
 

 
NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

MICROSTRUCTURE AND DYNAMIC FAILURE 
PROPERTIES OF FREEZE-CAST MATERIALS FOR 

THERMOBARIC WARHEAD CASES 
 

by 
 

Yi Ming Tan 
 

December 2012 
 

Thesis Advisor:  Joseph Hooper 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
December 2012 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  
MICROSTRUCTURE AND DYNAMIC FAILURE PROPERTIES OF FREEZE-
CAST MATERIALS FOR THERMOBARIC WARHEAD CASES 

5. FUNDING NUMBERS 
 

6. AUTHOR(S) Yi Ming Tan 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA 93943–5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER   

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
  AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT  
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words)  
 
We consider the microstructure and dynamic failure of ice-templated freeze cast alumina materials that are currently 
being studied for novel warhead cases. The freeze-cast matrix is a porous, cellular structure of overlapping lamellae 
similar to many biomaterials such as nacre. This lightweight matrix provides a high-toughness shell that can be filled 
with polymers or combustible reactive materials. Three porosities of alumina freeze-cast structures were studied, and 
a systematic variation in microstructural properties such as lamellar width and thickness was observed with changing 
porosity. Dynamic impact tests were performed in a single stage light-gas gun to examine the failure properties of 
these materials under high strain-rate loading. Nearly complete delamination was observed under impact, along with 
characteristic cracking across the lamellar width. Average fragment size decreases with increasing porosity, and a 
theoretical model was developed to explain this behavior. Based on an energy balance between kinetic, strain, and 
surface energies within a single lamella, we are able to predict the characteristic fragment size using only standard 
material properties of bulk alumina. 

 

14. SUBJECT TERMS reactive materials, fragmentation, explosives, warheads, advanced materials, 
freeze-cast 

15. NUMBER OF 
PAGES  

61 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)  
 Prescribed by ANSI Std. 239–18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 

MICROSTRUCTURE AND DYNAMIC FAILURE PROPERTIES OF FREEZE-
CAST MATERIALS FOR THERMOBARIC WARHEAD CASES 

 
 

Tan, Yi Ming 
Civilian, Defence Science and Technology Agency (Singapore) 

B.Eng (Mechanical Engineering), National University of Singapore, 2005 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN APPLIED PHYSICS 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
December 2012 

 
 

Author:  Tan, Yi Ming 
 
 
 

Approved by:  Dr. Joseph Hooper 
Thesis Advisor 

 
 

Dr. Andres Larraza  
Chair, Department of Physics 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

ABSTRACT 

We consider the microstructure and dynamic failure of ice-templated freeze cast alumina 

materials that are currently being studied for novel warhead cases. The freeze-cast matrix 

is a porous, cellular structure of overlapping lamellae similar to many biomaterials such 

as nacre. This lightweight matrix provides a high-toughness shell that can be filled with 

polymers or combustible reactive materials. Three porosities of alumina freeze-cast 

structures were studied, and a systematic variation in microstructural properties such as 

lamellar width and thickness was observed with changing porosity. Dynamic impact tests 

were performed in a single stage light-gas gun to examine the failure properties of these 

materials under high strain-rate loading. Nearly complete delamination was observed 

under impact, along with characteristic cracking across the lamellar width. Average 

fragment size decreases with increasing porosity, and a theoretical model was developed 

to explain this behavior. Based on an energy balance between kinetic, strain, and surface 

energies within a single lamella, we are able to predict the characteristic fragment size 

using only standard material properties of bulk alumina. 
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I. INTRODUCTION 

A. MOTIVATION 

In this thesis we consider the morphology and dynamic failure of ice-templated 

freeze cast materials for novel warhead casings. The freeze casting process used in this 

work involves freezing, sublimating and sintering an alumina/water slurry to create a 

cellular, porous alumina structure. This porous template can then be filled with other 

materials, such as elastomeric polymers for additional lightweight support. In 

collaboration with researchers at Lawrence Livermore National Laboratory, we are 

considering the use of these templates as novel ways to create reactive material (RM) 

composites. RMs are energetic compounds that are insensitive under normal conditions 

but can undergo rapid combustion under dynamic loading from a shock wave or high-

velocity impact. RM composites increase the lethality of a warhead either by providing 

additional fuel for post-detonation combustion and enhanced blast, or by generating 

reactive fragments that burn after striking a secondary target. Many are designed to 

replace traditional steel or aluminum components in warheads or missile casings, adding 

additional lethality from metal combustion without significant increases to weight. 

Successful infiltration of a reactive metal into a freeze-cast shell may provide a tough, 

lightweight material than will generate small fragments with significant metal surface 

area under explosive loading. Previous work on freeze cast materials, both filled and 

unfilled, has been limited mainly to static loading; here our goal is to understand the 

relationship between the microstructure of freeze-cast reactive materials and their fracture 

and fragmentation properties under rapid loading such as would occur in warhead 

environments. 

Fragmentation and post-mortem recovery is essential in determining the failure 

properties and, ultimately, the lethality from RM casings. In the freeze casting process, 

the porosity of the material is a direct replica of the solvent content and can be 

systematically varied over a wide range of values. The change in porosity may also be 

linked to changes in microstructural morphology, such as the dimensions of the cellular 

structure. The manner in which porosity and microstructural changes affect dynamic 
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fracture has, to our knowledge, not been examined in these materials. An improved 

understanding of these fundamental properties of freeze-cast matrices will allow for 

better synthesis efforts when reactive materials are incorporated into the porous regions. 

