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LETTER —^———™^—-■- Communicated by Andrea D'Avella 

Properties of Synergies Arising from a Theory of Optimal 
Motor Behavior 

Manu Chhabra 
Department of Computer Science, University of Rochester, Rochester, NY 14627, 
U.S.A. 

Robert A. Jacobs 
Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 
14627, U.S.A. 

We consider the properties of motor components, also known as syner- 
gies, arising from a computational theory (in the sense of Marr, 1982) of 
optimal motor behavior. An actor's goals were formalized as cost func- 
tions, and the optimal control signals minimizing the cost functions were 
calculated. Optimal synergies were derived from these optimal control 
signals using a variant of nonnegative matrix factorization. This was done 
using two different simulated two-joint arms—an arm controlled directly 
by torques applied at the joints and an arm in which forces were applied 
by muscles—and two types of motor tasks—reaching tasks and via-point 
tasks. 

Studies of the motor synergies reveal several interesting findings. First, 
optimal motor actions can be generated by summing a small number of 
scaled and time-shifted motor synergies, indicating that optimal move- 
ments can be planned in a low-dimensional space by using optimal motor 
synergies as motor primitives or building blocks. Second, some opti- 
mal synergies are task independent—they arise regardless of the task 
context—whereas other synergies are task dependent—they arise in the 
context of one task but not in the contexts of other tasks. Biological or- 
ganisms use a combination of task-independent and task-dependent syn- 
ergies. Our work suggests that this may be an efficient combination for 
generating optimal motor actions from motor primitives. Third, optimal 
motor actions can be rapidly acquired by learning new linear combina- 
tions of optimal motor synergies. This result provides further evidence 
that optimal motor synergies are useful motor primitives. Fourth, syner- 
gies with similar properties arise regardless if one uses an arm controlled 
by torques applied at the joints or an arm controlled by muscles, sug- 
gesting that synergies, when considered in "movement space," are more 
a reflection of task goals and constraints than of fine details of the under- 
lying hardware. 

Neural Computation 18,2320-2342 (2006)    © 2006 Massachusetts Institute of Technology 



Properties of Optimal Synergies 2321 

1 Introduction  

Marr (1982) defined three levels of analysis of a complex information pro- 
cessing device. The top level, known as the computational theory, examines 
what the device does and Why. A distinguishing feature of this level is that it 
provides an explanation for why a device does what it does by studying the 
device's goals. Although there may be many different ways of developing 
a computational theory of aspects of human behavior, an increasingly pop- 
ular way is through optimal models that formalize goals as mathematical 
constraints or criteria, search for behaviors that optimize the criteria, and 
compare the optimal behaviors with human behaviors. If there is a close 
match, then it is hypothesized that people are behaving as they do because 
they are efficiently satisfying the same goals as were built into the optimal 
model. 

This approach is commonplace in the study of human motor behavior 
(see Todorov, 2004, for a review). Flash and Hogan (1985), for example, pro- 
posed an optimal model of how people plan trajectories for reaching move- 
ments. This model emphasizes that trajectories should be smooth—the 
model searches for trajectories that minimize the jerk of a movement (i.e., 
the third derivative of position with respect to time). It is able to explain the 
fact that reaches tend to move along straight lines and tend to have bell- 
shaped velocity profiles. Harris and Wolpert (1998) developed an optimal 
model of motor control that attempts to minimize the variance of the point 
reached at the end of a movement despite motor noise whose magnitude is 
dependent on the size of the control signals. They showed that this model 
explains several aspects of both eye movements and hand reaches. 

This article is concerned with motor synergies arising from a compu- 
tational theory (in the sense of Marr, 1982) of optimal motor behavior. To 
understand motor synergies, it is helpful to first understand the degrees 
of freedom problem (Bernstein, 1967). Biological motor systems typically 
have many degrees of freedom, where the degrees of freedom in a system 
are the number of dimensions in which the system can independently vary 
(Rosenbaum, 1991). Because the number of degrees of freedom of a system 
carrying out a task often exceeds the number of degrees of freedom needed 
to specify the task, the degrees of freedom are typically redundant (Jordan 
& Rosenbaum, 1989). Consider, for example, the problem of touching the 
tip of your nose. The location of your nose has three degrees of freedom 
(its x, y, and z position in Cartesian coordinates), but the joints of your arm 
have seven degrees of freedom (the shoulder has three degrees of freedom, 
and the elbow and wrist each have two). Consequently, there are many 
different settings of your arm's joint positions that all allow you to touch 
your nose. Which setting should you use? 

A solution to this problem is to create motor synergies, which are de- 
pendencies among dimensions of the motor system. For example, a motor 
synergy might be a coupling of the motions of your shoulder and elbow. 
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Motor synergies provide two types of benefits to motor systems. First, syn- 
ergies ameliorate the problem of redundancy—they can constrain the set 
of possible shoulder, elbow, and wrist positions that allow you to touch 
your nose. Second, synergies reduce the number of degrees of freedom 
that must be independently controlled, thereby making it easier to control 
a motor system (Bernstein, 1967). Because synergies make motor systems 
easier to control, they are often hypothesized to serve as motor primi- 
tives, building blocks, or basis functions: they provide fundamental units of 
motor behavior that can be linearly combined to form more complex units 
of behavior. 

Investigators of motor control are attempting to develop a compre- 
hensive understanding of biological motor synergies. Typically, these re- 
searchers analyze neuroscientific or behavioral data using mathematical 
techniques in order to derive the motor synergies used by an organ- 
ism. Sänger (1995) analyzed people's cursive handwriting using prin- 
cipal component analysis (PCA) to discover their motor synergies. He 
showed that linear combinations of these synergies closely reconstructed 
human handwriting. Thoroughman and Shadmehr (2000) studied people's 
motor learning behaviors to derive motor synergies based on gaussian 
radial basis functions. They showed that linear combinations of these syn- 
ergies matched people's behaviors when adapting to new environmental 
conditions. Mussa-Ivaldi, Giszter, and Bizzi (1994) identified frogs' motor 
synergies by stimulating sites in their spinal cords and verified that stimu- 
lation of two sites leads to the vector summation of the forces generated by 
stimulating each site separately. 

A possible confusion in the motor control literature is that synergies 
derived from neuroscientific or behavioral data using mathematical tech- 
niques are sometimes referred to as "optimal." For example, Sänger (1995) 
derived synergies from human behavioral data using PCA, a linear optimal 
dimensionality-reduction technique, and referred to the results as "optimal 
movement primitives." It is important to keep in mind, however, that these 
synergies arise from optimal analysis of people's actions and are not nec- 
essarily the same ones as would arise from a computational theory (again, 
in the sense of Marr, 1982) of optimal motor behavior. Based on the discus- 
sion above, a computational theory might involve a model that formalizes 
the actor's goals as mathematical criteria and searches for the actions that 
optimize the criteria. An optimal analysis of the optimal actions could then 
derive the motor synergies. Synergies discovered in this way would be "op- 
timal" in the sense that they arise from a computational theory of optimal 
motor behavior. 

To date, we know of only one study of motor synergies that arise from 
a computational theory. Todorov and Jordan (2002) proposed a computa- 
tional theory that uses an optimal feedback controller as a model of motor 
coordination and noted that this controller produces motor synergies. In 
brief, the controller implements the "principle of minimal intervention"—it 



Properties of Optimal Synergies 2323 

does not attempt to control a system along dimensions that are irrelevant for 
a task. Because the system's degrees of freedom are controlled along some 
task dimensions but not others, couplings or synergies among the degrees 
of freedom arise. Todorov and Jordan thereby explained the emergence of 
synergies. 

Although Todorov and Jordan (2002) explained the emergence of syn- 
ergies; they did not study the specific properties of these synergies. In 
contrast, this article details the properties of synergies arising from a the- 
ory of optimal motor behavior. We have created an optimal controller for 
a nonlinear system that formalizes goals as mathematical constraints and 
searches for control signals that optimize the constraints. This was done 
using two different simulated two-joint arms—an arm controlled directly 
by torques applied at the joints and an arm in which forces are applied 
by muscles—and two types of motor tasks—reaching tasks (move an end 
effector from one point to another) and via-point tasks (move from one 
point to another while passing through an intermediate point). In all cases, 
we derived synergies from the optimal control signals using an extension 
to nonnegative matrix factorization (d'Avella, Saltiel, & Bizzi, 2003) and 
studied the properties of these synergies. 

