

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
CrossTalk. The Journal of Defense Software Engineering. Volume 17,
Number 3, March 2004

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

33

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Accelerating Process Improvement Using Agile Techniques
With a small, agile process team, it is possible for organizations to accelerate process
improvement and still keep costs reasonable and time optimal with minimal project impact.
by Deb Jacobs

Using the Team Software Process in an Outsourcing Environment
The Team Software Process is a powerful set of practices that provides the right information at
the right time to prepare an accurate quote for a buying decision.
by Dr. Miguel A. Serrano and Dr. Carlos Montes de Oca

Unlocking the Hidden Logic of Process Improvement: Peer Reviews
The submerged links in Level 2 maturity models that lead to Level 3 are key to performing
profitable peer reviews that can help catapult organizations to world-class status.
by Marilyn Bush

A Beginner's Look at Process Improvement Documentation
The Software Engineering Institute’s Software Process Framework can give beginners the foundation
to understand how to model process documentation that results in successful software process improvement.
by Ronald A. Starbuck

Common Errors in Large Software Development Projects
Project failure can occur at any stage of development. This author explains a few of the reasons why, despite
advances in technology, failures happen, and what management can do to prevent problems.
by David A. Gaitros

Applying Systems Thinking to Process Improvement
To improve your organization, apply systems thinking to process improvement to generate break-through
approaches to improving systems development, integration, and maintenance.
by Michael West

When Is It Cost Effective to Use Formal Software Inspections?
This author uses a model to show quantitatively that it is cost effective to inspect both original code and
most code modifications after initial coding.
by Bob McCann

Cover Design by
Kent Bingham.

3

8

25

30

31

DeparDepar tmentstments

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering March 2004

4

9

14

18

21

26

30

From the Publisher

Coming Events

CrossTalk Survey

SSTC 2004 Speakers

BackTalk

CrossTalk
Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions. Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 29.

Ogden ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

SoftwarSoftware e PrProcessocess ImprImproovvementement

Open Open FForumorum

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

Open Open FForumorum

Online Online ArArticleticle

From the Publisher

Alot of us are talking about systems these days, and rightly so. But this month we are
focusing on the pivotal aspect of any modern military system – software. Our theme

this month is software process improvement (SPI). We have featured this theme many
times in the past primarily because SPI is what CrossTalk and it’s parent organization,
the Software Technology Support Center (STSC), are all about. CrossTalk helps the
STSC achieve its mission through publishing informative articles aimed at the software
professional as they strive to buy or build software better. Whether you are designing,

developing, testing, configuring, managing, sustaining, or even buying software, we aim to increase
your awareness of the benefits and challenges of disciplined processes in all phases of the soft-
ware life cycle.

CrossTalk is also part of a Capability Maturity Model® (CMM®) Level 5 organization, the
Ogden Air Logistics Center’s Software Engineering Division OO-ALC/MAS at Hill Air Force
Base, Utah. It is a privilege to be a member of a Level 5 organization as process improvement is
embraced at all working levels. SPI is a major contributor to high workplace morale and customer
satisfaction. MAS is currently in the midst of putting new processes in place as well as updating
existing processes as they work to be in compliance with the CMM IntegrationSM (CMMI®) and
prepare for a CMMI assessment later this year. Ogden’s MAS division is a great example of an
organization that has learned to build software better through their application of SPI techniques
in all facets of software development.

We begin this month’s issue with Accelerating Process Improvement Using Agile Techniques by Deb
Jacobs. This author discusses how an organization can get the most bang for their buck by putting
processes in place quickly while still remaining agile in a business environment. The author pres-
ents a methodology that includes a common sense, simple, step approach to developing an orga-
nization’s maturity. Although processes can be put in place fast, Jacobs emphasizes that the
processes become a foundation for continued improvement over time.

Next, Dr. Miguel A. Serrano and Dr. Carlos Montes de Oca bring us Using the Team Software
Process in an Outsourcing Environment. This is a good example of using the Software Engineering
Institute’s Team Software ProcessSM (TSPSM) model as a method of buying software better. The
TSP techniques were used to estimate a legacy system upgrade project’s cost and schedule even
before signing a contract. The information used to produce the cost quote was an outcome of a
TSP launch. The article describes the main problems and results of using the TSP and discusses
lessons learned from the experience.

Unlocking the Hidden Logic of Process Improvement: Peer Reviews, by Marilyn Bush is featured next.
This author discusses how the CMM and the CMMI define necessary process tasks but the mod-
els fail to describe the logic that sequences these tasks. Bush chooses peer reviews as an example
and discusses the reasons for doing peer reviews as prescribed by these models. She also offers her
insights and warnings if peer reviews are attempted too early in an organization’s process improve-
ment journey.

Process documentation can be looked upon as a necessary framework or foundation for any
process improvement effort. Ronald A. Starbuck expands on the importance of process docu-
mentation when it is done right in A Beginner’s Look at Process Improvement Documentation.

In our supporting articles this month is Common Errors in Large Software Development Projects by
David A. Gaitros. This article is a good reminder of the common mistakes made while producing
software and discusses practices that when implemented can increase your project’s success at
developing software. In our Open Forum section, Michael West addresses this month’s theme with
Applying Systems Thinking to Process Improvement. West reminds us that process improvement should
not be done if an organization just wants to be glorified with achieving a certain CMM or CMMI
level as this just creates more problems for them to deal with. The author presents how systems
thinking can provide a bigger picture view of commonly occurring systemic problems in organi-
zations and further helps with resolving the problems that frequently occur in model-based
process improvement efforts.

I hope this month’s collection of articles provides you with helpful information as we all work
together to buy and build systems and software better.

Buying and Building Systems and Software Better

March 2004 www.stsc.hill.af.mil 3

Tracy L. Stauder
Publisher

Software Process Improvement

4 CROSSTALK The Journal of Defense Software Engineering March 2004

Mark slugs down one more beer and
figures it is about time to go home.

This afterwork party is getting boring. As
he is getting ready to leave, Mark sees a
coworker who he has not seen in a long
time.

“Hey, Joe!” Mark yells across the
crowded room.

“Mark, my man, long time,” Joe
answers as he comes over to sit by Mark at
the bar.

“How’s life treatin’ ya?” Mark asks,
wondering why Joe, who is usually such a
fun-loving guy, seems so miserable.

“Oh, okay I guess,” Joe says, uncon-
vincingly, ordering another beer for himself
and Mark.

“So, how’s that high profile project you
were telling me about going?” Mark asks.

“Hey, between you, me, and the bar-
tender, I’ve about had it!” Joe exclaims.

“So, what happened?” Mark asks. “You
said this was the opportunity of a lifetime
last time we talked. The promotion to soft-
ware project lead is what you’ve been work-
ing for since college.”

“This has definitely turned out to be the
project from hell! I thought the last project
was bad but this one beats them all!” Joe
complains. “We’re always behind schedule,
and the costs are skyrocketing! We had to
add three more engineers and you know
what that’s like, between training them and
trying to get the real work done, we end up
even farther behind.”

“Yeah, I know what you mean,” Mark
says, empathizing. “The project I’m on
makes it hard to get out of bed in the
morning, too.”

“It just keeps going on and on with this
company, all talk and no action,” says Joe.
“They tell us that they’re working on it but
nothing ever changes, same old thing every
time. Get a new project, make unreason-
able promises, and who suffers? We do.”

“Yeah, I know what you mean!” Mark
says.

“Well, I’m not going to take it any
more; my resume was out the door a week
ago. I’m just fed up now. They can’t all be
this bad,” Joe says hesitantly, and adds,
“Can they?”

“I hope not. I may be right behind you,
Joe. Put in a good word for me when you
find something,” Mark says commiserating
as he orders another beer to wash down the
gloom that is now starting to overcome
him, too.

Why Accelerate Process
Improvement?
This scenario is played out in organizations
all over the country every day. Good people
are lost, money is lost, reputations are lost,
and, ultimately, clients are lost because of
immature organizations.

The bottom line is this: Companies
cannot afford to wait while bureaucracy
plays itself out. The consequences can be
overwhelming with projects over cost and
over schedule, extensive overtime, confu-
sion, loss of staff, misdirection, distrust,
and frustration. Nobody likes to be caught
with their pants down, which is typical of
immature organizations. By accelerating the
process improvement effort and getting
processes in place quickly using agile tech-
niques, an organization can concentrate on
improving their processes over time and
still remain competitive in an agile business
environment.

How to Accelerate Process
Improvement
There are many models and methodologies
available for improving an organization’s
failure or success quota such as the ISO
9000 series, Software Process Improvement
and Capability dEtermination, Total Quality
Management, Software Process Improve-
ment in Regions of Europe, the Project
Management Institute’s Project
Management Body of Knowledge, and Six
Sigma to name just a few.

To date, the Software Engineering
Institute’s (SEISM) Capability Maturity
Model® (CMM®), including the CMM for
Software (SW-CMM) and the CMM
IntegrationSM (CMMI®), have proven to be
the most successful at maturing organiza-
tions. It all depends upon your ultimate
goals with the process improvement effort
being undertaken.

Regardless of the model or methodol-
ogy selected, by using the keep-it-short
and-simple (KISS) method, many basic
elements can be put in place quickly to
kick things off, thus building a foundation
for continued improvement. Sometimes,
we tend to concentrate on the gory details
and forget the big picture.

Key Success Criteria
The SEI recommends 18 to 24 months per
level for the CMM. The basic KISS philos-
ophy and use of many of the techniques
discussed in this article were responsible
for bringing an organization to CMM
Level 3 in just over one year. The rest of
the techniques are based on the lessons
learned from this and other process
improvement efforts.

There are several key success criteria that
organizations should meet prior to attempt-
ing to accelerate a process improvement
effort. Table 1 provides a list of important
key success criteria.

The SEI developed the Initiating,
Diagnosing, Establishing, Acting and
Learning (IDEALSM) process improvement
methodology in the mid-90s to guide
process improvement adopters. The

Accelerating Process Improvement Using Agile Techniques

Deb Jacobs
Software Engineering Services

In today’s fast-paced, cost-conscious world, it is critical for companies to keep up with the Joneses while continuing to keep costs
reasonable. The cost of process improvement efforts has proven hefty. Many companies have abandoned these efforts simply
because they cannot afford the associated costs. By speeding up process improvement, companies get their bang for the buck.

Table 1: Key Success Criteria in Accelerating
Process Improvement

Key Success Criteria

Executive Management Commitment

Mid-Level Management Commitment

Organizational Adaptability -> Flexible

Project Management Style -> Proactive

Training Style -> Proactive

Communications Style -> Open and Non-Inhibitive

Delegation of Authority

Process Improvement Model Familiarity

Process Acceptance Factor -> Positive

SM SEI, CMM Integration, and IDEAL are service marks of
Carnegie Mellon University.

® Capability Maturity Model, CMM, and CMMI are regis-
tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

Accelerating Process Improvement Using Agile Techniques

March 2004 www.stsc.hill.af.mil 5

IDEAL model is based on the Deming
Cycle/Shewhart Cycle, Plan-Do-Check-Act,
which provides a mechanism for perpetual
change. The Accelerating Process Improvement
Methodology (APIM) uses these models as
a basis.

For the APIM, time is the key word. The
very successful agile programming method-
ology was also used as a basis for the APIM.
Indeed, process improvement can be quite
complex, just as software development is.
However, the key to process improvement
is improving the way you do business, and
for the majority of businesses faster, better,
and cheaper is the mantra of the day. Figure
1 illustrates the APIM.

The APIM has three phases: Pre-
Maturity, Maturity, and Post-Maturity. Each
phase consists of various steps required to
develop an organization’s maturity. As illus-
trated in Figure 1, the Maturity Phase is iter-
ative. It is repeated until an organization is
ready for a formal assessment.

This methodology takes an agile
approach with simplicity and common
sense as the magic words. Many times
organizations tend to over-process with
multiple forms, plans, and procedures that
end up being meaningless. As is usually the
case, the devil is in the details.

Pre-Maturity Phase: Step 1-Launch
The launch step is key to having the appro-
priate resources and budget for execution
of the APIM. This is where you get buy-in
from executive management. Without
executive buy-in, it will be virtually impos-
sible to move ahead in any process
improvement effort; however, for an accel-
erated process improvement effort it
becomes even more critical to success.
Each organization has its own method of
authorizing tasks, but you should get offi-
cial executive approvals and task authoriza-
tions before proceeding.

Initial resources and appointments to
the process team will be an important activ-
ity during launch. Based on previous
process improvement efforts, it is recom-
mended that the core process team be kept
fairly small depending upon the size of the
organization and have enough hours
assigned to the team to get the real work
accomplished. Too many people can cause
bottlenecks that prevent, or slow, real
accomplishment. On the flip side, too few
people, or too few hours for the people
assigned, allows no room for accomplish-
ing tasks. Additionally, assigning the wrong
people with a negative attitude to the group
can sabotage the effort.

The key will be to find the appropriate
balance for the organization. It requires
closely monitoring the group during start-

up from the honeymoon stage (this is the
time that people are most enthused) into
the early start-up stages. It may take some
trial and error to form the right group of
people to accomplish the tasks required to
accelerate process improvement.

An executive steering committee
should be formed during launch. This
committee can be very effective in provid-
ing needed resources and resolving issues
throughout the process. Always remember
to remain agile; do not let the bureaucracy
typically associated with numerous com-
mittees bog you down. When you start put-
ting in frequent, long, drawn-out review
cycles and approvals, you stop being agile.

In order to make a difference, the
process team should be armed with the
authority to make decisions and changes
needed to meet the process improvement
goals. Arming the process team, or at least
the lead, with authority, levels the playing
field for them by providing an equal voice
with project managers. By leveling the play-
ing field within the organization, the
process team will be better able to make
reasonable changes. Even though there
will, in all probability, be mistakes, the
organization must be prepared to roll with
the punches to ease a quick recovery.

The final and very important task dur-
ing the launch step is the initial kickoff
meetings. There should be at least two kick-
off meetings for the organization during
launch:
1. The initial kickoff meeting should be

with the executive staff, as previously
discussed. This may have already been

accomplished at the very beginning of
the launch step or even prior to launch.

2. Once the initial resources and appoint-
ments have been determined, a process
team meeting will be the first activity
for bringing the process team together
and getting a feel for how they will
work together. Remember, this is still
the honeymoon stage, so it will be hard
to really tell how the group will form
until some time passes.

Pre-Maturity Phase: Step 2-Planning
There are many reasons why projects fail,
but survey after survey has found that one
of the top reasons for failure is lack of
planning. Conversely, studies have found
that a major reason for success is proper
planning. Upfront planning is very impor-
tant but, as with the very successful agile
programming methodology, planning
should remain as painless as possible and
iterative.

A forward-looking philosophy should
be employed to ensure that you are pre-
pared for tasking but concurrently ensure
enough flexibility to accommodate chang-
ing task priorities. In essence, the upfront
planning should provide the basic strategy
by which a process improvement effort
operates. An action plan should be devel-
oped that includes the following:
• Process improvement goals.
• Major milestones and associated tasks.
• Measures to indicate status and effec-

tiveness (remember KISS).
• Resources and appointments to the

team.

BudgetBudget Audit
Schedule

Audit
Schedule

Process
Improvement

Plan

Process
Improvement

Plan

Updated
Budget

Updated
Budget

Approved
Tried & True Processes

(policies, procedures, flow
diagrams,Ö)

Approved
Tried and True Processes

(policies, procedures, flow
diagrams)

ScheduleSchedule

Action
Plan

Action
Plan

PlanningPlanning

AssessAssess

ImproveImprove

AwarenessLaunchLaunch

Training

ResolutionResolution

TriageTriage

TrialTrial

DeploymentDeployment

Pre Maturity
Activities

Pre Maturity
Activities

Pre Maturity
Activities

Pre Maturity
Activities

Maturity
Activities
Maturity
Activities

Post Maturity
Activities

Post-Maturity
Activities

Figure 1: Accelerating Process Improvement Methodology (APIM)

Software Process Improvement

6 CROSSTALK The Journal of Defense Software Engineering March 2004

• Team responsibilities.
• Initial risks and mitigation.
• Budget (this will depend upon how an

organization handles budgeting).
• Completion criteria.

For each task, the responsible team
member should develop a short and simple
implementation/action plan. This will be
discussed more fully in later phases. The
major milestones should be defined in a mas-
ter schedule, which is critical to the success
of any project. The master schedule should
always be maintained to include all current
tasks, upcoming tasks, and potential tasks.
Each current and upcoming task should be
tracked to resolution to ensure appropriate
resources are available to accomplish essen-
tial tasks as assigned. The master schedule
should be developed and maintained by the
process team to ensure soundness of the
timelines. This will be a very important tool
for success.

During the planning step, the following
two additional kickoff meetings should be
conducted for the organization:
1. A special kickoff meeting should be

accomplished with the mid-level man-
agement staff. This is where a mid-level
management commitment is received,
which is as important to the success of
the effort as executive management com-
mitment. The mid-level management will
ensure that things are done a certain way
such as using the processes developed by
the process team.

2. A kickoff meeting for the entire organi-
zation’s staff will provide the first oppor-
tunity to advertise the process improve-
ment effort. Advertising the effort will
be important to getting the entire organ-
ization on board with processes and the
process improvement effort. Further
advertising should be done throughout
the process. Remember, the ultimate goal
of process improvement is to change the
way the organization accomplishes its
work. If the staff doing the work is not
on board and aware of the effort, the
changes cannot be accomplished. Some
suggestions include regular e-mails,
newsletters, posters, flyers, presentations,
and announcements at other meetings by
executive management.

Maturity Phase: Step 1-Awareness
A mini-assessment will determine where an
organization is, and where they need to go.
The focus is on finding and identifying the
weak areas that need to be corrected or
improved to meet best practices or the
organization’s process goals. The initial
mini-assessment will set the baseline for
progress mini-assessments, which should
be accomplished for each iteration of the

maturity phase as illustrated in the APIM
diagram.

Various mini-assessment methods can
be used but any mini-assessment should
have a minimal impact to the organization’s
staff. At minimum, it should consist of a
records analysis as well as interviews with
the process users. The length, size, and
scope of the mini-assessment will be
dependent upon the assessor’s knowledge
of the organization and the process goals.
For example if CMMI is selected, the asses-
sor should have a good working knowledge
of that model. A mix of internal and exter-
nal staff, either within or outside the com-
pany, can be very beneficial to gain both
organizational knowledge and model
knowledge.