B. OBJECTIVES 

The objectives of this thesis are to analyze the microstructure of freeze cast 

materials of different porosities, examine their fragmentation properties under dynamic 

loading, and establish a relationship between the microstructure and the fragmentation 

properties. 
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II. BACKGROUND 

A. REACTIVE MATERIALS 

 Reactive materials are generally solid energetic materials that are insensitive to 

shock and heat as compared to common organic explosives and propellants. When 

subjected to dynamic loading or extremely high temperatures, reactive materials release 

significant amounts of energy through standard combustion processes. This release of 

energy occurs over much slower timescales than typical detonation or deflagration waves. 

While a wide range of materials could feasibly fall into this category, recent Navy 

interest has focused on combustible metals with high energy densities. Fragment clouds 

of metallic RM warhead casings can improve the overall blast impulse and lethality at 

secondary targets as compared to standard case materials. While a number of large-scale 

tests have demonstrated improved lethality against realistic targets when using reactive 

material casings, there is limited understanding of many of their basic physical properties, 

particularly in the areas of combustion and fragmentation.  

B. FRAGMENTATION 

One of the key pieces of experimental data in this thesis is recovered fragment 

distributions from freeze-cast matrices following dynamic loading. In this section we 

present some of the basic analytic analysis used in understanding high strain-rate 

fragmentation. In the case of reactive materials, the size distribution of fragments (and 

thus their surface area) has a dramatic effect on the combustion and lethality properties of 

the case. Our goal is both to understand the experimentally collected data and also inform 

a theoretical model to predict an average fragment size from fragmentation of a freeze-

cast matrix. 

The simplest geometric fragment distribution is the exponential or Lineau1 

distribution, where the location of random breaks or fracture points in a warhead case is 

described by Poisson statistics. Consider a length of warhead case, unrolled into a one-

dimensional line. Fractures along this line create one side of a fragment, and their 

appearance is assumed to be fully uncorrelated. The probability of locating n number of 
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fractures within the length l in a the warhead case with an average spacing between 

breaks 𝜆 is  

/( / )( , )
!

n ll eP n l
n

λλ −

=
. 

The probability of having no fractures within a length l is 

/(0, ) lP l e λ−= . 

The probability of finding a single fracture in the differential length dl is  

1( , )P l dl dl
λ

= . 

Combining these two expressions gives the fragment length probability density function 

(PDF) describing the number distributions of fragments over their length 

/1( ) lf l e λ

λ
−= . 

The corresponding cumulative distribution function (CDF) for the number of fragments 

of a length less than or equal to l is 

/( ) 1 lF l e λ−= − . 

The only parameter in this distribution is the average fragment size. This can either be a 

fit parameter or estimated from a number of theoretical models. One common approach 

was introduced by Grady, who used an energy-based relation relating fragment number to 

fracture toughness. In the Grady1 model the kinetic energy and strain energy of an 

expanding sphere of mass is balanced against the energy required to form a new fracture 

surface. A surface spontaneously forms and the relation to the average fragment length is  

2
312 f

o

K
x

cρ ε

 
=   
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where ρ is the density of the fragmented material, c is the longitudinal sound speed, ε is 

the strain rate, and fK is the dynamic fracture toughness. 

In what follows, we use the Lineau distribution to treat the quasi-1D 

fragmentation of lamella within the freeze-cast matrix. In the spirit of Grady’s model, we 

develop a new energy balance theory to treat the fragmentation of our freeze cast 

composites, and compare the predicted size to fits of experimental data with the Lineau 

distribution. Additional details are given in the experimental results section. 

C. FREEZE CAST MATERIALS 

Freeze casting technology combines compounds such as aluminum oxide and 

poly(methyl methacrylate) (PMMA) to develop a cellular porous structure. In this 

process, the ceramic powder is mixed with a solvent, forming a suspension. The 

suspension is frozen and then sublimated to remove the solvent, leaving behind a porous 

template. The porosity is a direct replica of the solvent when in solid state in the 

suspension. Subsequently, the porous structure can be infiltrated with a variety of 

materials, such as a standard polymer like PMMA. This hybrid material is believed to 

exhibit high specific strength and toughness and at the same time, is lightweight and able 

to withstand high temperatures.6, 7 Nacre, a natural material that is a strong and tough 

coating on shells, is an inspiration to the research into the freeze-casted materials. When 

water is used as the solvent for the freeze casting process, a layered structure with 

dendritic features on the surface of the layers is formed. The dendrites provide roughness 

to the surface. Filling the structure with polymer increases the material’s toughness 

through several energy dissipation mechanisms, including uncracked-ligament bridging 

and frictional sliding along the rough dendritic surface7,8. The freeze casting process 

produces well-controlled pore structures, hence providing an advantage over other 

conventional methods of making porous ceramics9.  