Our studies of the resulting motor synergies reveal several interesting 
findings. First, optimal motor actions can be generated by summing a small 
number of scaled and time-shifted motor synergies, indicating that optimal 
movements can be planned in a low-dimensional space by using optimal 
motor synergies as motor primitives or building blocks. Second, some op- 
timal synergies are task independent—they arise regardless of the task 
context—whereas other synergies are task dependent—they arise in the 
context of one task but not in the contexts of other tasks. Biological organ- 
isms use a combination of task-independent and task-dependent synergies. 
Our work suggests that this may be an efficient combination for generating 
optimal motor actions from motor primitives. Third, optimal motor actions 
can be rapidly acquired by learning new linear combinations of optimal 
motor synergies. This result provides further evidence that optimal 
motor synergies are useful motor primitives. Fourth, synergies with similar 
properties arise regardless if one uses an arm controlled directly by torques 
applied at the joints or an arm controlled by muscles, suggesting that syn- 
ergies, when considered in "movement space," are more a reflection of task 
goals and constraints than of fine details of the underlying hardware. 

2 Computing the Optimal Control Signals  

We simulated a two-joint arm that can be characterized as a second-order 
nonlinear dynamical system (e.g., Hollerbach & Flash, 1982): 

M(9)e+C(6j) + Be = T (2.1) 
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Table 1: Parameter Values Used in the Simulation of a Two-joint Ann. 

Parameter Value Parameter Value 

bu 0.05 kgrr^s-1 
bn 0.05 kgm2 s"1 

hi 0.025 kgmV1 
bi2 0.025 kgm2 s-1 

IBl 1.4 kg m2 1.0 kg 
h 0.30 m h 0.33 m 
h 0.025 kgm2 h 0.045 kgm2 

Sl 0.11m S2 0.16 m 

Note: The parameters {b,-y} denote the (i. ;)th elements of a joint friction matrix; THJ, 
/,-, and f, denote the mass, length, and moment of inertia of the i th link, respectively; 
and s, denotes the distance from the ith joint to the ith link's center of mass. 

where r is a vector of torques, 9 is a vector of joint angles, M{9) is an inertial 
matrix, C(9,9) is a vector of coriolis forces, and B is a joint friction matrix. 
We used the same parameter values for the arm as Li and Todorov (2004). 
These values are listed in Table 1. 

We studied two types of tasks: reaching tasks and via-point tasks. In a 
reaching task, the arm must be controlled so that its end effector moves from 
a start location to a target location. A via-point task is identical except that 
there is an additional requirement that the end effector also move through 
an intermediate location known as a via-point. 

For any reaching or via-point task, there are many time-varying torque 
vectors r(f) that will move the arm so that it successfully performs the task. 
As discussed above, this multiplicity of control solutions is due to redun- 
dancy in the two-joint arm and is known as the degrees-of-freedom prob- 
lem. How do we choose a particular solution? According to the optimality 
framework, an actor's goals are formalized as mathematical constraints that 
are combined in a cost function, and an optimal control signal is a signal 
that minimizes this function. 

For the reaching task, we used the following cost function, 

7 (T(0) - \ II e(T) - e" ||2 +*, || e(T) \\2 +| f  r(t)Tr(t)dt,        (2.2) 

where k\ and k2 are constants (we used the same values as Todorov & Li, 
2005: fci = 0.001 and k2 = 0.0001), T is the duration of the movement, e(T) 
is the end-effector location at time T, and e* is the target location at time 
T. The first term penalizes reaches that deviate from the target location, the 
second term penalizes reaches that do not have a zero velocity at the end 
of the movement, and the third term penalizes reaches that require large 
torques (or "energy"). This cost function has previously been used by Li and 
Todorov (2004; see also Todorov & Li, 2005). Minimization of this function 
results in control signals that produce reaches with several properties of 
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natural movements, including bell-shaped velocity profiles, lower velocities 
at higher curvatures, and near-zero velocities at the beginnings and ends of 
movements. 

For the via-point task, we modified the above cost function to also pe- 
nalize movements that do not pass through the via-point midway through 
the movement. The cost function has the form 

I (r(f)) - \ || e(T) - e* f +± || e(T/2) - e\ \\2 

+ h\\e{T)t+kj-j   r(t)Tr(t)dt, (2.3) 

where e* is the via-point or desired end-effector location at the middle of the 
movement. This function penalizes reaches that deviate from the via-point 
at time T/2. 

To find the optimal control signal for a reaching or via-point task, the cor- 
responding cost function must be minimized. Unfortunately, when using 
nonlinear systems such as the two-joint arm described above, this mini- 
mization is computationally intractable. Researchers typically resort to ap- 
proximate methods to find locally optimal solutions. We used one such 
method, known as the iterative linear quadratic regulator (iLQR), devel- 
oped by Li and Todorov (2004; see also Todorov & Li, 2005). We now briefly 
summarize this method in a generic setting. 

A continuous-time linear dynamical system is given by 

x(f) = /(*(£), «(f)), (2.4) 

where x is the state of the system and u is the input control signal. For the 
two-joint arm described above, the state x is (9, 8)T, and the control u is r. 
Consider a cost function of the form 

/ («(0) = y>(*(f0) + f  l(x(t), u(t))dt. (2.5) 
V Jo 

Note that the cost functions for the reaching and via-point tasks are of 
this form. In the cost function for the reaching task, for example, the 
two discrete penalties (deviation of the end-effector location from the tar- 
get location at time T and deviation of the end-effector velocity from 
zero at time T) correspond to the first term on the right-hand side of 
equation 2.5, and a continuous energy-like cost for large torques corre- 
sponds to the second term. 

The iLQR starts with an initial guess of the optimal control signal and 
iteratively improves it. From the control signal w, (t) at iteration i, the trajec- 
tory Xi (t) is computed using a standard Euler approximation. The algorithm 
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uses three steps to find the control signal for the next iteration. It starts by 
linearly approximating the dynamical system given in equation 2.4 and 
quadratically approximating the cost function given in equation 2.5. These 
approximations are made around (x,(f), w,(0) a* each time step t. Using 
these approximations, a modified linear quadratic gaussian (LQG) control 
problem is then formulated in the (Sx, Su) space, where x + Sx and u + Su 
are improved approximations to x and u, respectively. This formulation is 
valid only where these approximations are accurate: a small region around 
(xj(f),u,-(0)- Finally, the optimal correction to control M;(f) at iteration i, 
denoted Su*(t), is computed by solving this modified LQG problem. This 
step requires the solution to a modified Riccatti-like set of equations. Fortu- 
nately, finding this solution is computationally efficient. Once the optimal 
corrections have been obtained, the algorithm sets w;+i(£) = u,(f) + Su*(t) 
and proceeds to the next iteration. The algorithm stops if there is no sig- 
nificant improvement in the trajectory. The end result is a locally optimal 
trajectory x* and locally optimal control signal u*. 

We have found that the iLQR works well on both reaching and via-point 
tasks when using the two-joint arm. Figure 1 shows examples of optimal 
reaching (top row) and via-point (bottom row) movements computed by the 
iLQR. The graphs in the left column show the movement of the end effector 
(horizontal and vertical axes give the x and y coordinates of the end effec- 
tor in Cartesian space), whereas the graphs in the right column show the 
velocity profiles (horizontal axes represent time, and vertical axes represent 
velocity of the end effector). Clearly, the iLQR produces smooth movements 
with bell-shaped velocity profiles. In addition, the velocity profile for the 
via-point movement (bottom-right graph) indicates that end-effector veloc- 
ity decreases with increasing path curvature. 

3 Obtaining Optimal Synergies  

As discussed above, motor synergies are dependencies among dimensions 
of a motor system. They are useful because they can ameliorate the problem 
of redundancy and because they reduce the number of degrees of freedom 
that must be independently controlled, thereby making it easier to con- 
trol a motor system. Synergies are often hypothesized to serve as motor 
primitives, building blocks, or basis functions. 