The mini-assessment results should be
analyzed to determine the weak areas along
with the level of weakness and an initial esti-
mate of what it will take to strengthen the
area. The final analysis will determine what
actions need to be taken to meet the organi-
zation’s process goals. The actions can be
viewed much like the user stories in the agile
programming methodology. The initial mini-
assessment results should become the base-
line for use in later iterations.

The baseline results should be main-
tained through use of a tool to depict the sta-
tus of each project and the organization.
One successful method is through mainte-
nance of stoplight-type charts or other types
of tables that indicate each project and the
organization’s status. These should be updat-
ed following each progress mini-assessment
and regularly reported to the executive steer-
ing committee.

Maturity Phase: Step 2-Triage
Triage comes from an old French word
meaning sorting or sifting. It has been used
to describe the treatment of patients, espe-
cially battle and disaster victims, according
to a system of priorities designed to maxi-
mize the number of survivors. For patients,
the following three categories have been
defined: 1) those who will not survive even
with treatment; 2) those who will survive
without treatment; and 3) those whose sur-
vival depends on treatment. By using triage,
the treatment of patients requiring help is
not delayed by useless or unnecessary treat-
ment of those in the other groups. Triage
originated in military medicine when limited
resources faced many wounded soldiers and
time was critical. Hence, triage decisions are
made after relatively quick examination;
patients in lower-priority groups are reexam-
ined periodically.

This same triage or sorting method can
be used to accelerate process improvement
efforts. The prioritization categories would

be a bit different with consideration for the
level of weakness and the effort required to
strengthen it. A second consideration is the
needed actions of most value to the project
or the organization. The key selection crite-
ria should be based on three goals: business
goals, project goals, and process goals.

Whatever prioritization criteria are used,
this should be done swiftly in order to get
the organization where it needs to go as
quickly as possible. Based on his former
Army experience, Christopher P. Higgins,
Bank of America national manager currency
Services, said, “Make a decision! Make a
decision! People are dying all around you!”

Agile programming uses index cards to
depict their user stories. This method could
also be used effectively for process improve-
ment with the actions needed as the user sto-
ries. Another method just as successful is to
maintain actions needed in written form
such as tables. For each iteration of the
maturity phase, the index cards or tables
must be updated to reflect the current
actions needed.

Maturity Phase: Step 3-Resolution
Based on prioritization, actions are selected
and assigned to process team members for
resolution. For each action, the responsible
team member should develop a short and
simple implementation/action plan. The
size and scope of this plan depends on the
size and scope of the assigned task, but it
should be kept minimal with the key infor-
mation needed to accomplish the task. The
following is recommended for inclusion:
problem definition/objectives/purpose,
team members, piloting strategy, desired
results, issues and risks, timeline and high
level tasks, and deliverables. A sample of an
agile action plan can be found with the
online version of this article at
<www.stsc.hill.af.mil/crosstalk/2004/03/
0403jacobs.html>.

During resolution, the process should be
developed that may include process flows,
policies, procedures, forms, and templates.
The key again is simplicity: KISS. As in agile
programming, do the simplest thing that will
work. If previously developed complex
processes are used, you should use a tech-
nique called refactoring in programming that
means making the code clearer, cleaner, sim-
pler, and elegant. This does not mean chang-
ing the functionality or rewriting processes
but simplifying them for easier use.

A quick peer review method should be
used to finalize processes for piloting as well
as an approval process in order to ensure the
integrity of the processes. As with the rest of
this methodology, the key is agility and keep-
ing it simple. Avoid bureaucracy unless high-
ly warranted; it is time consuming.

Accelerating Process Improvement Using Agile Techniques

March 2004 www.stsc.hill.af.mil 7

Maturity Phase: Step 4 -Training
Training can play a pivotal role in the accept-
ance or rejection of a developed process.
Special care should be taken with training to
get buy-in from the process users. This dura-
tion should be used to tailor the process to
meet any specific user needs as well as train
the user on the process.

Maturity Phase: Step 5-Deployment
Processes should be piloted on a project or
within the organization prior to being added
to the organization’s process repository. It is
important to ensure that the process will
work in a real situation instead of just in the-
ory.

The process team should act as a men-
tor/coach for the project when piloting
processes. Frequent checkups should be
done to ensure that it is being used as devel-
oped and to ensure a complete understand-
ing of each step, template, deliverable, etc.

Maturity Phase: Step 6 -Trial
Once the process has been piloted, the
process team should assess the effectiveness
of the processes developed for the selected
action and either approve or reject them.
Depending upon the severity of the findings,
they may be immediately improved and
approved, or improved and re-piloted during
the next iteration. As always, collect lessons
learned for making later iterations easier, bet-
ter, and even more agile.

Post-Maturity Phase: Step 1-Assess
The final phase is the Post-Maturity Phase
that starts with the formal assessment. A for-
mal assessment should be accomplished when
the progress mini-assessment indicates readi-
ness. The method of assessment will depend
upon the process improvement model or
methodology selected, but it will be key to
identifying strengths and weaknesses from an
outside source. Some formal assessments use
organizational staff and some use staff from
outside the organization or company.

Post-Maturity Phase: Step 2-Improve
It is important to provide continuous
improvement to an organization.
Organizations change, staff changes, busi-
ness goals change; many changes take place
in organizations, sometimes very quickly, and
processes must continuously keep up with
these changes. The accelerated process
improvement effort will put the initial
processes needed in place as a foundation for
further improvement.

In order to continue being agile and keep
costs at a minimum, the accelerated process
improvement method can continue to be
used. Since needed processes will already be
in place, it may require tailoring to meet

future process needs as opposed to initial
process needs. The following are some of
the things that should be considered for the
improvement effort:
• Improvement measures.
• Audit plans.
• Audit reports.
• Periodic progress assessments.
• Updated risks.
• Updated budget.
• Updated action plan.
• Task-completion criteria.

APIM Checklist
Table 2 provides a quick checklist/overview
for each step in APIM.

APIM Truths
The SEI has long recommended allotting 18
to 24 months per CMM level. It found that
the average is two years to get to SW-CMM
Level 2. Watts Humphrey, founder of the
Software Process Program at the SEI, rec-

ommends one to three years per level. Each
organization must weigh the importance of
the advantages and disadvantages based on
their unique environment to determine
whether to take it slow and easy or acceler-
ate process improvement.

Table 3 (see page 8) compares some typ-
ical advantages and disadvantages of acceler-
ating processes to taking it slow and easy.

Bottom Line
There are many lessons learned from both
successful and unsuccessful process
improvement efforts. The Internet is full of
hard-learned lessons and provides a great
tool for levying others’ lessons learned.
There are also many lessons learned from
successful accelerated process improvement
efforts. Use the tools and techniques devel-
oped and shared by others to help make
your process improvement effort successful
as well as the difficult lessons learned to
help avoid making the same mistakes.

Phase Step Objectives

Pre-Maturity Launch

• Executive Approvals
• Task Authorization
• Executive Steering Committee
• Initial Resources/ Appointments
• Kickoff Meeting(s)

Pre-Maturity Planning

• Develop Brief Action Plan
� Goals
� Milestones
� Measures
� Resources
� Risks
� Responsibilities
� Budget
� Completion Criteria

Maturity Awareness

• Mini-assessment to identify strengths and weaknesses
• Maturity level measurement
• Analyze current situation

Maturity

Triage

• Determine strategy and actions
• Analyze return on investment for each action
• Select actions using a triage approach (speed is the key here)

based on importance to:
� business goals
� project goals
� process goals

• Prioritize selected actions

Maturity Resolution

• Select project(s) for piloting initial processes
• Develop processes (remember KISS):
� process flows
� policies
� procedures
� forms
� templates

• Process Reviews and Approvals

Maturity

Training

• Train pilot process users
• Tailor, as needed

Maturity

 Deployment

• Pilot processes to selected project
• Mentor pilot project(s)

Maturity

Trial

• Assess effectiveness
• Improve/approve
• Collect and analyze lessons learned

Post-Maturity Assess

• Determine maturity level
• Identify strengths and weakness for future improvement

Post-Maturity

Improve

• Improvement Measures
• Audit Plans
• Audit Reports
• Periodic Progress Assessments
• Update Risks
• Update Budget
• Update Action Plan
• Task Completion Criteria

Table 2: Accelerating Process Improvement Steps Overview

Software Process Improvement

8 CROSSTALK The Journal of Defense Software Engineering March 2004

Keeping costs reasonable and time opti-
mal is the key advantage of APIM. This
method has been proven to keep process
improvement costs lower and time minimal.
However, it is key to remember that you
should have a small, agile process team and
there should be very little project impact due
to the process improvement effort. The only
impact to projects should be in improving
the way the projects operate. Otherwise, the
cost savings will be minimal if seen at all.
The bottom line is: Do not sacrifice produc-
tivity to meet process improvement goals.
This will counteract any of the advantages
achieved by using the APIM.

Finally, always consider, “What is the bang
for the buck?” If the return from each step,
form, or plan, is not worth the time it takes to
do it, then it should probably not be accom-
plished. Do not let bureaucracy stop you from
achieving your ultimate process improvement
goal: Mature processes for a smoother, more
effective working environment.

Whatever you do, always remain agile!◆

Additional Reading
1. Carnegie Mellon University. CMMI SM

for Systems Engineering/Software
Engineering, Ver. 1.1, Staged
Representation. CMU/SEI-2002-TR-
002. Pittsburgh, PA: Carnegie Mellon
University, Dec. 2001.

2. Yourdon, Edward. Death March – The
Complete Software Developer’s Guide
to Surviving “Mission Impossible”
Projects. Prentice Hall, 1999.

3. Humphrey, Watts. Managing the
Software Process. Reading, MA:
Addison-Wesley, 1990.

4. Humphrey, Watts. A Discipline for
Software Engineering. Reading, MA:
Addison-Wesley, 1995.

5. Paulk, M. C., C. A. Weber, B. Curtis,
and M. B. Chrissis. The Capability
Maturity Model: Guidelines for
Improving the Software Process.
Reading, MA: Addison-Wesley, 1995.

6. McFeeley, Robert. IDEALSM: A Users
Guide for Software Process
Improvement. CMU/SEI-96-HB-001.

Pittsburgh, PA: Carnegie Mellon
University, Feb. 1996.

7. Project Management Institute
<www.pmi.org>.

8. International Organization for
Standardization <www.iso.ch>.

9. Software Process Improvement and
Capability dEtermination <www.sqi.
gu.edu.au/spice>.

10. Software Process Improvement in
Regions of Europe <www.cse.dcu.ie/
spire>.

11. Extreme Programming (aka, agile pro-
gramming) <www.extremeprogram
ming.org>.

About the Author

Deb Jacobs is process
improvement manager
and principal engineer at
Software Engineering
Services. She has over 25
years experience in sys-

tem/software engineering, project man-
agement, and process improvement,
including helping organizations be more
successful in development and manage-
ment. Her notable successes include lead-
ing a successful Capability Maturity
Model® (CMM®) Level 3 effort in one
year, organizing struggling projects, and
mentoring new managers. She is former
SPINOUT newsletter editor/ originator,
former CERT® [Computer Emergency
Response Team] Conference chairper-
son, InfoTech deputy Software Tracks
chair, and a Software Engineering
Institute CMM IntegrationSM contributor.
Jacobs has a Bachelor of Science in com-
puter science.

Software Engineering Services
1508 JF Kennedy DR, STE 201
Bellevue, NE 68005
Phone: (402) 292-8660
E-mail: djacobs@sessolutions.com

March 29-April 1
Defense Technical Information Center

Annual Meeting and Training Conference

Alexandria, VA
www.dtic.mil/dtic/annualconf

March 30-31
3rd Annual Southeastern Software

Engineering Conference
Huntsville, AL

www.ndia-tvc.org/SESEC

April 19-22
2004 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

May 17-21
STAREAST
Orlando, FL

www.sqe.com/stareast/

May 23-28
26th International Conference on

Software Engineering

Edinburgh, Scotland
www.jupiterevents.com

June 23-26
Agile Development Conference 2004

Salt Lake City, UT
www.agiledevelopment

conference.com

September 27-29
4th ACM International Conference on

Embedded Software
Pisa, Italy

www.emsoft.org

November 15-19
STARWEST

Anaheim, CA
www.sqe.com/starwest/

COMING EVENTS

R

Accelerating Slow and Easy
Quicker return on investment Institutionalization more likely

Early success fuels improvements later More time for improvement successes

Early failures jeopardize later efforts Easier recovery from failures

Tendency to keep things simpler Tendency to create bureaucracy

Less time More time

Processes in place quicker Processes more staggered

Requires research to levy lessons learned from other
organizations

More time to learn from lessons and collect historical
data

Process improvement staff needs to be both process
savvy and have an agile temperament

Time to learn process improvement how-tos

Table 3: Accelerating Process Improvement Advantages and Disadvantages

Sample
Agile Action Plan

Monitoring and Control (Organizational) Action Plan Program Management Office
Establishment

Problem Definition/Objectives/Purpose:
A consistent, repeatable method is needed for monitoring projects. The purpose of this task is to
develop the processes, templates, and guidelines for management of all projects.

Team Members:
Rod Simpson
Jane Smith
John Jackman

Piloting Strategy:
Piloting will be accomplished by using the selected projects to accomplish the processes
developed and by improving with lessons learned as we go along. The PLID project has been
selected to try the process out due to their current maturity level and availability. They will try it
once or twice, and then the rest of the selected piloting projects will attempt to follow the process.
The processes will be tweaked along the way to make it work best for each project as well as give
the management team the information they need to monitor projects.

Desired Results:
The key expected result is development of a Program Management Office with processes and
templates that allow executive management to monitor projects. It also provides an opportunity to
manage issues before they become issues for the customer.

Issues and Risks:
Executive Management buy-in.
Executive Management using process for statusing projects.

Timeline/Actions:

Deliverables:
Flow Charts (High Level and Detailed)
Processes
Templates
Specifics to be Determined

March 2004 www.stsc.hill.af.mil 9

Using the Team Software Process in an
Outsourcing Environment

This article describes an experience using the Team Software ProcessSM (TSPSM) in an outsourcing software project. One character-
istic of this type of project is that the company offering the service might have to face an economic penalization if the project is not
delivered on time. This article describes how TSP techniques were used to quote the project, how TSP helped to control the project
during development, and the lessons learned from this experience.

Small companies make up the majority
of software development organiza-

tions; they face many challenges to main-
tain their business and to survive [1, 2]. In
particular for outsourcing software devel-
opment companies, fulfilling commit-
ments is everything. Finishing projects on
time is critical. Moreover, finishing proj-
ects within budget and with the expected
quality is the whole business focus
because delivering quality software on
time means maintenance costs will be
minimal. To be able to meet these con-
straints, outsourcing companies must
excel in estimation, planning, project man-
agement, and quality assurance.

The Team Software ProcessSM (TSPSM)
and the Personal Software ProcessSM

(PSPSM) are well defined processes for
software development teams and for soft-
ware engineers, respectively [3, 4, 5, 6].
The TSP and PSP are designed to help
teams and engineers improve their per-
formance and to produce quality products
on time and within budget.

This article describes the experience of
QuarkSoft, a small, outsourcing, software
development start-up company that used
the TSP to run an outsourcing project.
Specifically, this article describes how TSP
techniques were used to quote the project
before signing a contract, including esti-
mating project cost and running and keep-
ing the project under control. This article
includes a description of the main prob-
lems and results of using the TSP, as well
as a discussion of the lessons learned
from this experience.

QuarkSoft offers consulting and out-
sourcing software development services.
It was conceived as a company where
quality software development is one of
the main distinguishing characteristics.
Thus, the company is committed to devel-
oping quality software on time and within
budget. The strategy to meet these busi-
ness goals includes following the Software
Engineering Institute’s (SEI) Capability

Maturity Model® (CMM®) and its imple-
mentation with the TSP and the PSP [7].
In other words, the TSP and the PSP are
used as the baseline processes in all soft-
ware development projects.

The TSP provides an operational
process to help software engineers do
quality work. It also provides the mecha-
nisms to maintain an effective team work-
ing environment [8, 9, 10, 11, 12]. The
TSP provides team members with the
forms, instructions, standards, processes,
and scripts to do disciplined and effective

teamwork. Teams working under the TSP
start with a project launch in which the
goals, strategy, risks, plan, and schedule
for the entire project are addressed.
Normally, the plan is decomposed into
several cycles, and during the launch a
detailed plan for the first cycle is defined.
The project launch takes three to four
days. Once the project launch is finished,
the team executes the plan. The TSP
teams have periodic status meetings dur-
ing each cycle. At the end of the main
phases and cycles, postmortem analyses
are conducted. In addition, each new cycle
starts with a project relaunch in which the
detailed plan for the cycle is built [8].

The Project
The QuarkSoft project was a major
upgrade of a legacy system. It involved
reengineering and a great deal of new
functionality dealing with databases and
compiler techniques over a distributed

environment. The core part of the legacy
system was the query engine (QE). The
old version of the QE was developed for
the DOS-Intel platform using indexed
files. The client, a large international infor-
mation and ratings service company,
required development in less than nine
months.

Getting and Negotiating the Project
The first important issue in this project
was defining the development cost and
schedule as well as specifying the func-
tionality and quality that the final product
would have. On one hand, it was required
to quote the project before signing the
development contract. On the other hand,
since the TSP is used in all projects, it was
necessary to perform a TSP launch to
have a reasonable quote. In other words,
the information to produce a quote is an
outcome of a TSP launch. Unfortunately,
the client did not want to start the project
without the quote, and QuarkSoft could
not start without a contract.

To address this deadlock situation, a
TSP-based quoting process as depicted in
Figure 1 was defined. This process is
based on techniques used during a TSP
launch. The advantage of this approach is
that it requires fewer resources while
keeping some of the TSP estimation prac-
tices. Clearly, some of the major disadvan-
tages of the approach are the lack of a
deep analysis of the problem and the lack

Dr. Miguel A. Serrano and Dr. Carlos Montes de Oca
CIMAT

SM Team Software Process, Personal Software Process, TSP,
and PSP are service marks of Carnegie Mellon
University.

“TSP techniques were
used to quote the project
before signing a contract,

including estimating
project cost and ...
keeping the project

under control.”

High-Level
Requirements

HighHigh--LevelLevel
RequirementsRequirements

Conceptual
Design

Conceptual
Design

Size and effort
estimate

Size and Effort
Estimate

Define Cost
and Schedule
Define Cost

and Schedule

Acceptable?Acceptable?

