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Executive Summary 
Signal Innovations Group, Inc. (SIG) has previously demonstrated the effectiveness of site-specific 
statistical learning for smartly selecting labeled training data to maximize target discrimination. This 
report details the application of the SIG statistical learning approach to unexploded ordnance (UXO) 
discrimination for Pole Mountain Target and Maneuver Area (Pole Mountain), Wyoming.  This 
technology has been developed and validated under previous SERDP/ESTCP efforts by SIG and Duke 
University.  Specific core technologies were used in this discrimination.  These technologies fall broadly 
into the four analysis categories: the sensor/target model, feature selection, classification, and active label 
selection.  Feature selection was performed using the Bayesian Elastic Net which has the benefit of 
retaining correlated and informative features for classification. 
Classification was performed using three approaches.  Two were semi-supervised discrimination models.  
The first of these was the standard single-task learning approach that has been used on previous 
demonstrations.  The second was a multi-task learning approach where information from previous sites is 
incorporated into the classifier.  The third classification model, was not discriminative, but rather was a 
generative (i.e. target features were estimated directly rather than distinguishing target responses from 
clutter responses). 
The objectives of the study were to maximize correct classification of UXO and non-UXO, specify a no-
dig threshold, and minimize the number of anomalies that could not be analyzed.  All objectives were met 
by each of the classification approaches.  Multi-task learning required fewer training data for 
discrimination. Predictions based on the multi-task learning model also had fewer false alarms than the 
single-task model.  The generative model, however, outperformed both of the discriminative approaches 
in terms of number of false alarms.  With the generative approach, all the UXO were revealed with only 
32 unnecessary digs. 
The results of the demonstration highlight the need to use different modeling approaches at different sites.  
Future work will focus on using generative and discriminative approaches synergistically based on 
adaptive estimates of site difficulty. 
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1. Introduction 
1.1. Background 
Signal Innovations Group, Inc. (SIG) has previously demonstrated the effectiveness of site-specific 
statistical learning for smartly selecting labeled training data to maximize target discrimination. This 
report details the application of the SIG statistical learning approach to unexploded ordnance (UXO) 
discrimination for Pole Mountain Target and Maneuver Area (Pole Mountain), Wyoming.  This 
technology has been developed and validated under previous SERDP efforts by SIG and Duke University. 
Many current analysis approaches rely on expert scientists to make educated decisions at multiple points 
in the discrimination analysis process. This situation is not scalable, transferable, or cost effective. The 
SIG approach standardizes the options and creates a documented process flow that can be explicitly 
followed. 
1.2. Objective of the Demonstration 
The main technical objective of the Pole Mountain demonstration is to validate and substantially automate 
the SIG learning process using next-generation electromagnetic induction (EMI) sensor data for 
discriminating UXO.  All elements of human interpretation and intuition are being incrementally 
constrained or removed from the process, resulting in an automated process, where all algorithm 
parameters and thresholds will either be determined by specified site parameters (i.e., expected or inferred 
munitions types) or by data-driven inferences (i.e., cross-validated operating threshold).  In particular, 
SIG tested the viability of multi-task learning (MTL) for discriminating the site.  MTL leverages labels 
from previous sites in a principled way.  
2. Technology 
SIG applied and matured each of the three key process phases that constitutes the SIG statistical learning 
approach to UXO discrimination - called the “SIG Isolate” process.  The three phases of Isolate include: 
Phase I - feature extraction, Phase II – site learning, and Phase III – excavation.  Each of the phases is 
described in detail below.  Validation of Isolate entails meeting all of the discrimination performance 
objectives defined by the program office for each of the sites considered (see Table 1).  The key 
technology in Phase II consists of a semi-supervised classifier that incorporates both labeled and 
unlabeled data from the site of interest to train the classifier.  In Phase II, an active-learning framework 
adaptively requests samples from the current site with the goal of maximally reducing classifier prediction 
uncertainty.  Additional site information is leveraged via MTL.  SIG performed both MTL and single task 
learning (STL) at Pole Mountain. 
2.1. Technology Description 
The SIG Isolate process laid out in [5] can be summarized in the following ‘recipe’ (Figure 3):  

• Data Conditioning - First, raw, unlabeled anomaly data are received.   
• Subspace Denoising - The anomaly data is denoised to ensure robust performance for 

discriminating late time-gate features.   
• Feature Extraction - A robust multi-anomaly dipole model is fitted to the data.  The 

polarizability parameters from this fitting become the set from which features are drawn for 
classifier training.  In addition to the time-domain polarizabilities, a set of 9 ‘rate’ features were 
calculated.  These features were the calculated by fitting the time-domain polarizabilities of each 
axis to an exponential-decay model: 

