
“Lean and Efficient Software:

Whole-Program Optimization of Executables”

Project Summary Report #1
(Report Period: 9/25/2012 to 12/24/2012)

Date of Publication: January 3, 2013

© GrammaTech, Inc. 2013

 Sponsored by Office of Naval Research (ONR)

Contract No. N00014-12-C-0521

Effective Date of Contract: 09/25/2012

Requisition/Purchase Request/Project No.

12PR10102-00 / NAVRIS: 1100136

 Technical Monitor: Sukarno Mertoguno (Code: 311)

 Contracting Officer: Casey Ross

Submitted by:

Principal Investigator: Dr. David Melski

531 Esty Street

Ithaca, NY 14850-4201

(607) 273-7340 x. 123

melski@grammatech.com

Contributors:

 Dr. David Cok Dr. Alexey Loginov

 Tom Johnson Brian Alliet

 Dr. Suan Yong

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Financial Data Contact:

Krisztina Nagy

T: (607) 273-7340 x.117

F: (607) 273-8752

knagy@grammatech.com

Administrative Contact:

Derek Burrows

T: (607) 273-7340 x.113

F: (607) 273-8752

dburrows@grammatech.com

mailto:melski@grammatech.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Lean and Efficient Software:Whole-Program Optimization of
Executables

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GRAMMATECH,531 Esty Street,Ithaca,NY,14850

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 2

1 Financial Summary

Total Contract Amount (1 year) $399,984.00

Costs Incurred During the Performance
Period (09/25/2012-12/24/2012)

$36,253.83
(see the comments under section 4.1
below)

Costs incurred to date (to 12/31/2012) $36,253.83

Estimated to complete $363,730.17

2 Project Overview
Background:
Current requirements for critical and embedded infrastructures call for significant increases
in both the performance and the energy efficiency of computer systems. Needed
performance increases cannot be expected to come from Moore’s Law, as the speed of a
single processor core reached a practical limit at ~4GHz; recent performance advances in
microprocessors have come from increasing the number of cores on a single chip. However,
to take advantage of multiple cores, software must be highly parallelizable, which is rarely
the case. Thus, hardware improvements alone will not provide the desired performance
improvements and it is imperative to address software efficiency as well.

Existing software-engineering practices target primarily the productivity of software
developers rather than the efficiency of the resulting software. As a result, modern software
is rarely written entirely from scratch—rather it is assembled from a number of third-party or
“home-grown” components and libraries. These components and libraries are developed to
be generic to facilitate reuse by many different clients. Many components and libraries,
themselves, integrate additional lower-level components and libraries. Many levels of library
interfaces—where some libraries are dynamically linked and some are provided in binary
form only—significantly limit opportunities for whole-program compiler optimization. As a
result, modern software ends up bloated and inefficient. Code bloat slows application
loading, reduces available memory, and makes software less robust and more vulnerable. At
the same time, modular architecture, dynamic loading, and the absence of source code for
commercial third-party components make it hopeless to expect existing tools (compilers and
linkers) to excel at optimizing software at build time.

The opportunity:
The objective of this project is to investigate the feasibility of improving the performance,
size, and robustness of binary executables by using static and dynamic binary program
analysis techniques to perform whole-program optimization directly on compiled programs.
The scope includes analyzing the effectiveness of techniques for specializing library
subroutines, removing redundant argument checking and interface layers, eliminating dead
code, and improving computational efficiency. The contractor expects the optimizations to
be applied at or immediately prior to deployment of software, allowing them to tailor the
optimized software to its target platform. Today, machine-code analysis and binary-rewriting

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 3

techniques have reached a sufficient maturity level to make whole-program, machine-code
optimization feasible. These techniques open avenues for aggressive optimization that
benefit from detailed knowledge of an application’s composition and its environment.