Quality planQuality Plan

Adjust functionality,
resources, yields

Adjust Functionality,
Resources, Yields

Productivity
Historical
Data

OK

NO

Figure 1: The Quoting Process

Software Process Improvement

10 CROSSTALK The Journal of Defense Software Engineering March 2004

of a deep risk analysis.
First, a small team of two engineers

was put together. One of these engineers
was knowledgeable to some extent of the
domain because he developed version one
of the QE several years before. The other
engineer was knowledgeable about techni-
cal issues such as the new platform
required for the project.

Second, a conceptual design was devel-
oped; TSP estimation is based on product
size. Then, using historical productivity
data from previous projects, the estimate
of time, effort, and quality is done. The
TSP bases the initial size estimation on a
conceptual design that is done during the
project launch [8]. Thus, the TSP-based
quoting process started by creating a con-
ceptual design. The conceptual design was
developed using the experience of the
first engineer and a high-level require-
ments document provided by the client.
Then, client domain and technical experts
validated the conceptual design.

Once the conceptual design was
agreed on, the estimating process started.
First, the size of the product was estimat-
ed in source lines of code (SLOC). Each
of the components defined in the concep-
tual design was estimated. The team start-
ed with the QE component. Then, other
components were estimated using histori-
cal data from the client. Finally, best-guess
estimation was done in the totally new
components such as data base access,
graphical user interface, reports, logs and
security, and integration with other sys-
tems. A combination of the Wideband-
Delphi [3, 13] and Standard-Component
[14] estimation methods was used to get
these estimates and to derive the size esti-
mate of the whole system.

Next, the effort was estimated using
estimated productivity data from QE ver-
sion one and from a previous TSP project.
Then, a quality proposal was developed.
The quality proposal defines a target for
defects/thousand SLOC during the prod-
uct life. According to this objective, it is
possible to define targets for the yield (i.e.,
percentage of defects in the program that
are removed in a particular phase or group
of phases [3]) of each of the phases of
the development process (e.g., design and
code reviews, inspections, compilations,
testing). Having the yield for each of the
phases, it is possible to estimate the
amount of defects that will be in the prod-
uct during integration test, system test,
and product delivery. Thus, the team
defined a target yield for each phase and
estimated the defects in system and inte-
gration test. Using the TSP Quality
Guidelines rates for defect removal on

those phases, the team estimated the
amount of time testing would take. This
effort was added to the estimate.

The team came back to the client with
the estimate. To meet the project time and
budget restrictions, the quoting team and
the client worked out a final proposal:
Both sides agreed to cut about 30 percent
functionality and decided that the devel-
opment team would include one engineer
from the client’s staff. Finally, it was
agreed that the project would be a nine-
month effort, utilizing four engineers.

The Team
The team was assembled with the two sen-
ior engineers that made the quote, one
junior engineer, and another junior engi-
neer from the client’s staff. It was agreed
that the project would be developed in
QuarkSoft’s offices, which provided a
TSP-friendly environment.

It was the first time the team members
worked together. Also, this was the first
TSP project for all team members except
for one of the senior engineers who had
participated in a one-year TSP project pre-
viously. In addition, everyone but the engi-
neer from the client staff had been trained
in the PSP. Since the TSP teams require
PSP-trained team members, this engineer
had to be trained before starting the proj-
ect.

One practice QuarkSoft promotes is
that every team/project has a distinctive
name and logo, both selected by team
members. The name is in the spirit of the
NASA mission names. All documents are
tagged with the team name and logo. The
team decided to be called Maximus and
designed their logo. This practice is
aligned to one of the TSP objectives, that
is, to form jelled teams [8]. It has been
observed that the name and logo help to
build team identity (and team pride). In
this regard, having an engineer from
another company in the team was seen as
a risk in terms of forming a jelled team.
However at the beginning, this risk was
not considered to have high impact.

One deviation from the TSP guide-
lines had to be done. The team coach and
the team leader roles were assigned to the
same person. The reason was that the sen-
ior engineer that played both roles was the
only trained TSP Launch Coach and he
was the engineer who developed version
one of the QE component.

Launch
After the team was formed and the PSP
training was finished, the next step was to
perform a TSP launch. Strictly speaking, at
this point the TSP starts. The launch con-

sists of nine meetings and lasts three to
four days. The launch is the planning
phase for the whole project. During the
launch, the team follows strategic manage-
ment principles, together with risk analysis
and quality planning to produce a sound
plan to develop the project.

The launch was a typical TSP launch.
In meeting No. 1, client representatives
gave an overview of the project and talked
about its importance for the company as
well as the impact on sales and customer
satisfaction.

In meeting No. 2, Maximus set the
project and team goals and assigned TSP
roles to team members. Since the first
cycle was planned to write the Software
Requirements Specification (SRS), only
five of the eight roles that TSP defines
were assigned. The planning and quality
manager roles were assigned to a junior
engineer, the support manager role to one
senior engineer, the process manager role
to the other junior engineer, and the inter-
face manager role to the other senior engi-
neer. Design, implementation, and test
manager roles were not assigned.

In meeting No. 3, the conceptual
design developed to quote the project was
used as a starting point to develop the
project strategy. It was decided to imple-
ment the project in seven cycles. The first
cycle would be devoted to writing the SRS
and the Statement of Work (SOW). In the
second cycle, a prototype would be devel-
oped to define the technology to build the
project. In the third cycle, Maximus would
build the High Level Design. The rest of
the cycles would be for detailed design,
implementation, and system integration
and system test.

The rest of the launch (i.e., meetings
four through nine) included the creation
of the general plan for the seven cycles
and the detailed planning of the first cycle
(four weeks), the quality plan, and a risk
analysis.

The detailed plan for the first cycle
included activities to create the SRS and
the SOW. To estimate the time required
for developing these products, the team
used historical data from a small TSP proj-
ect that was finished by another team.

Two important deviations from a nor-
mal TSP launch occurred. On one side,
the conceptual design, which is normally
built in launch meeting No. 3, was already
done while quoting the project.
Nevertheless, during meeting No. 3,
Maximus revisited the conceptual design
and made some adjustments. On the other
side, the schedule was committed before
the launch, so the planning had to be done
and adjusted accordingly.

During meeting No. 8 the team pre-
pared the launch report and the presenta-
tion for the client. Finally, in launch meet-
ing No. 9, the overall plan was presented
to the client. The client was informed of
the strategy to build the system, the over-
all plan, the deliverables, the schedule, the
quality plan, and the risks. Moreover, dur-
ing this meeting several issues were detect-
ed that were not considered by the client
at first. These findings eased the require-
ments elicitation.

Running the Project
After the launch, Maximus started execut-
ing the plan for the first cycle. Maximus
held weekly status meetings, and at the
end of the cycle a postmortem meeting
was held. Once the first cycle was finished,
the rest of cycles followed the same gen-
eral TSP process: a relaunch, weekly status
meetings, and a postmortem [8]. During
relaunches, the general plan is reevaluated
using the historical data of previous cycles
and the detailed plan for the new cycle is
built.

Role assignment was the same during
the first three cycles. On the fourth cycle,
team members started to switch roles.
Maximus’ members explained that during
the first cycles it was not easy to perform
the roles. Since they were new to TSP, they
required some experience before switch-
ing roles. In addition, the first cycles were
devoted to building the SRS, documents,
and the design. Some roles such as imple-
mentation manager do not play an impor-
tant role in those cycles.

Some of the findings that Maximus
got from the weekly meetings and post-
mortems were the following:
• During the first three cycles, Maximus

had time estimation errors up to 300
percent. The most important factors
for these estimation errors included
lack of historical data, lack of experi-
ence in the development platform, and
underestimation of the learning curve
for both process and technology (e.g.,
Component Object Model, Distributed
Component Object Model, parallel pro-
cessing).

• By the end of the second month, the
project was four weeks behind sched-
ule according to the earned value pre-
diction. This problem was discussed
with the client.

• After some weeks into the project,
data showed that the engineer member
of the client staff was not performing
well. His weekly data showed that his
earned value was falling behind. Later
in the project, postmortem data analy-
sis of the fifth cycle showed that this

engineer was still not working as
expected and was putting the whole
project in jeopardy. It was then decid-
ed to take this engineer out of the
Maximus team. The decision was sup-
ported with data from the first five
cycles. It was estimated that keeping
the engineer working at his historical
earned value rate would make it
impossible to finish the project on
time. In addition, it was estimated that
in order to meet the delivery date, it
was necessary to add two more engi-
neers.
Consequently, Maximus had some

reorganization. The team leader and coach
became only the coach of the team. The
other senior engineer became team leader,
and two new PSP-trained engineers were
added to Maximus.

The relaunch of the sixth cycle lasted
one day more than normal. Maximus
invested one and one half days in per-
forming a detailed reestimation of the
project. The detailed plan for cycle six
included time to account for the learning
curve of the two new team members. In
addition, a strategy to mitigate the impact
of the learning curve was devised. The
strategy consisted in having specialists for
each of the PSP phases. That is, a special-
ist in design, a specialist in coding, and
specialists in testing. As a result of this
relaunch, the original strategy and sched-
ule of builds were adjusted but the deliv-
ery date remained the same.

After implementing these changes, the
last cycles of the project improved con-
siderably. Table 1 shows some final data
from the project.

Lessons Learned
Getting the Contract
Using the TSP approach for project esti-
mation helped to have a more realistic
estimation of size and effort. It gave solid
arguments for negotiations. The TSP-
based quoting process produced the infor-
mation to convince the client that to meet
the time and budget restrictions it was
necessary to cut down some functionality
and to add more resources.

The client technical experts were sen-
sible to the estimation process and partic-
ipated on validating the conceptual design
and some of the size estimates (i.e., some
of their data was used). Thus, they did not
have much room for trying to cut costs.
The client was also sensible to the fact that
the estimation was error prone. It was dif-
ficult to negotiate a 25 percent estimation
error but using the data at hand, the client
had no arguments to go against the pro-
posed estimation error. In summary, the

TSP-based estimation process provided
the data to elaborate, support, and defend
the quote for the project. In addition, it
gave the client a sense that the project was
estimated professionally as opposed to
being obscure nonsense estimations.

Project Launch
One of the advantages of a TSP launch is
that everybody knows and agrees to the
plan. This common knowledge facilitates
the communication among stakeholders
and gives a common vocabulary for such a
communication. According to the team
leader, a major advantage of using the
TSP was the planning. He said, “From the
beginning, all team members know the
activities that each one would perform,
the sequence and dependences of them,
and the time they would take.”

According to one of the engineers:

Having this detailed planning, it is
possible to have better estimates, to
plan time for researching the best
technology and the best approach
for the development of the proj-
ect. In addition, each team member
has a clear idea of the whole proj-
ect as opposed to other projects
where I have participated in which
we had no idea of the context. In
those projects, the good ideas start
coming at the coding or testing
phase, when it is very difficult to
implement them. With TSP, the
good ideas start coming from the
launch.

The client liked the last meeting in
which Maximus presented the result of
the launch. The client was impressed by
the TSP methodology (e.g., the level of
detail of the planning and all the work
products that the launch produced), and
considered the team very professional.

Some of the problems reported by
Maximus’ members were the following:
• A formal method for doing the initial

conceptual design is needed, since it is
the most important part for estimating
the project.

• Risk identification was not easy.
Although the TSP contains a risk

March 2004 www.stsc.hill.af.mil 11

Using the Team Software Process in an Outsourcing Environment

28,344Actual Size (in SLOC)

2.26%Size estimation error

26.59%

0.18
Defect density
(defects/KSLOC)

6.14Productivity (SLOC/Hr)

28,344Actual Size (in SLOC)

2.26%Size estimation error

26.59%Effort estimation error

0.18
Defect density
(defects/KSLOC)

6.14Productivity (SLOC/Hr)

Table 1: Project Final Data

Software Process Improvement

12 CROSSTALK The Journal of Defense Software Engineering March 2004

analysis, it is not clear how to identify
the risks.

Running the Project
Relaunch
Relaunches helped to keep the project
under control and allowed detailed plan-
ning for the cycle. Relaunches were the
perfect time to revisit the strategy, objec-
tives, and risks. In addition, relaunches
provided the time to make adjustments to
the team and to the original plan in an
orderly way. One of our favorite com-
ments stated by one of the engineers was:
“Relaunches are a fundamental part of
TSP. They allow us to do detailed planning
for short periods as opposed to doing
detailed planning for a whole nine-month
project.”

Weekly Status Meetings
Weekly meetings were the best thermome-
ter of the project, during which the team
evaluated the status of the project. Weekly
meetings were perhaps the most impor-
tant activity to keep the project under con-
trol and to foster communication among
team members. They were the best
moments to identify and solve problems.
Especially, a weekly meeting was a great
moment to resolve dependences, misin-
formation, lack of information, and sort
out personal issues. However, it took time
to get in that type of mood.

According to Maximus team members:
“At the beginning, we wanted to rush the
meeting, and we left many open issues
unattended.”

In another comment, the team leader
said:

We checked risks and objectives
weekly, but until cycle six we real-
ized that the whole point of this
activity was to generate activities to
mitigate risks and to meet objec-
tives. So, a mechanism/process to
produce activities to this end is
needed.

Other Lessons
Metrics and Data Analysis
One of the main advantages of using the
TSP is that the team produces a great deal
of information that is available at the right
time, which is fundamental for decision
making. Several metrics and indicators can
be produced. They are really helpful for
early detection of problems and for
adjusting planning if necessary. For exam-
ple, without the TSP data and processes, it
would have been difficult to detect that
the project was behind schedule and to do
the analysis to take corrective actions. In

addition, as data is collected, more realistic
plans are built since they are based on his-
torical data from previous cycles.

In practice, Maximus did not have the
time to perform all the data analysis that
the team wanted. From the beginning, the
project was estimated without considering
time for the roles’ activities (e.g., planning
manager, quality manager). Therefore, no
time for data analysis was planned. Also,
Maximus realized that they would have
needed to develop a tool to help them do
the data analysis.

Project Under Control
A major advantage of using the TSP was
that the project was under control.
Problems were identified on time and cor-
rective actions were applied. Furthermore,
corrective actions were backed up with
historical data. For example, the decision
to take one member out of the team and
add two new members was backed up
with data, and a strategy to do the switch-
ing was developed. The result was a rela-
tively smooth transition. The new
Maximus team worked very well from that
change on. The team became more cohe-
sive. Without the type of data and process
that TSP provides, this kind of analysis
and decisions would have been difficult to
accomplish.

Another advantage of TSP is the visi-
bility of the project. Every week all team
members and other stakeholders know the
project status, which includes aspects such
as work done, problems detected, new
issues, new action items, risks’ status,
schedule slippages, and goal accomplish-
ment.

Although teams that follow the TSP
produce a wealth of information, there is
the need to improve the process and tools
for issue tracking, action items tracking,
and goals and risk tracking. For example,
the team leader said that “although we
agreed on many things during meetings,
they are not done unless they are urgent.”

Cultural Change
Another relevant aspect of the TSP is that
it is an excellent medium to promote cul-
tural change toward a disciplined process-
oriented work method. As we mentioned
before, the majority of Maximus’ team
members were TSP first-timers.
Nevertheless, they willingly followed the
process, collected data, and committed to
finishing the project on time. They also
committed to delivering a high quality
product. They performed design reviews,
code reviews, and inspections. None of
them did that in the previous organiza-
tions they had worked for.

In addition, TSP promotes the forma-
tion of cohesive teams. This might be
explained by the fact that they own the
plan, and they own the process. While
being external observers, we have seen
how Maximus team members have devel-
oped a camaraderie that goes beyond the
workplace. The team leader said he had
noticed how the TSP fostered disciplined
work in all areas.

Limitations
Maximus identified and documented sev-
eral process improvement proposals
(PIPs). However, Maximus members were
unable to implement the PIPs due to the
lack of a process to do so and a shortage
of available time.

It was observed that not all of the day-
to-day activities of the team members’
roles were well defined. Thus, engineers
had a difficult time performing effectively
the roles assigned to them. The TSP pro-
vides general guidelines for each role.
Also, some role activities are included in
some of the TSP scripts. However, in the
daily basis, the responsibilities of each role
are not detailed.

The TSP does not include a deploy-
ment phase. This was a relevant issue for
Maximus. After having guidelines and a
process for all the development phases,
going into deployment of the system
without such support caused some project
instability. In particular, the deployment
phase was critical because the system was
deployed in two different countries.

Conclusions and
Recommendations
The TSP starts with size estimation. Then,
the effort estimation is calculated using
historical data such as productivity rates
and defect insertion rates. It might be risky
to share with the client the productivity
rates used to estimate effort. If the client
does not have a deep understanding of the
TSP and the PSP estimation and planning
processes, the client might assume that
productivity rate is the only parameter
used to estimate effort. With this belief,
the client might push the estimation team
to use a higher productivity rate that would
lead to a reduction of effort estimation,
which in turn derives in a reduction of the
cost of the project. The client might argue
that the productivity rates used are too
conservative making it difficult to con-
vince the client otherwise. This situation
might lead to an unrealistic estimate.

If historical data is lacking, it is con-
venient to adjust the estimate to account
for the estimation error. QuarkSoft did not

have a definite number on that, but a num-
ber between 20 percent to 30 percent esti-
mation error had been used for first-time
TSP projects during initial estimation. The
estimation is adjusted during each relaunch
with the data collected in previous cycles.
Thus, the estimation error tends to
decrease after some cycles.

One important aspect is the TSP tool
support. The SEI’s prototype TSP tool is
pretty helpful, but it lacks functionality that
would make some tasks much easier. To
put it in perspective, without the SEI tool,
it would be very challenging to have a TSP
team collecting and analyzing all the data
they produce. However, the functionality
for data analysis and reporting provided by
the tool is still not enough.

Regarding the effect of the TSP on the
client, it was observed that at the begin-
ning, the client was excited about the TSP.
The client was well impressed with the
TSP process. But at the end, the only thing
that mattered to the client was to deliver
what was wanted on time.

In addition, it is necessary to help the
client in becoming PSP/TSP literate. The
TSP produces and uses a great deal of
information that can be easily misunder-
stood and used against the development
team. For example, TSP team members
might be logging 30 hours/week in
planned tasks. The client might demand 40
hour/weeks. However, team members
might be working more than 40
hours/week if the time invested in over-
head activities is accounted for.

Maximus’ team members agree that the
TSP is a powerful set of practices and
processes. Many of the problems that they
faced while using the TSP are covered by
the TSP if applied completely. This sug-
gests that team performance will improve
with practice and that TSP coaching is par-
ticularly important in first-time TSP proj-
ects.