𝑝𝑖 = 𝑟1𝑖 + 𝑟2𝑖𝑒
−𝑡
𝑟3𝑖 
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where 𝑖 ∈ {𝑥,𝑦, 𝑧} is the current axis, 𝑝 is the polarizability, 𝑡 is time and {𝑟1, 𝑟2, 𝑟3} are the fitted 
rate parameters.  Though 𝑟1𝑖 is unphysical, it is useful for adjusting for noise at late time gates 
and where odd responses would make the optimization difficult.  The optimized values of the rate 
parameters were found using non-linear least squares. 

• Basis Selection - A few of the many possible features are selected based on their physical 
interpretation as they relate to the anomaly, and, using these features, the most informative set of 
anomalies are selected via an information metric to begin classifier training.   

• Feature Set Augmentation - The feature set is then augmented by adding early, mid and late 
time polarizabilities values.   

• Automated Features Selection - For the now larger feature set, the most relevant set of features 
is selected using BENet.  

• Semi-supervised PNBC Training (STL or MTL) - When the PNBC is trained only using data 
from the current site of interest, it is called Single Task Learning (STL).   When the PNBC is 
trained for multiple sites simultaneously it is called MTL. For the Camp Butner demonstration 
only STL was used. 

• Non-myopic Active Learning - Based on the estimates made with the PNBC classifier, a new set 
of anomalies will be selected for labeling using NMAL.  The goal at this step is to maximize the 
information gain from new labels requested from the set of unlabeled anomalies.  The process is 
repeated as the PNBC classifier adequately learns data manifold.   The stopping criterion for the 
learning process is apparent when the remaining unlabeled data points have approximately equal 
information for improving the classifier.  At which point, labeling any one anomaly is no better 
than any other.    

• Excavation Adapted Threshold Selection - At this point, the highest probability UXO are 
selected for excavation and labels.  The classier continues to be retrained when new labels are 
revealed.  This process continues until the highest probability UXO items excavated are all found 
to be clutter at which point digging stops.   

The process outlined above falls into 3 broad phases: Feature Extraction, Site Learning, and Excavation.  
Details on each phase are given in the next subsections.  The SIG Isolate process is relatively linear save 
for two feedback steps.  The first feedback is in training the semi-supervised classifier, where additional 
anomaly labels are requested until the classifier reaches sufficient stability.  The second feedback is 
during the excavation of anomalies, where the classifier is retrained with additional labeled anomalies 
until either the UXO/clutter predictions become highly separable or until high probability anomalies are 
substantially revealed to be clutter upon excavation. 
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Figure 1. Flow diagram of the SIG Isolate process. 
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Figure 2:  ROC curves for UXO classifier at 
SLO site with features selection using the 
BENet algorithm (red line) and without 
feature selection (blue line). The number of 
false alarms is lower for the classifier where 
feature selection was used. 

2.2. Technology Development 
SIG applied the Isolate discrimination process in the 
Camp Beale demonstration.  This process involves 
the following key technologies including: Bayesian 
feature selection, semi-supervised classifier training, 
and non-myopic active selection of labeled data. 
These technologies are described briefly in the 
following subsections. 
Feature Selection with BENet 
Adaptive learning of a classifier in situ benefits from 
refining the appropriate set of extracted features for 
the targets under test.   This occurs because of the 
‘curse of dimensionality’ where the number of data 
points required to cover the breadth of a features 
space grows exponentially with the number of 
features considered.  If the amount of training data 
does not sufficiently sample the feature space, then 
the learned classifier will lack statistical support and 
class estimate uncertainty is large.  At the San Luis 