Researchers have used a variety of methods to compute motor syn- 
ergies. We used a variant of nonnegative matrix factorization developed 
by d'Avella et al. (2003). This algorithm requires two inputs. One input 
is the number of synergies, denoted N. The other is a matrix of control 
signals, where each control signal is a 2 x T matrix of optimal torques com- 
puted by the iLQR for a given task (this matrix has 2 x T elements because 
torques are applied to both joints of the two-joint arm at each time step of 
a movement, and there are T time steps per movement). The input matrix 
of control signals is a vertical stack of individual control signal matrices. 
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Figure 1: Examples of optimal reaching (top row) and via-point movements 
(bottom row) computed using the iLQR. The graphs in the left column show 
the movement of the end effector: the horizontal and vertical axes represent the 
x and y coordinates of the end effector in Cartesian space. The thick lines show 
the orientation of the two-joint arm at the start of the movement, and the thin 
lines show the path of the end effector. The graphs in the right column show 
the velocity profiles: the horizontal axes represent time, and the vertical axes 
represent velocity of the end effector. 

For example, if the iLQR was used to find the optimal control signals for 
500 reaching tasks (tasks with different initial configurations of the arm or 
different target locations) and each reach had a duration of 400 time steps, 
then the matrix would consist of 1000 rows where each block of two rows 
is a 2 x 400 element matrix giving the optimal torques for each joint at each 
time step of a reach. As its output, the algorithm seeks a set of synergies 
such that every control signal can be expressed as a sum of scaled and time- 
shifted synergies. Mathematically, it seeks a set of N synergies, denoted 
{w*, i = 1,..., N}, such that control signal m can be written as follows, 

m(t) = J2ci™i(t-ti), (3.1) 
i=i 
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where {c,, i = 1,..., N) is a set of coefficients that scale the synergies, and 
{ti, i = 1,..., N} is a set of times that time-shift the synergies. The algo- 
rithm searches for the synergies, scaling coefficients, and time shifts that 
minimize the sum of squared errors between the actual control signals and 
the reconstructed signals. 

A technical detail is that the algorithm requires a set of nonnegative 
control signals (each element of a control vector must be nonnegative). 
In our case, a torque vector might have negative elements. We overcame 
this problem in a manner inspired by biological motor systems' use of 
agonist and antagonist muscles to apply torques at joints. We recoded a 
2x1 torque vector as a 4 x 1 vector in which the first two elements give 
the anticlockwise and clockwise torques for the first joint (shoulder), and 
the last two elements provide the same information for the second joint 
(elbow).1 For example, if torque (2, -l)r is applied to the joints, it means 
that a +2 torque is applied to the first joint in the anticlockwise direction, 
and a +1 torque is applied to the second joint in the clockwise direction. 
We recoded this torque vector to the nonnegative vector (2,0, 0,1)T. 

4 Simulation Results  

This section reports the results of seven experiments. The first four ex- 
periments used the two-joint arm described above in which torques were 
applied at the joints. The last three experiments used the same arm, except 
forces were applied by muscles. 

All experiments used the same collection of reaching and via-point tasks. 
We created 320 instances of each task as follows. Ten initial positions of the 
arm were randomly generated by uniformly sampling the first joint angle 
from the set [-JT/4, ;r/2] and the second joint angle from the set [0, 3JT/4], 

For each initial position, 32 target locations were generated. A target was 
generated by randomly selecting a movement distance (sampled uniformly 
from the range 10-50 cm) and an angle of movement (sampled uniformly 
from the range 0-27r). For the via-point task, a via-point was placed at a 
random angle (sampled uniformly from the set [—n/3, ?r/3]) from the line 
joining the initial and target locations. The via-point's distance from the 

1 Below we present results in which we consider the number of motor synergies 
required to reconstruct optimal movements with small error when an arm is controlled 
by torques applied directly to its joints. It is possible that the operation of mapping a 
two-dimensional vector with real values to a four-dimensional vector with nonnegative 
values introduces a bias into the estimate of this number. Nonetheless, our use of the 
mapping is justified as follows. We wish to compare synergies obtained when an arm 
is controlled by torques applied directly to its joints with synergies obtained when an 
arm is controlled by forces applied by muscles. Therefore, it is necessary to use the same 
representational format and dimensionality-reduction algorithm for obtaining synergies 
in both cases. When an arm is controlled by muscles, synergies are extracted on the basis 
of muscle activations, which must be nonnegative values. 
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Figure 2: The graphs plot the root mean squared error (RSME) between actual 
and reconstructed test items for reaching (left graph) and via-point (right graph) 
tasks as a function of the number of synergies used in the reconstructions. The 
error bars give the standard errors of the means. 

initial location was selected randomly to be between one-third and two- 
thirds of the distance between initial and target locations. The duration of 
a movement was 350 msec, and new torques were applied every 7 msec. 

4.1 Experiment 1: A Small Set of Synergies Can Reconstruct Optimal 
Movements. The first experiment evaluated whether optimal reaching or 
via-point control signals can be expressed as a sum of a small number of 
scaled and time-shifted synergies. If so, then the synergies can be regarded 
as useful motor primitives. 

For each type of task, the iLQR was applied to each instance of the task 
to generate 320 optimal control signals. These signals were divided into 
five equal-sized sets, which were then used by a fivefold cross-validation 
procedure to create training and test data items. Four sets of control sig- 
nals were used for training, and the remaining set was used for testing. 
This was repeated for all five such combinations of training and test sets. 
During training, nonnegative matrix factorization was used as described 
above to discover a set of synergies. During testing, these synergies were 
time-shifted and linearly combined to reconstruct the test control signals. 
Nonnegative matrix factorization was used to find the time shifts and linear 
coefficients. 

The results for the reaching and via-point tasks are shown in the left 
and right graphs of Figure 2, respectively. The horizontal axes give the 
number of synergies. The vertical axes give the root mean squared error 
(RMSE) between actual and reconstructed test control signals. The error 
bars show the standard errors of the means. With both reaching and via- 
point tasks, the error is near its minimum when relatively few synergies 
(about six or seven) were used. For our purposes, this is an important result 
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Via Point Synergies 

Figure 3: The similarity matrix when six synergies were obtained from the 
reaching task and the via-point task. The lightness of the square at row i and 
column ;' gives the cosine of the angle between the ith reaching-task synergy 
vector and the ;'th via-point task synergy vector: white is a value of 1, black is 
a value of 0, and intermediate gray-scale values represent intermediate values. 

because it means that the synergies are useful motor primitives: optimal 
movements can be planned in a relatively low-dimensional space by time- 
shifting and linearly combining a small number of synergies. Furthermore, 
the fact that the error curves for the reaching and via-point tasks are similar 
suggests that these tasks have similar task complexity. This is surprising 
because generating optimal via-point movements intuitively seems more 
complicated than generating optimal reaches. 

4.2 Experiment 2: Task-Independent and Task-Dependent Synergies. 
The second experiment evaluated whether optimal motor synergies are 
task independent or task dependent. This issue is interesting due to recent 
neurophysiological findings. d'Avella and Bizzi (2005), for example, 
recorded electromyographic activity from 13 muscles of the hind limbs of 
frogs performing jumping, swimming, and walking movements. An anal- 
ysis of the underlying motor synergies revealed that some synergies were 
used in all types of movements, whereas other synergies were movement 
dependent. 

Figure 3 shows the similarity matrix when six synergies were obtained 
for the reaching task and six synergies were obtained for the via-point task. 
The lightness of the square at row i and column / gives the cosine of the 
angle between the ith reaching-task synergy vector and the ;'th via-point 
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Figure 4: The six synergies obtained for the reaching task. Each synergy is 
represented by four columns; the first two columns represent the anticlockwise 
and clockwise torques for the first joint (shoulder), whereas the second two 
columns represent this same information for the second joint (elbow). Torques 
were linearly scaled to the interval [0,1]. White indicates a torque of 1, black 
indicates a torque of 0, and intermediate shades of gray represent intermediate 
values. 

task synergy vector: white is a value of 1, black is a value of 0, and inter- 
mediate gray-scale values represent intermediate values. Some synergies, 
such as the third reaching-task synergy and the first via-point task synergy, 
are highly similar, indicating that these synergies are task independent. In 
contrast, other synergies, such as the fourth reaching-task synergy or the 
third via-point task synergy, are dissimilar from all other synergies, indicat- 
ing that they are task dependent. This result suggests that the combination 
of task-independent and task-dependent synergies found in biological or- 
ganisms (e.g., d'Avella & Bizzi, 2005; Jing, Cropper, Hurwitz, & Weiss, 2004) 
may be efficient for generating optimal motor actions from motor synergies. 

