot them both down.”

Fox fired two shots to down the
first MiG: a Sidewinder followed by
a Sparrow. Both missiles hit the
Iraqi jet, and the exploding MiG
was clearly visible on the videotape
that recorded the action through
the HUD. “I fired a Sidewinder at
what seemed to be a relatively long
range, but it wound up working. I
wasn’t sure it was going to do that,
so I fired a Sparrow to make sure,”
said Fox.

Mongillo’s kill came only a few sec-
onds after Fox’s and was made at
close range with a Sparrow. It was
also clearly visible on the HUD
videotape. Furthermore, the tapes
show two retreating MiGs were
within missile range when the

Hornets disengaged to complete
their bombing run. Both Hornets
then dropped their bombs on target
from an altitude of 18,850 feet.
“The idea of a strike fighter is valid.
I’m not going to make any
grandiose claims, but I do believe
we’re the first guys to kill anybody
while carrying 8,000 pounds of
bombs,” said Fox. [2]

Overall, more than 210 U.S. Navy,
Marine Corps, and Canadian F/A-18
Hornets were engaged in Operation Desert
Storm. More than 6,000 targets were hit by
Hornet aircraft flying a variety of missions
from fleet air defense to reconnaissance to
suppression of enemy air defenses to neu-
tralizing ground forces. The F/A-18 air-
craft delivered 18 million pounds of ord-
nance, and clocked more than 30,000 flight
hours while flying 11,000 sorties – an aver-
age of 1.2 sorties per day. Throughout
Desert Storm, the aircraft averaged 90 per-
cent readiness. Hornets completed 95 per-
cent of scheduled sorties and missed none
for maintenance reasons [3].

Desert Storm was the first major con-
flict to make use of smart software-enabled
bombs like the Joint Standoff Weapon
(JSOW). Smart weapons can be pro-
grammed before aircraft takeoff to execute
a series of software-controlled navigational
changes. These navigational changes mini-
mize the risk of the weapon being disabled
by enemy fire before reaching its assigned
target. Maverick anti-tank missile and laser-
guided bombs developed during the
Vietnam War continue to be very effective
against high-value targets.

The heart of the F/A-18 is the integra-
tion of software and hardware into a single
system. During Desert Storm, F/A-18
software was viewed as the glue that held
the hardware elements together. Because of
this tightly integrated system, changes to
the software in one or more of its comput-
ers can effect a major improvement in the
aircraft’s capabilities without requiring
hardware or airframe modifications to the
aircraft. For example, adding a new
weapons system to the aircraft inventory
rarely requires hardware modifications.
Changing the software is much easier and
faster than changing the hardware, shorten-
ing the time required to integrate the
weapon on the aircraft.

A basic hardware infrastructure is,
however, necessary to provide the ability
to take advantage of the F/A-18’s repro-
grammability. A standard language for
communicating between processors
allows new weapons to be added to the
inventory without requiring a hardware

change to the aircraft. Just as faster
processor upgrades are necessary to sup-
port expansion of software applications,
the F/A-18 transitioned to faster proces-
sors so that smart weapons can exchange
more complex data in less time.

Operation Iraqi Freedom
As good as F/A-18 operations were in
Desert Storm, there was plenty of room
for improvement. As of May 1999,
Hornet pilots had accumulated more than
3.7 million flight hours and, in the process,
established new records daily in safety,
reliability, maintainability, and mission per-
formance [1].

Primarily due to multiple software
updates, the aircraft in Operation Iraqi
Freedom have significantly more combat
capability. The most dramatic is the intro-
duction of a family of new global posi-
tioning system (GPS)-guided munitions.
The Joint Direct Attack Munition (JDAM)
and JSOW allow autonomous and highly
accurate weapons delivery in all types of
weather. GPS-guided weapons improve the
lethality of the F/A-18 weapon system
over the laser-guided and ballistic weapons
used in Desert Storm, which required clear
air to be effective.

Additionally, there was a host of other
weapon improvements. Some improve-
ments were made within the weapons’ soft-
ware and others within the F/A-18’s
processors to enhance data exchange
between the weapon and aircraft.

The F/A-18 aircraft’s source lines of
code now exceed 8.3 million versus less
than one million in 1987. In Desert Storm,
a specific mode within a given subsystem
did not share data with other modes or, put
another way, the data within a given func-
tion was separate. For example, the radar
would lose the data from multiple air-to-air
tracks generated in track-while-scan mode
when commanded to switch to single-tar-
get-track.

Since Desert Storm, software updates
have been developed and fielded to retain
data from the previous mode when
switching from one mode to another. The
significance of exchanging data between
subsystems was identified and software
upgrades incorporated to establish con-
nectivity between the various subsystems.
For example, software was used to
exchange information between the radar
and the weapon control computer. By
Operation Iraqi Freedom, we had taken a
quantum leap forward sharing data
between air, sea, and ground forces. Now
one source can take a picture of the target,
share that data with an F/A-18 loaded
with the desired ordnance, and pass on the

The Software Edge

6 CROSSTALK The Journal of Defense Software Engineering September 2004

coordinates and other information for
rapid, precise targeting.

Today, the same core set of weapons
used in Desert Storm is now capable of
being redirected to a different target during
flight. The efficiency and effectiveness of
the weapons were increased through minor
upgrades to software. Our ability expanded
from delivering multiple weapons on a sin-
gle target to delivering multiple weapons
on multiple targets.

Navigation was dramatically improved
with the introduction of GPS and digital
moving maps in the F/A-18s. These addi-
tions improved situational awareness and
sustained higher accuracy than the older
inertial platform used in Desert Storm.

Operation Iraqi Freedom shifted the
focus of combat. Our situational aware-
ness expanded from focusing on a single
F/A-18 mission and its intended targets to
all forces (ground, air, weapon) coming
together to achieve a single mission in a
coordinated manner. Coordination at this
level required rapid and accurate identifica-
tion of forces.

The ability to quickly determine friend-
ly from hostile contact was inherent to per-
forming assigned tasks. Timely informa-
tion exchange among the Navy, Air Force,
Marines, Army, and coalition forces using
common, easily understandable formats is
the core element in our most recent de-
ployment. First deployment of systems like
the Digital Communication Set and
Multifunctional Information Distribution
System onboard the F/A-18 brought the
battleforce commander the ability to flex
the plan based on current information re-
garding target location, status, and lethality.

Future Growth
By 1991, it was becoming clear that avion-
ics cooling, electrical, and space constraints
would begin to limit future growth of the
F/A-18 C/D. The multi-mission F/A-18
E/F Super Hornet strike fighter is an up-
grade of the combat-proven F/A-18 C/D.

From an interoperable, total ownership
cost viewpoint, the biggest advance is
achievement of a 90 percent commonality
of avionics between the C/D and E/F
models. However, the F/A-18 E/F cockpit
features a touch-sensitive, upfront control
display; a larger, liquid-crystal multipur-
pose color display; and a new engine fuel
display. The F/A-18 E/F aircraft are 4.2
feet longer than earlier Hornets, have a 25
percent larger wing area, and carry 33 per-
cent more internal fuel that will effectively
increase mission range by 41 percent and

endurance by 50 percent.
The Super Hornet incorporates two

additional weapon stations. This allows for
increased payload flexibility by mixing and
matching air-to-air and/or air-to-ground
ordnance. The aircraft can carry the com-
plete complement of smart weapons,
including the newest joint weapons such as
JDAM and JSOW.

Enabling Technologies and
Processes
When the F/A-18 concept was first devel-
oped, software was an art rather than the
science it is today. The engineering disci-
pline has matured and expanded to
include a systems view and commonly
accepted process principles as contained
in the Capability Maturity Model®.
Predictable product delivery containing
promised high-quality functionality within
cost is the foundation of process
improvement models.

The F/A-18 was the Navy’s first tacti-
cal jet aircraft to incorporate a digital, mul-
tiplex bus architecture for the entire sys-
tem’s avionics suite. The benefit of this
design feature is that the F/A-18 has been
relatively easy to upgrade on a regular,
affordable basis. The software architecture
provides the basis for making more fre-
quent updates to system capabilities [4].

Achieving an integrated system solu-
tion demands communication and coordi-
nation between the end user, requirements
personnel, system and software designers,
and test personnel, which has manifested
itself in adoption of Integrated Product
Teams to move from concept through
development to product support. Today’s
expectations are for a flexible system solu-
tion that meets demands of any current
combat situation while continuously for-
mulating options for the future. Current
expectations assume a solid foundation of
individual software components working
seamlessly together to provide needed
capabilities, not unlike the way we expect
our laptop to perform needed functions at
any time, every time.

The advent of new high-order pro-
gramming languages brings many benefits
to the software development arena. The
complexity of needs that can be addressed
through software algorithms and process-
ing is huge compared to just 10 years ago.
The new Super Hornets utilize the more
modular, object-oriented design features
that did not exist when the original F/A-
18s were rolling off the production line.
Basically, what took the Navy 20 years to
create as functionality for the F/A-18 air-
craft was converted to the more cost-effec-
tive High Order Language (HOL) in five
years with every warfighting function veri-
fied in two years. This recoding of func-
tionality involved some 1.3 million lines of
code. The effort involved delivery of more
than 100 major warfighting capabilities
(e.g., HUD, backup mode), containing well
over 1,000 possible operator selections.
The F/A-18 Advanced Weapons Lab was
recognized with the 2003 U.S.
Government’s Top 5 Quality Software
Projects award for the HOL conversion.

Commercial off-the-shelf (COTS)
products are major enablers in converting
to HOL. Our COTS-based system is the
enabler for future capability enhancements
to the F/A-18 production line. It enables
the F/A-18 platform to grow and adds
more computing horsepower on demand,
for example, to expand the F/A-18’s use
from its current fighter/attack role into an
electronic attack (EA) role currently pro-
vided by the Navy’s EA-6B aircraft. The
combination of COTS and HOL has made
updating the aircraft’s entire functionality
more modular, economical, and faster.

The tools available to develop software
have undertaken unimaginable leaps to sup-
port integrated teaming across geographi-
cally diverse locations. Even the tools used
to generate software code have become
more sophisticated and visual, making the
effort required to design and perform low-
level testing more cost efficient. The F/A-
18 program uses commercial tool suites for
software development. Examples include
the desktop environment that allows devel-
oper testing to occur on a workstation ver-
sus a separate test facility. Another innova-
tion was an automatic display code genera-
tor that shows promising use in flight sim-
ulations, test facilities, trainers, and techni-
cal publications.

Long before Operation Iraqi Freedom,
the tide had turned from just looking at
what software processing could be
achieved within a single mode, a single box,
or even a single F/A-18. The battlegroup is
turning into a single-striking unit making it
difficult to look back and focus on high-
lighting the software aspect of this amazing

“The reality is
that software is the

enabler that ties
individual units of a

battlegroup into
a single striking entity.”

® The Capability Maturity Model is registered in the U.S.
Patent and Trademark Office by Carnegie Mellon
University.

Software Wars

September 2004 www.stsc.hill.af.mil 7

evolution. We now realize our perception
in the 1980s was that software was the end
of the journey. The reality is that software
is the enabler that ties individual units of a
battlegroup into a single striking entity.

The F/A-18 program understands –
and eagerly steps forward to engage in –
the possibilities of net-centric warfare. The
full potential of force multiplication relying
on software is still to come; our most
recent combat test with F/A-18 confirms
the validity of our mission and software
strategy.◆

References
1. Federation of American Scientists

Military Analysis Network. “F/A-18
Hornet.” Washington, D.C.: FAS, 2
Apr. 2004 <www.fas.org/man/dod
-101/sys/ac/f-18.htm>.

2. Weaver, Susan. F/A-18 AWL
Management and Systems Engineering
Process Manual. F/A-18 Advanced
Weapons Laboratory, June 2000.

3. Boeing. “Hornet: 20th Anniversary of
First Flight.” Boeing, St. Louis, MO; 2
Apr. 2004 <www.boeing.com/defense
-space/military/fa18/fal820/stories.
htm>.

4. GlobalSecurity.org. “F/A-18 Hornet.”
Alexandria, VA: GlobalSecurity.org, 2
Apr. 2004 <www.globalsecurity.org/
military/systems/aircraft/f-18.htm>.

About the Author

Susan Weaver, a senior
management application
specialist with L-3 Com-
munications Govern-
ment Services, Inc., is the
F/A-18 Advanced Wea-

pons Laboratory’s internal consultant on
process improvement. She guides the
organization in defining and document-
ing its processes as the organization
evolves, and leads its process improve-
ment program and chairs the Systems
Engineering Process Group. Her experi-
ence spans software/systems engineer-
ing, weapons and tactics simulation
analysis, and technical writing. Weaver
has a Bachelor of Science in business
project management.

L-3 Government Services, Inc.
330 East Ridgecrest BLVD STE B
Ridgecrest, CA 93555-5814
Phone: (760) 939-5793
Fax: (760) 939-5961
E-mail: susan.weaver@navy.mil

Object Management
Group
www.omg.org
The Object Management Group (OMG)
is an open membership, not-for-profit
consortium that produces and maintains
computer industry specifications for
interoperable enterprise applications.
Membership includes virtually every
large company in the computer industry,
and hundreds of smaller ones. Most of
the companies that shape enterprise and
Internet computing today are represented
on the OMG board of directors. The
OMG flagship specification is the multi-
platform Model Driven Architecture
(MDA), recently under way but already
well known in the industry. The Object
Management Architecture defines stan-
dard services that will carry over into
MDA work. The OMG task force stan-
dardizes domain facilities in industries
such as health care, manufacturing,
telecommunications, and more.

Global Information Grid
Enterprise Services
http://ges.dod.mil
The Global Information Grid Enterprise
Services (GIG ES) is a suite of value-
added information, Web, and computing
capabilities that will improve user access
to mission-critical data. GIG ES will pro-
vide access – anytime, anywhere – to reli-
able, decision-quality information
through the use of cutting-edge, Web-
based, networked services. GIG ES
improves access to reliable decision-qual-
ity information for Department of
Defense components at all echelons. End
users can pull mission-tailored informa-
tion intelligently from anywhere within
the network environment with minimal
latency. This will enable leveraging of
best-of-breed concepts (many of them
Web-based) and will maximize the net-
centric performance of the GIG ES.

Defense Information
Systems Agency
www.disa.mil
The Defense Information Systems
Agency (DISA) is a combat support
agency that is responsible for planning,
engineering, acquiring, fielding, and sup-
porting global net-centric solutions and
operating the Defense Information
System Network to serve the needs of the
president, vice president, the secretary of
defense, and the other Department of

Defense components, under all condi-
tions of peace and war. DISA’s core mis-
sion areas include communications, com-
bat support computing, information
assurance, joint command and control,
and joint interoperability support.

DACS and DSC Web Site
www.dacs.dtic.mil
The Defense Acquisition Contract
Service (DACS) and Defense Software
Collaborators (DSC) Web site aids in dis-
covering Department of Defense (DoD)-
sponsored software resources for program
managers and software developers. The
DACS has been designated as the DoD
Software Information Clearinghouse serv-
ing as an authoritative source for state-of-
the-art software information offering
technical services designed to support the
development, testing, validation, and
transitioning of software engineering
technology. The DACS has created the
DACS Gold Practice Web site at <www.
GoldPractices.com> to provide informa-
tion about many prevalent software acqui-
sition and development best practices that
may have a positive impact on program
risks and return on investment.

Federation of American
Scientists
www.fas.org
The Federation of American Scientists
(FAS) conducts analysis and advocacy on
science, technology, and public policy,
including national security, nuclear
weapons, arms sales, biological hazards,
secrecy, education technology, informa-
tion technology, energy, and the environ-
ment. The FAS is a privately funded non-
profit policy organization whose Board of
Sponsors includes 58 of America’s Nobel
laureates in the sciences.

American Institute of
Aeronautics and
Astronautics
www.aiaa.org
Today, with more than 31,000 members,
the American Institute of Aeronautics
and Astronautics is the world’s largest
professional society devoted to the
progress of engineering and science in
aviation, space, and defense. The
Institute continues to be the principal
voice, information resource, and publish-
er for aerospace engineers, scientists,
managers, policy makers, students and
educators.