Obispo (SLO) demonstration site in particular, feature selection played a key role in classifier 
performance (Figure 1). Bayesian classification models perform feature selection by placing a sparseness 
prior on the inferred feature weights. The Bayesian elastic net (BENet) regression model used for feature 
selection employs a sparseness prior equivalent to a convex combination of L1-norm and L2-norm 
penalties in a least squares optimization formulation [1], [2].  The sparseness prior of the BENet model 
jointly infers the essential subset of relevant features, including correlated features, for a given 
classification task. Rather than encouraging the selection of a single feature in a set of correlated 
important features (like similar approaches such as RVM), the BENet model encourages the selection of 
all correlated important features. By performing sparse and grouped feature selection, the BENet 
algorithm provides a more robust approach to feature adaptability and the interpretation of important 
features, requiring fewer training data samples to achieve robust statistical support. 
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Semi-Supervised Classification 
Semi-supervised learning is applicable to any 
sensing problem for which all of the labeled and 
unlabeled data are available at the same time, and 
therefore, particularly for the current demonstration 
study. In most practical applications (including the 
recent demonstration at Camp SLO), semi-
supervised learning has been found to yield superior 
performance relative to widely applied supervised 
algorithms. Figure 2 depicts the advantage of a semi-
supervised approach to classification over its 
supervised counterpart. A classifier trained purely on 
labeled data (depicted as red and green circles) is 
shown as a purple dashed line and generates 
classification errors. In contrast, a semi-supervised 
classifier trained on both labeled and unlabeled data 
will generate perfect classification (depicted by the 
blue line). Note that the context provided by the 
unlabeled data was crucial in improving the 
classification performance in this case, since the 
labeled data were not representative of the two class 
distributions. As the number of training samples 
increases, the supervised classifier should 
approximate the semi-supervised classifier.  Semi-
supervised formulation treats the dataset (labeled and unlabeled) as a set of connected nodes, where the 
affinity 𝑤𝑖𝑗 between any two feature vectors (nodes) 𝒇𝒊 and 𝒇𝑗 is defined in terms of a radial basis 
function [3].  Based on the above formulation, one can design a Markov transition matrix 𝑨 =  �𝑎𝑖𝑗�𝑁×𝑁

 
that represents the probability of transitioning from node 𝒇𝑖 to 𝒇𝒋. Assuming ℒ ⊆ {1,2, … ,𝑁𝐿} represents 
the set of labeled data indices, the likelihood functional can be written as 

({𝑦𝑖, 𝑖 ∈ ℒ}|𝒩(𝒇𝑖),𝜽) = �𝑝(𝑦𝑖|𝒩(𝒇𝑖),𝜽) = ��𝑎𝑖𝑗𝑝�𝑦𝑖�𝒇𝑗,𝜽�
𝑁𝑖

𝑗=1𝑖∈ℒ𝑖∈ℒ

 

where 𝒩(𝒇) defines the neighborhood of 𝒇. Estimation of classifier parameters 𝜽 can be achieved by 
maximizing the log-likelihood via an Expectation-Maximization algorithm [4]. To enforce sparseness 
of 𝜽 (enforcing most of the components of the parameter vector 𝜽 to be zero), one may impose a zero- 
mean Gaussian prior on 𝜽. A zero-mean Gaussian prior with appropriate variance can strongly bias the 
algorithm in choosing parameter weights that are most likely very small (close to zero).  The algorithm 
we have used for this semi-supervised learning is termed a parameterized neighborhood-based classifier 
(PNBC). 
Non-myopic Active Learning (NMAL) 
Given that available training data labels at the beginning of a demonstration are not available and that 
excavations must be performed to reveal training data labels, one may ask in which order anomalies 
should be excavated to maximally improve the performance of the classifier algorithm.  One useful 

Figure 3:  A comparison between 
supervised and semi-supervised classifiers 
for a 2. Labeled data from both classes (red 
and green circles) are shown, along with 
unlabeled data (black dots). The supervised 
classifier is trained on only the labeled data 
and the decision boundary is shown (dotted 
line).  The semi-supervised classifier is 
trained on both the labeled and unlabeled 
data and the decision boundary (solid line) 
makes the two classes linearly separable. 
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criterion is to use the confidence on the estimated identity of the anomalies that are yet to be excavated. 
Specifically, one may ask which unlabeled anomaly label would be most informative to improve classifier 
performance if the associated label could be made available. It has been shown [5] that this question can 
be answered in a quantitative information-theoretic manner. 
For active label selection, posterior distribution of the classifier is approximated as a Gaussian distribution 
centered on the maximum a posteriori estimate. The uncertainty of the classifier is quantified in terms of 
the posterior precision matrix. The objective of NMAL is to choose a feature vector for labeling that 
maximizes the mutual information (𝐼) between the classifier 𝜽 and the new data point to be labeled. The 
mutual information can be quantified as the expected decrease of the entropy of 𝜽 after new sample 𝒇𝑖∗ 
and its label 𝑦𝑖∗ are observed. 