Finally, every project will eventually get
into some sort of trouble. The important
thing is to have the right information at the
right time to make the appropriate deci-
sions. This experience shows that the TSP
can provide such information. Although
TSP needs some adjustments for out-
sourcing projects, this experience suggests
that the TSP is powerful and flexible
enough to be used in outsourcing environ-
ments.◆

Acknowledgments
We want to thank Maximus’ team mem-
bers for sharing their experience and
information. In particular, special thanks
to Gerardo Borbolla (team leader),
Ricardo Vazquez, and Ricardo Vidrio who

provided most of the information to write
this article.

References
1. Fayad, M., M. Laitinen, and R. Ward.

“Thinking Objectively: Software Engi-
neering in the Small.” Communications
of the ACM 43.3 (2000): 115-118.

2. Ward, R., M. Fayad, and M. Laitinen.
“Thinking Objectively: Software
Process Improvement in the Small.”
Communications of the ACM 43.4
(2000): 105-107.

3. Humphrey, W. A Discipline for
Software Engineering. Addison-
Wesley, 1995.

4. Humphrey, W. “Pathways to Process
Maturity: The Personal Software
Process and Team Software Process.”
SEI Interactive 2.2 (1999): 1-17.

5. Humphrey, W. “Three Dimensions of
Process Improvement. Part I: Process
Maturity.” CrossTalk 11.2 (1998):
14-17.

6. Kamatar, J., and W. Hayes. “An Expe-
rience Report on the Personal
Software Process.” IEEE Software
17.6 (2000): 85-89.

7. Davis, N. “Using the TSP to
Implement the CMM.” CrossTalk

6.9 (2002): 30-38.

8. Humphrey, W. Introduction to the
Team Software Process. Addison
Wesley Longman, 2000.

9. Humphrey, W. “Three Dimensions of
Process Improvement. Part III: The
Team Process.” CrossTalk 11.4
(1998): 14-17.

10. Humphrey, W. “The Team Software
Process (TSP).” Technical Report
CMU/SEI-2000-TR-023. Pittsburgh,
PA: Software Engineering Institute,
2000: 51.

11. McAndrews, D. “The Team Software
Process (TSP): An Overview and
Preliminary Results of Using
Disciplined Practices.” Technical Report
CMU/SEI-2000-TR-015, ESC-TR-
2000-015. Pittsburgh, PA: Software
Engineering Institute, 2000: 53.

12. Webb, D., and W. Humphrey. “Using
the TSP on the TaskView Project.”
CrossTalk 12.2 (1999): 3-10.

13. Boehm, B. Software Engineering
Economics. Englewoods Cliffs, NJ:
Prentice Hall, 1981.

14. Putnam, L. Measures for Excellence:
Reliable Software on Time, Within
Budget. Englewoods Cliffs, NJ:
Yourdon Press, 1992.

March 2004 www.stsc.hill.af.mil 13

About the Authors

Miguel A. Serrano,
Ph.D., is a researcher in
the Department of
Computer Science at the
CIMAT, Mexico. He is a
SEI-authorized Personal

Software ProcessSM Instructor and
Software Engineering Institute-trained
Team Software ProcessSM Launch
Coach. He is currently working on the
Capability Maturity Model® Integration
(CMMI®)/Standard CMMI Assessment
Method for Process Improvement track.
His current research interests include
software process improvement, statisti-
cal process control, and software quality.
He has a Master of Science in informa-
tion systems and decision sciences, a
Master of Science in system science, and
a doctorate degree in computer science
from Louisiana State University.

Apdo. Postal 402
Guanajuato, Gto., 36000
MEXICO
Phone:+52 (473) 732 7155 ext.49544
E-mail: masv@cimat.mx

Carlos Montes de
Oca, Ph.D. is a
researcher in the
Department of Com-
puter Science at the
CIMAT, Mexico. He is
a SEI-authorized Per-

sonal Software ProcessSM Instructor
and Software Engineering Institute-
trained Team Software ProcessSM

Launch Coach. Montes de Oca has
over 10 years experience in software
development and management. He is
involved in several TSPSM and PSPSM

projects in both academia and industry.
His current research interests include
software process improvement and
software quality. Montes de Oca has a
doctorate degree in computer science
from Louisiana State University.

Apdo. Postal 402
Guanajuato, Gto., 36000
MEXICO
Phone:+52 (473) 732 7155 ext.49577
E-mail: moca@cimat.mx

Using the Team Software Process in an Outsourcing Environment

14 CROSSTALK The Journal of Defense Software Engineering March 2004

The success of using peer reviews
can vary widely. Many companies

start to use peer reviews and then aban-
don them. These companies introduced
formal training, but it did not help –
within a year or two, very few if any
projects were still actively doing peer
reviews. Other companies swear by
peer reviews, and boast that “they have
saved us millions of dollars.” So why do
peer reviews work in some companies
and not in others? And what difference
does it make? The answers have to do
with organizational culture.

All of this could be gleaned from
reading the Software Engineering
Institute’s Capability Maturity Model®

(CMM®)/CMM IntegrationSM (CMMI®).
But you need to read between the lines,
since the CMM and CMMI enumerate
necessary tasks but do not always
describe the logic that sequences them.
Part of this hidden logic involves the
fact that moving toward and achieving
Level 2 involves a general organizational
discipline that recognizes and deals with
problems early, accepts independent
quality reviews, and promotes discom-
fort when quality procedures are miss-
ing.

This cultural change affects far more
than the tasks specifically identified in
Level 2, and it is essential for getting the
most out of, for example, peer reviews.
Although some companies seem to be
able to assemble this kind of discipline
without having all the pieces of Level 2
in place (for example, if they have pre-
viously employed other kinds of quality
programs such as Crosby), this kind of
discipline amounts to having all the
practices of Level 2 in place. Level 2 has
to do with management discipline. Most
Level 1 managers cannot protect their
workers because their process is too
chaotic. Without such protection, work-
ers do not have the freedom to perform
peer reviews effectively.

The Inner Logic of the
CMM/CMMI:Technical
Progress Conditions Cultural
Discipline
The CMM and CMMI enumerate neces-
sary tasks but do not always describe the
logic that sequences them. Both models
assume the importance of detecting
defects early and then preventing them,
yet these goals are not spelled out in the
early stages of the maturity scale. At Level
2, all the process areas/key process areas
ostensibly concern project management
activities – risk assessment, creating con-
sistent processes, etc.

Technical Culture and
Organizational Culture
Technical culture in this article is defined
as the sum of an organization’s technical
practices and methodologies. Changing
the technical culture involves instituting
better practices, or organizing them in a
different sequence. It involves what
employees do, not why they do it.

Organizational culture deals with the
underlying values that motivate individuals
as they relate to an organization and its
present and future goals. In the words of
Harrison Trice and Janice Beyer, cultures
consist of:

… shared sets of beliefs, values,
and norms that both impel people
to action and justify their actions to
themselves and others. With the
passage of time, [these sets of
beliefs] tend to move away from
the forefront of people’s attention
and become implicit and taken for
granted. [1]

Why Maturity Levels Cannot
Be Skipped
Process capability grows in stages. Key
processes are only effective after prereq-

uisite processes are stabilized.
Engineering processes usually do not
improve, for example, before manage-
ment stabilizes the way it makes deci-
sions. If management changes the work
conditions day to day or week to week,
the best processes in the world do not
have a chance to succeed. Therefore,
Level 2 is largely concerned with man-
agement decision processes. Further, as
management discipline solidifies, so
does a more general quality discipline
[2].

In technical terms, at Level 2, man-
agers learn to prepare estimates with
their team rather than by themselves and
methodically track actual estimates
against original estimates. These actions
constitute an important increase in tech-
nical rigor. They also, however, involve
changing perspectives as well as chang-
ing practices. Managers are empowered
by enhanced information to take correc-
tive action early rather than late, and get
into the habit of doing so when they
need to. When costly problems are
found in reviews, and fixed early and
easily, teams start to see the benefit of
independent and methodical reviewing
and begin to feel discomfort when con-
sistent processes are missing.

In other words, changes at Level 2
not only alter what people do but also
how they think about it, that is, they sub-
stantively alter organizational culture.
The big picture looks like this: When all
members of the project are involved in
planning activities, the whole team has
to come to a consensus about goals and
necessary quality standards in the prod-
uct and the process. This can be a slow
and bruising process, but it can happen
in a timely manner with the proper cul-
ture and team participation. Reaching a
consensus means the entire team buys
in. People are less afraid to raise prob-
lems because they have survived an open
discussion, and because their first prior-

Unlocking the Hidden Logic of
Process Improvement: Peer Reviews

Marilyn Bush
Marilyn Bush Associates

The success of many of the most useful procedures recommended by the higher maturity levels of the Capability Maturity
Model® (CMM®) and the CMM IntegrationSM (CMMI®) depends on understanding the silent links connecting them to prac-
tices associated with Level 2. Certain activities that can seem peripheral to Level 2 goals during an assessment, in fact, pre-
pare organizational foundations for what will become fundamental improvements. In trying to get through Level 2 as quick-
ly as possible and neglecting the global logic of the CMM and the CMMI, companies sidestep the momentum-builders that
can catapult them to world-class status. Perhaps the most significant illustration of this phenomenon concerns the function of
peer reviews and the procedures associated with detecting defects early.

Unlocking the Hidden Logic of Process Improvement: Peer Reviews

March 2004 www.stsc.hill.af.mil 15

ity is to fix things before it is too late.
Quality comes before blame. (This is
sometimes called decriminalization.) A cul-
ture in which problems are handled early
– without the fear of blame – also
accepts independent review without
defensiveness.

How does all this happen? Where
does it lead?

Changing the Technical
Culture for Defect Detection1

One of the most powerful payoffs of the
CMM and the CMMI has to do with the
savings made possible by finding and fix-
ing defects before testing (the technique
that is used is called peer reviews in both the
CMM and CMMI). Peer reviews offer huge
savings when done correctly. For exam-
ple, to find and fix a defect before testing
costs only one percent of what it would cost
to fix the same defect in operations. That
is, to find and fix one defect found early
in development might cost $100. To find
and fix the same defect during integration
and test can cost $1,000 to $2,000. And to
find and fix the same defect post-delivery
costs an organization anywhere from
$10,000 to $20,000. (Fixing critical defects
found post-delivery can cost much, much
more [3]).

Today, software developers expect to
find at least three to six post-delivery
defects per thousand lines of code2 [4].
That means a loss in the range of $50,000
to $100,00 in unnecessary costs per thou-
sand lines of code. For a typical system
that contains millions of lines of code,
the unnecessary costs that can be saved
are astronomical.

An operational defect, defined as a
defect encountered by the product user as
a failure, causes the product to malfunc-
tion relative to a product specification. (If
it does not do what the user wants, it does
not work.)

Since many projects now consist of
anywhere between 250,000 and millions
of lines of code (with programs getting
more complex every day), the real costs of
quality are enormous, and the real bene-
fits of process improvement are equally
high – the potential saving of hundreds
of millions of dollars of preventable
costs.

Levels 4 and 5 build naturally on the
technical and organizational cultures con-
ditioned by Levels 2 and 3. But peer
reviews require not only a management
discipline but also a cultural discipline.
This kind of developing cultural disci-
pline forms an essential element of the
CMM /CMMI program of maturity.

Why Defect Detection Does
Not Work Without Level 3
Maturity: Doing Peer Reviews
in an Immature Organization
Even when they seem to be doing so,
teams without a culture of cooperation do
not really look for operational defects.

Managers who have not internalized
the culture of quality scare staff away
from discussing problems by quickly
assigning blame. Lacking the technical dis-
cipline of planning and monitoring and
control procedures, they too often rush to
drop quality procedures when schedules
are slipping.

Their subordinates pick up these sig-
nals and act accordingly. Finding too many
defects might mean that they will be
blamed for not doing their job properly.
Rifkin states,

If we fear for our jobs then we are
less likely to take the chances that
are inherent in performing some
new action, making the inevitable
mistakes. We would fear that such
mistakes would count against us,
and we may form a basis for poor
performance and then we could
lose our jobs. [5]

An operational defect, encountered by
the product user as a failure, causes the
product to malfunction relative to the
product specification. Of course, not all
defects are equally disabling. Critical
defects render a product unusable and
require immediate attention. In the case of
serious defects, the customer’s use is severe-
ly restricted. Defects of medium severity
involve limitations that are not critical to
overall operations.

Low severity defects permit users to
circumvent the problem and use the prod-
uct with slight inconvenience. For peer
reviews, a determination must be made
between major defects and minor defects.
Critical and serious defects would be con-
sidered major defects, medium severity
could be either major or minor depending
on the nature of the defect, and low sever-
ity defects would fall under the category of
minor defects [6].

In a Level 1 organization, finding a few
defects (no matter how many more there
were or whether the critical ones were
caught) is good enough. Finding them will
impress the boss. If too many are found, the
boss will think that “we are not very good
at our jobs.”

The same attitudes shape the way
teams in a Level 1 organization conduct
peer reviews.

Managers who do not understand the
culture of quality scare staff away from
discussing problems. They then do not
raise them because they are afraid they will
be blamed for them – or for slowing down
the schedule by raising them.

Without real changes in organizational
discipline, peer reviews typically result in
only one operational defect detected per
review3.

Consider this example. On one proj-
ect, the project manager of organization
X (which was Level 1) mandated that
every development team use formal
inspections. One team manager was sure
he really did not need to do this since his
team did not make mistakes (and even if
they did, no one would know about them).
But since he had to do it anyway, he decid-
ed to implement the order in the following
way. He told the project manager his team
did not have time to be trained. They
would have to read the material on their
own and would be directed to perform the
formal inspections on Saturdays.

Needless to say his team inspection
defect rate was very low. But since there
was no one on the project regularly
reviewing the inspection data as it was
produced, this team manager was allowed
to continue with his practice. When the
system went into testing, over 60 percent
of the defects found were from this one
team’s modules. It slowed the entire proj-
ect schedule down by over three months,
and cost the project $200,000.
(Remember, the difference between one
defect found in inspections versus testing
is approximately $100 versus $1,000.)

Worse yet, after peer reviews produce
disappointing results, companies may get
discouraged and adopt a resistance to
improvement that places them farther
away from improved productivity than
they were before.

The Cost of Doing Peer
Reviews Without a Mature
Organizational Culture
Organizations quickly understand how
doing peer reviews can save vast amounts
of money. They less frequently see the
point of the intermediate activities that
really make peer reviews work. Getting to
Level 2 can seem to take forever, and insti-
tuting Level 2 activities can often seem
pointless. In the meantime people wonder
why they cannot implement more radical
techniques right away. “Why wait for Level
3 to do peer reviews?” they ask. “What’s
the use of all the tinkering the
CMM/CMMI requires beforehand?”
“Why do you need to progress through

Software Process Improvement

16 CROSSTALK The Journal of Defense Software Engineering March 2004

Maturity Levels?” “Why not just do those
things that provide a real payoff?”

Alternatively, organizations often try
to get away with attaining Level 2 with
only a cursory independent quality
review in place. Consequently, their
organizations do not develop a culture
that is aware of the importance of find-
ing problems early. Organizations also
sometimes delay putting in place sub-
stantive measures to aid tracking critical
elements at critical times. (For example,
they estimate lines of code before they
have done requirements and then collect
no actual data.) Hence, their numbers
give no early warning during the require-
ments and design phases, and the organ-
izations delay developing a culture in
which identifying issues early is positive-
ly reinforced. The result: management
remains in crisis management mode
rather than in a proactive mode.

But teams without a culture of coop-
eration cannot see operation-critical
defects because they do not really know
how to look for them. More precisely,
they are not equipped as a culture to
look for them. Without the management
and cultural disciple conditioned by
Level 2 activities, peer reviews produce
derisory results. Hewlett Packard, we
know, took 10 years to reach a 25 per-
cent adoption level [7] because they did
not have a Level 2 cultural discipline in
place. The resulting discouragement
usually leads to companies bowing to
ever-present resistance to continuing
process improvement. Once staff turns
against peer reviews, they will not attempt them
at all, and they hesitate to adopt further
improvement measures. Nor do most man-
agers understand enough to explain
what has happened. All that anyone sees
is wasted effort and unrealized savings.

Implications for Senior
Managers:Assessments
Senior managers as well as mid-level
managers need to be aware of the tech-
nical and the cultural implications of the
CMM/CMMI. They need to understand
the value of a process and measurements
that gives them real visibility early in the
development process and allows them to
be proactive rather than reactive. Being
proactive is the key to quality.

Trice and Beyer state that,

In order to manage cultures of
work organizations successfully,
managers must (1) be culturally
aware – that is, they must under-
stand and take into account what
culture is and how it works; (2)
know the cultures they are manag-
ing; (3) recognize and use the
levers they have available to influ-
ence their organizations’ cultures;
(4) resolve the ethical dilemmas
involved in managing cultures;
and (5) be clear about whether
they seek to maintain existing cul-
tures, change existing cultures, or
establish new ones. If managers
understand the nature of culture,
they will be better able to recog-
nize the opportunities and con-
straints it poses for managerial
action. [8]

In other words, executives are key to
the success of implementing change
(which is never merely technical change).
Without executive vision, positive change is
unlikely to occur.

Assessments are an effective method
for management and practitioners to get
expert insight into the organization’s

maturity and culture. Senior managers
should not put too much stress on the
numerical grade of an assessment and
should stress instead an assessment’s
salutary stimulation. Organizations
sometimes try to game an assessment,
which sidesteps the self-reflection that
leads to real change and hinders the
growth of cultural discipline that will
generate the major benefits to come.

Pretending things are better than
they are does not improve things; only
laying firm foundations helps. An orga-
nization’s emphasis should not be “How
badly did we do?”, “Are we still at Level
1?”, or “Who is to blame?” Rather it
should ask: “What aren’t we doing right
and how can we fix it?” Asking these
questions is already a big step toward
higher maturity. Always, the greatest
payoff is in heightened self-conscious-
ness and the self-discipline that goes
with it. With self-discipline the big pay-
offs later on are easy. Without it, they
are nearly impossible [9].

Going from Level 1 to Level 2 the
right way forces everyone in the organi-
zation to be more self-conscious.
Middle and project managers begin to
understand what to look for, what to
ask for, and what the answers mean.
Managers have real information and
people become less frustrated. Once
managers can see the road ahead, their
expectations become more realistic, and
so developers stop feeling they are being
asked to do the impossible.

At that point, and not before, an
organization is ready to do peer reviews
properly.

Implications for Senior
Executives:The Bottom Line
Without the hands-on and technically
informed input of executives, the big
decisions (not to game an assessment,
to take the recommendations that come
out of an assessment seriously) do not
get implemented. And unless they are
implemented, nothing changes.