WEB SITES

8 CROSSTALK The Journal of Defense Software Engineering September 2004

Tomahawk Cruise Missile Control:
Providing the Right Tools to the Warfighter

With fast-changing targets, unconventional enemies, and shadowy, pop-up targets of opportunity, our warfighters require the very
best software solutions that take advantage of newest-generation cruise missile capabilities. The Tactical Tomahawk Weapon
Control System gives the United States’ and the United Kingdom’s naval warfighters the right tools to carry out today’s demanding
strike missions.

The evening news program cuts to a
videotape of a lone warship operating

off a coastline far from home … the night
sky is pierced by the brilliant flash of a
cruise missile emerging from the warship’s
flush-mounted deck launcher, climbing,
banking, and quickly disappearing over the
horizon. A few miles away, the seascape is
altered by another cruise missile emerging
from the depths, sent on its way from a
stealthy nuclear-powered submarine lurk-
ing beneath the waves. The attack is on,
and Tomahawk cruise missiles are the first
punch in the opening salvo.

Recent world events show that the
United States and its coalition partners are
being called upon to use smart weapons in
both the prosecution of conflicts with
other nations, and increasingly, in the glob-
al war on terrorism. Smart weapons in gen-
eral and cruise missiles in particular are
often the first surgical instruments of mil-
itary power projection, focusing destruc-
tion only where intended while limiting the
danger to our warfighters.

Improving the Tools
The Tactical Tomahawk Weapon Control
System (TTWCS) is the next-generation
system for planning and controlling
Tomahawk cruise missile flight. The
TTWCS development is part of the U.S.
Navy’s Tactical Tomahawk Weapon
System Upgrade to improve the flexibility
and responsiveness of Tomahawk cruise
missiles, add new capabilities, and upgrade
existing fleet systems.

The TTWCS’ efforts include the full
array of system development, including
requirements definition, system engineer-
ing, system architecture and design, soft-
ware development, software integration,
hardware engineering, hardware manufac-
turing, hardware and software integration,
system testing, logistics, training, and sys-
tem installation. The TTWCS program
will support U.S. surface ships and fast-
attack submarines, and is planned for
newly converted U.S. guided missile sub-
marines and U.K. fast-attack submarines.

Tools in the Warfighter’s
Hands
The TTWCS was formally approved for
initial operating capability in December
2003 to work with existing Tomahawk
missiles in the nation’s inventory. The
TTWCS initial operating capability for the
newest Block IV Tactical Tomahawk mis-
sile was achieved in mid-2004. The U.S.

Navy began fleet installation of the
TTWCS system in early 2004 and could
provide up to one hundred new weapon
control systems by 2008.

The Right Team
The TTWCS program consists of a multi-
disciplinary team (systems engineers, soft-
ware developers, system testers, hardware
engineers, and logistics and training spe-
cialists) composed of the acquisition
agent, Naval Air Systems Command for
Cruise Missile Weapon Control Systems,
Patuxent River, MD; the Naval Surface
Warfare Center Division, Dahlgren, VA;
the Naval Undersea Warfare Center
Division, Newport, R.I.; and the prime
contractor, Lockheed Martin Tactical
Control Systems, Valley Forge, PA.

Tomahawk Command and
Control Legacy
The U.S. Navy’s Cruise Missile Program
has been effectively evolving for almost 30
years. The original Tomahawk Weapon
Control System effort started in the late
1970s, and the follow-on Advanced
Tomahawk Weapon Control System
(ATWCS) program lasted from June 1993
to December 1998.

The ATWCS was a large-scale hard-
ware and software integration and soft-
ware development program to replace the
Tomahawk cruise missile shipboard oper-
ational hardware and software system.
The ATWCS team designed, developed,
and integrated software products from
commercial corporations and U.S. Navy
laboratories into a cohesive, multi-security
level weapons control system; conducted
system level tests of the integrated prod-
ucts; prototyped future requirements; and
successfully implemented the ATWCS on
U.S. Navy surface ships and submarines.

Lockheed Martin won a competitive
program to provide the third-generation
cruise missile weapon control system, the
TTWCS, in May 1999.

Benefits to the Warfighter
Shortening the Timeline
The TTWCS system will reduce the
warfighter’s Tomahawk timeline by bring-
ing the missile mission planning function
aboard the firing unit. Previously, this
planning function was done solely at
shore-based or dedicated afloat cruise
missile support centers, taking much more
time to replan and provide new or revised
missions to the ship.

The system’s Launch Platform Mission
Planning component is a new capability
that reduces weapon system reaction
times by speeding up the tactical mission
planning process. Another new capability
is the ability to redirect missiles to new tar-
gets while in flight, available with the
newest Block IV Tomahawk. These
newest capabilities are particularly impor-
tant today, with fast-changing targets,

Marcus Urioste
Lockheed Martin Integrated Systems & Solutions

“ ...TTWCS adds much
more capability to

control the Tomahawk
missile(s), direct, redirect,
mission plan, and replan,
while at the same time

keeping the system
interfaces easy to use
for the off icers and
sailors onboard.”

September 2004 www.stsc.hill.af.mil 9

Tomahawk Cruise Missile Control: Providing the Right Tools to the Warfighter

unconventional enemies, and shadowy,
pop-up targets of opportunity.

Ease
The new TTWCS program took on the
task of providing the next-generation
cruise missile weapon control system to
handle the newest technological improve-
ments to the Tomahawk missile, while
keeping the system user-friendly enough
to be maintained by young shipboard
operators not far removed from high
school graduation. Simply put, the
TTWCS adds much more capability to
control the Tomahawk missile(s), direct,
redirect, mission plan, and replan, while at
the same time keeping the system inter-
faces easy to use for the officers and
sailors onboard.

Space
Space on ships and submarines is in great
demand by equipment to power and pro-
tect the ship, by weapon systems, and by
people. The TTWCS successfully reduced
the command-and-control equipment
footprint onboard from seven racks of
computer equipment to three, all while
adding vital new capabilities.

Software’s Vital Role in the
TTWCS
Multiple Platforms
The TTWCS is being installed or is plan-
ning to be installed on U.S. Navy surface
ships (destroyers and cruisers), U.S. Navy
converted guided missile submarines, and
fast-attack submarines (Los Angeles
class/Virginia class/U.K.’s Trafalgar and
Astute class). On U.S. fast-attack sub-
marines, the TTWCS runs on the Combat
Control System common hardware. The
TTWCS surface-ship environment con-
sists of multiple, redundant, single-board
computers, running UNIX and Windows
operating systems. The fully redundant,
VME-based hardware architecture is
housed in two TTWCS equipment cabi-
nets. The software is executed by opera-
tors at four tactical display consoles on
surface ships and from one to four con-
soles on submarines. The TTWCS inter-
faces with several shipboard systems,
including the inertial navigation system,
weapon vertical launch system, the global
command-and-control system – maritime,
and communications networks.

The Right Software
The TTWCS is a major software-based
reengineering upgrade to implement even

greater warfighter capability over previous
Tomahawk missile control generations.
The program’s software development is
certified at the Software Engineering
Institute’s Capability Maturity Model®
(CMM®) Integration (CMMI®) Level 5.
The software development incorporates a
variety of components that spans new
development, reused software from the
predecessor ATWCS program, and gov-
ernment and commercial products.

The TTWCS software consists of six
computer-software configuration items
with approximately 500,000 lines of new
and modified development code and
500,000 lines of reused code. The deliv-
ered software is C, C++, Java, and Ada,
and is developed to be compatible with
the Defense Information Infrastructure
Common Operating Environment (DII
COE). The DII COE is a Department of
Defense-wide common operating envi-
ronment that enables common standards

and implementation tools for military tac-
tical situational awareness and system
interoperability. Prior to DII COE, each
new military system requiring situational
awareness and interoperability developed
individual solutions.

The TTWCS program reached a DII
COE Level 7 (8 is highest possible), signi-
fying virtually no duplication of DII COE
functions within the system application.
The TTWCS demonstrated the benefits of
the DII COE reuse concept through
reduction in development and life-cycle
costs. The DII COE software is incorpo-
rated into the TTWCS infrastructure layer,
which minimizes redundant code and
maximizes consistency for system services
and evolution to newer computing plat-
forms. Software development is accom-
plished using object-oriented methodolo-

gies and Common Object Request Broker
Architecture for interfaces among soft-
ware components.

The Right Development
Environment
The TTWCS software development envi-
ronment consisted of a network of
Hewlett Packard (HP) workstations (B-
180Ls and C-110s) and servers (K-360
and K-580 mid-class), all running HP
UNIX. Engineers used desktop PCs to
access the development network via
XOnNet. Tools used include Popkins’
System Architect (system/software archi-
tecture design); Telelogic’s COOL:Jex
(detailed software design); Telelogic’s
DOORS (requirements traceability);
IBM’s ClearCase (configuration manage-
ment); IBM’s ClearQuest (problem
reporting/resolution database); HP’s
SoftBench (C/C++ compiling and
debug); ADA Core Technology’s GNAT
(Ada compiler and coding); and Aonix’
Teleuse and Builder Xcessory (human-
computer interface display generation).

The Right Development
Model
The TTWCS benefits from an incremental
software development model that offers
improved quality, reduced cost, and better
adherence to schedule over spiral or
waterfall development. Each increment
adds functionality and is taken through a
full development and test cycle. In soft-
ware increment one, legacy software from
ATWCS was integrated with TTWCS
hardware. During increment two, the
TTWCS infrastructure (Operating
Environment and Common Services
Middleware Layer) was implemented and
matured. Software increments three
through six added new functionality to the
heritage weapon control system. The final
increment contained the full TTWCS
functionality and was formally tested
under rigorous supervision.

Incremental software development
allows for risk reduction through incre-
mental system integration. Each succes-
sive increment is developed at reduced
technical risk due to a solid functional and
performance foundation established in the
preceding increment.

Software Metrics
The TTWCS contract was awarded to
Lockheed Martin in May 1999. The U.S.
Navy and Lockheed Martin jointly deter-
mined that the TTWCS would be a focus
program for implementing CMM Level 5
processes and supporting tools. In

® CMM and CMMI are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

“The TTWCS benefits
from an incremental
software development

model that offers
improved quality,

reduced cost, and better
adherence to schedule
over spiral or waterfall

development.”

December 2000, the TTWCS was scored
at CMM for Software Level 5. In June
2002, Lockheed Martin Management &
Data Systems (now Lockheed Martin
Integrated Systems & Solutions) became
one of the first companies in the world to
achieve CMMI Level 5.

The implementation of Level 5
processes on the TTWCS has resulted in
productivity improvements, defect reduc-
tions, and cost savings for the U.S. govern-
ment. CMMI Level 5 has provided mea-
surable improvements in software devel-
opment: a 30 percent increase in software
productivity, a 20 percent drop in develop-
ment costs, and a 15 percent drop in
detect/find/fix software cost.
• Productivity. Based on historical met-

rics for similar developments, using
CMM Level 5 processes resulted in a
reduction of over 15,000 development
hours.

• Quality. In-process quality activities
enabled early problem detection during
design and code/unit test, resulting in a
30 percent reduction in defects during
integration and verification.

• Integrated Program Environment
(IPE) and Integrated Development
Environment (IDE). The IPE
enabled everyone on the program,
regardless of location, to participate in
daily decision making. The IDE
enabled collaborative development
among 500+ users across the United
States.

• DII COE Compliance. The delivered
software achieves DII COE Level 7
compliance for newly developed soft-
ware and Level 5 for reused software.
The DII COE software is incorporated
into the TTWCS infrastructure layer,
which minimizes redundant code and
maximizes consistency for system ser-
vices.

• Global Command-and-Control Sys-
tem – Maritime Interoperability.
The Weapon Control System (WCS)
Common Services minimizes redun-
dant code and maximizes consistency
for all system services by using services
developed and maintained by the U.S.
Navy.

Getting the Process Right
The TTWCS benefits from high quality,
defect prevention, improved productivity,
and reduced risk inherent in achieving the
industry’s highest level of software process
maturity. The program also complies with
ISO 9001 objectives. The TTWCS Product
Assurance Plan spans the entire program
life cycle and ensures adherence to manda-
tory processes; development of compliant

software, hardware, and documentation;
and application of quantitative manage-
ment (metrics) techniques. The plan
applies to all locations where program
activities occur. The plan’s proactive prod-
uct assurance methodology encompasses
the following:
• Preventive action and continuous

process improvement.
• In-process inspections and process and

product compliance audits at all sites.
• Root-cause analysis to identify areas

for improvement, increased product
quality, and reduced risk.

• Metric collection and analysis to identi-
fy areas for process improvement early
in development and throughout the
entire life cycle.

The Right Test Environment
Team Approach
The TTWCS test-approach leveraged facil-
ities and personnel located at government
and contractor facilities. This approach
allowed the team to evaluate and test the
Tomahawk Weapon System from multiple
perspectives, ensuring a robust test pro-
gram that reduced redundancy and validat-
ed the system’s capability to meet the
warfighter’s needs. Finding problems early
and getting timely fleet feedback in the
development cycle reduced follow-on
development costs.

At-Sea Testing
To support at-sea testing of the weapon
control system as part of the larger
weapon system, the TTWCS team validat-
ed the performance of all software builds
produced by the WCS software develop-
ment team prior to the installation aboard
the test ship, U.S.S. Stethem, an Arleigh
Burke class-guided missile destroyer. The
team established a configuration that per-
mitted the U.S.S. Stethem to simulate com-
munication with multiple Tactical
Tomahawk missiles, thus enabling the
completion of the technical evaluation
shipboard event.

The configuration allowed testing of
high numbers of missile launches and in-
flight communications, utilizing non-
expended assets that offer repeatability,
sustainability, and high accuracy at an
established one-time cost for procure-
ment and low operational cost. The test
ship was able to perform missile redirec-
tion of multiple missiles simultaneously
and request health and status information
from the missiles during flight. The mis-
sile simulation responded with both
scheduled and unscheduled health and
status event messages as directed by the
communications plan, resulting in a suc-

cessful test event.

Summary: Providing What
Matters
The TTWCS program’s success to date in
providing the warfighter with the very best
Tomahawk cruise missile control capabili-
ties is a direct result of the dedicated team
that stands behind this vital warfighter sys-
tem. Through a combination of strong
warfighter guidance and contractor per-
formance, adoption of industry best prac-
tices, and the exercise of innovative tech-
nical solutions, the TTWCS team has pro-
vided even more timely capabilities for the
warfighter. Ships and submarines will have
cruise missile capabilities that exceed even
the successful capabilities seen recently in
Kosovo, Afghanistan, and Iraq. In a hos-
tile world where a surgical strike can be
needed in a moment’s notice, the TTWCS
team has provided the capability that gives
our warfighters exceptional flexibility, ver-
satility, and timeliness to address threats to
our nation.◆

The Software Edge

10 CROSSTALK The Journal of Defense Software Engineering September 2004

About the Author

Marcus Urioste leads
business development
and internal research and
development programs
for Lockheed Martin’s
Tactical Control Systems

in Valley Forge, PA. His recent experi-
ence includes business development in
advanced technology, and in internation-
al business development for Lockheed
Martin Global Telecommunications. He
previously served with distinction as a
nuclear-trained submarine officer in the
U.S. Navy on two fast-attack submarines,
and as a tactics instructor at Naval
Submarine School. He has been pub-
lished previously in the U.S. Naval
Institute’s “Proceedings.” Urioste is a Phi
Beta Kappa graduate in mathematics of
Tulane University, where he received his
Navy commission via the Naval Reserve
Officers Training Corps program.

Lockheed Martin Integrated
Systems & Solutions
230 Mall BLVD
BLDG 100/RM 1237
King of Prussia, PA 19406
Phone: (610) 354-3808
Fax: (610) 354-7216
E-mail: marcus.m.urioste@

lmco.com

September 2004 www.stsc.hill.af.mil 11

The global information grid (GIG) is
the globally interconnected, secured,

end-to-end set of information capabili-
ties, associated processes, and personnel
for collecting, processing, storing, dissem-
inating, and managing information on
demand to warfighters, policy makers, and
support personnel [1]. The GIG supports
all U.S. Department of Defense (DoD),
national security, and related intelligence
community missions and functions. It
provides capabilities from all operating
locations and interfaces to coalition,
allied, and non-DoD users and systems.

The GIG as a transformational vision
aims at achieving information superiority
in a network-centric environment. It
enables various systems to interoperate
with each other. For the warfighters, it
brings power to the edge through a Task,
Post, Process, Use process. For the busi-
ness and intelligence communities, it pro-
vides the infrastructure for effective
information gathering and collaborative
operation.