4.3 Experiment 3: Visualizing Synergies. In experiment 3, we obtained 
synergies for the purpose of visualizing the movements induced by these 
synergies. Using our collections of instances of each type of task, six syn- 
ergies for the reaching task and six synergies for the via-point task were 
calculated as described above. The scaling coefficients for the reaching-task 
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Figure 5: Movements induced by six synergies obtained for the reaching task. 
The horizontal and vertical axes of each graph give the x and y coordinates of the 
end effector in Cartesian space, the gray lines show the initial configuration of 
the arm, the black lines show the movements of the end effector, and the number 
next to each movement indicates the synergy that was applied (using the same 
labels as Figure 4). The left and right graphs illustrate induced movements when 
the initial configuration of the arm was near the center of the work space or at 
a far edge of the work space, respectively. 

synergies or the via-point task synergies were set to their average values 
over the collection of reaching tasks or via-point tasks, respectively. The 
time-shift parameters were set to zero. 

The six synergies obtained for the reaching task are illustrated in 
Figure 4. The horizontal axis labels the synergies, and the vertical axis 
depicts time. Each synergy is represented by four columns; the first two 
columns represent the anticlockwise and clockwise torques for the first 
joint, whereas the second two columns represent this same information for 
the second joint. Torques were linearly scaled to the interval [0,1]. White in- 
dicates a torque of 1, black indicates a torque of 0, and intermediate shades 
of gray represent intermediate values. 

Figure 5 illustrates movements based on these synergies. The left graph 
shows the induced movements when the initial arm configuration was 
near the center of the workspace. The horizontal and vertical axes of the 
graph give the x and y coordinates of the end-effector in Cartesian space, 
the gray lines show the initial configuration of the arm, the black lines 
show the movements of the end effector, and the number next to each 
movement indicates the synergy that was applied (using the same labels 
as Figure 4). The induced movements tend to be relatively straight (though 
some are curved) and tend to cover a wide range of directions. The right 
graph of Figure 5 shows the induced movements when the initial arm 
configuration was at a far edge of the work space. Again, the movements 
tend to be relatively straight. As should be expected, movements in this case 
are directed toward the center of the work space. Figure 5 demonstrates that 
synergies tend to broadly cover all possible directions of motion. 
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Figure 6: The six synergies obtained for the via-point task. 
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Figure 7: Movements induced by synergies obtained from the via-point task. 
The left and right graphs illustrate movements induced by task-independent 
and task-dependent synergies, respectively. The number next to each movement 
indicates the synergy that was applied (using the same labels as Figure 6). 

The six synergies obtained for the via-point task are illustrated in 
Figure 6. It uses the same format as Figure 4. Figure 7 illustrates move- 
ments based on these synergies. The left graph illustrates movements in- 
duced by two synergies that were highly similar to synergies obtained 
from the reaching task—that is, these are task-independent synergies. The 
induced movements are relatively straight. Consequently, the underlying 
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Figure 8: Velocity curves for induced movements. The left graph plots the 
velocity curve for a movement based on a synergy obtained from the reaching 
task. The right graph plots the velocity curves for two movements based on two 
task-dependent synergies obtained from the via-point task. 

synergies are useful for both reaching and via-point tasks. The right graph 
illustrates movements based on four synergies that are task dependent; 
these synergies were not similar to synergies obtained from the reaching 
task. The induced movements tend to be almost piecewise linear, with a 
region of large curvature near the middle of the movement that is preceded 
and followed by regions of relatively straight motion. 

Figure 8 shows the velocity curves (velocity at each moment in time) for 
induced movements. The left graph plots the velocity curve for a movement 
based on a synergy obtained from the reaching task. This curve has a bell- 
shaped profile, which is commonly found for reaching movements. The 
right graph plots the velocity curves for two movements based on two 
task-dependent synergies obtained from the via-point task. The shapes of 
these curves are typical for via-point movements. 

In summary, we find that the synergies for reaching and via-point 
movements have intuitive forms. Movements based on synergies obtained 
from the reaching task tend to be straight, to broadly cover the directions 
available to the arm based on its initial configuration, and to have bell- 
shaped velocity profiles. Movements based on task-independent via-point 
synergies tend to have these same properties. In contrast, movements based 
on task-dependent via-point synergies tend to have a piecewise-linear 
shape with a region of high curvature near the middle of the movement 
and have velocity profiles with two bell shapes. 

4.4 Experiment 4: Learning with Synergies. Experiment 4 evaluated 
whether the use of optimal motor synergies makes it easier to learn to 
perform new optimal motor actions. If motor synergies are useful motor 
primitives, then this ought to be the case. 
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The task was to learn to generate a reaching movement starting from 
an initial configuration of the arm so that the arm's end point reached 
a randomly selected target location. When synergies were used, control 
signals were expressed as linear combinations of synergies (to minimize 
computational demands, we did not time-shift synergies), meaning that 
the parameter values that needed to be learned were the linear coefficients. 
When synergies were not used, the values that needed to be learned were 
the torques applied to each joint at each moment in time. 

From a collection of 320 instances of the reaching task, fivefold cross 
validation was used to create training and test sets. Policy gradient, a type 
of reinforcement learning algorithm, was used to learn estimates of the 
relevant parameter values (Sutton, McAllester, Singh, & Mansour, 2000). 
This algorithm was applied for 300 iterations. Learning with synergies 
occurred as follows. We calculated the optimal movements for each instance 
in a training set using the iLQR, and obtained four motor synergies using 
nonnegative matrix factorization. The policy gradient algorithm was then 
used to learn to perform each instance of the reaching task in the test 
set. At each iteration of the learning process, we numerically computed 
the derivatives of the reaching-task cost function (see equation 2.2) with 
respect to the linear coefficients used in the linear combination of synergies 
and performed gradient descent with the constraint that the coefficients 
had to be nonnegative. When learning without synergies, we computed the 
derivatives of the reaching-task cost function with respect to the torques at 
each joint and at each time step and performed gradient descent. Step sizes 
or learning rates that produced near-optimal performance were used when 
performing gradient descent with and without synergies. 

The results for a typical instance of a reaching task from a test set are 
shown in Figure 9. The graph on the left shows the learning curves for learn- 
ing with and without motor synergies. The horizontal axis gives the iteration 
number, and the vertical axis gives the value of the reaching-task cost func- 
tion. Whereas learning without synergies was slow and never achieved 
good performance, learning with synergies was rapid and achieved ex- 
cellent performance. Indeed, learning with synergies achieved roughly the 
same cost as the iLQR. The graph on the right shows the movements learned 
with and without synergies in Cartesian coordinates and the movement 
calculated by the iLQR. The movement learned without synergies never 
reached the target location, whereas the movement learned with synergies 
did. Overall, the results indicate that optimal synergies are useful motor 
primitives or building blocks in the sense that their use in linear combina- 
tions leads to rapid and accurate acquisition of new optimal motor actions. 

4.5 Experiment 5: Motor Synergies When Forces Are Applied by 
Muscles. Whereas experiments 1 to 4 simulated a two-joint arm controlled 
directly by torques applied at the joints, experiments 5 to 7 simulated the 
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Figure 9: The graph on the left shows the learning curves for learning with 
and without motor synergies on a typical instance of a reaching task. The hor- 
izontal axis gives the iteration number, and the vertical axis gives the value of 
the reaching-task cost function. The graph on the right shows the movements 
learned with and without synergies in Cartesian space and the movement cal- 
culated by the iLQR. 

same arm except forces were applied by muscles. We conducted experi- 
ments with muscles so that we could verify that the results reported above 
are also valid when simulating more complex and biologically realistic sys- 
tems such as an arm controlled by muscles. 

