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LONG-TERM GOALS 
The long term goals of this effort are (i) the development of a unified parameterization for the marine 
boundary layer; (ii) the implementation and evaluation of this new parameterization in the US Navy 
NOGAPS model; and (iii) the transition of this new version of the NOGAPS model into operations at 
Fleet Numerical Meteorology and Oceanography Center (FNMOC). 

OBJECTIVES 
The main goal of this particular project is to develop a framework to test and evaluate unified 
parameterizations in NOGAPS using Large-Eddy Simulation (LES) models. In particular we will: i) 
develop a Single Column Model (SCM) version of the latest operational NOGAPS that can be used to 
simulate GEWEX Cloud Systems Study (GCSS) case-studies; ii) use the LES developed at JPL to 
simulate the GCSS case-studies and to evaluate and develop parameterizations iii) develop an 
integrated framework to use the NOGAPS SCM and the LES model as a parameterization test-bed. 

APPROACH 
It is well accepted that sub-grid physical processes such as turbulence, convection, clouds, aerosols and 
radiation play an essential role in the accuracy of ocean-atmosphere coupled prediction systems. 
Unfortunately most of these small-scale processes are extremely difficult to represent (parameterize) in 
global models such as the Navy Operational Global Atmospheric Prediction System (NOGAPS). The
Marine Boundary Layer (MBL) in particular is known to play the key role in regulating the interaction 
between the ocean and the atmosphere. A common strategy on how to tackle MBL parameterization 
development has been developed during the last 15 years by the GEWEX Cloud Systems Study 
(GCSS) working groups. In this project we will follow this GCSS strategy by creating a unified 
framework to develop and evaluate parameterizations in NOGAPS using high-resolution Large-Eddy 
Simulation (LES) models.  

Key personnel: 
J. Teixeira (JPL/Caltech) uses his expertise in cloud and boundary layer parameterizations to guide the 
development and implementation of the EDMF/PDF parameterization and its testing using LES 
models. 

T. Hogan (NRL) uses his expertise in global modeling to assist with the investigations related to 
NOGAPS within the context of this ONR DRI. 
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G. Matheou (JPL/Caltech) develops and implements the LES code in the context of the 
parameterization evaluation framework in the NOGAPS model. 

WORK COMPLETED 
LES simulations and utilization of LES data to evaluate and calibrate parameterizations: 
i) LES simulations and NOGAPS evaluation in stratocumulus and cumulus GCSS cases; 
ii) LES simulations and NOGAPS new parameterization evaluation in transition GCSS cases. 

RESULTS 

Implementation 
The LES code numerically integrates the filtered (density-weighted) anelastic approximation of the
Navier–Stokes (Ogura and Phillips, 1962). The base-state density ρ0(z) is calculated from the 
hydrostatic balance at Θref and pref = 1000hPa. In the cases where the process of precipitation is
included, the double-moment bulk microphysical parameterization of Seifert and Beheng (2001) is
used. The fourth-order fully conservative advection scheme of Morinishi et al. (1998) is used to ensure
that any dissipation arises purely from the subgrid scale closure. To preserve conservation of water, a
second-order MC flux-limited scheme that ensures monotonicity is used to advect rain mass and 
raindrop number. Time is advanced using the low-storage third-order Runge–Kutta scheme of Spalart
et al. (1991). The subgrid condensation scheme is all or nothing (e.g. Cuijpers and Duynkerke, 1993). 
The buoyancy-adjusted stretched-vortex subgrid-scale model (Misra and Pullin, 1997; Voelkl et al., 
2000; Pullin, 2000; Chung and Matheou, 2012) is used to account for the unresolved turbulent physics. 
The horizontal boundaries are periodic and the top and bottom boundaries are impermeable with a
‘sponge’ region near the top boundary to minimize undesirable gravity wave reflection. 

Unlike previous LES applications in simulations of atmospheric boundary layers, the present LES is
used to simulate a diverse set of conditions without any tuning or change in the setup. In the following 
pages, results for various cases are briefly documented. In all these cases the model setup is identical, 
the only difference is initial and boundary conditions, and large-scale forcing. 

A main aspect of the simulations reported here is the performance of the implementation as the grid 
resolution changes. This is a consistency check, that although simple in nature, it is difficult to achieve
in practice. The LES predictions of the present framework exhibit good resolution independence, even 
for grids that are typically considered coarse. 