To make this kind of decision with
confidence, senior managers need to
understand the huge payoff in profit
margin when defects are caught or pre-
vented before testing, and how these
payoffs are tied to a changed organiza-
tional culture. Unless they personally
understand the way a culture of cooper-
ation and discipline evolves through the
levels of process improvement, their
organization will inevitably take all the
easy ways out.

Being world class brings enormous

Name of Level 5
Assessed Company Quality Improvement Productivity/ Profit

Improvement
Predictability
Improvement

Customer
Satisfaction

Telcordia Technologies
Assessed Level 5
May 1999 [10]

1992/93: 48
Faults/Thousand
Function Points (KFP).

1997: One Fault/KFP.

1992 Cost to customer
35-40 percent higher than
in 1997 and profit margin
substantially higher.
Cost of testing a line of
code is less than 1/3.

1992: Projects took two
years.

1997: Projects take six
to nine months.

1992: 60 percent
1997: 95 percent
Link to satisfaction is
that Severity 1 and 2
defects halved over two
years.

Onboard Space Shuttle
Software (IBM Houston)
Assessed Level 5
November 1989 [11]

Two orders magnitude
reduction in defects
delivered/kloc.

300 percent improvement
since early 1980's.

Consistently predicts
costs within 10 percent of
actual expenditure.
(Missed one deadline in
15 years.)

No information
available.

Motorola India
Assessed Level 5
November 1993 [12]

50 percent of software
delivered had no known
defects (defect levels
running at 30
defects/million lines of
code).

Increased 3.5 times
going from Level 3 to
Level 5.

No information
available.

No information
available.

BAESYSTEMS,
CNI Division
Assessed Level 5
March 2002 [13]

Post-delivery defects at
Level 5 amount to less
than 0.26 defects per
thousand lines of code.

CNI's process
improvement costs
averaged 3-5 percent of
the software engineering
directorate staff.
Productivity has
improved by 16 percent
moving from Level 3 to
Level 5.

On-time schedule
commitments have risen
to over 90 percent from
Level 2 to Level 5. Cost
performance has
remained at or above
1.0 moving from Level 3
to Level 5 (a 26 percent
cost improvement).

External Customer
Satisfaction improved
9 percent in the past
year.

Table 1: Results From Companies That Have Changed Their Culture

rewards. The charts in Table 1 illustrate
four Level 5 organizations and their
reported benefits. It should be noted
that these organizations are in different
businesses, have different product lines,
and in general have different business
concerns. Yet the numbers show the
same order of results.

Conclusion
Peer reviews as prescribed at Level 3 by
both the CMM and the CMMI are
immensely profitable, but only if they
are done right. When attempted too
soon in a process improvement pro-
gram, they not only can disappoint but
also prove counterproductive. (The dis-
appointment is so great that it interferes
with further process improvement.)

Knowing when to perform peer
reviews depends on understanding the
silent links between practices associated
with Level 2 and Level 3 of the
CMM/CMMI improvement programs.
Certain activities that seem peripheral to
Level 2 goals, in fact, prepare the cultur-
al foundations for more sophisticated
activities. In trying to get through Level
2 as quickly as possible and neglecting
the global logic of the CMM/CMMI,
companies sidestep the momentum-
builders that can catapult them to
world-class status. This paper has dis-
cussed what some of these submerged
links are.◆

References
1. Trice, H.M., and J.M. Beyer. The

Cultures of Work Organizations.
Englewood Cliffs, NJ: Prentice Hall,
1993: 75, 76.

2. Humphrey, Watts S. Managing the
Software Process. Addison-Wesley,
1989.

3. Bush, M. Improving Software
Quality: The Use of Formal
Inspections at the Jet Propulsion
Laboratory. Proc. of the IEEE 12th
International Conference on
Software Engineering, May 1990: 96-
199.

4. Bush, M. Getting Started on Metrics:
Jet Propulsion Laboratory Produc-
tivity and Quality. Proc. of the IEEE
12th International Conference on
Software Engineering, May 1990:
133-42.

5. Rifkin, S. “Why New Software
Processes Are Not Adopted.” Ed.
Marvin Zelkowitz. Advances in
Computers Vol. 59 (2003): 22.

6. Grady, R., and Caswell, D. Software
Metrics: Establishing a Company-
Wide Program, Englewood Cliffs, NJ:

Prentice-Hall, 1987.
7. Rifkin 12.
8. Trice 355-56.
9. Bush, M. Do CMM-Based

Assessments for Internal Process
Improvement Help Companies Stay
More Competitive? Proc. of the
European SEPG Conference,
London, 1998.

10. Ahuja, Sanjiv. Process Improvement
in a Rapidly Changing Business and
Technical Environment. Proceedings
of the European SEPG Conference,
Amsterdam, 1999.

11. Billings, C., et al. “Journey to a
Mature Software Process.” IBM
Systems Journal 33.1(1994): 46-61.

12. Pellegrino, J. “Birds of a Feather
Session.” SEPG Conference, 1995.

13. Howard, Peter. “Operating at Level
5.” Internal BAE SYSTEMS
Conference, Nov. 2002.

Notes
1. Peer reviews in the CMM and CMMI

concern the defect detection,
removal, correction, and verification
process carried out by small groups
during the pre-test phases of the
development life cycle. The primary
objective of peer reviews is to
remove defects early in the develop-
ment process. Peer reviews supple-
ment, not substitute for major mile-
stone reviews. A trained moderator
and a group of developers (limited
to about four to six people) draw
from the area of the life cycle being
completed to carry out peer reviews.
Everyone participating should have
a vested interest in the work product.
Peer reviews should never be used as
a tool to evaluate workers or assign
blame for defects. Team members,
after undertaking special training, are
assigned specific roles (for example,
author, reader, recorder, moderator,
etc.) Checklists of questions derived
from previous experience are used to
fine-tune defect finding. The check-
list is regularly updated. Afterwards,
statistics on the number and types of
defects found and the time expend-
ed by engineers on peer reviews are
kept as a historical database for later
trend analysis. Peer reviews enhance
the development life cycle by creat-
ing shorter feedback loops. They are
not tied to any specific methodology
or tool. They are usually done at the
end of the following phases of the
development life cycle: system
requirements, functional design,
software requirements, architectural

design, detailed design, source code,
test plan, and test specification. Peer
reviews in the CMM constitute a
Level 3 Key Process Area. By the
time an organization has achieved
Level 3 maturity, one would expect it
to perform peer reviews on every
project. In the CMMI, peer reviews
are included not in a separate
process area but as a Level 3 activity
found in the process area called
Verification, Goal 2 [5, 6].

2. Although these figures come from a
1990 study, and no more recent study
is available, their accuracy has been
informally confirmed in work with
dozens of companies through 2003.

3. Presentation by A. Warman at GEC
Marconi SPIRE 99.

About the Author

Marilyn Bush is an
independent manage-
ment consultant who
specializes in working
with executive managers.
She is one of the authors

of “The Capability Maturity Model:
Guidelines for Improving the Software
Process” and the Software Engineering
Institute’s (SEI) Capability Maturity
Model® (CMM®) Introductory Course,
and is currently co-authoring a book on
assessments. As a visiting scientist at the
SEI, she helped revamp its CMM-Based
Appraisal for Internal Process
Improvement Assessment Method and
Lead Assessor Course. She is a transition
partner for the CMM IntegrationSM

(CMMI®) and is authorized to lead
CMMI assessments (SCAMPI) and to
teach the SEI Introduction to the CMMI.
Bush, who divides her time between the
United States and Europe, is an expert on
how European and American software
practices overlap and diverge.

Marilyn Bush Associates
8037 Seminole AVE
Philadelphia, PA 19118
Phone and Fax: (215) 248-5391

United Kingdom:
39 ST Giles
Oxford OX1 3LW
Phone and Fax: 44 1865 512289
E-mail: m.w.bush@ieee.org

March 2004 www.stsc.hill.af.mil 17

Unlocking the Hidden Logic of Process Improvement: Peer Reviews

18 CROSSTALK The Journal of Defense Software Engineering March 2004

Good processes are not just an acci-
dent! They are based on the internal

associations and relationships defined and
linked together by a documentation
framework that can be read, interpreted,
and executed by people. The framework
that anchors the Capability Maturity
Model® for Software (SW-CMM®) and the
Capability Maturity Model® Integration
(CMMI®) is derived from the structural
concepts outlined in the Software
Engineering Institute’s (SEI) Software
Process Framework (SPF) [2]. This model
gives organizations the foundation they
need to recognize and document the dif-
ferent positions and tasks used in the SW-
CMM [3], and establishes the architecture
needed for doing process definition.

The SPF, as we discovered, embodies
what many in software development con-
sider the foremost in best practices for
implementing software process improve-

ment. The architecture used in it for
process definition is built on an opera-
tional framework of process information types
comprised of policy, standards, processes,
and procedures. We will explore what con-
stitutes this process definition and the
operational framework more closely in the
following sections.

Defining Architecture
The process definition model used in the
SPF is comprised of two very important
and interrelated structural concepts. These
have been around mature software devel-
opment organizations for a long time and
considered by many to be world-class
software practices. They are the following:
• First, there is an ordering hierarchy for

process information types, which
defines and constrains the process
activities to be performed. This is
identified as the operational framework.

• Second, there is a standard format
used for consistent construction of
the process information based on a
defined set of process attributes,
known as process definition criteria.

Let us look at each of these architectural
concepts in more detail.

Operational Framework
The operational framework forms the
relationships and dependencies between
what is to be done, by whom, and how to
do it. It is a very powerful yet simple hier-
archical documentation concept. The rela-
tions of this concept are shown in Figure
1. They are comprised of the different
process information types, which each
describes a distinct set of information
about the overall process. Collectively,
they provide a complete operational
description of how the process is done
and implemented.

At the top level of the operational
framework shown in Figure 1 are the con-

trols and discipline constructs. These pre-
scribe the organizational policies that gov-
ern operations and establish the accept-
ance criteria for the developed products.

The next level of abstraction is the
what-happens-and-how constructs. They pro-
vide detail into what processes are used to
build the product and the corresponding
procedures that describe how to do it.

Following these at the lowest level of
abstraction are the support constructs of tools
and training. They enable the process and
procedures into action in the organization
through training and tools. These support
information types are not process defini-
tion constructs, but the means by which
processes can be put into operation by the
organization.

The following are the definitions of
the process information types:
• Policy: The laws or regulations that

govern, guide, or constrain operations.
They dictate the organizational
approach that governs operations.
Usually these laws enforce using the
organization processes by identifying
the required or acceptable processes or
approved ways of doing work.

• Standards: The operational defini-
tions or acceptance criteria for devel-
oped products. These are the opera-
tional definitions of organizational
work products constraining organiza-
tional processes by setting acceptance
criteria on the output of the processes.

• Processes: Provide the context of
what happens over time to build prod-
ucts conforming to standards in accor-
dance with the organizational policies.
Processes are constrained by the orga-
nizational policies and standards; they
must specify ways to develop products
that conform to organizational stan-
dards in accordance with its policies.
Processes are implemented by specific
procedures.

A Beginner's Look at
Process Improvement Documentation

While working to get our software processes in place for process improvement, we ran across the documentation underpinning
used by the Software Engineering Institute (SEI) as a guideline to implementing the Capability Maturity Model® for
Software (SW-CMM®) [1] and its successor the Capability Maturity Model® Integration for Systems Engineering and
Software Engineering (CMMI®-SW/SE). This underpinning is based on a very powerful yet simple structural concept useful
to those just beginning the process improvement journey. By following its outline, my organization found the rewards for its
improvement effort resulted in well designed and executable software processes. These are the types of processes that provide
repeatability for the implementation of solid process improvement. This article looks into the fabric of this underpinning to pro-
vide a beginner's reference to understand how documentation, when done right, models process improvement for your organization.

Ronald A. Starbuck
MetaVista Consulting Group

Figure 1: Operational Framework

Policy Standards

Process

Procedures

Training Tools

The laws or regulations that
guide, govern, or constrain

operations.

The "operational operations" or
"acceptance criteria" for final

and interim products.

Describes "what happens" in the
organization to build products.

The individual "how-to" steps
that implement the process.

Knowledge or skill required to
use a procedure.

Automated support to implement
procedures.

March 2004 www.stsc.hill.af.mil 19

A Beginner's Look at Process Improvement Documentation

• Procedures: Describe the how-to or
step-by-step instructions that implement
the process. There are many proce-
dures to processes. They focus on how
to perform a certain task identified in a
process.

The following are support types the
organization uses to import processes into
action:
• Training: The knowledge/skills

required to use a procedure. Training is
used to support the use of processes
and procedures in the organization.

• Tools, Automated: Provide the sup-
port needed to implement procedures,
policies, standards, processes, and
training needed to build software
products. Tools like training are used
to support the use of processes and
procedures in an organization.
Using the SPF format to construct

process information types removes any
confusion about where the information is
found for processes or where it is sup-
posed to go, and eliminates the bad prac-
tice of mixing process information types
(i.e., policy and procedure) within the
same document for an organization. This
is a problem that the author’s organization
had to clean up in its implementation
effort, and unfortunately exists in many
immature process documentation imple-
mentations that you should try to avoid.

Process Definition Criteria
The criteria used for process definition
supports the operational framework by
defining a standard format to construct
process descriptions. These descriptions
are comprised of the attributes that define
a set of definition elements that tie
together complete process descriptions.
This process information is essential for
doing processes and procedures. The
process attributes used by the SPF estab-
lish a solid format for consistent defini-
tion of process descriptions collectively
satisfying the what, who, when, and how of
processes. This concept ensures that
processes and procedures are completely
defined and that they convey all of the
information needed to enact them by peo-
ple. The basic process elements that estab-
lish the criterion are shown in the flow-
chart in Figure 2 and described in the fol-
lowing process elements descriptions:
• Roles: What has to be done by whom

to perform the activities required for
the process?

• Entry Criteria: The conditions that
must be in place to start doing the
process, i.e., software requirements
must be approved before starting a
design and coding process.

• Input: Description of work products
used by process, such as allocated
requirements or a developer-sanc-
tioned standard.

• Activities: Description of actions that
are done by the process to transform
the input data into a product.

• Outputs: Description of work prod-
ucts (i.e., code, documentation, lists,
etc.) that result from performing the
process.

• Exit Criteria: How we know we are
done doing the process, e.g., the
responsible party approves the base-
line submitted by configuration man-
agement.
In addition to the basic process ele-

ments, there are several other pieces of
information useful to include in process
descriptions. These aid in transforming
the data into work products produced
from the process. They are the following:
• Reviews and Audits: List of reviews

and audits performed during the
process. What type of audits, i.e.,
Physical Configuration Audit, or
reviews, i.e., Preliminary Design
Review, are required for the process?

• Work Products Managed and
Controlled: List of work products
(code, documentation, etc.) to be man-
aged and controlled.

• Measurements: Description of
process measurements, i.e., lines of
code.

• Documented Procedures: List of
activities to be completed according to
a documented procedure.

• Training: List of training for the
process, formal or on-the-job training.

• Tools: List of tools to support the
process, i.e., automated configuration
management tool or spreadsheet used
during the process.

Successful Considerations for
Documentation
The most important consideration we
found to the success of process docu-
mentation depends on the level of detail
provided to the process elements. The
usability of process documentation comes
down to how well these process elements
are described. This will determine if they
will be easily understood or are too
detailed for people to use. No matter how
good the architecture of the SPF, the bot-
tom line comes down to how effectively
people are able to interpret, translate, and
execute the documented processes.

Process information is only as good as
the process elements are described. If
there is too much detail, or conversely not

enough, people will have difficulty com-
prehending and following the processes.
To ensure the success of your process
documentation, the writing goal is sim-
plicity. Process elements must be simple
and clear enough to use – and not too
detailed to be useable [4]. An example of
this style of writing is shown in Figure 3
(see page 20). This illustration example is
a configuration management process.

In this very simplistic process for con-
figuration management, all of the process
elements shown in Figure 2 were embod-
ied. It provides readers clear, plain, and
unconfused statements that inform them
of the what, who, when, and how for process
execution. The language used is distinct
and uncomplicated. Additionally, it
requires only one page to describe the
process, further underscoring that being
clear and uncomplicated does not require
a lot of narrative pages for descriptions.

The goal is not to do one-page
processes and procedures, but to deter-
mine what is appropriate and important
for simple and clear process descriptions.
This consideration for documenting
should be given the highest priority by
your organization for writing process
documentation.

Factors Effecting What Is
Documented
Lastly, there are a number of factors that
influence how organizations finally docu-
ment their processes. These factors estab-
lish the need, organizational tone for
doing processes, and the funds available
for who does the work. How they come
together is different for every organiza-
tion along with the bottom line as to what
end the processes are documented.
Organizations start out with good inten-

Process
Purpose

Roles and
Responsibilities Entry Criteria

Process
Output

Exit Criteria

Transform
Data

into a
Predictable

Output

INPUT DATA

People
Accomplish

Process
Activity

Figure 2: Process Definition Criteria

tions for doing processes, but each of
these factors has an impact on the out-
come of how the documents are finally
done and must be considered in your
process development. The following fac-
tors are the ones the author’s organiza-
tion found to be important to documen-
tation:
• Size of the Organization: Larger

organizations have the need for more
communications due to their size and
the number of people involved in
processes and projects. They are gen-
erally provided with a budget that sup-
ports doing processes. Conversely
smaller organizations do not have the
same communications problems.
Because of a smaller size and fewer
employees, everyone is easily
informed to be able do his or her part
of the job. Generally, there is little or
no budget for doing processes.

• Organizational Culture: This is how
the organization thinks and has
evolved over time. Its founders have
deeply seeded what this is over time
by their convictions and philosophies.
Organizational culture changes and
evolves very slowly over time.

• Available Budget: This is the bottom
line – funds have to be there for the
organization to do anything.

• Degree of Support for Process
Definition: This is the resource pro-
vided to do the processes in the
organization. It indicates whether an
organization is dedicated to full-time
positions, or those extra duties in
addition to a full-time job. The out-
come will be different based on who is

doing the process documentation
implementation.

Conclusions
The author’s organization found software
process improvement is predicated on
documentation that is defined by stan-
dard definition criteria and modeled by a
structural framework. This framework
forms the relationships and dependencies
of operation among what is to be done,
who will do it, and how it will be done.

The software process model used for
the SW-CMM and the CMMI is the SPF.
It is enabled by the process information
types of policy, standards, processes, and
procedures that are defined by definition
elements that enable construction of
consistent process descriptions. These
concepts work together to achieve
processes that are interpretable, translat-
able, and executable by people who do
them.