𝐼 =
1
2

log
|𝐻′|
|𝐻| =

1
2

log�1 + 𝑝(𝑦𝑖∗|𝒇𝑖∗,𝜽) × [1 − 𝑝(𝑦𝑖∗|𝒇𝑖∗,𝜽)]𝒇𝑖∗𝑇 𝐻−1𝒇𝑖∗� 

It is important to note that the mutual information 𝐼 is large when 𝑝(𝑦𝑖∗|𝒙𝑖∗,𝜽) ≈ 0.5. Hence, the NMAL 
prefers to acquire labels on those unlabeled samples for which the current classifier is most confused or 
uncertain. In this fashion the classifier learns quickly by not excavating anomalies that reveal redundant 
information.  The process continues as new labels are revealed until the expected information gain for the 
remaining anomalies is approximately uniformly low. At that point the classifier is adequately trained and 
target inference on the remaining unlabeled anomalies can be reliably performed.  By invoking the 
principle of submodularity in the algorithm optimization, the approach has been adapted to allow for the 
selection of multiple simultaneous labels at one time, making the technique operationally practical.   
Multi-Task Learning 
SIG demonstrated a MTL classifier [4] for discrimination of TOIs, in which 𝑀 parameterized classifiers, 
each associated with a demonstration site, are learned jointly while sharing a soft prior over the classifier 
parameters. Multi-task learning leverages information from past demonstrations, for example, data 
collected by Metalmapper from one site will be utilized in a principled way to design a classifier for 
subsequent sites that deploy Metalmapper. The MTL-based information sharing is crucial in training a 
classifier with a small amount of training data.  
For example, suppose TEMTADS was deployed in Site 1 and the labels for all anomalies have already 
been revealed. If TEMTADS is deployed in Site 2, the MTL framework will utilize all labeled data from 
Site 1, along with Site 2 data to jointly train classifiers for both sites. This process does not pool data from 
multiple sites, but learns the classifiers for both sites in a manner that they influence each other. This 
process has already been shown to improve classification performance, while requiring fewer labeled 
samples from Site 2 [4]. SIG envisions that there would be considerable overlap between the sensors and 
munitions types found in the six demonstrations, and the MTL framework will allow the classification 
module for each sensor platform to leverage past information effectively to classify buried anomalies. 
3. Performance Objectives 
Performance objectives are summarized in Table 1.  Each objective is described in a subsection below. 
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Table 1. Program Office Performance Objectives for Discrimination Analysis 

Performance 
Objective Metric Data Required Success Criteria 

Analysis and Classification Objectives 

Maximize correct 
classification of 
targets of interest 

Number of targets-of-
interest retained. 

• Prioritized anomaly 
lists 

• Scoring reports 
from the IDA 

Approach correctly 
classifies all targets-
of-interest 

Maximize correct 
classification of non-
UXO 

Number of false 
alarms eliminated. 

• Prioritized anomaly 
lists 

• Scoring reports 
from IDA 

Reduction of false 
alarms by > 30% 
while retaining all 
targets of interest 

Specification of no-
dig threshold 

Probability of correct 
classification and 
number of false 
alarms at 
demonstrator 
operating point. 

• Demonstrator -
specified threshold 

• Scoring reports 
from IDA 

Threshold specified 
by the demonstrator to 
achieve criteria above 

Minimize number of 
anomalies that cannot 
be analyzed 

Number of anomalies 
that must be classified 
as “Unable to 
Analyze.” 

• Demonstrator target 
parameters 

Reliable target 
parameters can be 
estimated for > 98% 
of anomalies on each 
sensor’s detection list. 

