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LONG-TERM GOAL 
 
Given remote and direct physical measurements of a realistic ocean wavefield, obtain a high-resolution 
description of the wavefield by integrating the measurements with phase-resolved wave prediction 
model including realistic environmental effects such as wind forcing and wave breaking dissipation.  
Inform and guide the measurements necessary for achieving this reconstruction and address the 
validity, accuracy and limitations of such wavefield reconstructions. 
 
OBJECTIVES 
 
The specific scientific and technical objectives are to obtain:  
 

1. Development of a phase-resolved, deterministic prediction capability for nonlinear wavefield 
reconstruction and evolution at intermediate scale (O(1) ~ O(10)km per dimension) using ship-
mounted radar wave measurements 

2. Incorporation and evaluation of physics-based wind-forcing and wave-breaking models that are 
developed/calibrated/validated based on simulations and measurements 

3. Characterization and quantification of uncertainty and incompleteness in wave sensing and 
sensed data  

4. Direct comparison between quantitative (point and area) field measurements and phase-
resolved wavefield reconstruction and forecasting 

5. Development of a theoretical/computational framework for guiding the deployment of wave 
sensing systems and data interpretation 
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APPROACH 
 
We develop and apply a comprehensive deterministic model for intermediate scale (up to O(10)km per 
dimension) ocean wave prediction by integrating whole-field and multiple-point measurements of the 
wave environment with simulation-based wavefield reconstruction.  The wave reconstruction is based 
on phase-resolved simulation of nonlinear ocean wave (SNOW) dynamics, and utilizes hybrid (from 
different types of sensors) wave measurements.  The simulations also incorporate physics-based wind 
forcing and wave-breaking dissipation models, which are developed/validated/calibrated based on 
field/laboratory measurements. 
 
Nonlinear wavefield reconstruction is based on an iterative optimization approach using multilevel 
phase-resolved wave models of different nonlinearity orders.  Specifically, for low-level optimization 
sufficient for mild waves, the linear and second-order Stokes solutions are used.  For high-level 
optimization necessary for steep waves, an efficient nonlinear wave simulation model (SNOW) based 
on a high-order spectral method is employed.  Once the wavefield is reconstructed, its future evolution 
is given by the wave propagation model using the reconstructed wavefield as the initial condition (Wu 
2004; Yue 2008).  In wave modeling, wind forcing is included through a pressure forcing on the free 
surface, and wave-breaking dissipation is considered by applying an effective low-pass filter to the 
wave elevation and surface potential in the spectral space.  Other physical effects such as those of 
current and finite depth are also directly considered in wave modeling.   
 
WORK COMPLETED 
 
We focus on the development, validation and performance tests of the phase-resolved nonlinear wave 
reconstruction and forecasting capability using HiRes field measurements of realistic ocean waves.  
Specifically,  
 

 Development of high-resolution wave reconstruction and prediction capability: We extend 
the wave reconstruction capability for discrete point wave data to include the presence of radar 
and ATM sensed wave data.  In particular, we develop an understanding of wavefield’s 
predictability (in spatial-temporal domain) based on hybrid (buoy, radar and ATM) sensed 
wave data. 

 Characterization/quantification of the effects of noise, uncertainty, and incompleteness in 
sensed wave data on wave reconstruction/prediction: We develop an approach based on the 
use of the phase-resolved nonlinear wave reconstruction/prediction to recover the wave 
information in the shadow of radar measurements and to evaluate the validity and accuracy of 
wave reconstruction due to the effects of noise, uncertainty, and incompleteness in sensed data. 

 Modeling of wind input: To account for wind effects in wave reconstruction/prediction, we 
develop and validate a first generation model for wind forcing input for direct phase-resolved 
nonlinear wavefield simulations.  In this model, the wind forcing is modeled as a pressure 
distribution closely correlated to wave slope with the growth rate determined by matching to 
existing laboratory/field observations. 

 Validation and calibration with field measurement:  We conduct various validations and 
performance tests of the developed wave reconstruction/prediction capability by using HiRes 
field measurements of realistic ocean waves:  



 3

 
 We use instantaneous and continuous (SPROUL- and FLIP-based) radar data to reconstruct 

and forecast nonlinear wavefields.  The model predictions are compared with the radar data 
not used in  reconstruction, and the effect of wave spreading angle on radar measurements 
and wave forecasting performance is studied. 