The level of detail provided to the
process definition elements (criteria) is
the key to the success of the process doc-
umentation. Documentation is only as
good as the information provided for
doing processes. There are a number of
factors that influence how organizations
finally document their processes. These
various factors establish the need, organi-
zational tone for doing processes, and the
funds available for doing the work. How
they come together is different for every
organization and the bottom lines as to
what end the processes are documented.

These are the concepts the author’s
organization found when doing process
implementation. Hopefully, they will pro-

vide beginners with the foundation they
need to understand how to model process
documentation that results in successful
software process improvement.◆

References
1. Paulk, Mark, et al. Capability Maturity

Model® for Software, Ver. 1.1. TR
CMU/SEI-93-TR-24. Pittsburgh, PA:
Software Engineering Institute, 1993.

2. Software Engineering Institute. SEI
Software Process Framework (SPF).
CMU/SEI-94-HB-1. Pittsburgh, PA:
Software Engineering Institute, Sept.
1994.

3. Caputo, Kim. CMM Implementation
Guide. Addison-Wesley, 1998: 70.

4. Software Engineering Institute.
Questions and Answers on the CMM.
Issue No. 2. Pittsburgh, PA: Software
Engineering Institute, Aug. 1994: 16.

20 CROSSTALK The Journal of Defense Software Engineering March 2004

About the Author

Ron Starbuck is a con-
sultant with MetaVista
Consulting Group. He
has more than 24 years
experience in all aspects
of configuration man-

agement, and also in software quality
assurance, process engineering, and pro-
gramming. Starbuck has implemented
and maintained software configuration
management for large- and small-scale
software efforts in both the Department
of Defense and the private sector. While
at the Sacramento Army Depot, he
received the U.S. Army's Civil Service
Achievement Medal for implementing
and managing configuration manage-
ment. Starbuck authored the
Configuration Management Section for
the Army's Test Program Set Procedures
Manual. He was responsible for putting
together the architecture for software
configuration management in conjunc-
tion with the business rules for develop-
ing pre-processors used by the Output
Technology Systems. He is cofounder of
the El Dorado Hills Chapter of the
Software Process Improvement Network
and believes in furthering professional
software development in greater
Sacramento, Calif.

Meta Vista Consulting Group
Phone: (916) 933-2398
E-mail: ronstarbuc@email.

msn.com

Software Process Improvement

Configuration Management Baselining Process
Purpose of Process: To Establish Software Baselines

Roles and Responsibilities:
Configuration Manager:

♦ Identify what is to be baselined.
 Quality Assurance:

♦ Verify what has been baselined is correct and current.
Entry Criteria: Life-cycle configuration milestone has been reached according to

Project/System Configuration Management Plan.

Input Data: Design Progress Review, Preliminary Design Review, Test Readiness Review, or Post
Deployment Support.

Process Activity: Configuration manager does following procedures:

Baseline procedure to create baseline identification in database,
configuration log, and version release records.

Verification procedure to coordinate with quality assurance to
ensure correct configuration has been baselined.

Status Accounting procedure to ensure project and others baseline
visibility of evolving configuration is under control.

Exit Criteria: Release or identification of the following:

♦ Baseline Identification
♦ Entry into configuration log
♦ Database Identification completed

Process Output: Baseline established or updated

Figure 3: Configuration Management Baselining Process

March 2004 www.stsc.hill.af.mil 21

Developing software is a relatively
new area of enterprise that bears lit-

tle resemblance to other engineering dis-
ciplines. Although the term software
engineering is widely used throughout the
business, the act of creating a new piece
of software can hardly be compared to
the design and construction of a new
building or bridge. Computer scientists
are still struggling after 30 years [1] to
define software engineering and to find the
right combination of techniques, proce-
dures, and tools that assure success in
development of large complex systems.

The closest comparison I can make of
software engineering to another creative
process is writing a book. Give two
authors the exact same subject matter;
they will almost certainly generate differ-
ent works. Although the subject matter
may be the same and perhaps the out-
come of the book similar, other aspects
such as number of pages, references,
organization, writing styles, and even the
number of chapters would be all differ-
ent.

As a creative process, writing a book
shares many things in common with writ-
ing software. [2] A great deal of research
as well as planning is required. Knowing
the outcome of the book or the desired
effect is essential for success. The book,
like software, will evolve over time going
through many stages of development and
modification. Software, like a book, once
created need not be created again, just
replicated for whoever wishes to use it.

Although development of software is
a complex and mysterious process to
most, there are some basic management
techniques that you can apply that may
greatly reduce the risk of failure. In this
article, I provide some general guidelines
that I have gathered over the years in
dealing with large and complex software
development projects that have remained
constant over several decades. While
many books and articles focus on tech-
niques that you should use, they often

ignore the fact that mistakes can still be
made during a project that will cause it to
fail if certain aspects are ignored. This
article will focus on some of the more
common errors I have observed over
years of participation in large software
development projects.

Not Knowing What You Want
or Need
It is not uncommon for companies and
organizations to believe that the creation
of a piece of software in itself will reduce

costs and increase productivity. The more
accurately the needs of a proposed sys-
tem are defined the greater the chances of
success. One of the most critical pieces
of information is the proposed cost sav-
ings or benefits of the new system.
Projects that involve hundreds of thou-
sands to millions of dollars and several
years in the making should not be under-
taken unless there are clear and measura-
ble objectives with provable benefits to
the organization.

Information management (IM) or
information technology (IT) can be very
expensive to develop, purchase, and
maintain. Management must not only
consider the cost of the software but also
the hardware, infrastructure, software
maintenance, facility maintenance, addi-
tional technical support, recovery proce-
dures, alternative processing, etc.

Introducing this technology into an
organization is usually done for one or
more of the following reasons:
1. The resulting technology will reduce

manpower/labor requirements and
reduce cost by automating what was
once a manual process and prone to
errors. In other words, the cost of
developing the system in conjunction
with yearly maintenance cost is offset
by the reduction of the labor force.

2. The resulting technology will increase
the productivity of the current man-
power/labor force. The cost of devel-
oping the system in conjunction with
the yearly maintenance fees is
recouped through increased profits.
Since federal, state, and local govern-
ment agencies do not track profits,
they would be looking for an increase
in their ability to service the public by
offsetting the cost of system develop-
ment and maintenance with the cost
savings in hiring additional labor to
accomplish the same tasks.

3. The software would offer a capability
that previously was not available.
Early in the development of comput-
ers, scientists realized their potential
to perform extensive calculations. It
was not until computers became reli-
able and fast enough that certain
mathematical problems could be
solved.

4. The new IT and IM technology would
increase the decision-making capabili-
ties of upper level management.
There are instances where more accu-
rate, detailed, and properly manipulat-
ed data gives senior management bet-
ter resources to make critical business
or strategic decisions. The cost of
development and maintenance of the
system is offset by increased
profit/productivity through improved
decisions or through avoiding costly
mistakes.
Managers must understand the

intended purpose of the new system

Common Errors in Large
Software Development Projects

During the past 40 years, numerous techniques for improving software reliability and efficiency have been developed. These
techniques, when used properly, can contribute to the success of a major software development effort. However, despite these
new techniques, software projects continue to fail. This article attempts to explain a few of the reasons why, despite advances
in technology, a project can fall flat on its face, and what management can do to prevent these problems.

David A. Gaitros
Florida State University

“To avoid the perception
of bias, the project

manager should not
originate from any of the

specific groups but
should be brought in

from a neutral agency.”

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering March 2004

Software Engineering Technology

before investing time, money, and other
resources in the development of a com-
pletely new product. Such endeavors are
extremely expensive and there are many
risks involved with developing a new
piece of software. The spiral software
model takes into account that as a project
progresses, risks are assessed at each step
to ensure the product being developed is
not only of good quality but will be the
right project [3].

Fractured Development
Teams
Often, a company or organization will
involve several other organizations in the
actual requirements analysis and product
development. This is done to involve all
those who have a stake in the outcome
and to prevent alienating potential users.
Several textbooks and journals I have
read have never addressed this particular
problem although it is more common
than one might realize.

Modern software engineering tech-
niques all focus on the assumption that
the development will be accomplished by
a single entity under the control of a
strong management structure. The divi-
sion of work and responsibilities among
several organizations is often done for
political reasons. Although one particular
group may have the title of program
manager, they may not have any direct
authority over the other development
teams. This presents several roadblocks
to the successful development of a soft-
ware product.

Without clear lines of communica-
tions and authority, the requirements and
eventually the product development are
accomplished in an inefficient fashion
using different standards, different
approaches, and sometimes even differ-
ent technical standards. Even if all teams
adhere to written standards, common
interfaces, duplication of code, different
interpretation of those standards, and
other factors usually lead to integration
problems late in the program develop-
ment life cycle. The results are almost
always unsatisfactory and at best it is inef-
ficient.

One particular example typifies this
problem. Several government agencies
were tasked to develop a standard soft-
ware package to be used by all branches
of the federal government and military
[4]. Although one branch was titled as the
project lead, each branch that would use
the end product was permitted to identi-
fy their own requirements, establish their
own development teams, propose techni-

cal standards, identify existing modules to
be used as an interim solution, and main-
tain their own cadre of contractors for
support. After several years and several
millions of dollars, very few lines of code
had been successfully delivered.

Each different government agency
perceived its requirements to be different
from the other agencies, resulting in the
very basic requirements of the system to
be different. Different requirements dic-
tate different specifications, which lead to
different designs and even different
implementation strategies. Unless great
care is taken to ensure there are sufficient
lines of communication among the dif-
ferent agencies, the products will almost
always be incompatible.

To increase the chance of success, the
development team should be geographi-
cally located in the same town, in the
same building, and if at all possible, on
the same floor [5]. Also, there must be

clear and undisputed lines of authority
even if some of the team members orig-
inate from other companies or groups.
This clears up any ambiguity for both the
development group and the customers
who now have a single focal point for
feedback. The customers identified with
each of the groups must have equal say in
the outcome of the new product, and
great care should be taken to include rep-
resentatives from each group in all critical
phases of the project. To avoid the per-
ception of bias, the project manager
should not originate from any of the spe-
cific groups but should be brought in
from a neutral agency.

Lack of Experienced and
Capable Management
Organization and proper planning are
absolutely essential elements of any proj-
ect. You would not think of hiring an
experienced chef to run an automobile
assembly line or likewise a software
development project. Through years of
experience and mistakes, I have discov-

ered there are no such things as generic
managers capable of managing any type
of project. Other large software develop-
ment firms have learned the same lesson.

Although the customer calls the shots
as far as functionality, cost, and schedule,
the person in charge of the actual soft-
ware production should be an experi-
enced data automation manager with
technical knowledge in the area being
developed. Hire someone with experi-
ence in dealing with the kind of system
you are trying to develop. The following
are some reasons for hiring such a per-
son:
1. IT managers must be competent

enough to identify and hire a qualified
work force.

2. Unqualified managers too often must
rely on less experienced technical staff
or, worse yet, vendors on project
decisions.

3. Managers must be able to assess accu-
rately the capabilities of other shops
and sub-contractors assigned to the
project. Shop managers or contrac-
tors who hire inexperienced or the
wrong type of personnel will find out
late in the project that they must hire
expensive consultants to make up the
differences. An experienced manager
will have a good idea what capabilities
are required to complete an assign-
ment and be aware of the risks of
peer organizations that hire sub-stan-
dard personnel.

4. The manager is usually the face-to-
face customer contact. He or she
must converse intelligently on the
impacts of alternatives and be able to
address technical questions without
drawing from other staff members.
Customers must have confidence in
management.

5. Decisions on cost, schedule, and per-
formance cannot be delegated and
must be made based upon a combina-
tion of education, experience, met-
rics, and the interpretation of those
metrics.

Lack of Proper Work
Environment
Imagine a hospital with a staff of highly
trained and skilled surgeons that lacked
proper operating rooms, instruments,
and other medical staff for support.
Operating on a patient would be haz-
ardous at best. Likewise, software devel-
opment organizations will sometimes
hire very skilled software engineers and
purchase expensive computer-aided soft-
ware engineering (CASE) tools but

“Through years of
experience and mistakes,
I have discovered there
are no such things as

generic managers
capable of managing
any type of project.”

March 2004 www.stsc.hill.af.mil 23

Common Errors in Large Software Development Projects

ignore establishing the right development
environment needed to ensure a success-
ful project.

Having modern automated software
products in conjunction with proper
organization, a skilled support staff, and
the right work environment can greatly
increase overall productivity and improve
software quality at the same time.
Organizing your staff is just as important
as the tools they use. Here are a few hints
on setting up the proper environment:
1. Be sure to separate your development

staff from computer operations. You
do not want your programmers and
analysts spending their time trou-
bleshooting networks, installing
servers, maintaining a database envi-
ronment, creating Web pages, etc.
They should spend their time using
the services of the system to satisfy
customer requirements. It is well
worth the money to hire a few dedi-
cated help-desk/operations staff to
alleviate the burden from the rest of
the workers. Part time or on-call serv-
ices usually benefit smaller projects by
not requiring full time employees.

2. Do not purchase top-of-the-line
equipment for the development phase
of your project. If software is
designed on state-of-the-art equip-
ment, chances are it will only work
properly in that environment.
Developers/coders/analysts should
try to develop systems that run effi-
ciently and will operate across a broad
spectrum of capabilities using the
worst-case scenario for standard test-
ing and development. Provide com-
puter programmers with the mini-
mum configuration you would expect
most of the users to possess. Be sure
to test it on all target platforms, mem-
ory ranges, and operating systems.

3. Set up a separate configuration and
control group that keeps close tabs on
quality control and version mainte-
nance. Individual programmers usual-
ly do a poor job of policing them-
selves. It is equally important that the
configuration and control group not
be managed by anyone in the devel-
opment chain but report directly to
the IT manager. This will avoid any
attempts by development staff to
fudge on schedules and skip impor-
tant reviews and test cycles.

4. Although your hardware should be
minimal in nature, do not scrimp on
sophisticated tools or software engi-
neering environments. Automatic
code generators, development envi-
ronments, and extensive library setups

with automated configuration and
control tools increase productivity
tremendously. Their only drawback is
the extensive amount of training
required for their use.

Inexperienced or Mediocre
Technical Staff
The last thing a manager needs on a proj-
ect that requires creativity and ingenuity
is mediocre people. A few highly experi-
enced and educated developers can out-
produce any number of average pro-
grammers. A painful lesson that I keep
learning repeatedly is to hire top-notch
people and empower them to do the job.
Here are some hints on hiring good peo-
ple:
1. Be very specific on technical experi-

ence and education when advertising

for empty positions. If you need
experience in specific languages, oper-
ating systems, machines, and net-
works with specific versions then
specify them on your advertisement
and do not accept less. A common
mistake some companies make is to
advertise for an employee with a wide
range of experience never really
expecting to find such a person but
rather to find someone as close as
possible.

2. Confirm all applicable classes/
schools attended along with grades,
degrees awarded, companies worked
for, as well as contacting all refer-
ences. Do not hire someone who has
lied on his or her resumé.

3. Test the applicant. If the applicant
claims to be an experienced C++ pro-
grammer, give him or her a test. Have
him or her write a small complex pro-
gram in the environment they claim
to have experience in. You will be sur-

prised how few are capable of passing
these kinds of tests.

4. Technology changes rapidly. Look for
experienced developers who continue
to update their skills. A good,
prospective employee will keep up
with technology and be willing to
prove it.

Getting a Slow Start
The easiest place to make up for lost time
is during the beginning of the project.
Too often, slow and methodical project
starts result in a panic race near the end
to finish and deliver the software. All too
often, this results in a shoddy product.
This is where experienced management
will be the most visible and aggressive.
The first half of the project should not
be devoid of meaningful deliverables.
Too often, high-level models, minutes of
meetings, funding expenditures rates, and
personnel reports take up most of the
first half of a project.

An experienced manager should be
looking for results of requirements analy-
sis, architecture plans, development
strategies and schedules, technical
impacts, preliminary database design,
detailed models, timing diagrams for real
time systems, etc. These time-consuming
and important efforts cannot be put off
until the latter half of the project.

Communication
Requirements
Some of the most non-productive time
spent on a project can be meetings. Take
a tip from professional business process
engineers on conducting meetings. First
and foremost, each meeting must have
meaning other then just a routine sched-
ule [6]. Always have a published agenda
with the specific meeting purpose stated.
If upper-level management or the con-
tract requires routine meetings, they
should follow these simple guidelines:
• Have a fixed agenda and purpose.
• Always appoint someone in charge

that can minimize extraneous talk.
• Track and publish decisions made

during the meeting and deliver to
appropriate parties.

• Adjourn the meeting when business
has been conducted.

• Do not go beyond the scope of the
meeting’s original intent. Rather, you
should conduct a smaller meeting with
only the interested parties to avoid tak-
ing other individuals’ time.
When coordinating project technical

requirements, minimize the number of
people in the meeting to essential person-

“Set up a separate
configuration and control
group that keeps close
tabs on quality control

and version
maintenance. Individual
programmers usually do
a poor job of policing

themselves.”

nel only. Make sure the people attending
can satisfy all the requirements that arise
during the meeting. Nothing is more frus-
trating than attending a meeting where key
technical personnel were replaced by the
next level of management who were
unable to discuss the project details thus
requiring another meeting. If key person-
nel cannot attend, postpone the meeting.

There is a huge debate going on in the
industry concerning using e-mail and the
Internet in the office [7]. Proponents of e-
mail claim it improves communication
within an organization by allowing people
to transfer information anytime during the
day or night ensuring that the person gets
the information. Opponents claim it
wastes time and productivity through
abuse of the technology. Companies have
restricted some office personnel to receive
internal e-mails only while reserving exter-
nal e-mail privileges for individuals that
have bona fide requirements to do so. My
recommendation is to allow e-mail
throughout the organization since I
believe the benefits outweigh the bad. The
Internet can be a very useful tool, but it
can also be a costly waste of time in both
manpower and network bandwidth. Since
this is primarily a research tool, I would
limit access to those individuals who truly
need it.

Relying Only on User
Interviews for Requirements
Definition
A good computer systems analyst will
extensively explore other avenues of
information on gathering requirements. A
common error in most failed projects is
using only a selected number of individu-
als from the user community to define
accurately functional requirements. It is
rare to find individuals that possess all or
most of the knowledge required to devel-
op fully a complete information technolo-
gy software system. On the contrary, cor-
porate knowledge is usually spread among
several individuals and groups. Many
times, crucial business processes are con-
tained in notebooks, briefcases, a PC
spreadsheet, or in a person’s desk. Here
are some recommendations to help
resolve this:
1. Obtain copies of any legacy software

system that is being used. This will give
some insight into documented busi-
ness practices.