3.1. Maximize correct classification of targets of interest 
A non-linear and a linear classifier were trained based on training labels requested from the program 
office.  The objective was to predict all remaining UXO using the trained classifiers. This is measured by 
comparing the number of UXO captured from the dig list against the total number of UXO in the dataset.  
The necessary data are the dig lists and the scoring reports from the IDA.  Some UXO were missed, and 
so the performance objective was evaluated in the context of how many additional digs would have been 
necessary to actually capture all the UXO. 
3.2. Maximize correct classification of non-UXO 
For both classifiers, a secondary objective is to capture all the UXO while keeping much of the clutter in 
the ground.  Success was measured by keeping at least 70% of the clutter in the ground.  Since, some 
UXO were left in the ground given the no-dig threshold, the number of false alarms was smaller than it 
should have been.  This objective was re-evaluated in terms of how many false alarms would have been 
necessary were the digging thresholds set to capture all the UXO. 
3.3. Specification of no-dig threshold 
The objective was to give a reasoned operating point for splitting the dataset into anomalies that should be 
dug and those that should not be dug.  The decision for this objective influenced the performance of the 
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values in the first two objectives.  The decision to stop digging was based on the separation between the 
posteriors predicted probabilities of the anomalies not used for training.  The selected operating point 
based on this criterion left UXO in the ground. 
3.4. Minimize the number of anomalies that cannot be analyzed 
The objective was to have a minimal number of anomalies where the dipole inversion model 
gave poor results.  This is a function of the data quality, something that was not controlled in this 
study, and a function of the efficacy of the inversion model.  The decision to place anomalies in 
the ‘can’t analyze’ category was based on the residual error of the least-squares model used for 
the dipole inversion.  Anomalies with high residual error were removed.  Success in this 
objective was defined as a creating effective parameterizations for >98% of the anomalies.  This 
objective was achieved. 
4. Site Description 
All raw sensor data were provided to SIG directly.  So there were no in-field components to the SIG 
discrimination. 
5. Test Design 
All raw sensor data were provided to SIG directly.  So there were no in-field components to the SIG 
discrimination. 
6. Data Analysis and Products 
6.1. Training Steps 
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An initial basis of 20 vectors was selected maximizing Fisher Information gain.  This initial selection was 
the same for both MTL and STL.  From this initial sample, a set of relevant features was selected using 
BENet. Subsequently, non-linear PNBC classifiers using MTL and STL were trained on the original 
bases represented by these features.  For the MTL classifier the additional tasks were MetalMapper data 
from different sites.  These sites included Camp SLO, Camp Butner, and Camp Beale (the Beale Open 
site).  Given the trained classifiers, a new set of 10 unlabeled anomalies were selected using batch 
NMAL.  This is where the set of training observations for MTL and STL diverged.  Each method selected 
slightly different anomalies for training via NMAL.   Surprisingly, the selected labels were not drastically 
different.  In the first round of training the MTL and STL share 8 out of the 10 labels requested.  And as 
the training rounds progressed the methods would tend to request similar labels.  These labels were not 

Figure 5. Fished information gain as a function of the training points acquired over 8 training 
rounds for STL (left) and MTL (right). 

Figure 4. Histogram of predicted probability of being UXO at the end of NMAL training for 
STL(left) and MTL(right).   Resubstitude prediction probabilities for the training data are also 
shown as filled shaped: clutter (blue), UXO (red). 
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necessarily acquired in the same order or in the same training round, but at the end of training via NMAL 
both MTL and STL shared 98 out 100 training labels.  The correlation in the labels selected suggests that 
the amount of new information contributed by the inclusion of the classifiers from the other sites (tasks) 
was minimal for this site.  The decision to stop actively selecting labels was based on the decrease in 
Fisher Information gain and the separation between the predicted probabilities of UXO and clutter(Figure 
4, Figure 5). For MTL there were no observations left whose predicted probability of being UXO was 
greater than 0.5. 
For each round of label selection, feature selection was performed using BENet.  These features 
converged to a fixed set by the end of training (Figure 6).  Unlike classification with PNBC, feature 
selection with BENet was not multi-task.  So, the MTL and STL classifications tended to use the same set 
of features.  All the selected features were associated with either the magnitude or decay rate of the first 
and third polarizability axes.  This is similar to the feature selection results from other sites (e.g. Camp 
SLO and Camp Butner). 
Twelve rounds of training were performed for both MTL and STL.  A dig list was then submitted for each 
of the two classifier algorithms.  These dig lists missed many (> 40) quality control seeds.  It was decided 
that instead of the program office giving SIG that many unrequested labels, another training round would 
be performed.  Further, instead of focusing on acquiring informative labels based on NMAL the requested 
labels would be based on the posterior probability of being UXO.  That is, the subsequent training rounds 
for MTL and STL requested labels for anomalies predicted to be UXO.  Having received these labels, the 
models were retrained and additional labels were requested, again according to the probability of being 
UXO.  This continued until a total of 15 training rounds for MTL and 12 training rounds for STL were 
completed.  At this point the total number of training labels acquired for STL was 387 and 368 for MTL.  
There were no anomalies that were labeled ‘can’t analyze’ because of poor inversion results. 
The predicted probability of being UXO at the end of training differed between MTL and STL even 
though the set of training data they acquired were similar (Figure 4).  This occurred because the posterior 
predictions of MTL depend not only on the evidence presented by the Pole Mountain data, but also on the 