We used the muscle model developed by Todorov and Li (2005; see also 
Brown, Cheng, & Leob, 1999). In brief, this model uses six muscles that 
apply forces to a two-joint arm. The control signal is the neural input to the 
muscles. This input passes through a nonlinear low-pass filter to produce 
muscle activations. The tension of a muscle is a function of the muscle's 
current activation, length, and length velocity. The tension produces forces 
on the arm's links that, in turn, produce joint torques. Note that this system 
is significantly more complicated than the arm in which torques are applied 
directly at the joints. This system has a six-dimensional control space (neural 
input to each of six muscles), a 10-dimensional state space (six muscle 
activations and the angular position and velocity of each joint), muscle 
activations that might saturate, and dynamics with temporal delays (due 
to the low-pass filtering of neural input). 

In experiments 1 to 4, nonnegative matrix factorization was applied 
to the optimal control signals to obtain motor synergies. In contrast, this 
factorization was not applied to the control signals—the neural input—in 
experiments 5 to 7; rather, it was applied to the optimal muscle activations. 
We found that the factorization procedure was significantly more robust 
when applied to the muscle activations due to the smoothness of their 
values (recall that the activations are low-pass accumulations of the neural 
inputs). Factorization of muscle activations was also conducted by d'Avella 
et al. (2003). 
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Figure 10: The graphs plot the root mean squared error (RMSE) between actual 
and reconstructed test items for reaching (left graph) and via-point (right graph) 
tasks when using the arm controlled by muscles as a function of the number of 
synergies used in the reconstructions. The error bars give the standard errors of 
the means. 

Data for experiments 5 to 7 were collected in a similar mariner as for 
experiments 1 to 4. We created 320 instances of the reaching task and the 
via-point task. Fivefold cross validation was used to create training and test 
sets of task instances. The iLQR was used to calculate the optimal sequence 
of neural inputs for each training instance (the cost functions for the reach- 
ing and via-point tasks given above were suitably modified by replacing 
the torque vector—the control input in experiments 1 to 4—with the neural 
input vector—the control input in experiments 5 to 7). Optimal muscle ac- 
tivations were created from the optimal neural inputs by low-pass filtering. 
Nonnegative matrix factorization was applied to the optimal muscle activa- 
tions to generate optimal synergies. Based on these synergies, nonnegative 
matrix factorization was also used to perform task instances from test sets 
by computing optimal sums of scaled and time-shifted synergies. 

Experiment 5 parallels experiment 1 in the sense that it evaluated 
whether optimal muscle activations can be expressed as a linear combi- 
nation of a small number of time-shifted synergies. The results for the 
reaching and via-point tasks are shown in the left and right graphs of 
Figure 10, respectively. With both reaching and via-point tasks, the error is 
near its minimum when relatively few synergies were used. We conclude 
that synergies are useful motor primitives because optimal movements can 
be planned in a relatively low-dimensional space by summing a small num- 
ber of scaled and time-shifted synergies. 

4.6 Experiment 6: Task-Independent and Task-Dependent Synergies 
When Forces Are Applied by Muscles. Experiment 6 parallels experiment 
2 in the sense that it evaluated whether optimal motor synergies are task 
independent or task dependent (d'Avella & Bizzi, 2005; Jing et al., 2004). 
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Figure 11: The similarity matrix for the six synergies obtained from the reach- 
ing task and the six synergies obtained from the via-point task using the arm 
controlled by muscles. The lightness of the square at row ;' and column ;' gives 
the cosine of the angle between the zth reaching-task synergy vector and the ;'th 
via-point task synergy vector—white is a value of 1, black is a value of 0, and 
intermediate gray-scale values represent intermediate values. 

Figure 11 shows the similarity matrix for the six synergies obtained from 
the reaching task and the six synergies obtained from the via-point task. 
Some synergies, such as the second reaching-task synergy and third via- 
point task synergy are highly similar, indicating that these synergies are task 
independent. In contrast, other synergies, such as the third reaching-task 
synergy and the second via-point task synergy, are dissimilar from all other 
synergies, indicating that they are task dependent. A combination of task- 
independent and task-dependent synergies was also found in experiment 
2, which used an arm controlled directly by torques. This result suggests 
that the combination of task-independent and task-dependent synergies 
found in biological organisms may be efficient for generating optimal motor 
actions from motor primitives. 

4.7 Experiment 7: 'Visualizing Synergies When Forces Are Applied 
by Muscles. In experiment 7, we obtained synergies for the purpose of 
visualizing the movements induced by these synergies when forces are 
applied by muscles. Consequently, experiment 7 parallels experiment 3 
and was conducted in an analogous manner. 

Six synergies were obtained for the reaching task when the arm was 
controlled by forces applied by muscles. These synergies are illustrated in 
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Figure 12: Six synergies were obtained for the reaching task when the arm 
was controlled by forces applied by muscles. The left graph shows the muscle 
activations. For each synergy, there are six columns corresponding to the acti- 
vations of the six muscles. The right graph shows the torques generated by the 
synergies. For each synergy, the four columns indicate the anticlockwise and 
clockwise torques for joints 1 and 2, respectively. 

Figure 12. The left graph shows the muscle activations. For each synergy, 
there are six columns corresponding to the activations of the six muscles.2 

Muscle activations were linearly scaled to the interval [0, 1]. White indi- 
cates an activation of 1, black indicates an activation of 0, and intermediate 
shades of gray indicate intermediate activation values. The right graph 
shows the torques generated by the synergies. For each synergy, the four 
columns indicate the anticlockwise and clockwise torques for joints 1 and 
2, respectively. 

Figure 13 illustrates the movements induced by these synergies. The left 
graph shows the induced movements when the initial arm configuration 
was near the center of the work space. These movements tend to be rela- 
tively straight (though some are curved) and tend to cover a wide range of 
directions. The right graph shows the induced movements when the initial 
arm configuration was at a far edge of the work space. The movements 
tend to be relatively straight and are directed toward the center of the work 
space. For our purposes, a notable feature of these induced movements is 
that they closely resemble the movements induced by reaching-task syn- 
ergies obtained when the arm was controlled by torques applied directly 
at the joints (see experiment 3 above). These data are consistent with the 
idea that synergies, when considered in "movement space," are more a re- 
flection of task goals and constraints than of fine details of the underlying 
hardware. 

2 The muscles are (1) biceps long, brachialis, brachioradialis; (2) triceps lateral, an- 
coneus; (3) deltoid anterior, coracobrachialis; (4) deltoid posterior; (5) biceps short; and 
(6) triceps long. See Li and Todorov (2004) for details. 
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Figure 13: Movements induced by six synergies obtained for the reaching task 
when the arm was controlled by forces applied by muscles. The left and right 
graphs illustrate induced movements when the initial configuration of the arm 
was near the center of the work space or at a far edge of the work space, 
respectively. The number next to each movement indicates the synergy that 
was applied (using the same labels as Figure 12). 

5 Discussion 

In summary, this letter has considered the properties of synergies arising 
from a computational theory (in the sense of Marr, 1982) of optimal motor 
behavior. An actor's goals were formalized as cost functions, and the op- 
timal control signals minimizing the cost functions were calculated by the 
iLQR. Optimal synergies were derived from these optimal control signals 
using a variant of nonnegative matrix factorization. This was done for both 
reaching and via-point tasks and for a simulated two-joint arm controlled 
by torques applied at the joints as well as an arm in which forces were ap- 
plied by muscles. In brief, studies of the motor synergies revealed several 
interesting findings: (1) optimal motor actions can be generated by sum- 
ming a small number of scaled and time-shifted motor synergies; (2) some 
optimal synergies are task independent, whereas other synergies are task 
dependent; (3) optimal motor actions can be rapidly acquired by learning 
new linear combinations of optimal motor synergies; and (4) synergies with 
similar properties arise regardless if one uses an arm controlled by torques 
applied at the joints or an arm controlled by muscles. 