Work items:

We expect to develop algorithms and heuristics to accomplish the goals stated above. We
will embed our work in a prototype tool that will serve as our experimental and testing
platform. Because “Lean and Efficient Software: Whole-Program Optimization of
Executables” is a rather long title, we will refer to the project as Layer Collapsing and the
prototype tool as Laci (for LAyer Collapsing Infrastructure).

The specific work items are listed below:

1. The contractor will investigate techniques for specializing libraries and third-party
components—i.e., techniques for deriving custom versions of libraries and components
that are optimized for use in a specific context.
1.1. The contractor will evaluate program-slicing and program-specialization technology

developed independently at the referenced university.
1.2. The contractor will investigate techniques for recovering intermediate program

representation (IR) required for slicing and specialization techniques. The contractor
will focus on the following tasks:

1.2.1. Using static binary analyses for IR recovery.
1.2.2. Using hybrid static and dynamic binary analyses for IR recovery.
1.2.3. Studying trade-offs between the two approaches.
1.2.4. Identifying the approach to be implemented in a prototype tool.

2. The contractor will attempt to implement a prototype optimization tool. This objective
can be subdivided into the following subtasks:
2.1. Implement IR-recovery mechanisms.
2.2. Extend and improve the implementation of the slicing or specialization technology

transferred from the university.
2.3. Investigate the tradeoff between improved performance through specialization and

the resulting increase in executable size.
2.4. Investigate options for handling dynamically linked components and libraries.

3. The contractor will investigate techniques for further optimization of executables and for
collapsing library interface layers. The contractor will consider:
3.1. Selective inlining of library functions.
3.2. Specialization of executables to the target platform.
As time and resources permit, the contractor will attempt to implement these additional
techniques in the prototype optimization tool.

4. The contractor will evaluate the prototype optimization tools implemented or received
from the university experimentally. The contractor will use synthetic benchmarks, as well
as real-world open-source software for the evaluation.

5. The contractor will maintain project documentation and produce comprehensive
progress reports and a detailed final report.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 4

3 Staffing
The following personnel are participating in this project.

Dr. David Melski is the GrammaTech Principal Investigator.

Dr. Alexey Loginov is the key architect of the binary analysis infrastructure.

Dr. David Cok will be responsible for program management, infrastructure and the user-
facing aspects of the resulting tool. He is also the PI for GrammaTech’s effort on the DARPA
Rapid project; that project is producing some key underlying technology that will be used by
the Layer Collapsing project.

Dr. Suan Yong is a senior scientist having detailed knowledge of the binary analysis
infrastructure and algorithms.

Brian Alliet is the principal implementation engineer.

Tom Johnson is the resident expert on the API for editing the Intermediate Representation of
an analyzed binary. He will be consulted regarding the current state and designs for
improvement of this API.

David Ciarletta will contribute (beginning 1/8/13) to infrastructure development and
measuring overall algorithm and tool robustness.

4 Accomplishments during the reporting period

4.1 Planned level of effort

The principal goals for the first three months of the project were to plan the details of the
project work, to assess the applicability of existing tools and algorithms, and to perform
some feasibility experiments. Consequently the initial level of effort has been low for the first
quarter, while the effort was primarily planning and assessment. Substantial holiday time in
November and December and the fact that the relevant engineers were not immediately
available because they were winding down other projects also contributed to the slow start.
Starting in January, we have 1.5 engineers dedicated to implementation and testing the
implementation, based on the initial evaluations and plans. Consequently, the rate of work,
measured in both hours of effort and implementation progress, will ramp up very
significantly in January.

4.2 Planning

Planning occupied a significant fraction of the initial effort. Our tasks fall into these
categories:

 Assessment of current state of technical capability and implementation
infrastructure. The technical work in the first quarter primarily fell into this category.