Figure 6. BENET feature weights at the end of training for STL (left) and MTL (right).  Features 
used in the nonlinear classifier are highlighted in red and the feature names are given. 
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joint prior that includes the data from the other sites.  A stage 2 dig lists was submitted for MTL and STL.  
These dig lists were the final lists submitted to the program office.  The initial Stage 1 dig lists where 
many seeds were missed was counted in the number of dig lists submitted, but the labels were not sent 
from the program office for those lists.  A total of 561 labels were requested for MTL .  582 labels were 
requested for STL. 
7. Performance Assessment 
No UXO were missed in the MTL and STL lists (Figure 8).  Approximately 80% of the clutter was left in 
the ground for both methods.  Fewer than 50 unnecessary digs were performed for both MTL and STL 
after the final UXO was dug. 
MTL outperformed STL.  Fewer training data were required for MTL before the final dig lists were 
submitted.  MTL captured the last UXO with fewer unnecessary digs.  Also, fewer labels were requested 
for MTL overall.  These results are significant since the set of training data acquired by NMAL was 
basically identical for MTL and STL. 

Figure 7. Histogram of predicted probability of being UXO at the end of digging for STL(left) and 
MTL(right).   Resubstituted prediction probabilities for the training data are also shown as filled 
shaped: clutter (blue), UXO (red). 
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Even though MTL performed better than STL, both methods were ineffective at capturing the UXO 
efficiently.  Discriminating the UXO from clutter at Pole Mountain should have been relatively ‘easy’ 
compared to other sites like Camp Beale because the inversion results were consistent.  This begs the 
question, “Why did the SIG Isolate process require so many more digs to capture all the UXO?”  The 
answer lies in the complexity of the tool used for discrimination and the difficulty of the site.  Complex 
models require more representative training data to adequately describe, but are more effective at 
representing higher order data manifolds.  The complex discrimination machinery used in the SIG Isolate 
process is most effective on sites that are difficult to discriminate.  Alternative approaches that do not 
require much training data and focus on digging UXO rather avoiding clutter are better for easy sites.  
Once it was observed that this site was more separable, SIG employed a more appropriate data 
representation: a generative model. 
The Generative Approach 
Pole Mountain was a relatively easy site to classify.  The original formulation of the SIG Isolate process 
was geared toward sites that are difficult to classify.  Consequently, the MTL and STL classifiers, though 
all the UXO were captured, had too many unnecessary digs.  To make the Isolate process more adaptable 
to easy sites like Pole Mountain, SIG extended it to include the option of a generative model.  This 
generative approach was tested initially on the TEMTADS 2x2 data for Camp Beale with good results.  A 
brief explanation distinguishing the discriminative and generative approaches is given below, along with 
the performance of the Pole Mountain classification using the generative model. 
Classification approaches 
There are two distinct approaches to classification: 1) the generative approach, and 2) the discriminative 
approach.  The generative approach models the probability of being a target directly, without considering 
the distribution of clutter.  The discriminative approach models the probability of being a target against 
the probability of being clutter.  This is the technique used for classification by the MTL and STL 
performance assessments.  One of the key benefits of using a generative approach is that digging can 
begin immediately from test pit data.  In other words, no responses from clutter are necessary to train the 
model.  The weakness of the generative approach is the possibility of missing hidden modes of UXO in 
the features space that would only be elucidated by exploring the clutter space as in the discriminative 
approach.  There is no concept of NMAL in the generative approach because there is no classifier 