This transformation from a central-
ized, sequential thinking and a static one-
to-one interfacing paradigm to a distrib-
uted, parallel information sharing and
dynamic collaboration approach requires
a fundamental shift in the way systems are
built. Specifically, it lends itself to a ser-
vice-oriented architecture (SOA) on a
ubiquitous network carrying information
on demand.

In an SOA, a set of loosely coupled
services works together seamlessly and
securely over a network to provide func-
tionalities to end users. These services
have well-defined interface contracts.
Supported by service management tools
at the enterprise level, they are published,
discovered, mediated, and consumed in
an orderly fashion.

The service-oriented approach is
inherently dynamic. It allows fast forma-
tion of expedient communities of interest
(COI) to handle highly volatile situations
and changing mission requirements. It
also supports the stable operation of
longstanding or institutional COIs. The
SOAs are flexible because each service

encapsulates the underlying platforms
and technologies that support it. The ser-
vices provided at the enterprise level are
therefore agnostic to those specific plat-
forms and technologies.

The Command, Control, Communi-
cations, Computers, Intelligence, Surveil-
lance, and Reconnaissance (C4ISR)
Architecture Framework [2], along with
its three standard views and common
products, has been widely used in building
C4ISR systems. The framework was orig-
inally developed in 1996 by the DoD to

provide guidance for describing architec-
tures. Version 2 was officially mandated in
1998 as the DoD Architectural Frame-
work and is being superceded by the DoD
Architecture Framework (DoDAF).
Standard techniques employed by C4ISR
include point-to-point interfacing, static
connectivity, and data-flow analysis.
These are more suited to the traditional
sequential processing, system-oriented,
and one-to-one integration paradigm.

With the ongoing efforts to transform
the DoD into a network-centric, service-
oriented environment, the following

questions are often raised:
• Does the C4ISR framework apply to

such a service-oriented architecture?
• How is it supplemented with other

techniques to fully describe such
architectures?

• What are the set of products that
describe the essence of a service-ori-
ented architecture?
Whereas full answers to these ques-

tions will require extensive discussion,
this article describes a pragmatic ap-
proach that naturally fits the service-ori-
ented environment. This approach uti-
lizes object-oriented design and analysis
techniques to supplement the standard
C4ISR framework for developing SOAs.
As the DoD moves toward a network-
centric environment supported by SOAs,
this approach provides a timely and rigor-
ous methodology for specifying future
enterprise architectures, and has been
recently applied to the architecture devel-
opment of Net-Centric Enterprise
Services (NCES) with satisfactory results.

The NCES is a collaborative environ-
ment that supports vertical/horizontal
interoperability between DoD business
and warfighting domains, as well as the
national intelligence domain [3]. The
NCES provides the core enterprise ser-
vices that support various standing and
expedient COIs on the GIG.

Using this approach, the use cases for
the NCES core enterprise services were
developed. The corresponding opera-
tional and systems views were construct-
ed as part of an integrated architecture
product. Activities in the use cases were
also mapped to the Net-Centric Opera-
tions and Warfare Reference Model [4].

In the following sections, I first
describe the approach for formulating an
SOA. Using an enterprise messaging sys-
tem as an example, I then discuss the cor-
responding architecture views that
embody the approach in the C4ISR
framework1.

Formulating an SOA
In formulating an SOA, you start with
operation. Here the focus is how end

Service-Oriented Architecture and the C4ISR Framework

Dr. Yun-Tung Lau
Science Applications International Corporation

This article presents an architecture modeling approach for formulating service-oriented architectures such as those being devel-
oped on the global information grid. The approach uses object-oriented techniques to supplement the traditional Command,
Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance Framework.

“In an SOA
[service-oriented

architecture], a set of
loosely coupled services

works together
seamlessly and securely

over a network to
provide functionalities to
end users.These services

have well-defined
interface contracts.”

12 CROSSTALK The Journal of Defense Software Engineering September 2004

users, systems, or applications use ser-
vices. Use cases in Unified Modeling
Language (UML) [5] describe the external
behavior of a service as seen or utilized
by an actor (user, system, or application).
The boundary of the service in a use case
is clearly delineated. The interaction of

the actor with the service is described
without revealing the internal details of
the service. Use case is, therefore, a nat-
ural tool for describing operational activ-
ities in an SOA.

Based on the operational concept, the
scope of services, and the high-level
requirements, one may identify a set of
high-level critical use cases. These are the
use cases that the architecture must sup-
port to meet the minimal requirements.
Use cases are not requirements.
Nevertheless, they illustrate what func-
tions architecture provides and highlight
the requirements. Therefore, use cases are
the first step in formulating an SOA (see
Figure 1).

In each use case, typically two or more
nodes interact with each other by
exchanging information. If a node is a
service consumer, then it is an actor in
the use case for that service. If it is a
provider, then it is a component provid-
ing that service. Traditionally, a node in
the C4ISR framework represents a role,
an organization, an operational facility,
etc. For an SOA, its scope is expanded to
include shared resources and services.
Hence a service node interacts with con-
sumer nodes to provide services. Use case
and node are, therefore, the primary
objects in describing the operational

aspects of an SOA, as shown in Figure 1.
Once the operational aspects are iden-

tified, the next action is to find the solu-
tion that satisfies the operational require-
ments. In an SOA, each service provides
a set of well-defined functions useful to
its users, or consumers. An example is
chat service, which allows users to per-
form online chat. A set of services may
interact in an orderly manner to provide a
complete set of mission functions. In this
way they form a mission application, or
simply application. Application is not just
a simple collection of services, but an
integral set of logically connected ser-
vices. Application and service form the
primary objects that describe the systems
aspects of an SOA. They are, in practice,
the software that needs to be built by
developers.

Finally, standards and technologies are
the primary objects that constitute the
technical foundation in implementing an
SOA. Figure 1 summarizes the approach
for formulating an SOA, along with the
primary objects. Discussed next are the
corresponding architecture views that
embody the approach in the C4ISR
framework1.

Operational View
For a concrete example, let us consider an
enterprise messaging system, which
encompasses e-mail, instant messaging
(IM), chat, and presence services. The
critical use cases are send and receive e-
mails and instant messages, participate in
a chat session, subscribe to and receive
presence notifications, etc. They are
shown in the use case diagram in Figure
2. In addition, the administrator config-
ures and administers the services.

For each use case, you may describe a
sequence of events or activities. These
activities may be presented in a hierarchy,
as in the standard activity model opera-
tional view (OV-5). Here, however, the
use cases provide a natural grouping of
those related activities. Additionally, a use
case highlights the actors and system/ser-
vice boundary, allowing you to delineate
roles and nodes easily. Hence, include use
case as part of OV-5 and consider it an
essential product for an SOA.

For an SOA, the use-case diagrams
(such as Figure 2) often identify the
nodes. These nodes are roles, organiza-
tions, shared resources, or service nodes.
You can further draw the connections
(i.e., the need lines) between the nodes,
thereby forming the operational node
connectivity description (OV-2). An
example is given in Figure 3. Except for
the use of UML deployment diagram

Service-Oriented
Architecture

Use
Case

Application

Node

Service

StandardTechnology

Operational View

Systems View

Technical View

Enterprise
Messaging

Send and Receive
E-mails

Send and Receive
Instant Messages

Join a Group
and Chat

Subscribe and
Receive Presence

Notification

Configuration and
Administration

Figure 1: Formulating an SOA

Service-Oriented
Architecture

Use
Case

Application

Node

Service

StandardTechnology

Operational View

Systems View

Technical View

Enterprise
Messaging

Send and Receive
E-mails

Send and Receive
Instant Messages

Join a Group
and Chat

Subscribe and
Receive Presence

Notification

Configuration and
Administration

Figure 2: Use Cases as Part of the Activity
Model (OV-5) for the Enterprise Messaging
System

Architecture Views and Products

The Department of Defense (DoD) Architecture Framework (AF) (which will supercede
the Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance Architecture Framework) provides the guiding principles for modeling
and designing architectures in the DoD environment (Version One is available at
<www.aitcnet.org/dodfw>). Architecture is described by three views:
• The Operational View (OV): Describes the tasks, activities, operational elements,

and information exchanges required to accomplish missions.
• The Systems View (SV): Describes systems and interconnections supporting oper-

ational functions.
• The Technical View (TV): Includes technical standards, implementation conven-

tions, rules, and criteria that guide systems implementation.
Each view has a set of products. Some are listed in the table below (the product num-
bers do not imply the order of developing them). In addition to those listed, there are
12 products and two All Views products omitted for brevity.

Views Products and Descriptions

Operational OV-1 (high-level operational concept graphic)
OV-2 (operational node connectivity description)
OV-3 (operational information exchange matrix)
OV-5 (operational activities model)
OV-6c (operational event-trace description)

Systems SV-1 (systems interface description)
SV-2 (systems communications description)
SV-4 (systems functionality description)
SV-5 (operational activity to systems function traceability matrix)
SV-6 (system data exchange matrix)
SV-11 (physical schema)

Technical TV-1 (technical standards profile)

The Software Edge

Service-Oriented Architecture and the C4ISR Framework

September 2004 www.stsc.hill.af.mil 13

notations, this figure is the same as the
standard OV-2.

Finally, a description of each connec-
tion in Figure 3 gives the operational
information exchange matrix (OV-3).
Each row in the matrix describes the
provider and consumer nodes, the infor-
mation exchange, the mode of exchange
(e.g., synchronous), the security aspect,
etc. This again is the same as the standard
OV-3.

The high-level operational concept
graphics (OV-1) still applies to an SOA.
This, together with OV-5, OV-2, and OV-
3, encompasses the concepts of opera-
tion, the use cases from user’s viewpoint,
the connectivity between operational
nodes, and their information exchanges.
They therefore characterize the essential
operational aspects of an SOA.
Furthermore, since operational nodes
include shared resources and services,
dynamic and collaborative operational
activities are properly captured.

To analyze more details in the use
cases, you may use the Integration
Definition for Function Modeling
process diagrams [6] to depict the activi-
ties (including inputs, controls, outputs,
and mechanisms). This will also be part
of OV-5. Alternatively, you can use the
UML sequence diagrams (OV-6c) to
describe the details.

Systems View
As discussed earlier, application and ser-
vice are the primary objects in Systems
View (SV). In an SOA, one is more con-
cerned with the logical interaction
between service providers and con-
sumers. Rather than relying on static con-
nections, users in an SOA may select dif-
ferent services under different use cases.
Consequently, system interface descrip-
tion (SV-1) in the form of logical archi-
tecture diagrams is usually appropriate.
Logical architecture diagrams show the
connectivity between service provider
nodes (or components) and consumer
nodes. They also specify the types of
interface or communication protocols.

For efficient software management,
closely related use cases utilizing similar
services are usually grouped together and
supported by an application. Thus you
may draw a functional decomposition
diagram as systems functionality descrip-
tion (SV-4). The diagram will identify the
applications. Each application supports
one or more use cases and may have a
corresponding logical architecture dia-
gram as SV-1.

Going back to the sample enterprise
messaging system, the basic services are

e-mail, IM, chat, and presence services.
E-mail service is a familiar form of asyn-
chronous messaging and may be provided
through either a thick or thin client. The
other three services emphasize synchro-
nous interaction and therefore are best
provided through a single application to
the users. The corresponding systems
functionality description (SV-4) is shown
in Figure 4.

The SV-1 picture for the e-mail ser-
vice is shown in Figure 5. Here again,
notations similar to the UML deployment
diagrams are used. The boxes represent
nodes that are connected by channels of
data exchange. A service node has a well-
defined service interface (indicated by a
protruded match head) and supports data
exchange in certain protocols. In Figure
5, the protocols and interfaces are
HyperText Markup Language (HTML),
HyperText Transfer Protocol (Secured)
(HTTPS), Simple Mail Transfer Protocol
(SMTP), Internet Message Access
Protocol (IMAP), and the mail access
application programming interface called
Post Office Protocol v.3 (POP3).

Services are often organized into layers,
with the lowest layer containing core ser-
vices, and the upper layers containing
value-added and composite services.
Services in the upper layers use those in the
lower ones to perform specific functions.
You may use service layer diagrams such as
SV-1 to show the dependencies of such
service stacks. An example for the enter-
prise messaging system is shown in Figure
6 (see page 14), which includes the syn-
chronous messaging services and storage

and security core services. Note that a ser-
vice consumer (such as IM and Chat
Client) may dynamically connect to one of
many chat servers that provide chat service.
In this sense, the connectivity is not static.

There are situations such as in securi-
ty service or network management ser-
vice in which a system communications
description (SV-2) is more suitable than
SV-1. This is because such services are
naturally associated with physical systems
and network elements.

Node2User
Node

E-mail Service
Node

IM and Presence
Service Node

Chat Service
Node

Admin.
Node

Synch.
Messaging

Enterprise
Messaging

E-mail

PresenceChat Instant
Messaging

Applications

Send and Receive
E-mails

Send and Receive
Instant Messages

Join a Group
and Chat

Subscribe and
Receive Presence

Notification

Configuration and
Administration

Figure 4: Systems Functionality Description
(SV-4) for the Enterprise Messaging System

Browser

Web E-mail
Server

E-mail
Client

E-mail Server

Security
Manager

E-mail Server

Security
Manager

E-mail
Client

HTML/HTTPS

IMAP/POP3 SMTP
IMAP/POP3

Figure 5: Logical Architecture Diagram (SV-1) for the E-mail Service in the Enterprise Messaging System

Node2User
Node

E-mail Service
Node

IM and Presence
Service Node

Chat Service
Node

Admin.
Node

E-mail

Figure 3: Operational Node Connectivity
Description (OV-2) for the Enterprise
Messaging System

14 CROSSTALK The Journal of Defense Software Engineering September 2004

For an SOA, SV-4 and SV-1 (or SV-2),
capture the functional breakdown and
the logical or physical structures that sup-
port those functions.

Traditionally, system data exchange
matrix (SV-6) provides detailed data
exchange information between system
nodes. Such a matrix depicts static data
exchange connections. In contrast, data
exchange in an SOA is specified by ser-
vice contracts and a list of consumers of
the services. Services can be dynamically
published through a service broker.
Consumers may then dynamically discov-
er, subscribe, and consume the services.
Hence service contracts play the role of
SV-6 and the service broker facilitates
connection between consumers and
providers.

For instance, the emerging Web ser-
vice paradigm uses Web Services
Description Language to describe service
contracts. Simple Object Access Protocol
is used as the transport mechanism. And
Universal Description, Discovery, and
Integration may be implemented as part
of the service broker.

In addition to SV-6, other SVs may
also capture other supplementary proper-
ties of a service. For example, physical
schemas (SV-11) may be used to describe
data schemas in a service contract, and
system performance parameters for qual-
ity of service or service level agreement.
The operational activity to systems func-
tion traceability matrix (SV-5), on the
other hand, shows how the applications
satisfy the requirement by supporting the
use cases.

Technical View
The Technical View (TV) in an SOA is
the same as traditional C4ISR architec-
tures, with standards and technologies as
key elements. Here technical standards
profile (TV-1) is essential because it refer-

ences the key technical standards and
technologies employed by the SOA. The
Joint Technical Architecture [7] provides
primary references for these standards
and technologies.

Summary
Using UML techniques to supplement
the traditional C4ISR framework, I have
elucidated an approach for formulating
an SOA. On the operational side, it starts
with use cases, which involve the interac-
tion of two or more operational or ser-
vice nodes. Mission functions are provid-
ed through applications, which are imple-
mented by a set of services. The corre-
sponding C4ISR architecture products
are also discussed along with an example.

In the appendices1, I also present the
complete UML model for architectural
products in an SOA and its mapping to
the Federal Enterprise AF. It provides a
solid modeling foundation for the above
approach.

When applied to NCES, this
approach was very effective. The use
cases in the nine core enterprise services
of NCES drove the development of the
architectural products. They also provid-
ed a natural link to the NCES require-
ments and direct connection to the end
users. After developing the high-level
architecture products, detailed events for
the use cases were analyzed, service inter-
faces or contracts were defined, and met-
rics for service performance were estab-
lished.