Future work will need to address shortcomings of our experiments. Our 
findings were obtained using simple motor tasks and a simple two-joint 
arm. We used reaching and via-point tasks because these are commonly 
performed movements and are frequently studied in the literature. We 
used a two-joint arm because it is computationally tractable. We conjecture 
that our basic results will still be found even with more complex tasks. 
This hypothesis is based on the fact that many complex movements can be 
regarded as combinations of simpler reaching and via-point movements. 
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We also conjecture that our results will still be found with more complex 
arms. This hypothesis is based on the fact that we obtained similar results 
regardless of whether we used a simple arm—a two-joint arm controlled 
by torques applied at the joints—or a more complex arm—a two-joint arm 
controlled by forces applied by muscles. Computationally, an obstacle to 
using more complex tasks and arms is the need to calculate optimal control 
signals. Using current computer technology, the calculation of optimal con- 
trols for nonlinear systems with many degrees of freedom is typically not 
possible. 

Our findings were also obtained using specific mathematical techniques, 
such as the iLQR optimization method and the nonnegative matrix factor- 
ization method. We believe that our choices of mathematical techniques 
were reasonable. Again, this is an area in which important computational 
issues will need to be addressed before future studies can consider more 
complex motor tasks and arms. In particular, there is a need to develop im- 
proved dimensionality-reduction techniques for obtaining synergies. For 
example, the nonnegative matrix factorization method, like other methods, 
cannot be applied when movements have widely different durations and, 
thus, control signals have widely different dimensions. Future work will 
need to address this and many other unsolved problems. 
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Abstract 

Sequential decision-making tasks are commonplace in our ev- 
eryday lives. We report the results of an experiment in which 
human subjects were trained to perform a perceptual matching 
task, an instance of a sequential decision-making task. We use 
two benchmarks to evaluate the quality of subjects' learning. 
One benchmark is based on optimal performance as defined 
by a dynamic programming procedure. The other is based 
on an adaptive computational agent that uses a reinforcement 
learning method known as Q-leaming to learn to perform the 
task. Our analyses suggest that subjects learned to perform 
the perceptual matching task in a near-optimal manner at the 
end of training. Subjects were able to achieve near-optimal 
performance because they learned, at least partially, the causal 
structure underlying the task. Subjects' learning curves were 
broadly consistent with those of model-based reinforcement- 
learning agents that built and used internal models of how their 
actions influenced the external environment. We hypothesize 
that in general, people will achieve near-optimal performances 
on sequential decision-making tasks when they can detect the 
effects of their actions on the environment, and when they can 
represent and reason about these effects using an internal men- 
tal model. 

Keywords: sequential decision making; optimal performance; 
dynamic programming; reinforcement learning 

Introduction 

Tasks requiring people to make a sequence of decisions to 
reach a goal are commonplace in our lives. When playing 
chess, a person must choose a sequence of chess moves to 
capture an opponent's king. When driving to work, a per- 
son must choose a sequence of left and right turns to arrive 
at work in a timely manner. And when pursuing financial 
goals, a person must choose a sequence of saving and spend- 
ing options to achieve a financial target. Interest in sequen- 
tial decision-making tasks among cognitive scientists has in- 
creased dramatically in recent years (e.g., Busemeyer, 2002; 
Chhabra & Jacobs, 2006; Fu & Anderson, 2006; Gibson, 
Fichman, & Plaut, 1997; Gureckis & Love, 2009; Lee, 2006; 
Sutton & Barto, 1998; Shanks, Tunney, & McCarthy, 2002). 

Here, we are interested in whether people are successful at 
learning to perform sequential decision-making tasks. There 
are at least two ways in which the quality of learning can be 
evaluated. These ways differ in terms of the benchmark to 
which the performances of a learner are compared. One way 
uses a benchmark of optimal performance on a task. Anal- 
yses based on optimal performance are referred to as ideal 
observer analyses, ideal actor analyses, or rational analyses 
in the literatures on perception, motor control, and cognition, 
respectively. At each moment during training with a task, a 

learner's performance can be compared to the optimal perfor- 
mance forthat task. If a learner achieves near-optimal perfor- 
mance at the end of training, then it can be claimed that the 
learner has been successful. 

A second way of evaluating a learner is to compare the 
learner's performances with those of an adaptive computa- 
tional agent that is trained to perform the same task. We con- 
sider here an agent that learns via "reinforcement learning" 
methods developed by researchers interested in artificial in- 
telligence (Sutton & Barto, 1998). Cognitive scientists have 
begun to use reinforcement learning methods to develop new 
theories of biological learning (e.g., Busemeyer & Pleskac, 
2009; Daw & Touretzky, 2002; Schultz, Dayan, & Montague, 
1997; Fu & Anderson, 2006). To date, however, there are 
few comparisons of the learning curves of people and agents 
based on reinforcement learning methods. Because reinforce- 
ment learning is regarded as effective and well-understood 
from an engineering perspective, and as plausible from psy- 
chological and neurophysiological perspectives, the perfor- 
mances of agents based on this form of learning can provide 
useful benchmarks for evaluating a person's learning. If a 
person's performance during training improves at the same 
rate as that of a reinforcement-learning agent, then it can 
be argued that the person is a successful learner. If a per- 
son's performance improves at a slower rate, then the person 
is not learning as much from experience as he or she could 
learn. Experimentation is often required to identify the cogni- 
tive "bottlenecks" preventing the person from learning faster. 
Lastly, if a person's performance improves at a faster rate, 
then this suggests that the person is using information sources 
or information processing operations that are not available to 
the agent. A new, more complex agent should be considered 
in this case. 

We report the results of an experiment in which human sub- 
jects were trained to perform a perceptual matching task. This 
task was designed to contain a number of desirable features. 
Importantly, the perceptual matching task is an instance of a 
sequential decision-making task. Subjects made a sequence 
of decisions (or, equivalently, took a sequence of actions) to 
modify an environmental state to a goal state. In addition, ef- 
ficient performance on the perceptual matching task required 
knowledge of how different properties of an environment in- 
teracted with each other. In many everyday tasks, people are 
required to understand the interactions, or "causal relations", 
among multiple components (Busemeyer, 2002; Gopnik & 
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Shulz, 2007). For example, when reaching for a coffee mug, 
a person must understand that forces exerted at the shoulder 
also influence the positions and velocities of the elbow, wrist, 
and fingers. To make an efficient movement, a person must 
use this knowledge of the causal interactions among motor 
components to design an effective motor plan. 

Subjects' performances on the perceptual matching task 
were evaluated via two benchmarks. Using an optimization 
technique known as dynamic programming, optimal perfor- 
mance on this task was calculated. In addition, computer 
simulations of an adaptive agent were conducted in which the 
agent was trained to perform the perceptual matching task 
using a reinforcement learning method known as Q-leaming 
(Sutton & Barto, 1998; Watkins, 1989). Comparisons of sub- 
jects' performances during training with optimal performance 
and with those of the adaptive agent suggest that: (i) subjects 
learned to perform the perceptual matching task in a near- 
optimal manner at the end of training; (ii) subjects learned, 
at least partially, the causal structure underlying the task; (iii) 
subjects' learning curves were consistent with those of model- 
based reinforcement-learning agents; and (iv) subjects may 
have learned by building and using mental models of how 
their actions influenced the external environment. Additional 
details and results are reported in Yakushijin & Jacobs (2010). 

Experiment 

Methods: Twenty-four undergraduate students at the Uni- 
versity of Rochester participated in the experiment. Subjects 
were paid $10 for their participation. All subjects had nor- 
mal or corrected-to-normal vision. Subjects were randomly 
assigned to one of six experimental conditions. Each condi- 
tion included both training and test trials. Only the results of 
training trials are discussed here due to space limitations. 

On a training trial, subjects performed a perceptual match- 
ing task which used visual objects from a class of parame- 
terized objects known as "supershapes" (highly realistic but 
unfamiliar shapes; see Gielis, 2003). The parameters were 
latent (hidden) variables whose values determined the shapes 
of the objects. On each trial, subjects viewed a target object, 
a comparison object, and a set of six buttons (see left panel of 
Figure 1). Buttons were organized into three pairs, and each 
pair could be used to decrease or increase the value of an ac- 
tion variable. By pressing the buttons, subjects could change 
the values of the action variables which, in turn, changed the 
values of the parameters underlying the comparison object's 
shape which, in turn, changed the shape of the comparison 
object. Subjects' task was to press one or more buttons (i.e., 
to change the values of the action variables) to modify the 
shape of the comparison object until it matched the shape of 
the target object using as few button presses as possible. 