BOMEX case: Shallow cumulus convection 

Trade-wind non-precipitating cumulus-topped boundary layer. Conditions correspond to the BOMEX
campaign. The setup of the case and model inter-comparison is detailed in Siebesma et al. (2003). The
domain size is 20.482 × 3 km3. Three grid resolutions were used at ∆x = 20, 40, and 80 m. 
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3 BOMEX: Trade-wind cumulus-topped boundary layer

Trade-wind non-precipitating cumulus-topped boundary layer. Conditions correspond to the BOMEX
campaign. The setup of the case and model inter-comparison is detailed in Siebesma et al. (2003).
The domain size is 20.482 × 3 km3. Three grid resolutions were used at Δx = 20, 40, and 80 m.

Figure 3: Clouds at t = 12 h for run with Δx = 20 m.

Figure 4: Liquid water path at t = 12 h.
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Trade-wind non-precipitating cumulus-topped boundary layer. Conditions correspond to the BOMEX
campaign. The setup of the case and model inter-comparison is detailed in Siebesma et al. (2003).
The domain size is 20.482 × 3 km3. Three grid resolutions were used at Δx = 20, 40, and 80 m.

Figure 3: Clouds at t = 12 h for run with Δx = 20 m.

Figure 4: Liquid water path at t = 12 h.
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4 RICO: Trade-wind precipitating cumulus

Trade-wind precipitating cumulus-topped boundary layer. Conditions correspond to the RICO
campaign (Rauber et al., 2007). The setup of the case and model inter-comparison is detailed in
VanZanten et al. (2011). The domain size is 20.482 × 4 km3. Three grid resolutions were used at
Δx = 20, 40, and 80 m. The Δx = 20 m run is not finished yet.

Figure 7: Clouds and rain (blue isosurfaces) at t = 24 h for run with Δx = 40 m.

Figure 8: Liquid water path at t = 24 h.

5

 

 
 

 
 

 
 

 
   

       
         

   

 
  

 

Figure 1: Shallow cumulus clouds during BOMEX after 12 hours of simulation with 20m resolution. 

Figure 2: BOMEX liquid water path at t=12 hours. 

RICO Case: Shallow precipitating cumulus 

Trade-wind precipitating cumulus-topped boundary layer. Conditions correspond to the RICO 
campaign (Rauber et al., 2007). The setup of the case and model inter-comparison is detailed in 
VanZanten et al. (2011). The domain size is 20.482 × 4 km3. Three grid resolutions were used at 
∆x=20, 40, and 80 m. 

Figure 3: RICO Clouds and rain (blue isosurfaces) at t=24 hours for simulation with 40 m resolution. 

3
 



Figure 10: Evolution of the cloud structure in the boundary layer as precipitation develops. The
panels from left–right top–bottom show instances of cloud liquid water path separated by 1 hour.
The domain is 802 × 5 km3.
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Figure 4: Evolution of the cloud structure in the boundary layer as precipitation develops. The panels
from left–right top–bottom show instances of cloud liquid water path separated by 1 hour. The domain 
is 80.2 × 5 km3. 
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5 DYCOMS-II: Nocturnal marine stratocumulus

Stratocumulus-topped boundary layer corresponding to the first research flight (RF01) of the second
Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study. The setup follows
that of Stevens et al. (2005) with the exemption of the surface fluxes. The surface fluxes are
computed using the Monin–Obukhov theory with Charnock’s roughness length (Charnock, 1955).
The grid spacing is Δx = Δy = Δz = 5 m and Δx = Δy = Δz = 2.5 m.

Figure 14: Liquid water path at t = 4 h for Δx = 2.5m.
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DYCOMS-II: Nocturnal marine stratocumulus 

Stratocumulus-topped boundary layer corresponding to the first research flight (RF01) of the second 
Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study. The setup follows that
of Stevens et al. (2005) with the exception of the surface fluxes. The surface fluxes are computed using 
the Monin–Obukhov theory with Charnock’s roughness length (Charnock, 1955). The grid spacing is
∆x = ∆y = ∆z = 5 m and ∆x = ∆y = ∆z = 2.5 m. 

Figure 5: DYCOMS-II liquid water path at t=4 hours for a resolution of 2.5 m. 

IMPACT/APPLICATIONS 
These results have an important potential future impact for the weather prediction capabilities of the 
US Navy after the implementation of these new parameterizations in the NOGAPS model. In addition 
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it will be the first time that a unified parameterization of the marine boundary layer has ever been 
developed and implemented in a global weather prediction model. 

TRANSITIONS 
The new EDMF parameterization will be proposed for a transition at FNMOC after implementation 
and adequate testing in the NOGAPS model using the LES approach. 

RELATED PROJECTS 
This project is part of the “Unified Physical Parameterizations for Seasonal Prediction” Departmental 
Research Initiative. 
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