Some topics for future investigation
on this approach include how to capture
SOA products in a Core Architecture
Data Model database, which is included
in the DoDAF; how to specify and man-
age service contracts in an SOA to ensure
interoperability across the enterprise; and
how to evaluate compatibility or compli-
ance between different SOAs.◆

References
1. U.S. Joint Forces Command. Global

Information Grid Capstone Require-
ments Document. JROCM 134-01.
Norfolk, VA: USJFCOM, Aug. 2001
<https://jdl.jwfc.jfcom.mil>.

2. C4ISR Architecture Working Group.
C4ISR Architecture Framework Vers.
2.0. Washington, D.C.: Department of
Defense, 18 Dec. 1997 <www.fas.
org/irp/program/core/fw.pdf>. The
next version is the DoD Architecture
Framework Vers. 1.0. 15 Aug. 2003
<www. aitcnet.org/dodfw>.

3. Global Information Grid Enterprise
Services. Initial Capabilities Docu-
ment for Global Information Grid

Enterprise Services. Arlington, VA:
GIG ES, 9 Sept. 2003 <http://
ges.dod.mil>.

4. Net-Centric Operations and Warfare
Reference Model, Draft Vers. 1.0. 20
Oct. 2003 <https://disain.disa.mil/
ncow. html>.

5. Object Management Group, Inc.
Unified Modeling Language (UML),
Vers. 1.5. Needham, MA: OMG, Mar.
2003 <www.omg.org/technology/
documents/formal/uml.htm>.

6. National Institute of Standards and
Technology. Integration Definition
for Function Modeling (IDEF0).
Federal Information Processing
Standards Publication 183. Gaithers-
burg, MD: NIST, Dec. 1993.

7. JTA Development Group. Joint
Technical Architecture Vers. 5.1.
Washington, D.C.: U.S. Department
of Defense, 12 Sept. 2003 <www.jta
online.disa.mil>.

Notes
1. Additional details on this and other

developments can be found in this
article’s online version at <www.stsc.
hill.af.mil/crosstalk>. In the PDF
version, click on the appendices link.

Storage

Service
Security

Service

E-mail

Service

Chat

Service

Web

Presentation

E-mail

Client
Browser

IM and

Chat Client

IM

and Presence

Service

Figure 6: The Enterprise Messaging System
Represented as a Service Stack (SV-1)

About the Author

Yun-Tung Lau, Ph.D.
is assistant vice president
of Technology at Science
Applications Interna-
tional Corporation. He
has been involved in

large-scale software architecture, design,
and development for 14 years. Lau has
served as chief architect for many soft-
ware and enterprise architecture pro-
jects, from scientific computing, to elec-
tronic commerce, to command and con-
trol systems. He has published many
articles in professional journals and has
written “The Art of Objects: Object-
Oriented Design and Architecture.”
Originally trained as a theoretical physi-
cist at Massachusetts Institute of
Technology, Lau also has a Master of
Technology Management.

Science Applications
International Corporation
5107 Leesburg Pike STE 2000
McLean,VA 22041
Phone: (703) 824-5817
Fax: (703) 824-5836
E-mail: yun-tung.lau@saic.com

The Software Edge

September 2004 www.stsc.hill.af.mil 15

Software Engineering Technology

Formal specification languages have
been thoroughly investigated during

the past three decades. They have been
considered primarily for verification and
validation purposes using techniques com-
monly known as formal methods. Most
formal methods have suffered from limit-
ed commercial success due to several lim-
iting factors such as their prohibitive com-
putational complexity and the high level of
mathematical skills needed to be used
effectively.

Recent research has focused on exe-
cutable specifications, a new class of applica-
tions of formal specifications whereby
specification rules are executed on a com-
puter much like any high-level program-
ming language. This class of techniques
and associated tools harnesses the linguis-
tic power of formal specification lan-
guages yet is simple and does not suffer
from the complexity limitations of formal
verification methods. In addition, exe-
cutable specifications enable new applica-
tion domains in addition to classical verifi-
cation such as online temporal reasoning
in security applications.

In this article, we focus on temporal
logic that is a particular and prominent
formal specification language. We begin
with background information about logic
and formal methods and then describe
temporal logic in greater detail. Next, we
describe executable specification methods
and tools followed by a description of a
successful verification effort using exe-
cutable specification. Lastly, we describe
security rule-checking using executable
specifications.

Background
Formal specification languages are
designed to capture requirements (what a
system should do) in a formal way, i.e.,
using mathematics. In contrast, design and
programming languages capture the
implementation (how a system implemen-

tation does what it is supposed to do).
Using mathematical notation to cap-

ture specifications removes potential
ambiguity and, when coupled with mathe-
matical proof techniques, enables pro-
gram correctness proofs. These proofs
provide indisputable statements about the
absolute absence of errors in the imple-
mentation. This contrasts with testing
techniques where only incomplete evi-
dence is provided. The body of knowl-
edge involving formal specifications and
formal correctness techniques is com-

monly referred to as formal methods.
Clearly, there is an inherent trade-off

between investing in the education and
tools of formal methods versus the poten-
tial benefit of assuring bug-free software.
For example, a low-end Web site owner
might be willing to take the risk of having
program errors on the site rather than
invest in costly verification methods. On
the other hand, the cost of a single bug in
the software onboard a multimillion dollar
space mission justifies the investment in
robust verification techniques such as for-
mal methods.

The most popular mathematical
domain used by formal specification lan-
guages is logic. In its simplest form,
Boolean propositional logic1 is the kind of
logic found in every modern program-
ming language such as the C/Java expres-
sion (x>0) && (y==1). However, propo-
sitional logic is not powerful enough to
elegantly capture temporal and aggrega-
tional aspects of the system. For example,
propositional logic cannot explicitly state
that (x>0) must be true now and (y==1) must
be true sometime within the next 5 seconds.

First Order Logic (FOL) extends
propositional logic with two quantifiers:
the universal quantifier (∀ read as for all),
and the existential quantifier (∃ read as
there exists). These quantifiers range over a
known set, i.e., the set of all cars registered
in California. Hence, a statement such as a
California registered minivan must be at most 10
feet long can be stated in a single expression:
∀car: minivan → (length≤10ft.).

In contrast, using propositional logic
would require that you explicitly state –
for every car in the set – the above state-
ment. Also, using programming tech-
niques to achieve the desired aggregate
effect defeats the whole purpose of spec-
ification, i.e., to make a clear statement
about what the system should do without
dealing with the how it does so.

Linear-Time Temporal Logic (LTL),
the formal specification language
described later in this article in the section
“REM Tools: Code Generators and
Monitors,” extends propositional logic
with four temporal operators. LTL has an
advantage over FOL in that it removes
mathematical clutter and enables specifi-
cations in a form that is close to natural
language. It is mostly suitable for reactive
systems, i.e., systems that constantly interact
with their environment such as control
software in a cruise missile.

Two primary classes of formal cor-
rectness proof techniques are theorem

Executable Specifications: Language and Applications

With recent industry focus on software safety and dependability, and with a particular Department of Defense (DoD) empha-
sis on safety-critical systems, formal methods are gaining renewed attention as a way to ensure that an implementation is consis-
tent with its specifications. Unlike conventional testing methods, which are human intensive and therefore slow, expensive, and
error-prone, formal methods enable automated computer-aided verification. This article describes an easy-to-use formal method
based on executable specifications. In particular, it describes the logical foundation of executable formal specifications, along with
some interesting applications relevant to DoD missions such as run-time monitoring of real-time systems and online temporal
rule checking for security-based applications. It also describes two categories of techniques for executing formal specifications.

Dr. Doron Drusinsky and Dr. J. L. Fobes
Naval Postgraduate School

“Using mathematical
notation to capture

specifications removes
potential ambiguity
and, when coupled
with mathematical
proof techniques,
enables program

correctness proofs.”

16 CROSSTALK The Journal of Defense Software Engineering September 2004

provers and model checkers. Theorem
provers use logic proof methods to prove
that a program conforms to a given spec-
ification. Theorem provers support only a
subset of LTL, and typically require a
highly skilled human driver. Model check-
ers, on the other hand, are automatic and
support full-blown LTL specifications
(though typically with little support for
real-time constraint validation). However,
due to their prohibitive computational
complexity, model checkers tend to work
well only for small programs.

Run-time Execution and Monitoring
(REM) is an effective and efficient hybrid
between formal methods and convention-
al execution or simulation-based testing
techniques. REM uses LTL-based specifi-
cations augmented with real-time con-
straint specifications. REM is a method of
automatically comparing the behavior of
an underlying application such as an
embedded system to its formal specifica-
tion. This is done by executing the specifi-
cation in tandem with the application.

While REM uses formal specifications,
it is not a pure mathematical proof tech-
nique; test-based verification and corre-
sponding test suites are still required.
Nevertheless, REM is simple to use and
automates the verification process. In
addition, REM tools described in the
sequel are capable of detecting real-time
requirement violations while executing on
an embedded target. Interestingly, REM is
also useful for non-verification applica-
tions such as security checking, as
described in the “Security Applications”
section of this article.

Formalism and Language
Lessons
LTL is an extension of propositional logic
that deals with time and order. As early as
1977, LTL was proposed as a way to for-
mally specify multithreaded programs [1,
22]. Since then – and especially during the
last decade – researchers have expanded
its theoretical and practical power using it,
for example, to specify protocols and
hardware. LTL is a simple and intuitive
extension of propositional logic that is
closer to natural language than most other
specification languages. For those reasons,
LTL is the formal specification language
used by most formal methods and is also
the specification language of choice for
REM methods and tools.

The syntax of LTL adds eight opera-
tors to the AND, OR, IMPLIES, XOR,
and NOT of propositional logic. Four of
the operators deal with the future: Always
in the future, Eventually (sometime in the

future), Until, and Next cycle; additionally,
four dual operators address the past:
Always in the past, Sometime in the past,
Since, and Previous cycle.

Metric Temporal Logic (MTL) en-
hances LTL’s capabilities [3]. With it, you
can define upper and lower time con-
straints as well as time ranges for the LTL
operators. By imposing relative and real-
time constraints on LTL statements, MTL
lets you use LTL to verify real-time sys-
tems. The following is an example showing
a relative-time upper boundary in MTL:

Always<10(readySignal Implies Next
ackSignal)

which reads,

Always, within the next 10 cycles,
readySignal equals 1 implies that
one cycle later ackSignal equals 1.

The text inside the parentheses is a
propositional logic expression, and a cycle
is an LTL time unit, which is a user-con-
trolled quantity. The time constraint is rel-
ative in that it is counted in clock cycles.

Another example is as follows:

Always timer1[5,10](readySignal Implies
Eventually timer2>= 20 ackSignal)

which reads,

Always, between 5 and 10 timer1
real-time units in the future,
readySignal equals 1 implies that
eventually, at least 20 timer2 real-
time units further in the future,
ackSignal equals 1.

Here, two real-time constraints are
specified using timer1 and timer2 clocks.
A separate statement maps these timers to
system calls, system clocks, or another
counting device.

One reason for the prominence of
LTL as a specification language is the sim-
ple way in which it relates to natural lan-
guage. For example, consider the natural
language requirement for a traffic light
controller (TLC): whenever light is red, light
should turn green within two minutes. The fol-
lowing conversion steps convert the
requirement into an MTL requirement.
1. Always when light is red then light

should turn green within two minutes.
2. Always (if light is red, then light

should turn green within two minutes)
3. Always (light is red implies that even-

tually light should turn green within
two minutes)

4. Always (LightColor==RED Implies
Eventually seconds<120 LightColor ==
GREEN)

REM Tools: Code Generators
and Monitors
The two primary categories of executable
specification tools are code generators and
REM tools (monitors). Code generators
generate source code in a programming
language such as a Java, C or C++, from
formal, LTL specifications. While a con-
ventional program can handle proposi-
tional logic, it cannot deal with higher
forms of logic such as FOL, LTL, or
MTL. For example, writing LTL inside a C
program will result in compilation errors.
Therefore, an often-used solution embeds
high-level specification requirements
inside program comments.

For example, the following C program
contains an embedded MTL assertion for
a TLC (written with syntax from [4])
asserting that for 100 milliseconds, whenever
light is red, camera should be on:

void tlc(int Color_Main, boolean
CameraOn) {

… /* Traffic Light Controller
functionality */

/* TRBegin
TRClock{C1=getTimeInMillis()} //

get time from the OS
TRAssert{ Always({Color_Main ==

RED} Implies Eventually_ C1
<1000_{CameraOn == 1})
} =>

// Customizable user actions
{printf(“SUCCESS\n”);printf(“FAIL\n”);

printf(“DONE!\n”);}
TREnd */
} /* end of tlc */

An executable specifications code gen-
erator generates code that replaces the
embedded LTL/MTL assertion with real
C code, which executes in process with the
rest of the TLC, i.e., as part of the under-
lying TLC application. The generated
code can also be used for formal specifi-
cation-based exception handling [5].

In contrast to code generators, REM
monitors (e.g., [6, 7]) monitor assertions in
a stand-alone process often on a remote
machine. It uses Hyper Text Transfer
Protocol (HTTP), sockets, or serial com-
munication to interface with the client
application. To monitor, these tools either
generate special, out-of-process source
code using a code generator or use math-
ematical tools such as rewriting systems.
The following list describes desired prop-
erties of remote monitors:

Software Engineering Technology

Executable Specifications: Language and Applications

September 2004 www.stsc.hill.af.mil 17

1. Monitoring online, namely, no
post-mortem processing is used. A
counter example would be to store all
events in a database and use a struc-
tured query language (SQL)-based
method to query those tables at a later
time. The motivation for this require-
ment is that no expected termination
time for the underlying application
(e.g., security application) should be
assumed. With no expected termina-
tion time, the size of the stored histo-
ry trace information will be monoton-
ically increasing and unbounded,
which is unacceptable in most cases.

2. Low impact. It is desirable for a REM
tool to not actively interrogate the
client application (e.g., the banking sys-
tem in the R2 example in the “Security
Applications” section). Rather, it
should passively listen to an event
stream pertaining to basic propositions
such as deposit-occurred or balance<0,
which is sent to the REM tool from
the client application. Having a low-
impact REM tool increases the likeli-
hood of acceptance by commercial
and security-related organizations. For
example, a bank is typically unwilling
to be actively interrogated by a third-
party tool but might agree to voluntar-
ily, on its own terms and conditions,
send out limited information to a third
party such as a REM monitor.

3. Powerful and flexible rules lan-
guage. Formal specifications need to
capture real-life patterns and concerns
such as real-time constraints while
being syntactically close to natural lan-
guage. The LTL satisfies these require-
ments; a large body of research points
to its expressiveness and usefulness as
a specification language. The MTL
adds real-time constraints to LTL
specifications. Time series constraints
are also supported [8].

Run-Time Monitoring of
Safety Critical Systems at NASA
NASA’s Jet Propulsion Laboratory has
used REM to verify the fault protection
subsystem of the Deep-Impact spacecraft
[9]. The level of fault protection provided
by this system is single-fail-operational
(the system has the capability to recover
from a single fault and continue its mis-
sion). Multiple faults are handled sequen-
tially where only one response is active at
a time.

The fault protection provides moni-
toring and system-level responses to faults
detected onboard the spacecraft. Other
missions that have used this level of fault

protection include Galileo, Mars Path-
finder, and DS1. Deep-Impact continues
with this legacy but has incorporated a
core reusable portion called the Fault
Protection (FP) engine. The FP engine is
responsible for accepting all input symp-
toms from various monitors and generat-
ing the appropriate system level response.
These responses may vary from a single
command (reset a hardware device) to a
long running sequence (orient the space-
craft to a safe altitude).

The FP engine handles faults by prior-
ity-based input queues. The FP engine
ensures that responses are handled in an
orderly fashion and are not run unneces-
sarily (triggered by an overly sensitive
monitor). After each response is run
through to completion, the FP engine
clears the fault and sends a cleanup signal
back to the offending monitor.

REM was used to validate the FP
engine software while in the development
phase in executable form although not
mature and robust; this led to the possibil-
ity of uncovering latent bugs in the soft-
ware. Many aspects of the FP application
exist that lend themselves well to a run-
time verification approach. For example,
during runtime the developer/tester may
be unaware of inconsistencies within the
internal state of the FP engine. Faults may
be locked into a state where they are
unable to trigger a response. Due to the
nature of the application, there are hun-
dreds of possible symptoms that may be
reported to the FP engine, and dozens of
possible faults that can trigger responses.
It would be difficult for a test engineer to
be constantly checking internal state con-
sistency. Using the runtime verification
approach, the REM monitor executed in
parallel with the application, alerting the
user to any violation of pre-defined cor-
rectness properties.