1. Freeze Casting Process 

In freeze casting, the process can be divided into four steps, illustrated in Figure 

1. 
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Figure 1.  Freeze cast process: slurry preparation, solidification, sublimation and sintering 

(From Ref 6).  

a. Step 1: Preparation of the Slurry 

The ceramic powder is dispersed in the solvent. A binder is added to 

provide strength to the structure. This is essential because after the solvent is removed 

during the sublimation stage, the green bodies can collapse if there is no binder.  

b. Step 2: Controlled Solidification of the Slurry 

During this critical step, continuous crystals of solvent are formed, under 

certain conditions, and grow into the slurry. Ceramic particles in suspension in the slurry 

are expelled by the moving solidification front, concentrated and entrapped in-between 

the crystals. To achieve this natural segregation, the slurry is poured in a mold, which 

undergoes isotropic or anisotropic cooling to induce homogeneous or directional 

solidification. The solidification conditions are selected based on the initial choice of the 

solvent. The device should also accommodate the solidification volume change. The 

temperature of the mold is regulated to control the speed of the solidification front. The 
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cooling conditions will determine the characteristics of the growing solvent crystals and 

hence the final characteristics of the porosity.  

c. Step 3: Sublimation of the Solvent 

When the sample is completely solidified, it is kept at low temperature and 

reduced pressure, sublimation conditions determined by the physical properties of the 

solvent. The solidified solvent is then converted into gas, leaving behind a porous green 

body.  

d. Step 4: Sintering of the Green Body 

Once the solvent has been totally removed, the obtained green body can be 

sintered with a conventional sintering technique. The low strength of the green body 

prevents any use of pressure assisted sintering. Due to the low amount of binder used, no 

additional binder burnout process is required. During the sintering stage, the 

macroporosity created by the solvent crystals is retained while the microporosity is 

eliminated from the ceramic walls. 

2. Ice-Templated Freeze Cast Materials 

In this section, we discuss freeze materials where water is used as the solvent. 

Water is one of the most easily available solvents for the process, and all samples 

produced for this work at LLNL used this manner of ice-templating to form the final 

freeze-cast matrix. The microstructure in this case has a lamellar structure in which the 

ceramic layers are parallel to each other and very homogeneous throughout the entire 

sample. Particles trapped in between the ice dendrites lead to a dendritic surface 

roughness of the walls, just as in nacre.  

 The morphology of ice-templated freeze cast material6 can be described based on 

the basic crystallographic (Figure 2(a)) and crystal growth characteristics of ice. The ice 

front velocity perpendicular to the crystallographic c axis is much higher than the ice 

front velocity parallel to this axis (Figure 2(b)). Thus the ice crystals will grow much 

faster along the a axis, creating a highly anisotropic structure. The thickness of the ice 

crystals that is along the c axis will remain small.  
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Figure 2.  (a) Crystal structure of ice, (b) anisotropy of crystal growth kinetics, leading to 

lamellar ice crystals. The anisotropy of the growth kinetics is reflected in the final 
porous structures (c) obtained after sublimation and sintering. The direction 

perpendicular to the ceramic platelets corresponds to the limited growth direction 
of ice crystals (From Ref 6). 

3. Surface Roughness of Lamellae 

The surface of the lamellae in ice-templated materials shows dendritic-like 

features (Figure 3), a result of the ice formation. These dendritic-like features have 

generally uniform size and distribution through the lamellae and run along the 

solidification direction. It is observed that the surface roughness is found only on one side 

of the lamellae. This is mainly due to the growth pattern of ice crystals10. In general, 

since the roughness is directly related to the morphology of the solvent crystal, every 

solvent will yield a different roughness. 
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Figure 3.  Dendritic surface of (a) alumina using water as a solvent (b) silicon nitride using 

water as a solvent (From Ref 6). 

4. Properties 

Several studies have indicated that freeze-cast ceramics have higher compressive 

strength than their individual material components. This is attributed to the morphology 

of the pores obtained. In an alumina and PMMA ice-templated material, it is found that 

the plane strain KIc fracture toughness is almost double compared to a non-freeze cast 

alumina-PMMA mixture7. 

In the alumina-PMMA matrix or similar form of ceramic-polymer matrix, there 

are two main forms of deformation: inelastic deformation within the polymer layers and 

microcracks within the ceramic layers. These ductile and brittle deformations appear to 

be distinct, with little evidence of interaction. Uncracked-ligament bridges can be formed 

if these distinct ductile and brittle deformations are triggered ahead of the main growing 

crack. To break these bridges, energy is required and this reduced the crack tip 

advancement and leads to ductile-phase toughening. The elongated voids in the polymer 

layers function as a crack arrester too. In the lamellar structures, the crack deflection and 

“delamination” along the interface promotes the formation of uncracked-ligament 

bridging, as well as frictional sliding along the rough delaminated interface. This 

increases the toughness of the material through energy dissipation within the soft phase7. 

Hence such materials with an ice-templated structure display a higher toughness when 

compared to simple mixture of their constituents. 
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With their high compressive strength and toughness, we are (in collaboration with 

LLNL) interested in exploring the feasibility of using freeze-cast materials in warhead 

casings. The porosity of these templates allows them to be infiltrated by metals for extra 

strength and combustion energy release, but initially our goal is to investigate the plain 

freeze-casted material with no infiltration to gain a better appreciation of the 

fragmentation behavior of this ceramic material with a unique structure.  
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III. MORPHOLOGY OF FREEZE CAST MATERIALS 

A. SAMPLE 

In this thesis, we will be examining the microstructure and dynamic failure 

properties of three freeze cast materials provided by the Energetic Materials Center at 

Lawrence Livermore National Laboratory (LLNL). All are made of alumina, but with 

differing pore content and microstructure. All freeze cast samples considered here were 

synthesized in using water as the solvent, so that the porosity of each type of sample is 

directly related to the volume of water in the suspension of the starting slurry. Three 

different porosities (46%, 60%, and 75%) are considered in this study. Figure 4 shows a 

sample of one of the raw freeze cast cylinders.  