Figure 8. ROC curves for STL (left) and MTL (right) discrimination of Pole Mountain. 
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boundary per se to discriminate along.  In performance assessment the ROC curve for generative 
approaches will, in general, be steeper initially than a discriminative approach.  This is because training of 
generative models seeks only to find representative responses for UXO, whereas the discriminative 
approach seeks to find the boundary between UXO and clutter and explore areas of the feature space 
where little prior information is available. 
The generative approach is completely dependent on the list of known UXO responses.  So, if a hidden 
mode of UXO that does not exist in the known labels is present, then the number of false positives 
required to capture the last UXO will be greater than the discriminative approach.  Given a generative 
model and a discriminative model with similar numbers of total clutter dug, the discriminative approach 
will tend to dig clutter during training and the generative approach will dig clutter toward the end of the 
‘dig phase’.  This is obvious in the ROC curves for the discriminative results of MTL and STL where 
training accounts for half of the dug clutter (Figure 8). 
Generative Model Training and Performance 
There is really no distinction between ‘training’ labels and ‘digging’ labels in the generative approach.  
Since the UXO are being dug according to the highest probability of being UXO, the ‘training’ digs up 
likely UXO.  So, all of the UXO were dug during the ‘training’ stage of the analysis.  Labels were 
acquired over the course of 12 training rounds.  The number of labels acquired in each training round 
varied from 24 in the first round to 5 in the final round, 12.  A separate generative model was made for 
each UXO type.  UXO were dug according to the probability of being UXO from greatest to least for each 
UXO type.  When a given UXO type ‘dug’ 3 clutter in a row, then labels from that model were no longer 
acquired.  The exception to this was if a UXO of that type was revealed later while digging a separate 
UXO type.  For example if 3 clutter were dug in a row for the 37mm generative model, then no more 
digging would occur for the 37mm model.  But, if another 37mm was revealed while digging according to 
the ISO model, then digging would begin again for the 37mm until 3 additional clutter were revealed.  
The number of clutter dug before a given model was stopped depended upon the number of training labels 
that were requested for a training round.  In general, receiving fewer labels in a training round increased 
performance, but obviously increased the number of training rounds necessary to capture all of the UXO.  
Receiving more training labels per round increased the number of clutter that would be dug for a given 
UXO type before digging could stop for that type.  3 clutter labels per UXO type was chosen for Pole 
Mountain to keep the number of training rounds at or below 15.  12 training rounds were actually used. 
Feature selection from the Pole Mountain data itself was not possible for the generative model.  The 
reason for this is that the data acquired by the generative model are highly biased toward UXO with only 
a few clutter being dug.  And, these clutter have responses that are very similar to UXO.  Indeed, feature 
selection is only possible in a discriminative setting where the model distinguishes UXO from clutter 
directly.  Instead, the features for the Pole Mountain generative model were selected based on previous 
sites.  In this sense, the generative approach was similar to MTL in that information from other sites was 
leveraged in the classification.  5 features were used in the generative approach: the area of the object’s 
transverse cross section, the object aspect ratio, the object symmetry, the magnitude of the 3rd axis 
polarizabilities, and the ratio between polarizabilities of the first axis’ first and last time gates.  These 
features were selected from a sparse Bayesian classifier [6] discrimination of the TEMATADS 2x2 data 
at Camp Beale.  This was the only other site where the generative model had been applied and it was 
assumed that the features that were appropriate for the TEMTADS 2x2 data would also be appropriate for 
the Pole Mountain data.  This turned out to be a good assumption and is probably extendable to other sites 
as well. 
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The performance of generative approach for 
classifying Pole Mountain was markedly better 
than the performance of the MTL and STL 
approaches.  All the clutter was dug with only 32 
unnecessary digs (Figure 9).  The final dig list 
ended being named stage 2, but that was due to a 
simple typographical error in the stage 1 dig list.  
Having 32 unnecessary digs was not only much 
better than the MTL and STL approach, but was 
also better than most if not all of the other 
competitors. 
Retrospective 
The SIG Isolate process was improved greatly 
during the course of this analysis.  A large benefit 
was shown by including previous site information 
through MTL.  MTL incorporates this prior site 
information in a principled way so that future sites are not unduly influenced by previous sites.  This 
technology will become key as the number of sites that have already been classified increases.  
SIG has also demonstrated the benefit of using a generative approach at sites where the UXO are 
relatively easy to classify. The generative approach eliminates the need for training data to build a 
classifier, and begins digging UXO immediately.  The degree to which the generative approach will 
minimize the number of unnecessary digs is dependent on how many UXO are dug before retraining 
occurs.  For the performance assessment, all the UXO were dug with only 32 unnecessary digs, and the 
model was retraining after <25 labels were received.  In a separate analysis, SIG used the generative 
approach where only a single label was acquired before the model was retrained.  This represents a form 
of ‘in-the-field’ learning that could be incorporated into the digging protocol.  This approach revealed all 
the UXO with only 3 clutter dug. 
In future work SIG will develop a method for adaptively deciding whether a site will be difficult to 
classify or easy.  Using this information the SIG Isolate process will be enhanced so that the generative 
approach and discriminative approach will applied along a gradient.  There will be a continuous balance 
achieved between the generative predictions and discriminative predictions.  When generative predictions 
are appropriate, likely UXO will be dug.  Where discriminative predictions are appropriate, the classifier 
boundary will be refined via NMAL. 
7.1. Maximize correct classification of targets of interest 
The linear and non-linear classifications retained 163 and 164 UXO, respectively.  This was the only 
performance object that was missed.  It was missed due to a poorly chosen no-dig threshold.  Were the 
stopping point moved to 625 false alarms, both methods would have met all of the performance 
objectives. 
7.2. Maximize correct classification of non-UXO 
If the dig-threshold were chosen correctly, then the reduction of false alarms would have been 75% for 
the linear classification and 85% for the non-linear classification.  The no-dig threshold set too early, 
however. So, both classifications reduced the number of false alarms by 90%, but left UXO in the ground. 