Security Applications3

Consider the following two airline securi-

ty-related temporal pattern rules, both
concerned with detecting a foreign nation-
al male passenger with a student visa fly-
ing to the Harrisburg International
Airport near the Three Mile Island nuclear
power plant:
• R1. Detect such a passenger if he has

traveled to the Middle East at least
once within a year of obtaining his stu-
dent visa.

• R2. Detect such a passenger if he has
traveled to the Middle East at least
once within a year of obtaining his stu-
dent visa and he received two or more
direct deposits from non-US banks
within the last year.
Both rules describe temporal patterns

that contain potentially discernable ele-
ments from an airline security system
operating automatically and in real-time.
The two primary methods for performing
such temporal pattern detection are offline
and online, as described in the sequel.

The Federal Aviation Administration
has an automated profiling system origi-
nally termed Computer Assisted Passen-
ger Screening (CAPS) [10] that relies upon
the data in each Passenger Name Record.
This profiling system is being upgraded to
access a more extensive range of data.
The upgrade, CAPPSII, will profile airline
passengers based on secret criteria to iden-
tify potential terrorists. Personal informa-
tion about passengers may additionally
include that from the Immigration and
Naturalization Service (INS, now U.S.
Immigration and Customs Enforcement),
law enforcement, and customs. Having
such history information stored in the sys-
tem, or in constituent subsystems, enables
SQL-based implementation of a temporal
pattern rule such as R1. We call such an
implementation offline because it relies on
storing and querying historical informa-
tion. An offline solution induces the fol-
lowing three impact consequences:
1. Temporal historical information is

stored within the system (e.g., within
CAPPSII and/or its constituent sub-
systems).

2. Temporal and non-temporal pattern
detection is initiated by the security-
related query, querying the constituent
resources at will. We regard this as a
high-impact solution because a tempo-
ral query is initiated from outside the
original scope of the queried system,
thereby impacting the performance of
the queried system. For example, a
potential INS subsystem of CAPPSII
is impacted by repeated external
queries from CAPPSII proper which,
sooner or later, will degrade the INS
system performance. Performance

“Formal specifications
need to capture real-life
patterns and concerns

such as real-time
constraints while being
syntactically close to
natural language.”

degradation will occur because of the
actual query processing forced on the
INS subsystem and because of the fact
that as time progresses, temporal
queries might query monotonically
increasing data-sets of historical data.

3. In addition to performance issues,
CAPPSII and its constituent subsys-
tems need to agree on a shared data
representation for merging query
results from multiple subsystems (e.g.,
merging INS and law enforcement
query results).
This article is concerned with low-

impact, online temporal pattern detection. It
uses REM to detect temporal patterns
without using historical data (i.e., it is
online), and without querying the underly-
ing application (i.e., it is low-impact). The
only communicated information it
requires from the underlying application
(e.g., CAPPSII constituent subsystems)
are Boolean messages for basic proposi-
tions such as deposit of more than $1,000 was
made to account of SSN=222 11 2222.

While pattern rule R1 described earlier
is programmable within the suggested
CAPPSII framework, R2 requires exten-
sion, which includes banking information.
Such an extension however will not lend
itself to offline temporal pattern detection
methods for the following reasons:
1. The banking data systems only store

historical/temporal information for a
limited duration (e.g., three months).
The industry is unlikely to make any
significant change to this policy.

2. Banking data systems are not likely to
permit high-impact, CAPPSII-initiated
queries because of the performance
consequences discussed earlier as well
as their own security need to be in full
control over any content query.
In contrast, a REM temporal pattern

detection method, being online and low-
impact, can be used in tandem with
CAPPSII while supporting extensions that
support rules such as R2.

Conclusion
Executable specification methods have
been effectively used to verify safety-criti-
cal systems at NASA. They enjoy the
power and accuracy of formal specifica-
tions, yet are easy to use. They also enable
requirement simulation prior to imple-
mentation. In addition, these appealing
properties of executable specification
methods lend themselves to non-verifica-
tion applications such as monitoring tem-
poral rules within security applications.◆

References
1. Manna, Z., and A. Pnueli. “Verification

of Concurrent Programs: Temporal
Proof Principles.” Proc. of the Work-
shop on Logics of Programs. Springer
Lecture Notes in Computer Science
Vol. 1981: 200-252.

2. Pnueli, A. The Temporal Logic of
Programs. Proc. of 18th IEEE Sym-
posium on Foundations of Computer
Science, 1977: 46-57.

3. Chang, E., A. Pnueli, and Z. Manna.
Compositional Verification of Real-
Time Systems. Proc. of 9th IEEE
Symposium on Logic in Computer
Science, 1994: 458-465.

4. Drusinsky, D. “The Temporal Rover
and ATG Rover.” Proc. of Spin2000
Workshop. Springer Lecture Notes in
Computer Science Vol. 1885: 323-329.

5. Drusinsky, D. “Formal Specs Can
Handle Exceptions.” CMP Embedded
Developers Journal Nov. 2001: 10-14.

6. Drusinsky, D., and M. Shing. Verifica-
tion of Timing Properties in Rapid
System Prototyping. Proc. of Rapid
System Prototyping Conference, 2003.

7. Havelund, K., and G. Rosu. Monitor-
ing Programs Using Rewriting. Proc.
of IEEE Conference on Automated
Software Engineering, 2001.

8. Drusinsky, D. “Monitoring Temporal
Logic Specifications Combined With

Time Series Constraints.” The 4th
Joint Workshop on Formal Specifica-
tions of Computer-Based Systems,
2003, extended abstract.

9. Drusinsky, D., and G. Watney.
“Applying Run-Time Monitoring to
the Deep-Impact Fault Protection
Engine.” The 27th IEEE/NASA
ICECCS Workshop, 2002.

10. Fobes, J.L. Computer Assisted Passen-
ger Screening (CAPS), DOT/FAA/
AR-96/38, 1996.

11. Drusinsky, D., and J.L. Fobes. “Real-
Time, Online, Low-Impact, Temporal
Pattern Matching.” The 7th World
Multiconference on Systemics, Cyber-
netics, and Informatics, 2003.

Note
1. Propositional logic is a mathematical

model that allows us to reason about
the truth or falsehood of logical
expressions.

2. Professor Amir Pnueli, a longtime
advocate of temporal logic, is the 1996
Turing award winner for his “seminal
work introducing temporal logic into
computing science and for outstanding
contributions to program and system
verification.”

3. Published in [11].

About the Author

Doron Drusinsky, Ph.D.,
is an associate professor
of computer science at
the Naval Postgraduate
School, Monterey, Calif.
His primary research

interests are run-time monitoring and
verification of safety-critical software
systems. Drusinsky worked for Sony
from 1988 until 1993 when he founded
R-Active Concepts and authored
BetterState, a UML statecharts design
tool. BetterState was acquired by ISI-
WindRiver Systems in 1997. Doron
established Time Rover, Inc. and
authored the Temporal Rover and
DBRover formal verification tools. He
has a Bachelor of Science from the
Technion, Israel, and a doctorate from
the Weizmann Institute.

Code CS/Dd
Naval Postgraduate School
Monterey CA, 93943
Phone: (831) 656-2168
Fax: (831) 656-3225
E-mail: ddrusins@nps.navy.mil

J.L. Fobes, Ph.D., con-
ducts research and devel-
opment for the U.S.
Department of Home-
land Security’s Transpor-
tation Security Adminis-

tration while serving at the Naval
Postgraduate School, Monterey, Calif., as
the Transportation Security chair.
Formerly he was an associate professor
at California State Los Angeles, conduct-
ed research for the U.S. Army Research
Institute, was the chief of Human
Factors for the U.S. Army Operational
Test and Evaluation Agency, and the
Federal Aviation Administration’s pro-
gram director for Aviation Security
Human Factors. Fobes has a doctorate
from the University of Arizona and a
post doctorate from the California
Institute of Technology, Pasadena.

Naval Postgraduate School
Monterey CA, 93943
E-mail: jlfobes@nps.navy.mil

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering September 2004

As its key idea, Executable and
Translatable Unified Modeling

Language (xtUML) separates application
and software architecture design and
weaves them together only at deployment
time via the following:
• Application models capture what the

application does clearly and precisely.
The models are executable, including
details relevant to the application but
independent of the software platform
(i.e., design and implementation
details).

• Software architecture designs –
defined in terms of transformation
rules and execution engine compo-
nents – are incorporated by a genera-
tor that produces code for the target
system. The software architecture
designs are completely independent of
the applications they support.

• A generator, which may be human,
weaves the application models and the
execution engine components result-
ing in 100 percent complete code for
modeled components.
The complete separation of the soft-

ware architecture design from the applica-
tion models supports concurrent design
of the application and the software archi-
tecture, compressing the development
schedule and time to market.

These benefits accrue partly as a result
of simplifying the tasks of analysis and
design because each can be carried out sepa-
rately. In particular, design is the definition
of a set of transformations that can be
applied to the various analysis elements.
Each design transformation rule thus
applies to all matching patterns in the appli-
cation, significantly simplifying the design
task. This also enables automation, which
yields greater benefits. For that reason, the
article assumes automation here.

xtUML Notation
xtUML defines a carefully selected,
streamlined subset of UML to support the
needs of execution- and translation-based
development, which is enforced not by
convention but by execution: Either a
model compiles, or it does not.

The notational subset has an underly-
ing execution model. All diagrams (e.g.,
class diagrams, state diagrams, activity

specifications) are projections or views of this
underlying model. Other UML models
that do not support execution such as use-
case diagrams may be used freely to help
build the xtUML models.

The essential components of xtUML are
illustrated in Figure 1 (see page 20), which
shows a set of classes and objects that use
state machines to communicate. Each state

machine has a set of actions triggered by the
state changes in the state machines that
cause synchronization, data access, and func-
tional computations to be executed.

A complete set of actions makes UML
a computationally complete specification
language with a defined abstract syntax for
creating objects, sending signals to them,
accessing data about instances, and exe-
cuting general computations. An action
language concrete syntax 2 provides a nota-
tion for expressing these computations.

An xtUML model with actions is not a
blueprint to be rewritten or filled out by
programmers, but an executable specifica-
tion. The difference between an ordinary
programming language and a UML action
language is analogous to the difference
between assembly code and a program-
ming language. They both completely
specify the work to be done, but they do
so at different levels of language abstrac-
tion. Programming languages abstract
away details of the hardware platform so
you can write what needs to be done with-
out having to worry about things such as
the number of registers on the target
machine, the structure of the stack, or
how parameters are passed to functions.
The existence of standards also makes
programs portable across multiple
machines.

xtUML allows developers to model the
underlying semantics of a subject matter
without having to worry about such things
as the number of processors, the data-
structure organization, or the number of
threads. In other words, just as program-
ming languages conferred independence
from the hardware platform, xtUML con-
fers independence from the software plat-
form, which makes xtUML models
portable across multiple development
environments.

Executable and Translatable UML1

Stephen J. Mellor
Mentor Graphics Corp.

Executable and Translatable Unified Modeling Language (xtUML), which is a profile of UML, adds a standard execu-
tion model for a tractable subset of the language so developers can formally test models to reduce defect rates from early exe-
cution of a target-independent application model before decisions have been made about implementation technologies. xtUML
separates application and software architecture design so that each can evolve, be maintained, modified, and reused separate-
ly and concurrently. This yields significant reductions in development cost and time to market. In xtUML, design is expressed
as a set of transformation rules, providing automatic model translation. The transformation rules are applied either uni-
formly or to model elements marked to indicate which rule to apply. This allows optimized patterns to be propagated through-
out the code, providing powerful performance tuning and resource optimization. It also allows for retargeting models to dif-
ferent implementation technologies as they change. This article describes these fundamental ideas behind xtUML, and how
they work in practice.

“... just as programming
languages conferred

independence from the
hardware platform,

xtUML confers
independence from the

software platform,
which makes xtUML

models portable across
multiple development

environments.”

September 2004 www.stsc.hill.af.mil 19

20 CROSSTALK The Journal of Defense Software Engineering September 2004

Software Engineering Technology

xtUML Dynamics
Figure 1 shows the static structure of
xtUML, but a language is not meaning-
ful unless there is a definition of the
dynamics, or how the language executes
at run time. To execute and translate,
xtUML must have well-defined execu-
tion semantics – and it does. xtUML has
specific, unambiguous rules regarding
dynamic behavior, stated in terms of a
set of communicating state machines,
the only active elements in an xtUML
program.

Each object and class (potentially)
has a state machine that captures the
behavior over time of each object and
class. Every state machine is in exactly
one state at a time, and all state machines
execute concurrently with respect to one
another. A state machine synchronizes
its behavior with another by sending a
signal that is interpreted by the receiver’s
state machine as an event. On receipt of
a signal, a state machine fires a transition
and executes an activity, a set of actions
that must run to completion before the
next event is processed.

State machines communicate only by
signals, and signal order is preserved
between sender and receiver instance
pairs. The rule simply enforces the
desired sequence of activities. When the
event causes a transition in the receiver,
the activity in the destination state of the
receiver executes after the action that sent
the signal. This captures desired cause and
effect in the system’s behavior. It is a
wholly separate problem to guarantee
that signals do not get out of order, links
fail, etc., just as it is a separate problem
to ensure sequential execution of

instructions in a parallel machine.
Each activity comprises a set of

actions such as a computation, a signal
send, or a data access. The semantics of
these actions are defined so that data
structures can be changed at translation
time without affecting the definition of
computation – a critical requirement for
translatability. The actions in each activi-
ty execute concurrently unless otherwise
constrained by data or control flow, and
these actions may access data of other
objects. It is the proper task of the mod-
eler to specify the correct sequencing and
to ensure object data consistency.

The application model, therefore,
contains the details necessary to support
application model execution verification
and validation, independent of design
and implementation. No design details
or code needs to be developed or added
for model execution: Formal test cases
can be executed against the model to
verify that application requirements have
been properly addressed.

Those are the rules, but what is real-
ly going on is that xtUML is a concur-
rent specification language. Rules about
synchronization and object data consis-
tency are simply rules for that language,
just as in C++ we execute one statement
after another and data is accessed one
statement at a time. We specify in such a
concurrent language so that we may
translate it onto concurrent, distributed
platforms, as well as fully synchronous,
single-tasking environments.

At system construction time, the
conceptual objects are mapped to
threads and processors. The generator’s
job is to maintain the desired sequencing

specified in the application models, but
it also may choose to distribute objects,
sequentialize them, even duplicate them
redundantly, or split them apart so long as
the defined behavior is preserved.

Model Compilers
A model compiler automatically gener-
ates target-optimized, 100 percent com-
plete code from models. A model com-
piler comprises two main components.
First, there is an execution engine that
supplies the execution infrastructure
such as storage schemes, action invoca-
tion, and signal sending. An execution
engine is a specific set of reusable com-
ponents that, when taken together, are
capable of executing an arbitrary exe-
cutable UML model. The execution
engine will therefore contain ways of
storing instances in some form, possibly
as objects, but not necessarily; some way
of invoking an action; some way of
sending signals; some way of reading an
attribute; and so forth. The selection of
the elements in the execution engine
determines the system properties such
as concurrency and sequentialization,
multiprocessing and multitasking, persis-
tence, data organization, and data struc-
ture choices. These choices, together
with the pattern of usages in the appli-
cation, determine the performance of
the system.

Second, a set of archetypes specifies
how to translate an application model
into code. Archetypes are a formaliza-
tion of the design patterns and transla-
tion rules. The archetype describes when
it should be used, the set of patterns to
be applied in code generation, and how
model components will be populated or
utilized to build code. (Archetype exam-
ples are provided in the next section.)
The combination of translated applica-
tion code, legacy code that is linked, and
the execution engine constitutes the run-
time system.

The archetypes use a generator to
traverse an arbitrary repository and pro-
duce text. The repository contains the
meaning of application model, distinct
from the diagrams. (The repository will
maintain graphical information too, but
that is not of concern for generation.)
The logical structure of the repository
(the metamodel) mirrors the semantic
rules described in the previous sections,
including the semantics of actions –
which means that the repository con-
tains the entire, detailed application
model.