 
Figure 4.  Photo of freeze cast sample (OC-FC-039A). 

B. ALUMINA POWDER MORPHOLOGY 

The microscopic structure of each freeze cast sample and a reference alumina 

powder sample were characterized by a Zeiss Neon 40 field emission FIB-SEM. Electron 

microscopy images were processed using ImageJ 1.46r software to evaluate 

microstructural properties. We first consider our alumina powder samples, which contain 

identical particles as those used for the ice-templated matrices. The SEM images of the 

two types of powder, one sintered and one unsintered, are shown in Figure 5. The powder 

was compared to those used by S. Deville etc5 and the images show the similarity in the 

morphology of the powder. Thermal etching due to the sintering process is observed on 
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the majority of the alumina grains. In general the morphology of our starting powder is 

essentially identical to that of previous work. The powder particle size was also measured 

using a Horiba Laser Scattering Particle Size Distribution Analyzer LA-950. Figure 6 

shows the measured particle size distribution. There are two peaks observed in the 

particle size distribution; the first peak at 141.5 nm corresponds to the intrinsic particle 

size while the second peak at 1.510 μm is due to agglomeration of the powder.  

 
Figure 5.  SEM micrographs of alumina powder (a) sintered and (b) unsintered. 

a 

b 
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Figure 6.  Powder particle size distribution results from the HORIBA.  

C. GENERAL FEATURES OF THE MICROSTRUCTURE  

The morphology of the cellular freeze-cast materials is closely related to the 

crystallographic and crystal growth characteristics of ice. Figure 7 shows representative 

SEM micrographs of the three porosities under consideration in this work. Lamellae and 

channels are observed in the freeze cast samples. The orientation of the lamellae is 

generally parallel to the direction of the solidification. The alumina particles within each 

lamella are densely packed and exhibit terracing due to thermal etching from the sintering 

process (Figure 8). Minimal residual porosity is observed within the lamellae themselves. 

The surface of the lamellae contains dendritic features, which range from 3 to 12 μm high 

depending on the porosity level of the sample. It is also observed, consistent with 

previous literature, 10 that the dendritic surface features are found only on one side of the 

lamellae while the other surface remains smooth.  

One additional microstructural feature that is more prominent in the lowest 

porosity sample is the trans-lamellar ceramic bridges (Figure 9). A large number of small 

bridging structures can be observed between adjacent lamellae; this is distinct from the 

dendritic structure mentioned in the previous paragraph. The formation of these ceramic 

bridges is due to trapping of ceramic particles by the growing ice7. 
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Figure 7.  SEM micrograph showing the microstructure of samples with different porosity. 

The cross-section is parallel to the ice front. Total porosity of (a) 46 % (b) 60% 
(c) 75%.  

 

a 

b 

c 
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Figure 8.   SEM micrograph of (a) ceramic lamellae with dense microstructure (b) high 

magnification of lamella showing the densely packed alumina grains.  

 
Figure 9.  SEM micrograph of a ceramic bridge observed in a 46% porosity sample. 

a 

b 
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We next consider the variation in microstructure as the porosity changes. Six 

main characteristics were taken from measurements over multiple SEM images: the 

alumina grain diameter, the size of porous channels between lamellae, the lamellar 

thickness, the width of lamellae perpendicular to the solidification front direction, the 

height of the dendritic surface ridges and finally the spacing between ridges on the 

surface of the lamella. Figure 10 and 11 summarize the dimensions measured from a 

large number of SEM micrographs of the three samples. The grain diameter for the three 

samples is observed to be relatively consistent with an average diameter of 1.7 μm. This 

is also similar to the grain diameter of the sintered alumina powder.  

In all other parameters measured (other than the distance between the ridges), 

there is a trend observed where the dimensional values decrease with increasing porosity. 

The width of the lamella, for example, is defined as a distance between junctions or 

interfaces between lamellae and decreases rapidly with increasing porosity (Figure 11). 

When handling the three types of samples, it was also noted that the sample with the 

highest porosity is considerably more brittle compared to the lowest porosity sample. 

This is likely related to the thickness of the lamellae in the samples. No lamellar length is 

measured, but we have extracted SEM images of fragments and observed that the relative 

length of the lamellae is much greater than their width. 

 
Figure 10.  Physical parameters of freeze cast samples of varying porosity. 
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Figure 11.  Lamellar width of freeze cast samples.  

Surface area and porosity are key physical parameters that will greatly affect 

future efforts to infiltrate this material with reactive metals. To obtain a specific surface 

area, BET measurements were performed using a Quantachrome Instruments Nova 4200e 

Surface Area and Pore Size Analyzer, measuring the nitrogen adsorption isotherm at 77 

K. Before measurement, the samples were degassed at 300 °C for 2.5 hours. The surface 

areas were obtained from the adsorption isotherms. Two runs were conducted for all three 

samples to ensure consistency in the results. Table 1 summarizes the results for the 

samples. The average surface area results indicated that with increasing porosity the 

surface area also increases, as would be expected.  