An experimental condition was characterized by a specific 
set of causal relations among the latent shape parameters. For 
example, one such set is schematically illustrated in the right 
panel of Figure 1. Here, the three action variables are denoted 
/4, B, and C. These variables are observable in the sense that 

subjects could directly and easily control their values through 
the use of the buttons. The values of the action variables de- 
termined the values of the shape parameters, denoted X, Y, 
and Z. Note that there are causal relations among the shape 
parameters. According to the network in Figure 1, if the value 
ofX is changed, then this leads to a modification of Y which, 
in turn, leads to a modification of Z. The shape parameters de- 
termine the shape of the comparison object, whose perceptual 
features are denoted f\, fi, fi, /A, fs, and fa. The perceptual 
features used by a subject to assess the similarity of target and 
comparison object shapes may only be implicitly known by a 
subject, and may differ between subjects. 

Importantly, to efficiently convert the comparison object's 
shape to the target object's shape (i.e., with the fewest num- 
ber of button presses) often requires an understanding of the 
causal relations among the shape parameters. For instance, 
if the values of parameters X, Y, and Z all need to be mod- 
ified, a person who does not understand the causal relations 
among shape parameters may decide to change the value of 
action variable C (thereby changing shape parameter Z), then 
the value of action variable B (thereby changing Y and Z), 
and finally the value of action variable A (thereby changing 
X, Y, and Z). In many cases, this will be an inefficient strat- 
egy. A person with good knowledge of the causal relations 
among the shape parameters knows that he or she can change 
the values of A", Y, and Z with a single button press that de- 
creases or increases the value of action variable A. Thus, a 
good understanding of the causal relations among the shape 
parameters will lead to efficient task performance, whereas a 
poor understanding of the causal relations will lead to many 
more button presses than necessary. 

The six experimental conditions differed in the causal rela- 
tions among the latent shape parameters X, Y, and Z. Two of 
the causal relations were "linear" structures (one parameter 
had a direct causal influence on a second parameter which, 
in turn, had a direct causal influence on a third parameter; 
e.g., X-*Y-*ZOTY—*X-*Z), two of the relations were 
"common cause" structures (one parameter had direct causal 
influences on the two remaining parameters; e.g., Y *— X —*Z 
or X <— Y -* Z), and two of the relations were "common ef- 
fect" structures (two parameters had direct causal influences 
on a third parameter; e.g., X —► K <— ZoxY —*X *— Z). 

An experimental session consisted of 7 blocks of trials where 
a block contained a set of training trials followed by a set of 
test trials. (Test trials evaluated subjects' one-step look-ahead 
knowledge; on a test trial, a subject decided if a comparison 
object could be converted to a target object using a single 
button press, and the subject did not receive feedback. Again, 
test trials are not discussed here.) Each set contained 26 tri- 
als, one trial for each possible perturbation of a target object 
shape to form an initial comparison object shape. 

Results: Task Performances: As a benchmark for evalu- 
ating subjects' performances on training trials, we computed 
optimal performances on these trials using an optimization 
method known as dynamic programming (Bellman, 1957). 
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Figure 1: Left: Example of an experimental display. Right: Bayesian network representing the causal relations (in one of the 
experimental conditions) among the action variables, shape parameters, and perceptual features. For simplicity, the network 
does not represent the fact that subjects' button presses determined the values of the action variables. 

In brief, dynamic programming is a technique for computing 
optimal solutions to multi-stage decision tasks. That is, dy- 
namic programming finds the shortest sequences of actions 
that move a system from an initial state to a goal state when 
all states are fully observable. In the context of a training trial, 
the initial state corresponds to the initial values of the shape 
parameters X, Y, and Z for the comparison object, and the 
goal state corresponds to the values of the shape parameters 
for the target object. The dynamic programming algorithm 
is provided with full state information. This means that the 
algorithm knows the values of the comparison object's shape 
parameters at every time step. It also knows the state tran- 
sition dynamics, meaning that it knows the causal relations 
among the shape parameters and, thus, knows how any button 
press will change the values of the shape parameters. Rela- 
tive to our subjects, the dynamic programming algorithm is 
at an advantage. At the start of the experiment, our subjects 
did not know the values of the shape parameters or the causal 
relations among the parameters. Consequently, it would be 
impressive if subjects learned to perform the task as well as 
the dynamic programming algorithm. 

We determined the optimal performances in the six exper- 
imental conditions via dynamic programming. Our analysis 
revealed that the range (1-5 steps or button presses) and the 
average length (2.54 steps) of the optimal action sequences 
were identical for all conditions. Thus, the conditions were 
well balanced in terms of their intrinsic difficulties. 

Figure 2 shows subjects' learning curves on training trials 
in the two experimental conditions with linear causal struc- 
tures among shape parameters. Due to space limitations, we 
do not show results for conditions with common-cause and 
common-effect structures, though subjects in these conditions 
showed very similar results to subjects in linear structure con- 
ditions (Yakushijin & Jacobs, 2010). Eight subjects partici- 
pated in linear structure conditions and, thus, the figure con- 
tains eight graphs. The horizontal axis of each graph gives the 
block number, and the vertical axis gives the average differ- 
ence between the number of steps (i.e., button presses) used 
by a subject during a trial and the optimal number of steps 
for that trial as computed by the dynamic programming pro- 
cedure. These graphs show a number of interesting features. 
Many subjects found the task to be difficult toward the start 

of the experiment and, thus, their performances were highly 
sub-optimal during this time period. However, every subject 
learned during the course of the experiment. Importantly, ev- 
ery subject achieved near-optimal performance at the end of 
training: The average difference between a subject's perfor- 
mance and the optimal performance at the end of training is 
less than 1/2 of a step (mean = 0.434; standard deviation ■ 
0.324). 

Results: Causal Learning: The data from the training tri- 
als show that subjects achieved near-optimal performances. 
These results are consistent with the idea that subjects learned 
about the causal relations among the latent shape parameters. 
Additional analyses of training and test trials, not described 
here due to space limitations, confirm that subjects did indeed 
learn (at least partially) about these causal relations, and that 
this knowledge played a role in their task performances. De- 
tails can be found in Yakushijin & Jacobs (2010). 

Reinforcement Learning Agents 

Above, our analysis of subjects' data used a benchmark of 
optimal performance based on dynamic programming. Al- 
though very useful, this analysis does not allow us to evalu- 
ate the quality of subjects' rates of learning. To do so, we 
use a different benchmark based on an adaptive computa- 
tional agent that uses a reinforcement learning method known 
as Q-leaming to learn to perform the perceptual matching 
task (Sutton & Barto, 1998; Watkins, 1989). Without go- 
ing into the mathematical details, the reader should note that 
Q-learning is an approximate dynamic programming method 
(Si et al., 2004). It is easy to show that, under mild con- 
ditions, the sequence of decisions found by an agent using 
Q-learning is guaranteed to converge to an optimal sequence 
found by dynamic programming (Watkins & Dayan, 1992). 
Hence, the benchmarks based on dynamic programming and 
on Q-learning are related. 

In a reinforcement learning framework, it is assumed that 
an agent attempts to choose actions so as to receive the most 
reward possible. The agent explores its environment by as- 
sessing its current state and choosing an action. After execut- 
ing this action, the agent will be in a new state, and will re- 
ceive a reward (possibly zero) associated with this new state. 
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Block number 

Figure 2: Subjects' learning performances on training trials in the two experimental conditions with linear causal structures 
among shape parameters (top row: X —» Y —► Z; bottom row: Y —* X —► Z). 

The agent adapts its behavior in a trial-by-trial manner by 
noticing which actions tend to be followed by future rewards 
and which actions are not. To choose good actions, the agent 
needs to estimate the long-term reward values of selecting 
possible actions from possible states. Ideally, the value of se- 
lecting action at in state s, at time t, denoted Q(s,,ai), should 
equal the sum of rewards that the agent can expect to re- 
ceive in the future if it takes action a, in state 5,: Q(s,,a,) = 
£Eh=oYt r,+k+\\ where / is the current time step, k is an in- 
dex over future time steps, r,+k+\ is the reward received at 
time / + k -I-1, and y (0 < y < 1) is a term that serves to dis- 
count rewards that occur in the far future more than rewards 
that occur in the near future. An agent can learn accurate es- 
timates of these ideal values on the basis of experience if it 
updates its estimates at each time step using the equation: 

Q(s,,a,) <- Q(s,,a,) + a[rl+\ +ymdxQ(s,+ua) - Q(s„a,)\ 
a 

where the agent makes action a, in state s, and receives re- 
ward r,+\, and a is a step size or learning rate parameter 
(Sutton & Barto, 1998; Watkins, 1989). 