The metamodel is a model of xtUML
using UML. It has classes such as Class,

Archetype Generated code
.select many stateS related to instances of
 class->[R13]StateChart ->[R14]State where

(isFinal == False);
public:
 enum states_e

{ NO_STATE = 0 ,
.for each state in stateS .if (not
last stateS)

${state.Name } ,
 .else

NUM_STATES = ${state.Name}
 .endif;
.endfor;
};

public:
 enum states_e

{ NO_STATE = 0 ,
Filling ,
Cooking ,
NUM_STATES =

Emptying
};

Application Models
Generator

Underlying Semantics
Repository

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying

102 1
102 2
102

Libraries, Legacy, or
Hand

Model Compiler

Archetypes

Application Models

Execution
Engine

Application Models
Generator

Underlying Semantics
Repository

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying

102 1
102 2
102

Underlying Semantics
Repository

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying

102 1
102 2
102

•
written code

Archetypes

Execution
Engine

Batch

Batch ID {I}
Amount of Batch
Reci pe Name {R2}
Status

Temperature Ramp

Ramp ID {I}
Batch ID {R4}
Start Temperature
Start Time
End Temperature
End Time
Status

R4

Batch

Batch ID {I}
Amount of Batch
Recipe Name {R2}
Status

Temperature Ramp

Ramp ID {I}
Batch ID {R4}
Start Temperature
Start Time
End Temperature
End Time
Status

R4

Life Cycle for
Temperature Ramp

Action for Creating

Do Temp. Ramp (Batch ID,
End Time, End Temp)

Creating

Controlling

Complete

Start Controlling (Ramp ID)

Temp. Ramp Complete(Ramp ID)

Ended (Ramp ID)

Creating

Entry/
Create TempertaureRamp with

BatchID, EndTime, EndTemp
Assign CurrentTime to Self.StartTime;
Assign Self -> [R4] CookingTank.

ActualTemp to Self.StartTemp;
Generate StartControlling (Ramp ID);

Creating

Entry/
Create TempertaureRamp with

BatchID, EndTime, EndTemp
Assign CurrentTime to Self.StartTime;
Assign Self – > [R4] CookingTank.

ActualTemp to Self.StartTemp;
Generate StartControlling (Ramp ID);

Application model number 2-5
Please enter numbers and text

Application model number 2-5
Please enter numbers and text

Figure 1: The Structure of an xtUML Model

Executable and Translatable UML

September 2004 www.stsc.hill.af.mil 21

Attribute, Event, State, Action,
CreateAction, and ReadAction – all the
concepts we have discussed. When we
draw a class such as Batch in a developer
model using an xtUML-aware model
building tool, it creates an instance of
Class, with data describing the class so
created such as a Name (Batch), a
description, and the like. Similarly, when
we create an attribute amount of Batch,
this creates an instance of Attribute with
name (amount), the class it describes (a
reference to Batch), and a type (quantity).

The generator is a translation engine
that extracts application model informa-
tion, interprets the archetypes, and per-
forms the mapping of model compo-
nents to generate complete code. (Recall
that the repository contains the actions
too.) The partitioning of model compil-
ers into these pieces streamlines their
customization, construction, and main-
tenance. Changes and additions can be
made to the archetypes or run-time
library without having to contend with
the details of generator or repository
management.

Generator Operation
The generator and the archetypes consti-
tute a compilation environment. When
generating code, the generator extracts
information from the application model.
The generator then selects the appropri-
ate archetype for the to-be-translated
model element. The information extract-
ed from this model is then used to fill in
the blanks of the selected archetype. The
result is a fully coded model component.

The archetypes are applied either uni-
formly to certain kinds of model ele-
ments (all classes, say), or to model ele-
ments that have been marked to indicate
which rule to apply. For example, a class
could be marked to indicate the proces-
sor in which it resides, or a state chart
could be marked to show which storage
scheme (a list or a table) to use, and so
on. Using marks provides complete con-
trol over the output and enables perfor-
mance optimization at any level.

Population of an archetype common-
ly requires invocation of other arche-
types. These newly invoked archetypes, in
turn, often invoke other archetypes. The
creation of code, for what appears to be
one model element, can ultimately
involve several nested layers of arche-
types for multiple model elements. This
is fully automated by the generator. This
simple approach is incredibly powerful
for real-life applications.

The simple archetype in Table 1 gen-
erates code for private data members of

a class by selecting all related attributes
and iterating over them. All lines begin-
ning with a period (.) are commands to
the generator, which traverses a reposito-
ry containing the executable model and
performs text substitutions.

${pdm.Type}, as shown in Table 1,
recovers the type of the attribute and
substitutes it on the output stream.
Similarly, the fragment ${pdm.Name}
substitutes the name of the attribute.
The space that separates them and the
lone semicolon (;) is just text, copied
without change, onto the output stream.

In the more complete example in
Table 2, the archetype uses italics for ref-
erences to instances in the repository,
underlining to refer to names of classes

and attributes in the repository, and
noticeably different capitalization to dis-
tinguish between collections of instances
versus individual ones.

You may wonder what the produced
code is for. It is an enumeration of states
with a variable num_states automatically
set to be the count for the number of ele-
ments in the enumeration. (There is a
similar archetype that produces an enu-
meration of signals.) The enumerations
are used to declare a two-dimensional
array containing the pointers to the activ-
ity to be executed. You may not like this
code, or you may have a better way to do
it. Cool. All you have to do is modify the
archetype and regenerate. Every single
place where this code appears will then be

Archetype Generated Code
.select many stateS related to instances of
 class->[R13]StateChart ->[R14]State where

(isFinal==False);
public:
 enum states_e

{NO_STATE=0,
.for each state in stateS

 .if (not last stateS)

${state.Name},

 .else
NUM_STATES = ${state.Name}

 .endif;
.endfor;
};

public:
 enum states_e

{NO_STATE = 0 ,
Filling,
Cooking,
NUM_STATES =
Emptying

};

Table 1: Simple Archetype

Archetype Generated code
.select many stateS related to instances of
 class->[R13]StateChart ->[R14]State where

(isFinal == False);
public:
 enum states_e

{ NO_STATE = 0 ,
.for each state in stateS .if (not
last stateS)

${state.Name } ,
 .else

NUM_STATES = ${state.Name}
 .endif;
.endfor;
};

public:
 enum states_e

{ NO_STATE = 0 ,
Filling ,
Cooking ,
NUM_STATES =

Emptying
};

Application Models
Generator

Underlying Semantics
Repository

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying

102 1
102 2
102

Libraries, Legacy, or
Hand

Model Compiler

Archetypes

Application Models

Execution
Engine

Application Models
Generator

Underlying Semantics
Repository

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying

102 1
102 2
102

Underlying Semantics
Repository

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying

102 1
102 2
102

•
written code

Archetypes

Execution
Engine

 {I}
Amount of Batch
Reci pe Name {R2}
Status

Ramp ID {I}
Batch ID {R4}
Start Temperature
Start Time
End Temperature
End Time
Status

R {I}
Amount of Batch
Recipe Name {R2}
Status

Ramp ID {I}
Batch ID {R4}
Start Temperature
Start Time
End Temperature
End Time
Status

R

Life Cycle for
Temperature Ramp

Action for Creating

Do Temp. Ramp (Batch ID,
End Time, End Temp)

Creating

Controlling

Complete

Start Controlling (Ramp ID)

Temp. Ramp Complete(Ramp ID)

Ended (Ramp ID)

Creating

Entry/
Create TempertaureRamp with

BatchID, EndTime, EndTemp
Assign CurrentTime to Self.StartTime;
Assign Self -> [R4] CookingTank.

ActualTemp to Self.StartTemp;
Generate StartControlling (Ramp ID);

Creating

Entry/
Create TempertaureRamp with

BatchID, EndTime, EndTemp
Assign CurrentTime to Self.StartTime;
Assign Self – > [R4] CookingTank.

ActualTemp to Self.StartTemp;
Generate StartControlling (Ramp ID);

System
(CD-ROM, Satellite)

Application model number 2-5
Please enter numbers and text

Application model number 2-5
Please enter numbers and text

Figure 2: Components of an Automated Solution

.Function PrivateDataMember(class class)

.select many pdmS from instances of Attribute related to class;

.for each pdm in pdmS

${pdm.Type} ${ pdm.Name};

.endfor

Table 2: Example Archetype

22 CROSSTALK The Journal of Defense Software Engineering September 2004

changed. Propagating changes this way
enables rapid performance optimization.

While the generated code is less than
half the size of the archetype, the arche-
type can generate any number of these
enumerations, all in the same way, all
equally right or wrong.

Because the archetype is a data access
and text manipulation language, it can be
used in conjunction with the generator to
generate code in any language: C, C++,
Java, or Ada, and, if you know the syntax,
Klingon. We have used xtUML to gener-
ate Very High Speed Integrated Circuit
Hardware Description Language.

System Construction
Figure 2 shows how the pieces fit togeth-
er. To build a system, developers build
xtUML models that specify the desired
behavior of the application, and buy a
model compiler comprising a set of
archetypes and an execution engine. The
compilation process proceeds in two
phases. First, the archetypes traverse the
model as stored in the repository to pro-
duce source code. Second, the generated
code is compiled with the execution
engine library and any handwritten, lega-
cy, or library code. The result is the sys-
tem.

Examples
xtUML has been used on over 1,400
real-time and technical projects, includ-
ing life-critical implanted medical
devices, Department of Defense flight-
critical systems, 24x7 performance-criti-
cal fault-tolerant telecom systems, highly
resource-constrained consumer elec-
tronics, and large-scale discrete-event
simulation systems.

One telecommunications switch pro-
ject with an in-house model compiler
generated in excess of 4 million lines of
C++. One hundred percent of the mod-
eled code was generated, comprising
over 80 percent of the total system code.
The system was extremely real-time,
fault-tolerant, and used over 1,000 dis-
tributed processors [1].

A consumer electronic project com-
pared handwritten code with a model
compiler. The model compiler generated
faster code than the handwritten ver-
sion, though it was slightly bigger. This
difference was traced to different choic-
es made for caching variables. Both the
handwritten code and the generated
code met performance and size con-
straints [2].

A joint forces wargaming system
built xtUML models of the maritime
portion of the battlespace and translated

them into C++ that runs on an high
level architecture-based distributed dis-
crete event-simulation engine. The target
platforms were UNIX workstations and
Windows boxes. They used a cus-
tomized version of MC-2020 as the base
for the model compiler. One portion of
the simulation uses a special purpose
simulation language generated by arche-
types. The model compiler was derived
from a C++ model compiler with simi-
lar system characteristics.

Another organization that has built
its own model compiler, for sale, with
sophisticated transaction safety and roll-
back features reports between seven and
10 lines of generated C++ for each line
of action language. More importantly, all
that delicate code is known to be cor-
rect; it is not handcrafted by fallible, or
worse, creative coders.

For a completely worked out, publicly
available example model, see “Execu-
table UML: The Case Study” [3].

xtUML Capabilities
xtUML provides a unique opportunity
to accelerate development and improve
the quality, performance, and resource
utilization of real-time, embedded, sim-
ulation, and technical systems. The
approach provides for the following:
• Fully customizable translation gener-

ating 100 percent complete, target-
optimized code.

• Reduced defect rates from early exe-
cution of target-independent appli-
cation models by an average of 10
times (not 10 percent).

• Accelerated development of prod-
ucts with multiple releases, growing
or changing requirements, and fami-
lies of products.

• Concurrent design and application
analysis modeling to compress pro-
ject schedules.

• Powerful performance tuning and
resource optimization.

• Effective, practical reuse of target-
independent application models.

• Effective, practical reuse of applica-
tion-independent designs.

• Reduced maintenance costs and
extended product lifetimes.

This article described the fundamental
ideas behind xtUML and how it works in
practice. These ideas are more fully
described in [4].◆

References
1. Case, J., and John R. Wolfe. “Modeling

Accelerates Optical Networking
System Development.” Project Tech-
nology Inc. <www.projtech.com/

pdfs/success/tellabs.pdf>.
2. Yamaguchi, Minoru. “Recursive

Design for Real-Time Embedded
Systems.” Sony Corp. 2001 <www.
projtech.com/pubs/confs/2001.
html>, then access yamaguchi.zip.

3. Starr, Leon. Executable UML: The
Case Study. 2nd ed. Model Integration
LLC, 21 Feb. 2001.

4. Mellor, Stephen J., and Marc J. Balcer.
Executable UML: Foundation for
Model-Driven Architecture. 1st ed.
Addison-Wesley Professional, 15 May
2002.

Note
1. Parts of this article were derived from

the draft for “MDA Distilled:
Principles of Model-Driven Architec-
ture” by S.J. Mellor, K. Scott, A. Uhl,
and D. Weise, Addison-Wesley, 2004.

2. BridgePoint provides an Object
Action Language that is compliant
with the abstract syntax standard, but
there is presently no action language
(notation) standard.

About the Author

Stephen J. Mellor is
chief scientist of the
Embedded Systems
Division at Mentor
Graphics. He is an inter-
nationally recognized

pioneer in creating effective engineering
approaches to software development.
Mellor is active in the Object Manage-
ment Group, chairing the consortium
that added executable actions to the
Unified Modeling Language (UML), and
is now active in specifying model-driven
architecture (MDA). He is chairman of
the “IEEE Software” industrial advisory
board and is a signatory to the “Agile
Manifesto.” He is author of “Exe-
cutable UML: A Foundation for Model-
Driven Architecture,” “MDA Distilled,”
and publisher of the 1985 Ward-Mellor
trilogy “Structured Development for
Real-Time Systems,” and the first books
defining object-oriented analysis in 1988.
Mellor co-founded a company focused
on tools to execute and translate xtUML
models that is now a part of the
Embedded Systems Division of Mentor
Graphics where he is chief scientist.

E-mail: stephen_mellor
@mentorg.com

Software Engineering Technology

There is an old accounting adage that
states, “You can't manage what you

can't measure.” In the development
world we certainly take this to heart.
Walk into any boardroom of any infor-
mation systems development group and
you will find remnants of charts, brief-
ings, status reports, and analyses of all
types – and yet, in the 2003 version of
the Standish Group’s “Chaos
Chronicles” [1], only 34 percent of all
information technology projects are
labeled successful!

Maybe we just do not have enough
metrics. Some time ago I had a discus-
sion with a project manager working on a
large development project, the manager
estimated that he and his subordinate
team leaders spend around 30 percent of
their time preparing reports aimed at
higher levels within the company. These
reports culminate in monthly senior
stakeholder meetings attended by the
highest-ranking members of the busi-
ness, yet 15 months into the project, the
manager cannot recall any directions or
decisions coming from these meetings.
This void is in spite of the fact that the
project will come in over a year late and
that early deliverables have received unfa-
vorable comments about their quality!

As senior managers, we have gone
astray somewhere in our metrics pro-
grams. It is not enough just to be fed
with data if that data is not able to drive
decisions. We could put the old account-
ing adage another way: “You don’t mea-
sure because you want to know, you mea-
sure because you want to be in control!”

Standard Metrics Programs
Quickly Become Stale
Most of us have a standard set of project
reporting templates that we expect our
development project managers to fill out
periodically. These reporting systems
evolve over time because senior leaders
really do have a need to know what is
going on. The problem is that without
any more thought than this, managers
default to asking for metrics that are

readily available. This includes things like
work hours or resources spent to date,
defects uncovered so far, and the prox-
imity to being on budget. Worse, without
any insight into what we think this data
shows, our project managers obediently
and simply provide that data.

While perhaps interesting, this kind
of information does not provide the
senior manager with any basis of under-
standing about whether the project really

is going well or poorly. Nor does it indi-
cate if there is anything he or she can (or
even needs to be able to) do about it.
Thus, project reviews become informa-
tional briefings, not periodic checkups.
Watts S. Humphrey says it best:

By concentrating on the schedule,
managers overlook the things they
can influence. These are to start
jobs promptly, provide adequate
staffing, and ensure that the work
is done in a disciplined and pro-
fessional way. [2]

What we need is a program that will
link the requested metrics to business
objectives and provide “objective results
that can be used in making informed
decisions, and taking appropriate correc-
tive actions” [3]. As an important part of
this program, our project managers need

to know why we think we need this data.
Knowing what we think we are getting,
product managers will be able to suggest
their own methods and reporting tools.
This helps build a consistent approach
and provides a basis for mentoring as
well. Building a set of metrics consists of
asking the following five basic questions.