 

Table 1.   Summary of BET measurements. 

Sample Porosity 
(%) 

Average Surface Area 
(m2/g) 

OC-FC-039A 46 0.638 
OC-FC-042A 60 0.889 
OC-FC-040D 75 1.423 
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IV. EXPERIMENTAL METHODOLOGY 

To investigate the fragmentation properties of the freeze cast material, low 

velocity gas gun impact tests were conducted on the freeze cast samples. The impact test 

uses a gun-propelled projectile to impact an intermediate striker bar which rapidly 

crushes the sample then unloads the stress. Fragments are fully contained with a chamber 

to allow for post-mortem recovery and analysis. 

A. SAMPLE PREPARATION 

 Ice-templated alumina freeze-cast structures were prepared at LLNL, and were 

cut to smaller dimensions using a high speed diamond saw. Due to the brittleness of the 

samples, achieving samples of precisely identical height was challenging. However, the 

difference in height did not affect the subsequent experimentation, and all fragment 

distributions were normalized to the total mass collected from the sample. Each sample 

for fragmentation testing was bonded onto the anvil in the containment unit by epoxy as 

seen in Figure 12. With the limited samples available, the sample was orientated with the 

lamellar layers parallel to the axis of impact to investigate the dynamic failure properties 

of the freeze cast sample in its most susceptible orientation.  

 
 

Figure 12.  Freeze cast sample (60-40-S1) bonded to the anvil. 
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B. LOW VELOCITY GAS GUN IMPACT TEST  

The test setup and standard operating procedure for the low velocity gas gun 

impact test is also based on the apparatus and test procedure developed previously by 

Roderick Wilson5. The sample is held within a fragmentation containment unit (Figure 

13) so that all fragment particles from the impact test could be collected. 

 
Figure 13.  Fragmentation containment unit, assembled photo (From Ref. 5).  

A schematic of the fragmentation containment unit is shown in Figure 14. Flat 

aluminum impactors were launched from a 3” light-gas gun and impacted the striker bar. 

The bar was guided by brass bushings in the front flange and rapidly impacted and 

fragmented the sample; a layer of rubber was used to allow the striker bar to unload stress 

and prevent full compression of the sample. All freeze-cast samples fragmented severely 

under this rapid loading, and the small particles resulting from this event were carefully 

removed from the chamber.  
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Figure 14.  Schematic illustrating the fragmentation containment unit. 

C. SIEVING PROCESS 

Fragments were collected post-shot and carefully sieved to determine their mass 

distribution as a function of a linear particle size. A standard sieve stack (Figure 15) was 

used; this consists of a nested column of sieves with wire mesh screens, in which each 

screen will allow only particles of that specific size or smaller to pass through. The top 

sieve has the largest holes in the mesh screen while each lower sieve has a smaller screen 

opening. The contents of each sieve are weighed in a microbalance, giving the necessary 

data required for a mass probability density function distributed over linear size.  
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Figure 15.  Typical sieve stack (From Ref. 5). 

To prevent secondary fragmentation from occurring, each sieve was gently 

shaken by hand when sifting the samples. The sieves used for these experiments ranged 

from 4.75 mm down to 45 microns (4.75 mm, 2.8 mm, 1.7 mm, 1.18 mm, 850 microns, 

600 microns, 425 microns, 355 microns, 300 microns, 212 microns, 180 microns, 125 

microns, 106 microns, 75 microns, and 45 microns). Any fragments that were less than 

45 microns were weighed together and noted. After each shot, all fragments were 

collected, weighed together, and then sieved to determine their distribution. These masses 

were then converted into a continuous probability density function in which each sieve 

covered the range between itself and the next highest sieve. Some amount of material was 

compressed against the anvil and not ejected laterally; in this case, the recompressed 

fragment was removed and weighed separately.  
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V. TEST RESULTS AND ANALYSIS 

A. INITIAL TEST CONDITIONS 

Before the conduct of the impact test, measurements were taken for all samples. 

The sample dimensions are listed in Table 2 and information on the shot parameters are 

listed in Table 3.   

Table 2.   Sample dimensions. 

Name Material Mass 
(g) 

Diameter 
(mm) 

Height 
(mm) 

Porosity 
(%) 

46–54-S1 Alumina 3.2861 16.25 6.43 46 
60–40-S1 Alumina 3.6755 15.84 11.78 60 
75–25-S1 Alumina 2.7033 15.82 14.30 75 

 

Table 3.   Shot table. 