 
 We cross-validate radar-based forecasted wavefields with independent ATM and buoy 

measurements inside or outside the radar domains 
 

 We study nonlinear wave statistics and large wave events based on forecasted large 
wavefields using (hybrid point and whole-area) Hi-Res measurements 

 
 Investigation of rogue wave events in cross seas: We apply large-scale HPC-based SNOW 

simulations to study the characteristics of rogue wave events and statistics of rogue waves in 
cross seas.  In particular, we focus on the understanding of the coupling effect of swell and 
wind waves upon the development of rogue waves.   

 
RESULTS 
 
To assess the performance of wave measurements and model predictions, direct comparisons between 
wave model predictions and HiRes 2010 field measurements are obtained.  The comparisons indicate 
that phase-resolved reconstruction and forecasting of realistic ocean wavefields can be achieved by our 
wave prediction model and non-coherence marine radar sensed wave data.  The resolution of the 
reconstructed and forecasted wavefield depends critically on the accuracy of sensed wave data, which 
is largely affected by radar-data inversion algorithm and the platform motion.  Based on the 
reconstructed and forecasted large-scale wavefields, our study shows that it is of importance to include 
nonlinear effects in wavefield evolution for accurately predicting the temporal-spatial information of 
rogue waves and nonlinear wave statistics.   
 
As illustration, we present two sample results on the comparisons of radar-based wave prediction with 
independent buoy and ATM measurements.  These results demonstrate the effectiveness of the 
developed capability for phase-resolved reconstruction and prediction of realistic ocean waves based 
on radar sensed wave data.  
 
(1) Prediction Based on Radar Data verse Datawell Buoy Measurement 
 
To address the key question of whether a phase-resolved wave prediction can be achieved using radar 
data, we compare the reconstructed and forecasted wavefield to the independent buoy measurement.  
For this purpose, we use the HiRes measurements on June 18, 2010, in which radar data, buoy data and 
ATM data are all available.  The positions of radar sensed data, ATM data, and buoy data in the large 
reconstructed wavefield domain are shown in figure 1.   
 
Based on radar sensed wave data, we reconstruct a phase-resolved nonlinear wavefield and compare it 
to the independent buoy data in both the time history of the wave elevation and the wave spectrum.  
The comparisons are shown in figure 2.  The comparison shows that for the wave spectrum, the 
agreement between the radar-data-based prediction and the buoy measurement is very well.  The 
predicted time-variation of the wave elevation has a ~45% correlation with the buoy measurement.   



 4

 
(2) Prediction Based on Radar Data verse ATM Measurement 
 
Figure 2 shows the direct comparisons between the reconstructed wavefield based on radar-sensed data 
with the independent ATM measurement.  For the wave spectrum, the radar-data-based prediction 
again agrees very well with the independent ATM measurement.  For the phase-resolved sea surface, 
the nonlinear phase-resolved prediction (based on radar data) achieves a ~55% correlation with the 
ATM measurement.   
 
IMPACT/APPLICATIONS 
 
Advances in large-scale nonlinear wave simulations and ocean wave sensing have recently made it 
possible to obtain phase-resolved high-resolution reconstruction and forecast of nonlinear ocean 
wavefields based on direct sensing of the waves.  Such a capability will significantly improve ocean-
surface sensing measurements and deployment, and data assimilation and interpretation, by providing a 
comprehensive wave-resolved computational framework.  Another important potential application of 
this is to greatly increase the operational envelopes and survivability of naval ships by integration of 
such capability with ship-motion prediction and control tools. 
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Figure 1. Wavefield reconstruction and forecasting in a domain of ~10 km  10 km, using ONR 

HiRes wave measurements on June 18, 2010.  The regions sensed by FLIP-based radars and 
ATM and the location of the Datawell buoys are indicated: radar data (green regions), ATM 

data (blue strip), and buoy data (red spot).  The dominant wave propagation direction is along 
the direction of Kd.  The sea state has a significant wave height of Hs = ~3.3 m, a peak wave 

period of Tp = ~9.5 s, and a width of directional spreading angle of  = ~80o.  
 

 
Figure 2. Comparison of phased-resolved reconstructed wavefield based on radar data with the 

independent buoy measurement.  Top panel: comparison of the time-variation of the wave 
elevation; and bottom panel: comparison of the wave spectrum of the sea.  
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Figure 3. Comparison of phased-resolved reconstructed wavefield based on radar data with the 
independent ATM measurement.  Right panels: comparison of the composite wave elevation 

between ATM measurement and the radar-data-based prediction.  Top left panel: comparison of 
the cross-cut wave elevation along ATM path.  Bottom left panel: comparison of the wave 

spectrum of the sea.  
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