 Planning the engineering staffing for the project

 Implementing the necessary infrastructure (testing, performance evaluation, needed
support software, bug and issue tracking, …)

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 5

 Researching the specific technical tasks as outlined in the SOW

The result of the planning discussions is shown in the milestone table (section 6). In addition,
we selected appropriate engineering staff and started their efforts on the project. [One was
not immediately available because of other project commitments, but has now begun work
(as of December); a second is beginning work on the project on January 8.]

4.3 Assessment of GrammaTech infrastructure

GrammaTech has an existing infrastructure for analyzing and manipulating a binary
executable. It consists of several cooperating pieces:

 The foundation of the project is provided by the CodeSurfer/x86 analysis engine for
Intel x86 machine code. This engine analyzes a raw executable, producing an
intermediate representation (IR). The CodeSurfer/x86 IR has been enhanced by
continued GrammaTech investment and is the basis for many tools and contract
activities. For example, CodeSurfer/x86 underlies GrammaTech’s CodeSonar flaw-
finding tool for binary executables and libraries. CodeSurfer also is a reverse-
engineering tool for binaries.

GrammaTech’s analysis engine for C programs is sound and precise (at least for ANSI-
C-compliant programs). However, analyzing a raw binary is considerably more
difficult. In fact, the problem of disassembling a binary is known to be undecidable.
Examples of deficiencies in the IR obtained from pure binaries include incorrect data
sizes, missed external symbols, and unknown indirect jump targets. (Most problems
stem from difficulties disambiguating data from code and pointers from scalar data.)

In some projects we have used a source-code assist (named DVT – Disassembly
Validation Tool). DVT uses source code to assist in the interpretation of the
corresponding executable. However, for Laci’s deployment scenario, as for the DARPA
project referenced below, source code is not generally available. We will hone some
of our techniques with the assist of DVT, but we will continually work on improving
the IR created from pure binaries. While the undecidability of disassembly prevents
us from achieving perfect disassembly on all input binaries, we will establish criteria
that allow us to maximize the benefits to the IR for programs that rely on common
programming idioms and compiler optimizations.

 CodeSurfer/x86 includes an API for manipulating and rewriting the IR. This capability
has been the basis of tools that manipulate the IR and then produce an output
executable with new properties; examples are obfuscating the output executable or
partitioning between software and firmware (an FPGA).

One useful mode of rewriting is the null transform. This transform analyzes an
executable and then writes out a new version of the executable without affecting the
executable’s safe behaviors. The result will not be the same as the original—the code
and data may be moved to new effective addresses and individual code or data blocks
may be reordered—but assuming that the program had no unsafe operations (and
that the IR was constructed correctly) the original and the transformed versions will
exhibit the same behavior. The null transform does not accomplish the optimization

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 6

desired by the project, but allows validating the IR construction and essential
rewriting infrastructure.

We will be using the rewriting API for Laci. At the high-level three capabilities are
required: (i) the ability to analyze the IR to identify the interactions within an
executable, (ii) the ability to transform portions of the IR, and (iii) the ability to
produce an executable out of the (transformed) IR. The rewriting API provides the
second and third capability. However, it does need embellishment and correction to
be applied to the purpose of this contract. For example, the API provides partial
support for deletion: while individual CFG nodes (corresponding to machine-code
instructions) can be deleted, complete CFGs (corresponding to program functions)
cannot be deleted at this time. We expect to fix this technical deficiency shortly.
Additionally, the API provides no facility for reflecting changes to the CFG in the IR
computed from the CFG (such as program-dependence edges). Efficient incremental
updates to the IR are not computationally feasible for some components of the IR,
such as program-dependence edges (these imply a degree of transitive computation
known not to be efficiently maintainable). We expect to rely on Laci’s transformations
being independent enough to be performed without requiring updating the IR in
between transformations. We will evaluate this assumption for each implemented
transformation.