Name 
Impactor 

Mass 
(g) 

Breech 
Pressure 

(psi) 

Estimated 
Impactor 
Velocity 

(m/s) 

Striker 
Mass 

(g) 

Rubber 
Insert 

Thickness 
(mm) 

Estimated 
Striker 
Velocity 

(m/s) 

46–54-S1 479.8 102 103 1248.8 6.500 39.6 
60–40-S1 479.4 100 102 1266.7 5.922 38.6 
75–25-S1 479.7 99 101 1258.2 5.939 38.5 

 

B. FRAGMENT DISTRIBUTIONS 

We next consider the experimental fragment distributions for our samples, which 

represent some of the key data for this thesis. Distributions are given as a mass PDF over 

a linear size; experimental data points are given at the midpoint of each sieve size and are 

normalized to the total mass recovered after each individual shot. For shot 46–64-S1, an 

additional 1.441% of mass was recovered after sieving, with the increase due to a small 
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amount of contaminants present during the sieving process. Extra precaution was taken to 

ensure the sieves were thoroughly cleaned prior to the sieving process to mitigate this 

outcome. The data for all three low velocity gas gun shots is shown in Figure 16, where 

the solid lines represent a fit to experimental data with a Lineau distribution and symbols 

represent experimental data points. All plots except that of the 46% porosity are shifted 

upwards for clarity. The Lineau distribution provides a good fit to the fragment 

distribution for all three samples. Each fragment distribution shows a distinct maximum 

and the average fragment size decreases as the porosity of the sample increases. All three 

distributions shows peaks in the general range of 100 μm; in the sections below we 

develop a model for predicting the average fragment size, which is in good agreement 

with the experimental fit values shown in Figure 16. 

 
Figure 16.  Mass PDF vs. size for freeze cast material with different porosity. 

C. MICROSTRUCTURE ANALYSIS OF FRAGMENTS 

The fragments collected from the impact test were examined under SEM to 

determine typical fracture patterns and fragment morphology. Our main goal is to assess 

how a freeze-cast matrix might behave under the rapid loading that would occur in high-
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velocity impact or explosive loading. In the SEM micrographs, we attempted to identify 

any characteristic fracture behavior, such as trans- or intergranular cracking, crack 

bridging, and blunting.  

Delamination of the layers and fragmentation across the lamellae (perpendicular 

to the longest direction of the lamellae) were common features for all three samples with 

different porosities. Delamination of the layers occurred at the intersection of adjacent 

lamellae, which were deemed to be the weakest link in the lamellar structure. On each 

lamella, the cracks almost always propagated across the lamellar width, slicing the 

lamella into smaller fragments. This was evident on the fragments where the broken 

edges were commonly perpendicular to the direction of the dendritic ridges. The dendritic 

features of the ice-templated samples run parallel to the direction of growth of the 

lamella. Figure 17 shows a representative 4.75 mm fragment for the 46% porosity sample 

where delamination occurred at the broken edges and cracks were observed to be 

propagating across the lamellae.  

 
Figure 17.  SEM micrograph of 4.75mm fragment for porosity of 46%. 

The lowest porosity sample was observed to have a higher surface roughness on 

the side of the lamella with dendritic features when compared to the samples with 60% 

and 75% porosity (Figure 18).  The surface roughness of the lamellae decreases with 
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increasing porosity. The 46% porosity sample fragments also displayed fewer cracks 

across the fragments; in those cases where cracks did propagate, frequently the crack 

would blunt as it was crossing a dendritic ridge on the rough surface (Figure 19). This 

further supports the idea that lamellae with a rough surface may reduce the probability of 

complete crack propagation across the structure and result in a larger average fragment 

size. The larger number of cracks across the higher porosity sample, as observed in 

Figure 18(c), is consistent with this idea and with the smaller average fragment 

dimension observed experimentally.  

In Figure 20 we present fragment edges, showing sections of exposed fracture 

surface from fragments with a relatively smooth and flat grain structure. These fracture 

surfaces generally have a transgranular character, but very often a mixture of trans- and 

intergranular failure was also observed. Crack bridging was also commonly observed in 

many samples. We note that in these highly heterogeneous samples a wide variety of 

loading conditions and strain rates may occur, and thus drawing general conclusions from 

individual cracks is challenging.  
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Figure 18.  SEM micrograph of 500μm fragment for porosity α = (a) 46% (b) 60% (c) 75%. 

a 

b 

c 
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Figure 19.  SEM micrograph of 500μm fragment for sample of porosity α = 46% showing 

crack bridging and blunting at a dendritic ridge. 
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Figure 20.  SEM micrograph of (a) 500μm fragment for sample of porosity α = 46% (b) 

55μm fragment for sample of porosity α = 75%. Multi-mode cracking mechanism 
is observed.  

 

a 

b 
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D. FRAGMENTATION MODEL 

Based on the morphological features discussed above, we now consider a simple 

analytic model for the fragmentation of these ice-templated alumina structures under 

dynamic loading. We assume that under loading the majority of the lamella separate at 

junction interfaces, and that the measured fragmentation distribution is primarily related 

to crack initiation and merging across the lamellar width. A schematic of our model is 

given in Figure 21, where we assume tensile plane stress on the lamella and a candidate 

cylindrical fragment of radius a within the lamella.  

 
Figure 21.  Schematic of the energy balance model for a cylindrical fragment formed within a 

detached lamella.  