2. Obtain and thoroughly read all opera-
tions manuals, pamphlets, brochures,
regulations, or laws that pertain to the
organization.

3. Hire your own full-time functional

experts to assist in filling any gaps in
users’ requirements. Recently retired
individuals are particularly useful.
Companies will seldom allocate an
employee full time to your develop-
ment team.

4. Perform as many of the above func-
tions as possible before your first offi-
cial meeting with the customers. You
will find the advanced preparation will
make your first and subsequent meet-
ings very productive.

Not Involving the User at All
Stages
The most elaborate and efficient system in
the world is doomed to failure if the tar-
geted users are not enthusiastic about its

arrival. A good deal of public relations
work should be done at all stages of the
project to ensure that users eagerly antici-
pate the new system. The best way to
accomplish this feat is to involve as many
of the users as possible in the software
development stages. It is absolutely neces-
sary to make a little bit of time and effort
during each stage of the project to keep
the user community informed and obtain
their feedback.

Cutting Short Testing
The computer industry calls its mistakes
bugs. Rarely does a software package make
it to market without bugs, which are a
result of three basic acts: (1) an omitted or
improperly stated requirement, (2) errors
in computer logic, and (3) a performance
or timing error usually associated with
hardware or networks [6]. A good soft-
ware development organization will have
strict testing requirements to discover as
many defects as possible. Each test should
examine utility, correctness, robustness,

and performance. Here are the usual defi-
nitions of the different testing cycles [1]:
• Programmer Test: Individual pro-

grammers test their specific modules
against the specifications they were
given. Interfaces to external modules
or systems are usually simulated.

• Software Inspections: No one likes to
have their work criticized in an open
forum, but scientists have always been
accustomed to having their work
reviewed. Software inspections come
under the category of fault-avoidance
techniques. Code reviews, software
inspections, and walkthroughs have
proven to be very effective in detecting
errors [6]. Experiments have shown that
up to 85 percent of software faults have
been detected by such techniques [8].

• CASE Tools: Although we mentioned
CASE tools before, they can also be
used to enforce programming stan-
dards. Capability Maturity Model®

Level 3, 4, and 5 organizations often
will introduce strict coding standards
into their projects to prevent common
programming mistakes.

• Configuration and Control Test:
The configuration and control group
tests whether the delivered modules
meet specific programming standards
set down by the company and whether
the software specifications match the
documentation.

• Alpha Test: This test is usually done
by the company either at their site or at
a user’s location. The following fea-
tures are tested: (1) deployment fea-
tures, (2) interfaces to other systems,
(3) upload/download procedures, (4)
requirements compared against design
specifications, (5) basic user function-
ality, and (6) performance.

• Beta Test: This is the first truly oper-
ational test where the new system
replaces the legacy or manual system
in its entirety at limited locations or
sites. This is not only an extension of
the Alpha Test but also a measure of
whether the initial feasibility studies on
the usefulness of the new system were
accurate. These test results are used in
determining if the new system is
acceptable to the user.

• Extended Beta Test: After correc-
tions or modifications on the Beta
Test, the new software is released to a
larger community of users before
organizational or worldwide deploy-
ment. Tests should endure past several
milestones such as end-of-day, end-of-
week, end-of-pay cycle, calendar date
rollovers, etc. to ensure adequate num-
bers of scenarios are tested.

24 CROSSTALK The Journal of Defense Software Engineering March 2004

Software Engineering Technology

“A common mistake
some companies make is

to advertise for an
employee with a wide
range of experience

never really expecting to
find such a person but
rather to find someone
as close as possible.”

March 2004 www.stsc.hill.af.mil 25

Conclusion
Other engineering disciplines have the
benefit of many decades if not centuries
of refinement on their processes. The
building of software is still in its infancy
and may take several years to fully
mature; we can help it along by practicing
a few basic management techniques that
have proven successful.

There have been many attempts by
individuals to identify which step of the
development process is the most critical.
Some say the early stages of require-
ments definition, others say testing, while
some conclude it is the actual develop-
ment itself. I believe that all stages are
critical to the success of any project.
Failure can and does occur at any stage
while success can be claimed only after
the completion of all phases and success-
ful product delivery to the customer.
Software development is extraordinarily
tedious and time consuming; minute
details have been known to bring project
personnel to their knees. A successful
project will have top-notch management,
a healthy work environment, expert tech-
nical staff dedicated to specific tasks,
clear lines of communication and author-
ity, involvement of the user community,
high standards, modern development
tools, and clear goals.◆

References
1. Sommerville, Ian. Software

Engineering. 6th ed. Addison-Wesley,
2002: Chap. 1.

2. Hamming, R. “Mathematics on a
Distant Planet.” Invited Talk, 1996.

3. Boehm, B. “A Spiral Model of
Software Development and
Enhancement.” Software Engineering
Project Management, 1987: 128-142.

4. Office of the Inspector General.
“Audit Defense Environmental
Security Corporate Information
Management Program.” Project No.
D2000AS-0207.000. 7 Dec. 2000.

5. Jensen, R.W. “Lessons Learned From
Another Failed Software Contract.”
CrossTalk Sept. 2003: 25-27.

6. Bruegge, B., and A.H. Dutoit. Object-
Oriented Software Engineering:
Conquering Complex and Changing
Systems. Prentice Hall, 28 Oct. 1999.

7. Coetzer, Dudly. “Cut Unnecessary
Communication Costs.” Accountancy
SA Oct. 2003 <www.account
ancysa.org.za/archives/2002oct/
features/Limiting.htm>.

8. Fagan, M.E.. “Design and Code
Inspections to Reduce Errors in
Program Development.” IBMB
System Journal 15.3 (1976): 182-211.

About the Author

David A. Gaitros is
the associate chair of
the Computer Science
Department at Florida
State University, Talla-
hassee, Fla. He spent

22 years in the U.S. Air Force as a
software developer and manager of
large software projects as well as the
associate chair for the Naval
Postgraduate School, Monterey, Calif.
He has worked on the Airborne
Warning and Control System, the Air
Force Data Systems Design Center,
and various other development proj-
ects for Air Force Material Command
(former Systems Command) and the
Air Force Civil Engineer.

Florida State University
Department of Computer Science
261 James J. Love BLDG
Mail Code 4530
Tallahassee FL, 32306-4530
Phone: (850) 644-4055
Fax: (850) 644-0058
E-mail: gaitrosd@cs.fsu.edu

Common Errors in Large Software Development Projects

THIS COULD BE YOUR LAST ISSUE!
CrossTalk has lost its funding.

Our ability to provide CrossTalk to you at no cost and with no advertising or commercial
influences may no longer be possible. However, your answers to 12 simple survey questions on our
Web site will help us determine the future direction of CrossTalk and even if it continues to exist.

Also, you can easily enter our contest to win a Nikon Coolpix 3100 3.2 MP Digital Camera. The
Nikon Coolpix 3100 creates beautiful photos up to 8" x 10" for professionals and amateurs with
auto-exposure functions.

Go to <www.stsc.hill.af.mil/crosstalk> or call (801) 775-5555 or DSN 775-5555 and take five minutes to
help determine CrossTalk's future. Take our survey and tell us how important CrossTalk is to
you, and what subscripton price you would be willing to pay to keep it coming to your mailbox each
month. The Nikon Coolpix 3100 could be yours for simply answering 12 survey questions.
*Hurry – the deadline to respond is Mar. 12th.

* Many readers did not receive the advertisement announcing this survey attached to their February issue, so we have
extended the deadline to respond to the survey and enter the Nikon Coolpix contest.

26 CROSSTALK The Journal of Defense Software Engineering March 2004

The concept of systems thinking, which
was definitively described by Peter

Senge in his seminal work “The Fifth
Discipline” [1], has been used by many
people to investigate and resolve deep
organizational problems and to achieve
higher states of operational excellence.
You can use systems thinking to effective-
ly resolve many of the barriers and prob-
lems that commonly plague process
improvement initiatives based on the
Capability Maturity Model® (CMM®) or
the CMM IntegrationSM (CMMI®).

Losing Sight of the Forest
Working day to day in a process improve-
ment role, it is very easy to lose sight of
the big picture quickly. We tend to see indi-
viduals around us making independent
decisions and taking seemingly unrelated
actions. We get caught up in trying to deal
with every separate event using a different
approach and frame of reference than the
last seemingly dissimilar event. It is also
quite easy to lose sight of the relation-
ships between your process improvement
work and system or service delivery.
Sometimes, process improvement – or
worse, the model we are using, i.e., the
CMM or CMMI – takes on a life of its
own, and we end up doing process
improvement for its own sake.

In systems thinking, Senge described
two systems archetypes that provide a way
of gaining a big-picture view of com-
monly occurring systemic problems in
organizations: fixes that backfire and shifting
the burden. These two archetypes are par-
ticularly useful in understanding and
resolving problems that frequently plague
CMM- and CMMI-based process
improvement efforts.

Fixes That Backfire
In the fixes-that-backfire systems arche-
type, the obvious solutions are applied to
problems. However, because the per-
ceived or obvious solution is frequently
applied hastily and without a thorough
understanding of the problem, the result
is often unintended consequences, includ-

ing a worsening of the problem. One of
the most pronounced examples of a fix
that backfires is corporate downsizing to
improve profits. In one 1991 study of 850
companies that had cut staff drastically,
only 41 percent had achieved the savings
they hoped for [2].

The diagram in Figure 1, known as a
causal loop diagram, illustrates the dynamics
of the fixes-that-backfire archetype as it
relates to software and systems process

improvement. Because the net, long-term,
negative effects of the fix are greater than
the short-term, positive effects, the rein-
forcing loop is the prevailing influence in
the system.

In the figure, the inner loop (or the
core loop) represents the organization
attempting to address the problem of
poor software or systems delivery by
implementing model-based process
improvement. The outer loop – also
known in systems thinking as an addiction
loop – represents the long-term effects of
the fixes. When it turns out that the CMMI
is not the panacea for all the organiza-

tion’s problems, there can be unintended
negative consequences.

The fixes-that-backfire archetype has
three primary manifestations in CMM and
CMMI based process improvement:
1. The race to achieve a maturity level

(the perceived fix) causes widespread
cynicism, which in turn leads to a
grass-roots resistance – a backlash – to
the process improvement initiative
(the unintended consequence).

2. Process discipline and improvement
(the perceived fix) is done for its own
sake, and the consequence is that the
organization’s software/systems devel-
opment performance gets worse (the
unintended consequence).

3. The unintended consequences of
business and model disintegration
occur when the cost and value of
process improvement activities are not
integrated with the price of the things
such as products or services that are
sold to a customer.
These three fixes that backfire in

model-based process improvement are
described in the following subsections.

The Race to Maturity Levels
Frequently, executive and senior level
managers are sold on the idea that the
CMM or CMMI are the vehicles for
improving software or systems develop-
ment and delivery. However, they get fix-
ated on achieving maturity levels under
the belief that maturity levels are concrete
evidence that processes have improved.
The maturity level becomes the evidence
that the organization has improved its
efficiency, effectiveness, and quality. Such
beliefs are as faulty as assuming a student
has actually learned something because he
received an A in class.

Acting on such beliefs, executives will
sometimes construct incentives such as
bonus programs for senior and mid-level
managers to achieve maturity levels in
their respective sub-organizations. Now,
both level-envy, and the ensuing race to
achieve levels, is on! The focus on maturi-
ty levels drives people to look for quick

Applying Systems Thinking to Process Improvement

Michael West
Natural Systems Process Improvement

In our day-to-day work in process improvement using the Capability Maturity Model® or the Capability Maturity Model®

Integration, it is easy to lose sight of the big picture. Applying systems thinking can generate breakthrough approaches to
effectively improving systems development, integration, and maintenance.

Open Forum

“One of the
most pronounced
examples of a fix
that backfires is

corporate downsizing
to improve profits. In
one 1991 study of

850 companies that
had cut staff drastically,

only 41 percent had
achieved the savings

they hoped for.”

Applying Systems Thinking to Process Improvement

March 2004 www.stsc.hill.af.mil 27

fixes that will enable them to pass an
assessment. The symptoms – observable
behaviors and artifacts – most commonly
associated with a race to maturity levels
are the following:
• Deadlines are established for achiev-

ing a maturity level without any esti-
mating or project planning that sup-
ports the deadline (which, by defini-
tion, is a low maturity behavior).

• Slogans appear such as “Level 5 in
’05.”

• People read the CMM or CMMI, and
learn to recite the model’s terms and
phraseology.

• Policies and procedures are rapidly
created, and frequently mimic the
practices in the CMM or CMMI
instead of defining the organization’s
processes.

• Project managers, under pressure
from upper level management, create
elaborate project documentation that
satisfies the letter but not the intent of
the model. However, they promptly
shelve the project documentation and
do not use it to manage their projects.
The problem worsens in a large organ-

ization in which various sub-organizations
are trying to achieve maturity levels inde-
pendent of each other. The sub-organiza-
tions’ respective managers too often let
their egos and competitive natures get the
better of them, and try to outdo each
other to be the first to achieve the target-
ed level.

Once organizations have become
entrenched in the level race (or perhaps
more accurately, level wars), they are in the
addiction loop, and you can count on
rationale and reason often being aban-
doned. The organization takes a short tra-
jectory to the maturity level, which it more
often than not achieves – one way or
another.

What is the result of the unintended
consequences? Those incentives for
achieving maturity levels usually stop at
the mid-level manager, and almost never
make it down to anyone doing the work,
including software engineering process
group members and project managers
who have done the bulk of the work in
the death-march process improvement
project. For a brief time following passing
the assessment, everyone in the victorious
organization is exuberant. But once the
assessment high wears off, people start
looking around for some lasting and
meaningful results of their work. Yet for
reasons they cannot always comprehend,
everything looks and feels the same as it
did before the maturity level race.

Even in extreme command-and-con-

trol work environments where the pri-
mary motivation is fear (usually of losing
your job or being marginalized), fixes that
backfire eventually take their toll on the
morale and momentum of process
improvement initiatives. Smart, skilled,
process-oriented people start to look out-
side the organization for more meaning-
ful, rewarding work. Project managers and
engineers become jaded on the whole idea
of model-based process improvement.
They will continue giving a gratuitous
salute or lip service for fear of not doing
so, but they will be burned out on process.
Worse yet, they may perceive – perhaps
accurately – that their organization’s
CMM/CMMI effort is a waste of time
and money.

The organization that chases maturity
levels for their own sake, and fails to set
business goals for process improvement,
will spend hundreds of thousands or even
millions of dollars on model-based
process improvement, and can end up
with nothing more to show for their
efforts than a few gratified egos.

Process for Its Own Sake
Sometimes, organizations do not get too
wrapped up in CMM/CMMI maturity lev-
els, yet process still becomes the be-all and
end-all to fixing every issue plaguing the
organization. For many of my years in
Xerox, it’s the process, or fix the process
became the only politically acceptable
approach to any problem. The primary
fallacy of this approach is that it ignores
the observable, measurable fact that there
really are people and accountability prob-
lems, or technology problems that cannot
be resolved by addressing only the
process.

A classic example of a backfire from
applying a fix occurs when organizations
attempt to apply the entire CMMI to tra-
ditional information technology, systems
maintenance, or engineering services
shops. With intelligent interpretation and
tailoring, many of the CMMI practices
can be applied to improve work in these
environments. But the implementation of
processes and procedures that are nothing
but a regurgitation of the CMMI in these
environments results in burdening the
organization with process overhead that
does not add value, thus making the
organization less effective and less effi-
cient than they were without the CMMI.

Unintended Consequences of
Business and Model Disintegration
Businesses incur unintended and negative
consequences when process improvement
(and probably other internal improvement or

quality initiatives, a.k.a., solutions) are treat-
ed as infrastructure or overhead. As these
internal initiatives grow, so does the per-
centage of the organization’s employees
whose work does not directly produce
something that is sold to or adds value to
what is sold to a customer (the conse-
quence). Thus, as William Bergquist noted
in his book “The Post Modern
Organization” [3], it becomes increasingly
difficult for the expanding organization to
achieve and maintain its profit goals
because operating and overhead costs
grow at a faster rate than that of realisti-
cally achievable revenue.

The approach some organizations take
to keep the cost of process improvement
down is to hide it. People in charge of
process improvement or CMMI efforts in
large organizations have actually present-
ed at conferences in which they proudly
announced that people worked unpaid
overtime on nights and weekends to
achieve a maturity level. While this may
seem heroic and laudable on the surface,
even a layperson can easily see that the
maturity level was not truly deserved
because of the obvious Level 1 behaviors
exhibited in Organization Process Focus.

Strategies for Fixes That
Backfire
Here are some strategies you can employ
to prevent or mitigate the effects of
implementing fixes that backfire:
• In planning the process improvement

effort, ensure the plans include achiev-
ing measurable or observable business
goals in addition to achieving maturity
levels. Make sure that reporting
progress or success includes status
against all the process improvement
goals and not just the number or per-
centage of practices satisfied.

• Increase awareness, especially among
senior and executive managers, of the
unintended consequences of chasing
maturity levels. In 2001, I was involved

Fix
Problem
Symptom

Poor
Software/System

Delivery

Unintended Consequences:
Resistence against process improvement
Software/system delivery gets worse
ROA/ROE diminishes

Implement the
CMM/CMMI

Caution: Subject to snowball effect when an organization
goes into the addiction loop and the problem symptoms
continue to worsen instead of improve

Time Lapse

Figure 1: Fixes-That-Backfire Archetype in
Process Improvement

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering March 2004

in an email conversation with senior
level managers and marketing people in
Computer Sciences Corporation who
were trying to come up with strategies
for countering the CMM level race
approach of one of our biggest com-
petitors. I sent out a note thinking that it
would be career limiting because it went
directly against the prevailing beliefs.
Much to my surprise, a senior marketer
read and understood my note, and invit-
ed me into further conversations on
how we could market real process
improvement benefits without getting
into level wars with our competition.

• Spend the time understanding the
problem. You do not necessarily have
to conduct time-consuming formal
root-cause analysis, which can often
lead to analysis paralysis, but you cannot
afford to continue applying solutions

to symptoms, only to have the root
problem perpetuate or worsen.

• Establish alliances or relationships
with people in your marketing and
sales organizations. Find ways to
defray some of the cost of process
improvement activities by selling (and
charging for and collecting) the bene-
fits of process improvement. With the
right approach, a customer or client
will be willing to pay a higher price for
the goods or services so long as you
have convinced them that there is
greater value.