 A higher-level client of the rewriting API is a module called model reduction, which
includes code for computing compressed CFGs. Given a CFG and a subset of its nodes
designated as interesting nodes, a compressed CFG is a graph in which uninteresting
nodes are removed and control-flow edges are preserved between the interesting
nodes. We evaluated whether this module could serve as a basis for introducing a
new rewriting API primitive. A primitive of this form would improve the performance
of UW’s specialization slicing. The module appears suitable for providing an efficient
primitive but the module’s contract with its clients needs to be elaborated: should the
primitive always remove exactly the specified collection of nodes (e.g., even if the
resulting CFG may be disconnected), thus shifting the burden of the safety of the
transformation to its clients, or should it shrink or expand the set of nodes to be
deleted in order to satisfy a meaningful validity criterion? If we opt to allow modifying
the set of nodes to be deleted, what should such a validity criterion encode? In initial
discussions, we elaborated several potential criteria and found the space of criteria to
be fuzzy and requiring heuristics.

 GrammaTech is contributing to a DARPA project that also requires analysis of binary
executables without the help of source code. As part of the DARPA project we have
exercised and extended our techniques to determine how different parts of the
executable interact and which portions depend on which other portions.

In the case of the DARPA project however, the goal is to extract working sub-
components that are reusable in new applications. Laci’s goal is easier in one respect
and harder in another. It is easier in that the subject executable is being rewritten in
place. Thus portions of the executable that are inscrutable can simply be left as is—as
too complicated to optimize. Furthermore, there is no need to be able to reuse the

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 7

result of Laci in a new application; the result is simply reused as a stand-alone
application.

On the other hand, the DARPA project allowed for some degree of failure. Laci must
be sound in the sense that any transformation it does apply must be known (or at
least very likely) to be correct. Thus there is a greater demand on the rigor of the
program analyses. The combination of the need for soundness and the ability to
analyze complete executables places additional scalability demands on Laci.

In summary, improvements to IR construction will be required to enhance the soundness and
the scalability of IR construction. The rewriting API provides a solid foundation for Laci
prototyping, although we anticipate making improvements and extensions in the course of
the project.

4.4 Evaluation of existing algorithms and software

One of the early tasks (Task 1.1 above) is to assess the executable slicing work at the
University of Wisconsin and its relevance to Layer Collapsing. The brief summary of that
evaluation is that the algorithms have merit, but the implementation itself will need rework
to fit in with the rest of the GrammaTech infrastructure.

The relevant work by Prof. Thomas Reps's team at the University of Wisconsin builds on
CodeSurfer/x86 to create slices from executables that can, themselves, be packaged as new,
working executables containing only the instructions from the original program that were
relevant to the slice. Through our ongoing collaborative relationship with Wisconsin, we were
able to access the code repository containing the prototype slicing utility that is the result of
this work. The prototype contains the following pieces:

- Three different slicing-based algorithms for constructing new software that performs
just the computation in a slice. These algorithms operate at a high abstraction level
and make use of the CodeSurfer/x86 API, directing it to perform the actual
construction of an executable slice.

- Abstraction code for creating some higher-level primitives for interacting with
CodeSurfer's general-purpose API.

- Higher-level rewriting primitives that aren't directly provided by CodeSurfer's API.

Each of these pieces was written in STk (an extension of the Scheme programming language).
CodeSurfer/x86 provides two (mostly) comparable API's, one in STk and one in C. The STk
version of the API allows much quicker prototyping, as well as interactive experimentation.
However, the language takes a bit of familiarity in order to get the best results. It is very easy
to naively write code with performance problems.

Our assessment of the current state of the code suggests that it would benefit from cleanup
by a more experienced developer, in order to eliminate some common STk errors and take
advantage of more of the efficient primitives provided by the language. The current code
appears to have scalability issues that would be easily resolved in such a cleanup.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 8

The three algorithms for directing the construction of an executable slice appear to provide
relevant tools for this project. It's possible that we may be able to use them as part of a suite
of transformations that perform the layer collapsing. The primary question in regards to the
applicability of these algorithms is their scalability and performance. Preliminary experiments
at UW-Madison indicated that the algorithms may not be suitable for realistic executables,
although our examination of the code suggests a number of readily-applicable optimizations.