1. What Do You Need To Know?
This is not a trivial question and is an
essential step since it forms the basis for
the entire metrics program. Rather than
treating every project alike, take the time
to sit down with your project manager to
define information needs based not only
on the specific nuances of the project, but
also on the need to be alerted if decisions
are required.

For example, it is unwise for a senior
leader to fall into the trap of making a
simple needs statement like, “I need to
know if we are on schedule.” A better
needs statement would be something like,
“I need to know that I’ll stay on sched-
ule.” The difference in these two state-
ments is not that subtle. The first state-
ment is a simple snapshot that may let the
senior manager sleep that night, but does
not tell him whether he should cancel his
upcoming vacation time. More to the
point, if the schedule is slipping, the
senior leader has no basis to understand
why it is slipping and what can be done
about it.

Then again, each project is a proving
ground to see if you learned any lessons
from the last project. As a senior manag-
er, you always have a need to know that
with each project you are getting better at
something – whether that something is
better efficiency, productivity, or just plain
quality. With each project, target metrics
that will help evaluate improvement mea-
sures, either to establish a baseline or
assess improvements. Need statements
for this category could look like this: “I
need to know that my quality improve-
ments are meeting the objective,” or, “I
need to know the volatility of require-
ments during each stage of develop-
ment.”

What You Don’t Know Can Hurt You

Douglas A. Ebert
McKesson Corporation

This article provides senior managers with a methodology to develop a metrics program that will form a basis for management
decisions. It presents a series of questions a senior manager should ask to address business needs, rather than just getting
informational briefings.

September 2004 www.stsc.hill.af.mil 23

“As senior managers,
we have gone astray
somewhere in our

metrics programs. It is
not enough just to be
fed with data if that
data is not able to
drive decisions.”

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering September 2004

It is interesting that when I was a pro-
ject manager, my senior managers would
regularly ask me, “What are you doing dif-
ferently?” But rarely would they demand
that I demonstrate my changes had any
effect! It seemed just causing the disrup-
tion associated by introducing new
processes met their expectations.

2. What Questions Do You
Need to Ask?
For each of your need-to-know items, you
have to design the questions correctly to
get useful information – this is not as sim-
ple as it might seem. Again, many senior
managers ask for simple data points such
as the current project master timeline.
The project master timeline is data; being
able to demonstrate that the project kept
to that timeline on purpose rather than by
accident requires analysis.

For example, let us take the following
case: “I need to know that I’ll stay on
schedule.” One question you might want
to ask would be, “What is my burn rate of
resources for each phase/task of a project
compared to my estimates?” It should be
noted that to answer this question, a pro-
ject manager will still need to present the
traditional data points of milestones and
resources consumed in a period of time.

Be watchful for events inside the pro-
ject that might create problems later. This
not only includes scope creep, where new
requirements are being added, but also
scope volatility. A programming effort in
which I was involved was right on sched-
ule for the first eight months, although
during the last month a change in direc-
tion caused changes in almost 15 percent
of the requirements. The needed rework
did not really show up as delays for anoth-
er two months and came as a complete
surprise to senior managers.

Here is a hint: One good place to look
for questions is to challenge planning
assumptions. Assumptions made during
program planning are excellent informa-
tional needs for the measurement process.
If the assumption is not realized, then
many of the resulting schedule and
resource plans may need to be re-exam-
ined, or replanned. [4]

Simplistically, if the project plan
assumes 70 percent availability of staff,
that becomes a key metric to predict the
final project outcome.

3.Why Do You Think This Is
the Right Question?
This is the introspective part: Challenge
yourself about each question you believe
you would want to ask. This requires you

to think through to the so what of whatev-
er metrics you may receive – to think
through what you might do with the data
and what management actions you might
take. This step also prepares you to
defend your demand for these metrics.

For example, you may explain your
rationale as this: “Knowing the resource
burn rate compared to estimates will give
me a glimpse into the solidness of the
project plan. If our estimates are consis-
tently low, I may have to reset project
expectations or assign additional
resources to your team.”

Another example, if your need-to-
know is that we have been meeting
requirements of our quality program. A
need-to-ask question could be: “What is
the trend of SQA [software quality assur-
ance] violations, by type?” Why would you
want to know this? Humphrey says it best:
“When software projects fail, it is usually
because a manager did not insist that the
work be done in the right way” [2].

Here is another example: “How do the
hours expended to address customer-
related problems compare to my budget?”
Why would you want to know this? Well,
unless you have the luxury of a separate,
dedicated support group, surges in cus-
tomer-related efforts often rob your pro-
ject of essential resources. Remember, if
you wanted to have a good feeling that
you would stay on target, this is a question
you may need to ask.

You may wish to discuss your rationale
with your managers. This will give them
insight to your needs and concerns and
allow them to provide their own input.
Do not misunderstand, though; this is not
a voting situation. Just because there is no
current process to answer your questions
does not mean you should not get the
answers.

4. What Measures Would
Provide Input to Management
Actions?
In most cases, you may already have some
idea of the questions you need to ask.
Stop and refine those questions to ensure
you have enough detail to take action. For
instance, knowing about SQA violations
will give you an overall feeling about how
well your process programs are being fol-
lowed. However, having these violations
reported per project step or phase may
highlight where your retraining efforts
may provide the biggest impact.

This polishing question could also be
asked like this: “Before I take action to
correct a problem, what other information
would I need?” If you knew the distribu-
tion of defects per module, reported by
severity, that would be more useful in a
project review than just hearing something
like, “We’re sure seeing a lot of prob-
lems!”

This is the time to look for collabora-
tive or explanatory evidence. In this last
example, it would be interesting to com-
pare SQA violations to defects per module
as you would expect to see a correlation
between the two. However, if SQA viola-
tions are not accompanied by defects, it
could mean your SQA processes are a lit-
tle overzealous! On one project, a rash of
SQA violations was reported during
inspections of requirements specifica-
tions. Upon further investigation, we dis-
covered that the documents associated
with the requirements program had
recently been automated, yet the SQA
checklist still required physical signatures
by both author and checker.

5.What Is My Objective for
Each Metric?
Put another way, this last question sets an
acceptable range of values for each metric.
It is important to set up each of these trip
points ahead of time. Do not wait to get a
report before you have to ask the ques-
tion, “Should I be worried about this?”

For example, you may wish to call a
more in-depth schedule review if the
resources allocated are greater than 10
percent of the estimated burn rate. Or,
perhaps you have set a goal of decreasing
SQA violations in the planning phase by
20 percent. You must choose the accept-
able range of values based on specific cir-
cumstances of the project, including the
broader standards that may be established
by your company and the maturity of your
project members.

This last question also provides a kind
of acid test. If there is no unacceptable

“One good place to look
for questions is to
challenge planning

assumptions.Assumptions
made during program
planning are excellent
informational needs
for the measurement

process.”

value – if no actions are forthcoming
regardless of the report – then this is data,
and not a metric.

Final Words of Advice
Here are some final suggestions in build-
ing a set of metrics:
• Avoid the simple answers – they may

be good data points but they are gen-
erally not helpful.

• Metrics can have a life of their own so
avoid creating a monster! Start small
and grow with time. Remember that
collecting metrics consumes project
resources.

• Make establishing a baseline a priority
if you do not have one already.

• Listen after you ask questions. This
encourages participation and mutual
respect.

• Remember, the primary purpose of a
metrics program is to support change!
(As a corollary; metrics programs
make very poor clubs.)

• Push the comfort zone. You need to
know what you need to manage, not
what information somebody is com-
fortable telling you.◆

References
1. The Standish Group International,

Inc. CHAOS Chronicles. Vers. 3.0.
West Yarmouth, MA.: The Standish
Group, 2003 <www.standishgroup.
com/chaos/toc/php>.

2. Humphrey, Watts S. Winning With
Software. Boston, MA: Pearson

Education, 2002.
3. Software Engineering Institute.

Capability Maturity Model® Integra-
tion (CMMI®), Vers. 1.1. Pittsburgh,
PA: Carnegie Mellon University, 2001.

4. Baxter, Peter. “Focusing Measurement
on Managers’ Informational Needs.”
CrossTalk July 2002: 22-25.

What You Don’t Know Can Hurt You

September 2004 www.stsc.hill.af.mil 25

October 2-9
Internet, Processing, Systems, and

Interdisciplinary Research (IPSI) 2004
Sveti Stefan, Montenegro

http://montenegro.internet
conferences.net

October 3-6
2004 IEEE Custom Integrated

Circuits Conference CICC 2004
Orlando, FL

http://www.ieee-cicc.org

October 4-6
14th International Conference on

Software Quality
Orlando, FL

http://software.asqquality.org/
events.htm

October 6-7
IT Research Associates’ 3rd Annual Six

Sigma for Software Development
San Francisco, CA

http://www.frallc.com/infotech.asp

October 9-13
11th International Conference on

Architectural Support for Programming
Languages and Operating Systems

Boston, MA
http://www.eecg.toronto.edu/

asplos2004

October 24-27
17th Annual ACM Symposium on User

Interface Software and Technology
Santa Fe, NM

http://www.acm.org/uist

October 31-November 6
Association for Computing Machinery

SIGSOFT 2004
Newport Beach, CA

http://www.isr.uci.edu/FSE-12/
venue.html

April 18-21, 2005
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

About the Author

Douglas A. Ebert com-
pleted a U.S. Air Force
career as a lieutenant
colonel and is currently
a vice president for
strategic planning and

partnerships with McKesson Corpo-
ration. In this capacity, he leads the
adoption of emerging industry tech-
nologies and standardization efforts in
developing information solutions for
the healthcare industry. A speaker at
technology conferences, he is also the
chair of the Software Engineering
Institute’s Capability Maturity Model
Integration® Interpretive Guidance
Expert Group.

McKesson Corporation
1400 S.Wolf RD STE 200
Wheeling, IL 60090
Phone: (847) 495-1718
Fax: (847) 537-4866
E-mail: doug.ebert@mckesson.com

26 CROSSTALK The Journal of Defense Software Engineering September 2004

Most people’s first encounter with the
term network-centric warfare (NCW)

ought to set off their undefined-buzz-
word-that-sounds-fancy radar. It appears
sufficiently generic an expression to
encompass any computer-based warfight-
ing system. It is true that there is no dic-
tionary definition of the term. This calls
for a clarification of the sense it will have
in this article: NCW is about leveraging exist-
ing information assets using an infostructure.

Now, let us dissect this statement:
The term infostructure is an amalgama-
tion of the words information and infra-
structure – it refers to the infrastructure
used for information sharing. This could
be anything from a long-wave military
radio network to an office Local Area
Network (LAN). The next keyphrase is
existing information assets. This establishes
that NCW is not about creating new
information, but rather about using the
information that is already in our posses-
sion. Finally, the word leveraging is of cru-
cial importance: We are trying to make
better use of what we already have. Based
on these premises, NCW is about creat-
ing battlespace superiority through more
efficient use of existing information.

The concept of NCW can be further
illustrated by an example. Think of a sit-
uation where Army tanks, Navy ships
carrying short-range missiles, and Air
Force ground attack aircraft would be
deployed to take out a mobile enemy
command unit. Rather than each moving
independently toward the target, they
would use a common data network to
coordinate their efforts. Each unit type
has various sensors to track the target,
and this data is fed into the data network.
The data is processed into one single tar-
get reading that is returned to the units,
rendering much more accurate position-
ing. As the units move in closer to the
target, they all have the friendly tank
positions plotted on their map displays to
avoid friendly fire incidents. The Navy
ships have real-time information on the
location of the attack aircraft as the ships
get ready to launch their missiles. Finally,
when weapons are launched, all units

receive continuous feeds on the status of
the target to optimize impact.

Clearly this way of taking out the tar-
get is more likely to have favorable results
at a lower cost compared to a situation
where all units act independently. It is
made possible through intelligent sharing
of information.

What will it take, technically, to
achieve this battlespace superiority? This
article attempts to materialize what,
specifically, the crucial components are
for making it possible to reap the benefits
of NCW. The approach is general, not
focusing specifically on the United States
or any other military force.

The Functions in NCW
In their book “Network-Centric
Warfare” [1], the authors identify three
roles in the battlespace (battlespace as
opposed to battlefield reflects the reality
that today’s battles are not necessarily
fought in a single geographically delimit-
ed theater). These roles carry out the
three main functions – or tasks – in the

battlespace: 1) achieving battlespace
awareness and knowledge, 2) command
and control and decision making, and 3)
execution.

These functions are carried out by the
roles of sensors, decision-makers, and
actors, respectively. The concept of
NCW primarily focuses on the first of
the functions – enabling better awareness
of the enemy and friendly forces – but
also places emphasis on improving com-
mand and control and decision making as
well as execution, for instance, through
improved communications systems.

An illustrative example of these func-
tions is a forward-deployed reconnais-
sance squad determining the exact loca-
tion of a target (sensor) and reporting this
back to the command center. At the com-
mand center, the order is given (decision-
maker) to an aircraft in the area to take
out the target (actor).

At the other end of the spectrum, the
three roles can be carried out by one and
the same entity: An infantry soldier spots
an enemy soldier (sensor), determines
that he needs to attack the enemy soldier
(decision-maker), and proceeds to fire his
weapon against him (actor).

Analysis Based on the NCW
Roles
Splitting the analysis along these func-
tions is a good inroad to trying to deter-
mine what it will take for NCW to be a
success. Of particular interest to this
community is the first function: How to
achieve battlespace awareness and knowl-
edge. This function is not an effort to
gather more information; remember, we
are in the business of better using our
existing information assets. Rather, it is an
attempt to share and process information
in the best way possible. The remainder
of this article will consist of a closer look
at the sensor function.

Battlespace Awareness and
Knowledge Analysis
Methodology
This research is an attempt at formalizing

Identifying Essential Technologies
for Network-Centric Warfare

David Schaar
PRICE Systems, LLC

Network-centric warfare (NCW) is still a concept that is being defined; many find it too intangible for comfort. This is an
attempt at materializing what, exactly, will be the important technologies for NCW.

“NCW [network-centric
warfare] primarily

focuses on ... enabling
better awareness of the

enemy and friendly
forces – but also places
emphasis on improving
command and control

and decision making as
well as execution ...
through improved

communications systems.”

Open Forum

September 2004 www.stsc.hill.af.mil 27

the analysis of key technological areas for
enabling NCW: How do we find the
hottest information sharing nodes where
exchange of sensor data is the most valu-
able? It presents a methodology for cre-
ating a relative ranking of the informa-
tion sharing nodes. The following is a
description of that methodology.

The key to the approach was to start
with a complete model of the battlespace
and from there, try to zero in on the most
interesting areas from a NCW perspec-
tive. The chosen model would describe
all the possible transactions between
information nodes in the battlespace
such as depicted in Figure 1. An infor-
mation node was equated with any bat-
tlespace entity (aircraft carrier, fighter
aircraft, armored personnel carrier).
Using a ranking methodology, the most
interesting of these nodes would be iden-
tified.

The basis for the graph in Figure 1
was a matrix that described all the possi-
ble information transactions. An infor-
mation transaction involves an informa-
tion supplier and an information recipi-
ent. The information supplier translates
into a sensor, as described earlier, carried
by some battlespace entity. The informa-
tion recipient corresponds to any battle-
space entity. For instance, there could be
an aircraft carrying photoreconnaissance
equipment (information supplier), transmit-
ting image data to a ground unit charged
with the task of taking out a target (infor-
mation recipient).

By applying mathematical methods as
described further on in this article, the
value of each information transaction
could be assigned a relative value, which
in turn formed the basis for a graph with
rankings.

Initially, a list of all main unit types in
the battlespace from sources such as [2]
was created. For each of these unit types,
a list of all possible categories of sensors
that could be carried was assembled.
From this, a matrix (Figure 2) was com-
piled to describe the value of all possible
information transactions between the
entities in the list. This approach was
inspired by John J. Garstka’s method of
representing information positions [3].
Along the x-axis of the matrix are listed
all possible suppliers of information
such as air radar carried by an attack air-
craft or global positioning system (GPS)
carried by an armored personnel carrier.
Along the y-axis are all possible informa-
tion recipients such as bomber aircraft or
submarine.

Each element ijk represents the value
of information flow from element k to

element j, for example, the value of
information flow from attack aircraft air
radar to a bomber aircraft. In the study,
each element was assigned an integer
value between 0 (low importance) and 2
(high importance) to determine the sig-
nificance of the information transaction.

