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Abstract

Nonparametric Bayesian methods are considered for recovery of imagery based upon compressive,

incomplete and/or noisy measurements. A truncated beta-Bernoulli process is employed to infer an

appropriate dictionary for the data under test, and also for image recovery. In the context of compressive

sensing, significant improvements in image recovery are manifested using learned dictionaries, relative

to using standard orthonormal image expansions. The compressive-measurement projections are also

optimized for the learned dictionary. Additionally, we consider simpler (incomplete) measurements,

defined by measuring a subset of image pixels, selected uniformly at random; connections are made

to matrix completion and union-of-subspace models, providing a link between matrix completion and

image processing. Spatial inter-relationships within imagery are exploited through use of the Dirichlet

and probit stick-breaking processes. Several example results are presented, with comparisons to other

methods in the literature.

I. INTRODUCTION

There has been significant recent interest in sparse image representations, in the context of denoising and

interpolation [1], [13], [24]–[26], [28], [29], [33], compressive sensing (CS) [5], [12], and classification

[40]. All of these applications exploit the fact that images may be sparsely represented in an appropriate

dictionary. Most of the denoising, interpolation, and CS literature assumes “off-the-shelf” wavelet and
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DCT bases/dictionaries [20], but recent research has demonstrated the significant utility of learning an

often over-complete dictionary matched to the signals of interest (e.g., images) [1], [3], [12], [13], [24]–

[26], [28], [29], [31], [33], [41].

Many of the existing methods for learning dictionaries are based on solving an optimization problem

[1], [13], [24]–[26], [28], [29], in which one seeks to match the dictionary to the imagery of interest,

while simultaneously encouraging a sparse representation. These methods have demonstrated state-of-

the-art performance for denoising, super-resolution, interpolation, and inpainting. However, many existing

algorithms for implementing such ideas also have some restrictions. For example, one must often assume

access to the noise/residual variance, the size of the dictionary is set a priori or fixed via cross-validation

type techniques, and a single (“point”) estimate is learned.

To mitigate the aforementioned limitations, dictionary learning has recently been cast as a factor-

analysis problem, with the factor loadings corresponding to the dictionary elements (atoms). Utilizing

nonparametric Bayesian methods like the beta process (BP) [30], [38], [42] and the Indian buffet process

(IBP) [18], [21], one may for example infer the number of factors (dictionary elements) needed to

fit the data itself. Further, one may place a prior on the noise or residual variance, with this inferred

from the data [30], [42]. An approximation to the full posterior may be manifested via Gibbs sampling,

yielding an ensemble of dictionary representations. Recent research has demonstrated that an ensemble

of representations can be better than a single expansion [14], with such an ensemble naturally manifested

by statistical models as the one here described. Overall, the here proposed Bayesian framework provides

a complementary and alternative framework with respect to the more standard variational formulations.

These can also be interpreted via statistical models with solutions obtained via MAP estimation, e.g.,

see [32] for an overview and new interpretation of this. Such probabilistic interpretations use models

different than the ones here exploited, and as mentioned above, have to estimate critical parameters and

produce single solutions.

In image analysis there is often additional information that may be exploited when learning dictionaries,

with this well suited for Bayesian priors. For example, most natural images may be segmented, and

it is probable that dictionary usage will be similar for regions within a particular segment class. To

address this idea, we extend the model by employing a probit stick-breaking process (PSBP), with

this a generalization of the Dirichlet process (DP) stick-breaking representation [36]. Related clustering

techniques have proven successful in image processing [27]. The model clusters the image patches, with

each cluster corresponding to a segment type; the PSBP encourages proximate and similar patches to be
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included within the same segment type, thereby performing image segmentation and dictionary learning

simultaneously.

As discussed when presenting results, the proposed method is a natural tool for denoising images,

applicable when the noise statistics are nonstationary. The nonstationary noise variance is inferred within

the analysis. The principal focus of this paper, however, is on applying the algorithms to new compressive

measurement techniques that have been developed recently. Specifically, we consider dictionary learning in

the context of compressive sensing (CS) [5], [10], in which the measurements correspond to projections

of typical image pixels. We consider dictionary learning performed “offline” based on representative

(training) images, with the learned dictionary applied within CS image recovery. We also consider the

case for which the underlying dictionary is learned simultaneously with inversion (reconstruction), with

this related to “blind” CS [17]. Finally, we design the CS projection matrix to be matched to the learned

dictionary (when this is done offline), and demonstrate as in [12] that in practice this yields performance

gains relative to conventional random CS projection matrices.

While CS is of interest for its potential to reduce the number of required measurements, it has the

disadvantage of requiring the development of new classes of cameras. Such cameras are revolutionary

and interesting [11], [37], but there have been decades of previous research performed on development

of pixel-based cameras, and it would be desirable if such cameras could be modified simply to perform

compressive measurements. In that context, we note that there has been recent interest in the field of

matrix completion, in which performance guarantees have been derived that are similar to those associated

with CS [6]. One may view the pixel values of an image as a matrix of data, and if one samples the

pixels uniformly at random, recovery of the missing pixels corresponds to the matrix-completion problem.

However, the matrix-completion literature is based on the assumption that the matrix of interest is low

rank [6], [22], [35]. Because the underlying dictionaries associated with natural images are typically

over-complete, the assumption of a single low-rank matrix of pixel values is often inappropriate.