The abstraction code extends the basic API that CodeSurfer/x86 provides. Its primary goal is
to provide some higher-level primitives for commonly performed queries against the
CodeSurfer/x86 API. This part of the code would likely benefit the most from rewriting by an
experienced STk developer.

The third piece addresses a missing part of CodeSurfer/x86's rewriting API. In particular, the
rewriting API does not currently provide good primitives for deleting IR components (a
critical step in creating a trimmed-down version of a program). It is possible to effect deletion
of various entities in the IR, but the mechanisms are not natural. Thus the Wisconsin team
felt the need to create its own deletion API.

In studying this piece, we believe the best course of action would not be to adopt the
deletion routines directly, but rather use them as inspiration to add new deletion API
routines directly to CodeSurfer/x86 (implemented "under the hood" in C/C++.)

In summary, we believe that the first two components could be reused for this project -
albeit with some rewriting. We plan to draw from the third component for new rewriting API
infrastructure implemented internally in CodeSurfer/x86. Upon completion of some essential
cleanup and optimization, we will be able to evaluate the scalability and precision of
specialization slicing on more realistic executables.

4.5 Initial experiments and prototyping

In December, we began applying the existing infrastructure to the Layer Collapsing task.
These experiments assessed the existing state of the infrastructure and provided some early
data on the amount of implementation work to be expected in the remainder of the project.
The following list summarizes the key activities and accomplishments.

 Updated the pretty printer (the module responsible for producing the assembly that is
later assembled into object code with the tool nasm) to support the "full" output
mode, which emits the entire compilation unit. Previously it only supported the
"partial" output mode where the client chose only certain symbols to output.

 Added stronger type checking to the ast-create function that synthesizes new
instructions and data. Previously, one could create invalid ASTs, causing subsequent
crashes in code that traversed the ASTs. This problem was discovered when testing
rewriting examples in the older portions of the manual. The TSL representation of the
Intel x86 ASTs has changed slightly since the creation of the examples, but ast-
create continued to accept invalid ASTs.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 9

 Upon making the adjustments enabled by stronger type-checking of ast-create, we
validated all rewriting examples in the manual (fixing a few minor issues along the
way).

 Performed the null transform (which emits the input code and data, although usually
with blocks of code and data reordered) on various binaries. After fixing a few minor
issues, we found the null transform to work well with the assist of DVT technology to
produce reliable IR.

 Attempted the null transform without the use of DVT. We discovered several issues
stemming from imperfect disassembly. An illustrative example is the following
instruction: lea ebx, [eax+<number>].

It is generally impossible to know whether <number> refers to a symbol (e.g., it is the
address of a global array) or a scalar (it is the offset into an array or a structure). This
is one of the sources of the undecidability of disassembly. IDA Pro, which forms the
basis of our disassembly generally assumes that <number> is a scalar (and that this
instruction sets register ebx to point to the element or field at offset <number> of an
object pointed to by register eax). Whenever <number> corresponds to a global
symbol, we found disassembly to be incorrect. This can lead to the omission of the
global symbol from the output, i.e., an unsound program transformation. Improving
disassembly choices by means of advanced analyses, such as value-set analysis, will
be an important part of this project.