We assume, with Grady11, that the relevant kinetic energy for a candidate 

fragment is the motion relative to its center of mass. This local kinetic energy is balanced 

against two additional terms: first, the surface energy required to create N cylindrical 

fragments out of the lamellar structure. Second, we must consider the strain energy as the 

lamella expands in tension; we assume that fragmentation begins at a critical stress σc 

which is related to the tensile strength of the lamellar material (in our case, bulk 

alumina). We first consider the local kinetic energy T. A cylindrical shell at a distance r 

from the center of a candidate fragment has a mass of 

2dm r drπ τρ= , 

where ρ is the ceramic bulk density and τ is the lamellar thickness. Its kinetic energy can 

be written as 
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21
2

dT r dm=  , 

where the expansion velocity 
.
r can be given in terms of a density expansion rate 

.
ρ , 

2
r rρ

ρ
 

= − 
 


 . 

The total kinetic energy of a collection of 2/N L aω π= in a lamella of length L is given 

as  

( )2

0

1a
T N dT L aωτρ ε

π
= =∫   

where we have introduced the strain-rate, / 2ε ρ ρ= −  . We assume, following Glenn and 

Chudnovsky12, that there is no residual strain remaining in the newly formed fragments 

after fracturing. The initial strain energy density is  

( )
2

1 .c
oU

E
σ ν= −  

Thus the total elastic strain energy available for fragmentation can be written 

( )2 1c
LU

E
ωτ σ ν= − , 

where E is the Young’s modulus of bulk alumina and ν is its Poisson’s ratio. Finally, we 

consider the change in surface energy when the lamella is broken into a collection of N 

cylindrical fragments. The initial surface energy is given by  

i aS γΓ = , 

where γ is the specific surface energy 2 2/ 2icK cγ ρ= , Sa is the total surface area of the 

unfractured lamella, and Kic is the static fracture toughness. The total residual surface 

energy Γres when N cylindrical fragments of radius a are formed is  

( )2
2 2 2res n

LN a a
a
ωγ π τ π
π

Γ = Γ = + . 
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The equilibrium fragmentation condition is given by a balance of these four 

energies, 

i resT U+ +Γ = Γ . 

Substituting the respective energy equations in gives the following cubic equation 

( )2
3

2 2 2 2

4 1 8 8 8 0.ca a
E L

σ ν γ γ γ
ρε ρε ωρε ρε

 −
+ + + − = 
    

 

Solving the above equation for the equilibrium fragment size a yields 

2

a κ β
β
−

=  

where 

 ( )
1

32 3β λ λ κ= + +  

 
2

2 icK
c

λ
ρ ε

 
= −  

 
 

 
( )

( )2 2
2

4 1
3 c ic

LK
Lc
ωκ σ ν
ωρ ε

 +  = − +     
. 

We assume that the critical stress σc is equal to the tensile strength of the alumina 

material, which should be suitable in the case where widespread delamination occurs. 

The lamellar length L is very large compared to the average fragment size, and based on 

our observations we assume it is comparable to the overall sample dimensions (16 mm). 

The other lamellar dimensions, the thickness τ and the width ω, both decrease in a similar 

manner with increasing porosity (see Figure 10). The ratio between them appears to be 

roughly constant in our recovered fragments, and thus we assume that ω/ τ= ξ, where the 

constant ξ is approximately 20 for these particular ice-templated alumina structures. The 

strain rate at the lamellar level was estimated using a simple three-point bending strain,  

2

6 svτε
ω

= , 
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where sv is the striker velocity determined based on the conservation of momentum of the 

impactor on the striker bar. The strain rate values derived from this equation were in the 

range of 104 to 105, which are deemed to be reasonable for a dynamic loading. 

In Table 4 we present the alumina material properties used in this work. With 

these parameters, we made use of the fragmentation model to estimate the average 

fragment size of the freeze-cast specimens.  

 

Table 4.   Material properties used in the fragmentation model. 

Property Value 
Bulk alumina density ρ 3.984 g/cm3 
Sound speed c 10.2 km/s 
Fracture toughness Kic 3 MPa m  
Poisson’s ratio ν 0.231 
Critical stress σc 267 MPa 

 

We first consider the variation in average fragment size with the lamellar width, 

which has a direct relationship to porosity. The width dependence is plotted in Figure 22. 

As the lamellar width increases, the average fragment size increases and eventually the 

curve flattens off at a fragment size of approximately 160 microns. The experimental 

values, indicated by the data points on Figure 22, agree very well with the fragmentation 

model. If these data are representative, this implies that the fragmentation of the freeze 

cast material can be predicted from the balancing of the energies (surface energy, strain 

energy and kinetic energy) in the system.  

The Lineau fragment size distribution is a reasonable fit to the fragmentation 

behavior of the material. As observed in the SEM micrographs of the fragments, the 

cracks randomly slice each lamella across the length, similar to the Lineau one-

dimensional model with random breaks and lengths of the segments delineated by these 

breaks. While additional shots in other orientations are desirable, our initial work 

suggests that an energy balance model combined with a one-dimensional Lineau 
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distribution can, with only basic information on the microstructure, predict the average 

fragment size of ice-templated freeze cast materials under dynamic loading. 

 
Figure 22.  Average fragment size vs. lamellar width ω. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The microstructure and fragmentation behavior of ice-templated freeze cast 

materials were studied as a function of varying sample porosity. The porosity of the 

material is a direct replica of the solvent content and can be carefully controlled; in 

addition to a porosity change, however, there are also a range of changes in the 

microstructure and lamellae comprising the material. Lamellar thickness and width of the 

freeze cast samples decrease significantly as the porosity of the material increases. 