Additionally, each column was multi-
plied with a weighting factor to indicate
the significance of the sensor being car-
ried by a particular unit type – for
instance to account for the fact that a
surface warfare ship will not necessarily
be carrying an air radar (low weighting),
while an anti-submarine warfare aircraft
is guaranteed to be carrying a sonar (high
weighting).

This resulted in a 150 X 25 matrix.
The values in this matrix were absolute;
that is, they were all measured along the
same scale but they had not been adjust-
ed to reflect the relative importance
between them. Having the values relative
rather than absolute was key to being able
to graph their significance. The absolute
values were transformed into relative val-
ues through the following method:
• In the interest of keeping the results

manageable, the matrix data was
grouped into aggregate elements
according to different rules for each
analysis. For instance, one analysis
was performed where aggregate
groups of transactions based upon
the sensor type (e.g., air radar) were
created, and another analysis was
done where groups based on the car-
rier unit type (e.g., ground unit) were
compiled.
For illustrative purposes, we will look

in more detail at the case where informa-
tion suppliers were grouped according to
the sensor type as well as carrier type.

One supplier group was air radar carried
by air units. In this analysis, one informa-
tion recipient group was sea units. The
value to be calculated was thus the rela-
tive importance of information flow
from air radar carried by an aircraft to a
sea unit. The formula was the following:

Relative Importance =

ΣΣ Matrixjk

Count

where,

j is an element of recipient group,
k is an element of supplier group,and
count is the total number of suppliers

in the group.

The outcome of this calculation is that
the relative value was computed as the
sum of all matrix elements for air radars
carried by aircraft where the information
recipient is a sea unit, divided by the num-
ber of air radars carried by aircraft.

A Java program was written for these
calculations and for formatting the
results into inputs for the Graphviz tool
from AT&T [4]. Graphviz was then used
to produce illustrative graphs such as the
one in Figure 3 (see next page).



















nmmm

n

n

n

iii

iii

iii

WeightWeightWeight

,2,1,

,22,21,2

,12,11,1

21

Information_supplier

In
fo

rm
at

io
n

_r
ec

ip
ie

n
t

Figure 1: Information Transaction Graph



















nmmm

n

n

n

iii

iii

iii

WeightWeightWeight

,2,1,

,22,21,2

,12,11,1

21

Information_supplier

In
fo

rm
a
ti

o
n

_
re

c
ip

ie
n

t

Figure 2: Information Transaction Matrix

Identifying Essential Technologies for Network-Centric Warfare

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering September 2004

Results
The graphing resulted in clearly distin-
guishable areas of interest. For informa-
tion suppliers, four sensor types were dis-
tinctly at the top of the list:
1. Friendly unit positioning sensors.
2. Weather sensors.
3. Enemy positioning sensors.
4. Imaging sensors carried by aircraft.

An example of friendly unit position-
ing sensors is a GPS system. Friendly
units receive a feed from the sensor on
the unit’s position. This creates a very
high level of battlespace awareness of
friendly units’ whereabouts.

Weather sensors range from tempera-
ture sensors to weather radars – anything
that may inform other units of the cur-
rent weather conditions.

Enemy positioning sensors are typi-
cally radars. A fighter aircraft may receive
a feed from other friendly aircraft track-
ing the same enemy unit. Creating a fused
reading from the friendly aircraft’s data
indicating where the enemy unit is ren-
ders a more accurate positioning and,
hence, better efficiency.

Imaging sensors carried by aircraft are
sensors that capture either still or video
imagery, either visible light or infrared.

On the information recipient side, air
and sea units were deemed more interest-
ing than ground units. This reflects the
fact that these units typically carry more
advanced processing systems and are able

to take in information from more
sources. It also illustrates the greater
necessity for aircraft and ships to be ori-
ented about the whereabouts of all
friendly units as well as enemy units.

So what is the impact of these results?
We can draw the conclusion that the four
sensor types previously identified ought to
be among the systems receiving particular
emphasis in military acquisitions. Similarly,
they are likely to be receiving particular
attention by equipment manufacturers.
Development of these systems is likely to
be prioritized.

One area merits some extra thought
from a software viewpoint: Looking par-
ticularly at sensor types one and three,
data fusion – the art of taking readings
on the same phenomenon from several
sources and applying algorithms to gen-
erate a single, more accurate reading –
will be of special interest. The type of
data fusion in question here is referred to
as positional fusion [5]. Three component
tasks make up positional fusion:
1. Data alignment: Transforming sen-

sor data into a common frame of ref-
erence.

2. Parametric association: Associating
observations into groups that repre-
sent the same entity.

3. State vector estimation: Combining
the observations that result from the
same entity into a single estimation of
the entity’s position and velocity.

Clearly, this is a very processing-intensive
area, with a focus on optimized software.

While it might be considered stating
the obvious, it should also be pointed
out that software areas of general rele-
vance to NCW are, among others, net-
work operating systems, network inter-
face software, and communications
applications.

The Next Step
In a look further down the line, one
author [6] envisions a departure from
direct connections between a sensor and
the user. Rather than each unit carrying
its own sensors, there would be so-called
data fusion nodes to which both suppliers
and consumers of information would
connect. This would be a hub of sorts,
with a task manager that, when a request
for information arrives, directs the job to
the sensor(s) with the best quality, capa-
bility, and availability. Data fusion would
then be moved away from users into this
centralized location.◆

References
1. Alberts, D.S., J.J. Garstka, and F.P.

Stein. Network Centric Warfare. 2nd
ed. CCRP Publication Series, Feb. 2000
<www.dodccrp.org/publications/pdf/
Alberts_NCW.pdf>.

2. Federation of American Scientists
Military Analysis Network. Washing-
ton, D.C. <http://fas.org/man>.

3. Garstka, John J. “Network Centric
Warfare: An Overview of Emerging
Theory.” Phalanx, The Bulletin on
Military Operations Research Dec.
2000.

4. AT&T Labs Research. “Graphviz -
Open Source Graph Drawing Soft-
ware.” Vers. 1.12 Feb. 2004 <www.
research.att.com/sw/tools/graphviz>.

5. Hall, D.L. Mathematical Techniques
in Multisensor Data Fusion.
Norwood, MA: Artech House, 1992.

6. Strömberg, D. “Integration och
Styrning av Sensorer i Nätverk.”
(“Integration and Management of
Sensors in Networks.”) FOI,
Totalförsvarets Forskningsinstitut
(The Swedish Defence Research
Agency), Linköping, Sweden, 2001.

Additional Reading
1. Schaar, D. “Network Centric Warfare:

System Interoperability EKI
2003:02.” Department of Manage-
ment and Economics, Linköping
Institute of Technology, Linköping,
Sweden, 2003.

2. The Data Fusion Server <www.
data-fusion.org>.

Ground

Air

Sea

Weather Sensor

Magnetic Sensor

Image Sensor

Speed Position
and Range Sensor

Signal, Electronic,
and Communication
Intelligence Sensors

Air Radar

Surface Radar

Acoustic Sensor

Figure 3: Information Transaction Matrix

Identifying Essential Technologies for Network-Centric Warfare

September 2004 www.stsc.hill.af.mil 29

Dear CrossTalk Editor,

Paul McMahon’s article, “Bridging
Agile and Traditional Development
Methods: A Project Management
Perspective” in the May 2004 edition
of Crosstalk on bridging
between agile and traditional devel-
opment methods may have missed
the real point. An on-site customer
representative for a subcontractor in
an environment where the customer
is encouraged to change require-
ments can have serious risks, not only
for the prime, but also for all of the
other subs that have to adjust to
those changes. Integration is far
harder than straight development
precisely because the communication
cost of keeping the various pieces
working together is large.

Often embracing change means
never having to get it right. This has
been a primary cause of failure on
many so-called agile projects. (The
most famous XP project was what
should have been a routine payroll
system at Chrysler that was cancelled
prior to completion due to cost over-
runs and late deliveries of needed
functionality.)

Good up-front architecture and
good design mitigate the risks. Both
the architecture and the implemented
design need to allow for managed
change. McMahon does this by adding
process weight to agile methods in the
form of his recommendations.

Actually, I believe that his modifi-
cation to the waterfall model, or
some other similar modifications, are

pretty common to successful devel-
opment regardless of whether any
subcontractors are agile or not.

So, I would contend that the real
point of McMahon’s article is that suc-
cessful development is not about adapt-
ing to XP by moving toward the middle.
It is about the middle being in the right
place in the first place because extremes
in either direction create extreme risks.
The XPers need to move toward the
middle as well. If they ever want to build
in a true system-of-systems environ-
ment, they will recognize that while
change is itself a requirement, it needs to
be accepted, managed, and controlled,
but not embraced.

For a humorous, yet capable,
description of the pitfalls (and posi-
tives as well) of XP, check out the
book “XP Refactored,” by Matt
Stephens and Doug Rosenberg. It is a
combination of clinical dissection and
gossipy tell-all about XP. And the only
thing extreme about it is the humor.

Gary A. Ham
Senior Research Scientist

Battelle Memorial Institute
(540) 288-5611 (office)
(703) 869-6241 (cell)

The opinions in this letter are the
author’s and do not represent Battelle
Memorial Institute as a whole.

CrossTalk invites readers to submit
their thoughts, comments, and ideas on its
themes and articles as a “Letter to the
Editor.” Simply e-mail letters to
<crosstalk.staff@hill.af.mil>.

About the Author

David Schaar is a con-
sultant with Booz Allen
Hamilton in McLean, Va.,
where he is a cost analysis
consultant with a primary
emphasis on Command,

Control, Communications, Computers,
Intelligence, Surveillance, and Recon-
naissance systems. This article was writ-
ten during his previous capacity as a cost
research analyst with PRICE Systems,
LLC, of Mt. Laurel, N.J., and is based on
research performed as part of his mas-
ter’s thesis. At PRICE Systems, Schaar

developed an information technology
affordability management tool for the
company’s activity-based costing solu-
tion. Schaar has a Master of Science in
industrial engineering and management
from the Linköping Institute of
Technology in Sweden.

Booz Allen Hamilton
8283 Greensboro DR
B6037
McLean,VA 22102
Phone: (703) 377-8041
E-mail: schaar_david@bah.com

Get Your Free Subscription

Fill out and send us this form .

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUNE2003 c COMM. & MIL. APPS. MEET

JULY2003 c TOP 5 PROJECTS

AUG2003 c NETWORK-CENTRIC ARCHT.

SEPT2003 c DEFECT MANAGEMENT

OCT2003 c INFORMATION SHARING

NOV2003 c DEV. OF REAL-TIME SW

DEC2003 c MANAGEMENTBASICS

MAR2004 c SWPROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.

JUN2004 c ASSESSMENT AND CERT.

JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.

LETTER TO THE EDITOR

30 CROSSTALK The Journal of Defense Software Engineering September 2004

Departments

September 2004 www.stsc.hill.af.mil 31

Iam writing this column on a flight
from Albuquerque to Salt Lake City

on route to the 2004 Systems and
Software Technology Conference.
Before we took off, the pilot triggered
the microphone and made basically the
following announcement: “Good
morning … uh … this is your cap-
tain. We’re on flight … uh, 1577 …
from, uh, …” The speech seemed
to go on forever, punctuated at fre-
quent intervals by long pauses and
“uhs.” The person sitting in the seat
next to me remarked, “I sure hope
that he can fly the plane better than
he can talk!”

I guess I am getting old and
crotchety (no e-mail acknowledge-
ments, please!). But I have noticed
that when cockpit personnel key
the mike to give us updates, some-
times it appears that they don’t under-
stand that speaking skills convey an
impression. Having a competent airline
pilot unable to form a complete sen-
tence in less than 90 seconds of mike
time – well, it makes me worry. (Before
I get banned from future airline flights,
I do understand that the pilot was
probably completing a checklist and
making the announcement at the same
time. And the checklist was much more
important. Still, the rambling an-
nouncement did little to inspire pas-
senger confidence).

You’ve all heard the expression,
“Put your best foot forward.” Well,
sometimes it helps to put a bit of shoe
polish on the foot, too. Oftentimes, we
forget that appearances really count.
Many, many years ago, I had the
opportunity to make a proposal for
some consulting work. While I did the
background material, one of my co-
workers was responsible for the sales
pitch itself. I had crunched the num-
bers and submitted accurate and up-to-
date information for the sales pitch.
Imagine my amazement to find out
that the sales pitch was accomplished
on hand-scribbled overheads. The
company we were presenting our sales
pitch to was also probably amazed to
find the name of their company incor-
rectly capitalized! Needless to say, we

were not overwhelmed by their desire
to give us business!

I think that as engineers we some-
times forget that format is at least as
important as content. As a software
engineer, I often need to present infor-
mation and documents to customers

and users. I recently watched another
engineer give a presentation using an
out-of-focus projector that was partial-
ly blocked by his own laptop. After his
15-minute presentation was over, the
next speaker moved and focused the
projector – and many in the audience
applauded. Nobody had really been lis-
tening to the presentation; they were
concentrating on the annoyingly out-
of-focus projector.

Documentation falls under the
same umbrella. Tables of content, lists
of figures, easy-to-use indexes – these
all give you a good feeling about the
content of the material. If it looks
good then there is the perception that
it also contains good information.
While I am not suggesting for a
moment that a glitzy color cover and
fancy formatting will cover up poor
quality material, I am suggesting that
misspellings and sloppy formatting will
cover up good quality material.
Recently, I presented a report to a cus-
tomer, and accompanying the report
was a backup CD with data. I had
labeled the CD with a felt-tip marker.
My co-worker saw what I was doing,
and without saying a word, went and
printed a CD label with some simple
artwork. It made a world of difference!
The message was that I had taken care
of the details – and it made the cus-

tomer have more confidence in every-
thing else!

And, last but not least – recognize
that not every person has been given
the ability to speak in front of an audi-
ence. I have worked on team presenta-
tions where the senior team member

gave the briefing. Unfortunately,
being the senior member didn’t
translate into speaking ability. A
mumbling, stumbling monotonic
report did little to impress the lis-
teners; the important message our
team was trying to convey was
quickly lost due to lack of interest.

Impressions are quick to form,
and hard to forget. Do not let
good research and good work go
ignored because of a lack of fol-
low-through. No matter how you
present your work to others, you

want the presentation to convey this
message, “This is high-quality work!”

So, when you go to put your best
foot forward, consider that a good coat
of shoe polish will help make a good
impression.

— David A. Cook
Senior Research Scientist

The AEgis Technologies Group, Inc.
dcook@aegistg.com

Systems Engineering
and Shoe Polish

Can You BackTalk?

Here is your chance to make your
point, even if it is a bit tongue-in-
cheek, without your boss censoring
your writing. In addition to accepting
articles that relate to software engi-
neering for publication in
CrossTalk, we also accept articles
for the BackTalk column. Back-
Talk articles should provide a concise,
clever, humorous, and insightful per-
spective on the software engineering
profession or industry or a portion of
it. Your BackTalk article should be
entertaining and clever or original in
concept, design, or delivery. The length
should not exceed 750 words.

For a complete author’s packet
detailing how to submit your
BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

BACKTALK

CrossTalk / MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Published by the
Software Technology

Support Center (STSC)

BALANCE YOUR COSTS
Cost estimates can make or break a project. It is essential

to give every project its best chance in an industry

riddled with costly failures. The Software Technology

Support Center's cost estimation team concept allows for

consistency, error reduction, and more realistic estimates

than produced by traditional methods. Before costs tip

your scale, contact us.

801 775 5742 • DSN 775 5742 • FAX 801 777 8069
randall.jensen@hill.af.mil • www.stsc.hill.af.mil

	Front Cover
	Table of Contents
	The Software Edge
	Software Wars

	Tomahawk Cruise Missile Control: Providing the Right Tools to the Warfighter
	Service-Oriented Architecture and the C4ISR Framework

	Software Engineering Technology

	Executable Specifications: Language and Applications
	Executable and Translatable UML

	What You Don’t Know Can Hurt You

	Open Forum

	Identifying Essential for Network-Centric Warfare

Technologies

	Letter to the Editor

	From the Publisher

	Web Sites

	Coming Events

	Call For Articles

	BackTalk

	SSTC 2005 Call for Speakers and Exhibitors

	Back Cover