Figure 9. ROC Curve for the generative model.  All UXO 
were dug during training. 
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7.3. Specification of no-dig threshold 
The operating point for the no-dig threshold was set at approximately 230 false alarms for both the linear 
and non-linear classifiers.  The decision to stop digging was based on the separation between the 
posteriors predicted probabilities of the anomalies not used for training. 
7.4. Minimize the number of anomalies that cannot be analyzed 
98% of the anomalies had target parameters extracted effectively.  2% had large fit errors for the non-
linear least squares model used for dipole inversion, were labeled “can’t analyze”, and marked for 
digging. 
8. Cost Assessment 
This section should provide sufficient cost information such that a professional involved in the field could 
reasonably estimate costs for implementation at a given site. In addition, this section should provide a 
discussion of the cost benefit of the technology. The following subsections with detailed discussions and 
examples should be provided. 
8.1. Cost Model 
The cost model is summarized in Table 2.  The total cost per anomaly is $16.9.  Each cost element is 
described in subsections below. 

 
Feature Inversion 
Feature inversion includes any denoising and data preprocessing.   The input data product here is the raw 
sensor data.  The output data are the polarizabilities from the dipole model.  Additional quality checks are 
performed at this stage.  Costs would scale less than linearly with number of anomalies, because the time 
required for quality control is roughly the same regardless of the number of anomalies. 
Classifier Training/Testing 
Classifier training and testing encompasses all the data analysis required to move from anomaly 
polarizabilities to a final dig list.  This includes requesting training data from the program office, feature 

Table 2. Cost Model for the SIG Discrimination at Pole Mountain 

Cost Element Data Tracked During Demonstration Estimated Costs  

Feature Inversion Unit: $ per anomaly 
• Time required 
• Personnel required 
• Number of sensors 
• Number of classifier techniques 

10.4 

Classifier 
Training/Testing 

Unit: $ per anomaly 
• Time required 
• Personnel required 
• Number of sensors 
• Number of classifier techniques 

3.9 

Reporting Unit: $ per anomaly 
• Time required 
• Personnel required 
• Number of sensors 
• Number of classifier techniques  

2.6 
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selection, active learning, and quality assurance.  Costs scale less than linearly with number of anomalies, 
because the percentage of training data required should decrease as the total number of anomalies 
increases. 
Reporting 
This in includes documentation of all feature inversion, classifier training/testing, and classifier 
performances.  The cost should scale linearly with the sensors and classification techniques used. 
8.2. Cost Drivers 
The purpose of the SIG Isolate discrimination process is to decrease the cost per anomaly and to do so in 
a manner that scales well with production level discrimination.  As the requirement for expert intervention 
and interpretation decreases, the scaling of the cost per anomaly should improve. 
8.3. Cost Benefit 
While the SIG Isolate process is not completely automated at this point, increasing automation drives the 
cost per anomaly toward becoming simply a function of computing time required and quality assurance 
checks.  Since analyst time is the greatest cost in the discrimination process, automation provides 
excellent cost benefit for discrimination. 
9. Implementation Issues 
The software for the current SIG Isolate technology is based on MATLAB® and is not freely available.  
While the software is currently used by the experts who wrote the system, transitioning to minimally 
trained users is a goal of the software development.  Future demonstrations will be used to mature this 
software. 
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11. Appendices 
11.1. Appendix A: Points of Contact 

POINT OF 
CONTACT 

Name 

ORGANIZATION 
Name 

Address 

Phone 
Fax 

E-mail 

Role in 
Project 

Levi Kennedy Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919-323-3456 
919-287-2578 

lkennedy@siginnovations.com 

Principal 
Investigator 

Lawrence Carin Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919 660-5270 
919-323-4811 

lcarin@ece.duke.edu 

Project 
Management 

Todd Jobe Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919-323-4811 
919-287-2578 

tjobe@siginnovations.com 

Engineer 

Xianyang Zhu Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919-323-4811 
919-287-2578 

xianyang@siginnovations.com 

Engineer 
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