Shifting the Burden
According to Senge’s “Systems Thinking,”

Shifting the burden … usually
begins with a problem (symptom)
that prompts someone to intervene
and solve it. The solution (or solu-
tions) are obvious and immediate;
they relieve the problem symptom
quickly. But they divert attention
away from the real or fundamental
source of the problem, which
becomes worse as less attention is
paid to it. This forces the percep-
tion that there is no other way out
except the symptomatic solution.
[1]

Shifting the burden to process improvement
is illustrated in Figure 2.

In this systems archetype, the per-
ceived problem is a lack of process or
process discipline in the organization, or
that the organization does not have a
CMM or CMMI maturity level. So the
obvious, or solution, is to implement the
CMM or CMMI. In the short term, the fix
does appear to address the perceived
problem: lack of process is replaced with
process.

The unobserved yet insidious effect is
that effort and focus shifts from product
or service delivery (or integration) to the
symptom of inadequate processes that in
turn, either does nothing to improve
product/service delivery, or hurts it by
burdening the existing delivery processes
with overly bureaucratic standards and
procedures.

Table 1 identifies some common sys-
tems development and delivery problems
(in the left column). The center column
identifies how these problems often are
perceived as process (or lack of process)
problems. The third column identifies
other possible root causes of the prob-
lem, which may have little to do with
process discipline or maturity levels.

What are the unintended conse-

Side Effects:
Effort/focus shift
from software/
system delivery to
process delivery

Caution: Subject to snowball effect when an organization
goes into the addiction loop and the problem symptoms
continue to worsen instead of improve

Implement
CMM/CMMI

Quick Fix:

Problem
Symptom:
Lack of
processes

Corrective action:
 Apply more
 process

Root Causes
of poor software/
system delivery

Time Lapse

S
Y

M
P

TO
M

 C
O

R
R

E
C

T
IN

G

P
R

O
C

E
S

S
P

R
O

B
LE

M
 C

O
R

R
E

C
T

IN
G

P

R
O

C
E

S
S

 addiction
loops

Figure 2: Shifting the Burden Archetype in
Process Improvement

Software/Systems

Delivery Problems

Perceived as a

Process Problem

Potential Real or Root Problems
Not Addressed due to Shift

Projects experience
scope-creep.

 • Poor business relationship with
customer.

 • Lack of discipline in engineering
staff.

 • There is no release strategy.

 • No strategy/process for insertion
of new technology.

 • Lack of standards for acceptance
or decline of requirements.

 • The Organization does not
understand the market it is in.

Projects overrun cost and
schedule.

 • No estimating or
planning process.

 • Project plans are not
adequately
documented.

 • Culture encourages low bid;
accurate bidders don't get work.

 • Schedule is synonymous with
plan.

 • Poor business relationship with
customer.

 • There is no release strategy.

 • Staff has inadequate skills to do
the work.

 • The term Project is not defined.

 • Management does not perceive
planning activities as
work/progress.

Product quality (e.g.,
defect density) is poor.

 • No quality process.

 • No people assigned
to inspect/audit the
quality.

 • The organization has no defined
standards or criteria that define
quality.

 • Management and the culture
rewards fast and cheap; good is
not encouraged or rewarded.

 • Staff has inadequate skills and
resources to produce quality
work.

No amount of process
improvement activity
seems to improve the
bottom line.

 • People will not buy
into the PI initiative.

 • Not enough in-house
CMM/CMMI
expertise.

 • Clients do not value
the process
improvement efforts.

 • Misalignment between the
chosen model and the
organization's core business and
business goals.

 • There are no baseline
performance or capability
measurements with which
improvement could be
ascertained. Improvement is
anectdotal.

• Inadequate
 requirements
 management process.

Table 1: Common Problems Attributed to Lack of Process That May Have Other Causes

Applying Systems Thinking to Process Improvement

March 2004 www.stsc.hill.af.mil 29

quences of shifting the burden to
process? In many cases, doing so can have
a compounding, double negative impact
on the organization. With resources
diverted from the real problems, the real
problems get obscured, are given a lower
priority, or are ignored, which diminishes
the chance of them being resolved. Worse
yet, the process improvement efforts –
which can be quite expensive – may not
only have no discernable effect on the
symptoms, they may exacerbate the root
cause.

Take the situation in which the out-
sourced contractor has a poor relationship
with the customer or prime contractor.
Shifting the burden to process by throw-
ing the CMMI, ISO, Six Sigma, Theory of
Constraints, or some other currently pop-
ular initiative at the perceived problem can
irritate the customer even more, further
worsening the relationship.

Strategies for Dealing With
Shifting the Burden to
Process
If you are fortunate enough to get
involved in a process improvement initia-
tive at its inception, make every effort to
get everyone involved in discussing the
business problems they want to address,
and how the perceived process solutions
will address those problems. As with fixes
that backfire, spend time first understand-
ing the problem to be resolved or the
business goals to be achieved. If the cor-
relation (or better yet, the causation)
between business problems and process
solutions cannot be clearly established,
encourage people to consider pursuing
alternative solutions such as organization-
wide skill improvement, new technology,
or fundamental shifts in business strategy.

If you get involved in a process
improvement initiative after it is already
underway, be persistent in questioning
people around you about their proposed
process solutions. Constantly ask ques-
tions such as, “Why are you doing this?”
“What problem will this solve?” You may
become quite annoying to some people,
but after a while, you will have them ask-
ing the same questions at least quietly to
themselves if not overtly.

Again, do not presume that your
organization is the first ever to try to
apply process solutions to its problems or
goals. Conduct benchmarking activities
with other organizations to find out what
has worked and what has not. Process
people are just as susceptible to the pit-
falls of the not-invented-here syndrome as
are engineers and other technical people.

Why Systems Thinking?
Modern software or systems organiza-
tions are themselves a system of systems.
There are people (social systems), tools
and technology (environmental systems),
and policies and processes (process sys-
tems). The three systems – people, tools,
and processes – are inextricably interwov-
en, and changing one without considering
the interrelationships can cause fixes that
backfire, do not resolve the original prob-
lems, or inadvertently make the problems
worse.

The greatest unintended consequence
of applying a CMMI or process solution
to a non-process problem is too often the
vast waste of resources used for the faux
fix. If you really want to improve things in
your organization, start by improving the
process of process improvement. You can
save your organization money and aggra-
vation by using this systemic approach.◆

References
1. Senge, et al. The Fifth Discipline

Fieldbook: Strategies and Tools for
Building a Learning Organization.
Currency-Doubleday, 1994.

2. Boroughs, Don. L. “Amputating
Assets: Companies That Slash Jobs
Often End Up with More Problems
Than Profits.” US News and World
Report 4 May 1992.

3. Bergquist, William,. The Post Modern
Organization: Mastering the Art of
Irreversible Change. Jossey-Bass, Inc.,
1993.

About the Author
Michael West is co-
founder of the consult-
ing firm Natural Sys-
tems Process Improve-
ment (Natural SPI). He
has more than 22 years
in software and systems

engineering management and model-
based process improvement. Natural
SPI has employed non-traditional,
highly effective approaches to helping
clients use the Capability Maturity
Model® or the Capability Maturity
Model® Integration (CMMI®) to
achieve measurable business results.
This article is excerpted from West’s
book “Real Process Improvement
Using the CMMI.”

Natural Systems
Process Improvement
Phone: (866) 648-5508
E-mail: michael@naturalspi.com

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JAN2003 � BACK TO BASICS

FEB2003 � PROGRAMMING LANGUAGES

MAR2003 � QUALITY IN SOFTWARE

APR2003 � THE PEOPLE VARIABLE

MAY2003 � STRATEGIES AND TECH.

JUNE2003 � COMM. & MIL. APPS. MEET

JULY2003 � TOP 5 PROJECTS

AUG2003 � NETWORK-CENTRIC ARCHT.

SEPT2003 � DEFECT MANAGEMENT

OCT2003 � INFORMATION SHARING

NOV2003 � DEV. OF REAL-TIME SW

DEC2003 � MANAGEMENT BASICS

JAN2004 � INFO. FROM SR. LEADERS

FEB2004 � SOFTWARE CONSULTANTS

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.

30 CROSSTALK The Journal of Defense Software Engineering March 2004

Online Article

In this author’s experience, the two fol-
lowing issues are discussed qualitatively

when program management decides what
to inspect and what data to collect:
• Deciding whether or not to inspect

work products based on a qualitative
understanding of various limiting
parameters such as work product size,
preparation rate, or expected defect
density.

• Deciding whether or not to collect and
to analyze inspection data based on a
qualitative understanding of the return
on investment (ROI) on collecting, ana-
lyzing, and using inspection metrics.
This article improves on this practice by

estimating quantitatively, from the perspec-

tive of an existing quantitative cost model
[1], both the parametric boundaries of
inspection cost effectiveness and ROI for
collecting and analyzing inspection metrics.

It is important to note that there are sev-
eral different budgetary strategies that may
be applied when making process implemen-
tation choices. Here are three examples
ordered from long term to short term in the
planning horizon:
• Minimize total cost of ownership,

including post delivery maintenance
costs.

• Minimize overall development cost
excluding post delivery maintenance
costs.

• Assure that inspection overhead costs

are exactly balanced by reductions in test
rework costs (this does not minimize
costs).
A simple condition is derived that

explicitly calculates whether or not inspec-
tions, if performed well, will be cost effec-
tive. Specifically they are cost effective if:

2 x X <—Y + C/(S x Y)

(See the on-line article for symbol defini-
tions.)
Due to space constraints, CrossTalk was not
able to publish this article in its entirety. However, it
can be viewed in this month’s issue on our Web site
at <www.stsc.hill.af.mil/crosstalk> along with
back issues of CrossTalk.

When Is It Cost Effective to
Use Formal Software Inspections?

Bob McCann
Lockheed Martin Integrated Systems Solutions

The purpose of this article is to present a way quantitatively to determine the parametric limits to cost effectiveness of soft-
ware inspections based on a previously published model. This analysis leads to the conclusion that it is cost effective to inspect
both original code and most modifications to the code after initial coding. Any exceptions should be carefully considered based
on quantitative analysis of the projected impact of the exceptions.

1 9 — 2 2 A P R I L 2 0 0 4 • S A LT PA L A C E C O N V E N T I O N C E N T E R • S A LT L A K E C I T Y, U T

SSTC is pleased to feature the following guest speakers in the 2004 agenda:

Opening General Session Sue C. Payton, Deputy Under Secretary of
Defense (Advanced Systems and Concepts)

Jon S. Ogg, Director, Engineering and Technical
Management Directorate, AFMC
"A Command Perspective: The Need for Speed"

Luncheon #1 Steve McConnell, Chief Software Engineer,
Construx Software
"Code Complete 2: A Decade of Advances in
Software Construction"

Luncheon #2 LTG Keith Kellogg, USA (ret.) (invited),
Senior Vice President, Homeland Security
Solutions, Oracle Corp.
"Tales from the Front Lines"

Luncheon #3 Gregory S. Shelton, Vice President, Engineering,
Technology, Manufacturing, and Quality,
Raytheon Co.
"Bringing Key Advanced Software Technologies to
America's Defense"

Tuesday Plenary Co-Sponsors Panel Discussion

Wednesday Plenary U.S. Government's Top 5 Quality Software
Projects for 2003
Sponsored by the Secretary of Defense

Thursday Plenary Dr. Charles J. Holland
Deputy Under Secretary of Defense
(Science and Technology)
"Challenges in Delivering Complex Warfighting
Functionality in Computer-Based Systems and
Related Technology Investments"

Closing General Session Bill Neugent, Chief Engineer for Cybersecurity,
The MITRE Corp.
"Cyberterrorism: We're Toast"

IEEE Computer Society CSDP Preparation Course and Examination

SSTC once again is partnering with the IEEE Computer Society to offer the preparation
course and examination for the Certified Software Development Professional (CSDP)
program at SSTC 2004. The CSDP is the Computer Society's certification program for
software professionals developed by industry experts. The CSDP credential is intended for
software engineers, software developers, software program managers, and other
professionals. The CSDP is the only certification for computing professionals that carries the
brand, reputation, and standards of the IEEE Computer Society. Complete details about
CSDP are available at http://www.computer.org/certification. Register for the CSDP course
online at www.stc-online.org.

Trade Show

Don' t miss SSTC 2004's accompanying trade show, providing 180+ exhibitors the
opportunity to showcase the latest in systems and software technology, products, and
services. This year's schedule has been adjusted to allow participants more time to interact
with the vendors without conflicting with conference presentations.

General Information
stcinfo@ext.usu.edu

435-797-0423

Trade Show Inquiries
stcexhibits@ext.usu.edu

435-797-0047

Technical Content Inquiries
stc@hill.af.mil
801-777-9828

Media Relations
stcmedia@ext.usu.edu

435-797-0089

For additional conference, registration, and
exhibitor information, visit our Web site

www.stc-online.org

BACKTALK

Who Moved My Job?

In reading information technology pub-
lications lately, it is hard to find any

technology in the chatter. Most talk is
around globalization: H-1B and L-1 visas,
offshore outsourcing, and jobs and the
lack thereof. If Chicken Little were a soft-
ware engineer, she would feel right at
home. Jobs, like the sky, are falling. Dot-
com, happy-go-lucky, techno-entrepre-
neurs have transformed into puerile quib-
blers.

Somebody not only moved their
cheese, they took it offshore, sliced it up,
and served it on crackers, rice, and curry.
Many feel offshore outsourcing will send
the country to hell in a data dump. Yet
their solutions seem to bite the hand that
feeds them.

What is going on here? Have you for-
gotten which side of the parity bit you
reside? I suggest before you add more
whine to your cheese, you take a good
look at yourself, your country, and the
freedoms you enjoy. To help, I offer a lit-
tle ode called “Who Moved My Job?”

First, there was hardware with
not much to share and a bit too

unbending. Software came along,
saw what was wrong, now changes
are never ending. It worked like a
dream, or so it seemed until modi-
fications became expensive. You
got upset about all the debt, and we
just got defensive.

We asked for grace and a little
more space to house our

growing child. Memory filled, the
disk over spilled and the infant was
now teen wild. The coffers were
plump with data you dumped and
asked for its safe keep. We stored it
away but to our dismay, it was lost
in a collosal heap.

We gave you a voice on system
choice as long as it was built

by Bill. It was not the best but who
would know to test the system with
much skill? After you paid, your
voice did fade and your choice
evaporated. We had you hooked on
the windows look and did not wish
to be debated.

We thought not to annoy when
we started to deploy lan-

guages by the score. I guess we

were wrong and projects pro-
longed as our languages went to
war. Then there was the CASE of
automated haste and promised
investments returned. It never left
crate, crushed by its weight, leaving
you again, burned.

As the dust settles, we started to
mettle and found out an error

we created. Panic and fear spread
with good cheer for time had
become outdated. We fleeced your
stockpile and sent rank-and-file to
solve the Y2K pimple. Quick to
the task, adding a two-digit mask
and saying, “Gee, that was simple?”

Our projects were late, budgets
overweight and projections

often unreliable. Yet our average
intrigued if applied to big leagues
would be all-star and very pliable.
It is not our fault that the wants
you exalt lack detail and clarity. We
do what you say and mold your clay
then look at it in all hilarity.

We gave you extreme, the
CMM regime and the mani-

festo of agile; also came environ-
ments paperless, networks wireless,
and applications that were blue-
screen fragile. We have wi-fi, cubi-
cal sci-fi, and a plethora of spam.
Jobs reborn, lots of porn, and a
case of identity scam.

We were the butt of your jokes,
drank all your Cokes, and

programmed with Java Beans. Put
forth virus fears, multiple hits on
Britney Spears, and raised money
for Governor Dean. We know we
play and seldom display the air of
proper decorum. Our maturity is
obvious, while slightly acclivitous,
sustained by pervasive cockalorum.

Just give us our jobs decorously
robbed; I know we can do much

better than Mohandas Gandhi,
Sean O’Leary, or even Eddie
Vedder. If it’s maturity you seek,
we can be cool and chic, and get
you justification. For the market is
there, and they will declare that we
have the right certification.

When business was good and
venture misunderstood, we

loved your capitalist schemes. We
were in big demand, six-figure
offers were bland, and we bought
the house of our dreams. Now
why would you turn on your pals
hard to learn and force us to
compete with another? I know
they are cheap but why would you
leap when we treated you like a
brother?

Iknew the free trade would soon
fade; can you help me with a tar-

iff ? Workers will unite to give you a
fright and elect a union sheriff. Yet,
it does not seem right to rig the
fight and plunder the dreams of
the future, by forcing your hand
and squelching demand with a pro-
tective dissolvable suture.

What hypocrisy, when we
export over sea, truths that

got us here. Democracy, capitalism,
and work ethic, over there we stand
to fear. A job guaranteed was not in
the creed I truly must confess –
just life, liberty, and the pursuit of
happiness.

– Gary Petersen
Shim Enterprise, Inc.

March 2004 www.stsc.hill.af.mil 31

Can You BackTalk?

Here is your chance to make your
point, even if it is a bit tongue-in-cheek,
without your boss censoring your writ-
ing. In addition to accepting articles that
relate to software engineering for publi-
cation in CrossTalk, we also accept
articles for the BackTalk column.
BackTalk articles should provide a
concise, clever, humorous, and insight-
ful article on the software engineering
profession or industry or a portion of
it. Your BackTalk article should be
entertaining and clever or original in
concept, design, or delivery. The length
should not exceed 750 words.

For a complete author’s packet
detailing how to submit your
BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

CrossTalk / MASE

6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Published by the
Software Technology

Support Center (STSC)

The & software technology conference co-sponsored by:

United States
Army

United States
Marine Corps

Department of
Navy

United States
Air Force

Defense Information
Systems Agency

United States
Navy

Register today!

See our advertisement inside this issue for guest
speaker line-up

For and
visit our

.stc-online.org
800-538-2663

The and

techn relevant o the
missio oD

Disc
effective system and software
technologies

lessons
n,

de and
e

int

	Front Cover
	Table of Contents
	Software Process Improvement
	Accelerating Process Improvement Using Agile Techniques
	Using the Team Software Process in an Outsourcing Environment
	Unlocking the Hidden Logic of Process Improvement:Peer Reviews
	A Beginner's Look at Process Improvement Documentation

	Software Engineering Technology
	Common Errors in Large Software Development Projects

	Open Forum
	Applying Systems Thinking to Process Improvement

	Online Article
	When Is It Cost Effective to Use Formal Software Inspections?

	SSTC
	From the Publisher
	COMING EVENTS
	CrossTalk Survey
	BACKTALK
	Back Cover