Impact tests were performed, and the general fracture trends under dynamic loading are 

consistent across all porosities; both trans- and intergranular failure are observed, and all 

samples show nearly complete delamination and cracking across the lamellar width. 

Recovered fragments were sieved and data points were fit to a Lineau distribution. 

Though the form of the distribution is the same in all cases, there is a systematic variation 

in which the average fragment size decreases with increasing porosity.  

A theoretical model was developed to predict the average fragment size of the 

freeze cast alumina material, based on a balance of kinetic, strain, and surface energy. 

The model predicts that as the lamellar width of the freeze cast sample increases, the 

average fragment size will increase accordingly. As the lamellar width is closely linked to 

the sample porosity, it correctly predicts that the lower porosity freeze cast material will 

have a larger average fragment size.  

B. RECOMMENDATIONS 

With the material properties and fragmentation model established for plain, 

unfilled freeze cast materials, more work needs to be done to validate the fragmentation 

model with filled samples and additional porosities. Additional material testing at the 

lamellar level is also desirable for our sample, as currently we are using bulk alumina 

material properties to treat a single lamella in the fragmentation model. With the unique 

structural properties of the freeze cast matrix, its local fracture toughness may deviate 

significantly from that of the bulk alumina.  
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The motivation of this current study is to derive a new form of warhead casing. 

Freeze cast materials with infiltrated reactive materials could optimize the performance 

of reactive materials by increasing the surface area of the reactive materials formed. The 

addition of reactive materials will affect the physical properties of the freeze cast sample 

due to the combination of ductile and brittle deformation that can occur within the layers.   

The fragmentation characteristics of infiltrated freeze cast samples should be investigated 

to determine the suitability of its application in warhead casings. 
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APPENDIX 

C. RAW DATA FOR 46–54-S1 EXPERIMENT 

Date: 6-Oct-12 
 Sample: 46–54-S1 

Mass before impact (g): 3.2861 
Fragment mass recovered (g): 2.1305 
Mass of recompressed sample (g): 0.9122 
Total Mass recovered (g): 3.0427 
Percentage loss during impact: 7.407% 
Mass after sieving (g): 2.1612 
Percentage loss during sieving: -1.441% 
Characteristic sample size (mm): 10.00 

   
Sieve size (mm)  Mass in sieve (g) Midpoint (mm) 
4.75 0.1324 7.375 
2.8 0.1597 3.775 
1.7 0.0627 2.25 
1.18 0.059 1.44 
0.85 0.0508 1.015 
0.6 0.0675 0.725 
0.5 0.0587 0.55 
0.425 0.0698 0.4625 
0.355 0.1083 0.39 
0.3 0.1336 0.3275 
0.212 0.272 0.256 
0.18 0.2008 0.196 
0.125 0.3898 0.1525 
0.106 0.0592 0.1155 
0.075 0.1929 0.0905 
0.045 0.09 0.06 
0 0.054 0.0225 
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D. RAW DATA FOR 60–40-S1 EXPERIMENT 

Date: 12-Oct-12 
 Sample: 60–40-S1 

Mass before impact (g): 3.6755 
Fragment mass recovered (g): 2.2259 
Mass of recompressed sample (g): 1.2371 
Total Mass recovered (g): 3.4630 
Percentage loss during impact: 5.782% 
Mass after sieving (g): 2.0905 
Percentage loss during sieving: 6.083% 
Characteristic sample size (mm): 10.00 

   
Sieve size (mm)  Mass in sieve (g) Midpoint (mm) 
4.75 0 7.375 
2.8 0 3.775 
1.7 0.0292 2.25 
1.18 0.0136 1.44 
0.85 0.0289 1.015 
0.6 0.047 0.725 
0.5 0.0411 0.55 
0.425 0.0673 0.4625 
0.355 0.0967 0.39 
0.3 0.1291 0.3275 
0.212 0.2337 0.256 
0.18 0.1268 0.196 
0.125 0.3962 0.1525 
0.106 0.1416 0.1155 
0.075 0.358 0.0905 
0.045 0.2954 0.06 
0 0.0859 0.0225 
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E. RAW DATA FOR 75–25-S1 EXPERIMENT 

Date: 17-Oct-12 
 Sample: 75–25-S1 

Mass before impact (g): 2.7033 
Fragment mass recovered (g): 1.3550 
Mass of recompressed sample (g): 1.0113 
Total Mass recovered (g): 2.3663 
Percentage loss during impact: 12.466% 
Mass after sieving (g): 1.2714 
Percentage loss during sieving: 6.170% 
Characteristic sample size (mm): 10.00 
Mass of recompressed sample (g): 1.2 

 
Sieve size (mm)  Mass in sieve (g) Midpoint (mm) 
4.75 0 7.375 
2.8 0.0375 3.775 
1.7 0.0793 2.25 
1.18 0.0103 1.44 
0.85 0.0039 1.015 
0.6 0.0106 0.725 
0.5 0.0101 0.55 
0.425 0.0128 0.4625 
0.355 0.0142 0.39 
0.3 0.0269 0.3275 
0.212 0.086 0.256 
0.18 0.065 0.196 
0.125 0.1832 0.1525 
0.106 0.0398 0.1155 
0.075 0.2198 0.0905 
0.045 0.3053 0.06 
0 0.1667 0.0225 
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