In our first set of simulations in which a reinforcement- 
learning agent was trained to perform the perceptual match- 
ing task, all "Q-values" were initialized to zero, the discount 
rate y was set to 0.7, and the learning rate a was set to 0.45. In 
preliminary simulations, these values were found to be best 
in the sense that they led to performances that most closely 
matched human performances. At each time step, the state 
of the agent represented the difference in shape between the 
comparison and target objects. It was a three-dimensional 
vector whose elements were set to the values of the shape pa- 
rameters for the comparison object minus the values of these 
parameters for the target object. Six possible actions were 
available to the agent corresponding to the six buttons that a 
subject could press to modify the action variables. The agent 
chose an action using an e-greedy strategy, meaning that the 
agent chose the action a that maximized Q(s,, a) with proba- 
bility 1 — e (ties were broken at random), and chose a random 

action with probability e. The value of e was initialized to 
one, and then it was slowly decreased during the course of 
a simulation. As a result, the agent tended to "explore" a 
wide range of actions toward the beginning of a simulation, 
and tended to "exploit" its current estimates of the best ac- 
tion to take toward the middle and end of a simulation. If the 
agent chose an action that caused the comparison object to 
have the same shape as the target object, the agent received 
a reward of 100. Otherwise, it received a reward of-1. The 
agent performed the training trials of the experiment in the 
same manner as our human subjects—it performed 7 blocks 
of training trials with 26 trials per block. To accurately esti- 
mate the agent's performances during training, the agent was 
simulated 1000 times. 

The results for experimental conditions using linear causal 
structures are shown in the left graph of Figure 3 (results 
for other conditions were similar). The horizontal axis plots 
the block number, and the vertical axis plots the average dif- 
ference between the number of steps (i.e., actions or button 
presses) used by the agent or by human subjects during a trial 
and the optimal number of steps for that trial as computed by 
the dynamic programming procedure (as in Figure 2; the error 
bars in Figure 3 indicate the standard deviations). The solid 
line shows the data for the simulated agent, and the dotted 
line shows the data for our human subjects. Interestingly, the 
learning curves of the simulated agent and of the human sub- 
jects have similar shapes, though subjects learned faster than 
the agent at nearly all stages of training in all experimental 
conditions. Modifications of the agent by either using differ- 
ent values for the agent's parameters or by adding "eligibility 
traces" did not significantly alter this basic finding. 

Why did subjects show better learning performances than 
the simulated agent? In the machine learning literature, a 
distinction is made between model-free versus model-based 
reinforcement learning agents. The agent described above 
is an instance of a model-free agent. Although model-free 
agents are more common in the literature, we hypothesized 
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Figure 3: Left: Learning curves for the simulated agent trained via Q-learning (solid line) and for the human subjects (dotted 
line) in experimental conditions using linear causal structures (error bars plot standard deviations). Right: Identical to the left 
graph except that the simulated agent learned a model of how actions influenced the environment, and used this model to reason 
about good actions to take at each time step. 

that a model-based reinforcement learning agent may pro- 
vide a better account of our subjects' performances. Model- 
based agents typically learn faster than model-free agents, al- 
beit with greater computational expense. Based on real-world 
experiences, a model-based agent learns an internal model of 
how its actions influence the environment. The agent updates 
its Q-values from both real-world experiences with the envi- 
ronment and from simulated experiences with the model (see 
Sutton and Barto, 1998, for details). 

In our simulations, the model was an artificial neural net- 
work. Its six input units corresponded to the six possible ac- 
tions or key presses (an action variable could either increase 
or decrease in value, and there were three action variables). 
Its nine output units corresponded to the nine possible influ- 
ences on the comparison objects' shape parameters (a shape 
parameter could either increase in value, decrease in value, or 
maintain the same value, and there were three shape parame- 
ters). The network did not contain any hidden units. 

When updating its Q-values, the model-based agent used 
"prioritized sweeping' (Moore & Atkeson, 1993). This is an 
efficient method for focusing Q-value updates to state-action 
pairs associated with large changes in expected reward. Large 
changes occur, for example, when the current state is a non- 
goal state and the agent discovers a previously unfamiliar ac- 
tion that leads to a goal state. Large changes also occur when 
the current state is a non-goal state, and the agent discovers a 
new action that leads to a new non-goal state known to lie on 
a path toward a goal state. 

In brief, our simulations used prioritized sweeping as fol- 
lows. At each moment in time, the model-based agent main- 
tained a queue of state-action pairs whose Q-values would 
change based on either real or simulated experiences. For 
each update based on a real experience, there were up to N 
updates based on simulated experiences.  The items on the 

queue were prioritized by the absolute amount that their Q- 
values would be modified. For example, suppose that at some 
moment in time, state-action pair (s",a') had the highest pri- 
ority. Then Q(s',a') would be updated. If performing this 
update on the basis of simulated experience, the agent used 
the model to predict the resulting new state. In addition, the 
agent also used the model to examine changes to the Q-values 
for all state-action pairs predicted to lead to state s', known as 
predecessor state-action pairs. These predecessor state-action 
pairs were added to the queue, along with their corresponding 
priorities. 

The simulations with the model-based agent were identi- 
cal to those with the model-free agent. However, the model- 
based agent used different parameter values. Its discount rate 
Y was set to 0.3, its learning rate a was set to 0.05, and N, the 
number of Q-value updates based on simulated experiences 
for each update based on a real experience, was set to 5. In 
preliminary simulations, these values were found to be best 
in the sense that they led to performances that most closely 
matched human performances. 

The combined results for the experimental conditions us- 
ing linear causal structures are shown in the right graph of 
Figure 3 (once again, results for the other experimental con- 
ditions were similar). The learning curves of the model-based 
agent are more similar to those of human subjects than the 
curves of the model-free agent. Indeed, the curves of the 
model-based agent and of the human subjects are nearly iden- 
tical. Our findings suggest (but do not prove) that subjects 
may have achieved near-optimal performances on the percep- 
tual matching task by building internal models of how their 
actions influenced the external environment. By using these 
models to reason about possible action sequences, subjects 
quickly learned to perform the task. 
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Conclusions 

Sequential decision-making tasks are commonplace in our 
everyday lives. Here, we studied whether people were suc- 
cessful at learning to perform a perceptual matching task, an 
instance of a sequential decision-making task. We used two 
benchmarks to evaluate the quality of subjects' learning. One 
benchmark was based on optimal performance as denned by a 
dynamic programming procedure. The other was based on an 
adaptive computational agent that used Q-learning to learn to 
perform the task. Overall, our analyses suggest that subjects 
learned to perform the perceptual matching task in a near- 
optimal manner. When doing so, subjects learned, at least 
partially, the causal structure underlying the task. In addition, 
subjects' learning curves were broadly consistent with those 
of model-based reinforcement-learning agents that built and 
used internal models of how their actions influenced the ex- 
ternal environment. 

The cognitive science literature now contains several stud- 
ies of human performance on sequential decision-making tasks. 
Some studies have suggested that human performance is op- 
timal, whereas other studies have suggested the opposite. To 
date, our field does not have a good understanding of the 
factors influencing whether people will achieve optimal per- 
formance on a task. Future research will need to focus on 
this critical issue. Previous articles in the literature suggested 
that perceptual aliasing (Stankiewicz et al., 2006) or the ex- 
istence of actions leading to large rewards in the short-term 
but not the long-term (Neth, Sims, & Gray, 2006; Gureckis 
& Love, 2009) seem to be factors leading to sub-optimal per- 
formance. Here, we propose a new understanding of when 
people will (or will not) achieve optimal performance. We hy- 
pothesize that people will achieve near-optimal performance 
on sequential-decision making tasks when they can detect the 
effects of their actions on the environment, and when they 
can represent and reason about these effects using an internal 
mental model. 
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