 Developed two transformations to further test the complete infrastructure, evaluate
the rewriting API, and gain experience with writing transformations:

o The first transformation is unlikely to be important for Laci long-term but
allowed us to stress-test some rewriting functionality. We implemented a de-
jump transformation, which removes jump tables (accessed via instructions
such as jmp [eax*4+table]), replacing them with a series of conditional
branches (encoded by pairs of instructions such as cmp eax,1; je table_1).
This tested the creation of instruction hammock regions, instruction-ast
creation, the creation of instruction regions with multiple exit edges, and
hammock region replacement.

o The second transformation is the first example of a useful Laci transformation.
We implemented a dead-code removal transformation, which removes entire
functions that are unreachable from entry points of the executable. Starting at
program entry points, we traverse the System-Dependence Graph (SDG—a
data structure that represents the entire program), marking every Program-
Dependence Graph (PDG—a data structure that represents a program
function) that we encounter as reachable. Unreachable PDGs are then pruned
out from IR before output. Initial evaluation of this simple technique is
promising. After addressing some initial issues, we observed a 1-3% reduction
in the size of several executables subjected to the transformation.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 10

5 Goals for the next reporting period

In the next reporting period we expect to begin or complete the following (see the
milestones table for dates):

 Complete the initial implementation of the null transform.

 Complete the evaluation of the UW technology.

 Design and implement the API for IR transformation.

 Continue the investigation and implementation of dead code removal.

 Begin the investigation of selective inlining.

 Put in place the infrastructure for testing the evolving prototype. The infrastructure
will grow to be able to report performance of the optimization tool and the success
rate of optimizations when using different prototype optimization techniques.

 Add synthetic and real-world benchmarks to the testing suite

6 Milestones
Interim results on multi-month tasks will be reported in the quarterly progress reports.

Milestone

Planned
Start date

Planned
Delivery/
Completion Date

Actual Delivery/
Completion
Date

Kickoff meeting As scheduled by
Technical
Monitor

Evaluation of structure and code
quality of UW technology (task 1.1)

10/2012 11/30/2012 11/30/2012

First Quarterly report (task 5) 1/3/2013 1/7/2013

Investigate and implement dead-code
removal of entire functions(task 3)

12/2012 3/31/2013

Implement a testable working
prototype with the null-transform
option (the foundation for tasks 2 and
4)

12/2013 2/28/2013

Continuing task: Identify failures
resulting from incorrect IR;
correspondingly improve or repair the
IR recovery techniques. (tasks 1.2 and

12/2012 9/24/2013, with
all individual
improvements
noted in

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 11

2.1) quarterly reports

Identify common coding idioms and
compiler transformations that result in
incorrect disassembly (task 2.1)

1/2012 2/15/2012

Implement a testing infrastructure
(task 2.3 and task 4)

1/2013 2/28/2012

Design and implement the IR editing
infrastructure (task 2).

1/2013 4/30/2013

Evaluation of performance and
precision of UW technology (task 1.1)

2/2013 3/31/2013

Develop real-world and synthetic
benchmarks to evaluate performance
(task 4).

2/2013 9/24/2013, with
interim progress
each month

Investigate disassembly improvements
such as learning-based bottom-up
disassembly and all-leads disassembly
(task 2.1)

3/2013 5/31/2013

Investigate selective inlining of library
functions (task 3.1)

3/2013 7/31/2013

Second quarterly report (task 5) 4/3/2013

Investigate finding and deleting
functionally dead code, possibly using
slicing and specialization (task 2.2 and
3.2).

4/2013 8/31/2013

Investigate specialization to target
platforms or target environments (task
3.2)

4/2013 8/31/2013

Implement aspects of the chosen
disassembly extensions (task 2.1)

5/2013 8/31/2013

Evaluate hybrid analyses as a
complement to static analyses for
recovering IR (Task 1.2)

5/2013 8/31/2013

Third quarterly report (task 5) 7/3/2013

Measure the performance tradeoff of
various optimizations and evaluate the

7/2013 9/24/2013

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-12-C-0521

Progress Report #1 © GrammaTech, Inc. 2013

Use or disclosure of this report is subject to the restriction on the Cover Sheet of this report. 12

7 Issues requiring Government attention
There are no current issues.

overall tool (task 2.3 and 4)

Investigate options for handling DLLs
(task 2.4)

8/2013 9/24/2013

Final report (task 5) 10/24/2012
(contract end
date)