While a direct application of matrix-completion technology to this problem is then inappropriate, it

may be modified simply such that it is useful. Specifically, because natural images manifest segments and

self-similarity, one may view the dictionary-learning framework within a union-of-subspaces setting [15],

[23]. Each subspace, defined by a subset of the dictionary, represents a class of local structure within

an image, and each subspace and associated data may be viewed as a low-rank matrix. The BP, DP and

PSBP models discussed above are employed to perform joint clustering and recovery of missing pixels,

with comparisons made to related non-Bayesian approaches.

The remainder of the paper is organized as follows. In Section II we review the classes of problems
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being considered. The beta-Bernoulli process is discussed in Section III, with relationships made with

previous work in this area, including those based on the Indian buffet process. The Dirichlet and probit

stick-breaking processes are discussed in Section IV, and several example results are presented in Section

V. Conclusions and a discussion of future work are provided in Section VI, and details of the inference

equations are summarized in the Appendix.

II. PROBLEMS UNDER STUDY

A. Denoising and compressive sensing

We consider data samples that may be expressed in the form

xi = Dwi + εi (1)

where xi ∈ RP , εi ∈ RP , and wi ∈ RK . The columns of the matrix D ∈ RP×K represent the

K components of a dictionary with which xi is expanded. For our problem, the xi will correspond

to B × B (overlapped) pixel patches in an image [1], [13], [24], [25], [28], [42]. The set of vectors

{xi}i=1,N may be extracted from an image(s) of interest.

For the denoising problem, the vectors εi may represent sensor noise, in addition to (ideally small)

residual from representation of the underlying signal as Dwi. To perform denoising, we place restrictions

on the vectors wi, such that Dwi by itself does not exactly represent xi. A popular such restriction is

that wi should be sparse, motivated by the idea that any particular xi may often be represented in terms

of a small subset of representative dictionary elements, from the full dictionary defined by the columns of

D. There are several methods that have been developed recently to impose such a sparse representation,

including `1-based relaxation algorithms [24], [25], iterative algorithms [1], [13], and Bayesian methods

[42]. One advantage of a Bayesian approach is that the noise/residual statistics may be nonstationary

(with unknown noise statistics). Specifically, in addition to placing a sparseness-promoting prior on wi,

we may also impose a prior on the components of εi. From the estimated posterior density function

on model parameters, each component of εi, corresponding to the ith B × B image patch, has its own

variance. Given {xi}i=1,N , our goal may be to simultaneously infer D and {wi}i=1,N (and implicitly

εi), and then the denoised version of xi is represented as Dwi.

In many applications the total number of pixels N · P may be large. However, it is well known

that compression algorithms may be used on {xi}i=1,N after the measurements have been performed,

to significantly reduce the quantity of data that need be stored or communicated. This compression

indicates that while the data dimensionality N ·P may be large, the underlying information content may
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be relatively low. This has motivated the field of compressive sensing [5], [10], [11], [37], in which the

total number of measurements performed may be much less than N · P . Toward this end, researchers

have proposed projection measurements of the form

yi = Σxi (2)

where Σ ∈ Rn×P and yi ∈ Rn, ideally with n � P . The projection matrix Σ has traditionally been

constituted randomly [5], [10], with a binary or real alphabet (and Σ may also be a function of the

specific patch, and generalized as Σi). It is desirable that matrices Σ and D be as incoherent as possible.

The recovery of xi from yi is an ill-posed problem unless restrictions are placed on xi. We may

exploit the same class of restrictions used in the denoising problem; specifically, the observed data

satisfy yi = Φwi + νi, with Φ = ΣD and νi = Σεi, and with sparse wi. Note that the sparseness

constraint implies that {wi}i=1,N (and hence {xi}i=1,N ) occupy nonlinear subspaces of RP .

In most applications of compressive sensing D is assumed known, corresponding to an orthonormal

basis (e.g., wavelets or a DCT) [5], [10], [20]. However, such bases are not necessarily well matched to

natural imagery, and it is desirable to consider design of dictionaries D for this purpose [12]. One may

even consider recovering {xi}i=1,N from {yi}i=1,N while simultaneously inferring D. Thus, we again

have a dictionary-learning problem, which may be coupled with optimization of the CS matrix Σ, such

that it is matched to D (defined by a low coherence between the rows of Σ and columns of D [5], [10],

[12], [20]).

B. Matrix completion and pixel recovery

Consider a matrix M ∈ Rn1×n2 of rank r, and assume we only observe m� n1 · n2 components of

this matrix, with the observed components selected uniformly at random. Let Ω represent a set defining

the entries of M for which we have data. Consider the convex program

minimize ‖Z‖∗ (3)

subject to PΩ(Z) = PΩ(M) (4)

where PΩ(·) defines the vector of samples of the associated matrix that are in the set Ω. The nuclear

norm ‖Z‖∗ =
∑

i γi(Z), where γi(Z) represents the ith singular value of Z. Defining n = max(n1, n2),

Candès and Tao [6] showed that with probability exceeding 1−n−3, if m ≥ Cµ2nr(log n)6 then Z = M,

thereby recovering the missing entries of M ( [8] considers related issues). The parameter µ represents

the coherence, a measure of how “spread out” the singular vectors of M are, and ideally the coherence

is near one. For this result to be useful, we require r � n1 and r � n2.
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The assumption that M is low rank, and the use of this in recovering missing matrix entries, implies

that the columns (and rows) of M reside in an r-dimensional linear subspace. Specifically,

M =
r∑

i=1

λiuiv
T
i (5)

where λi ∈ R, ui ∈ Rn1 , and vi ∈ Rn2 represent, respectively, the ith singular value, left singular vector,

and right singular vector. Hence, each column of M is assumed to reside in a linear subspace defined

by {ui}i=1,r.

We now reconsider the set of vectors {xi}i=1,N discussed above, again with xi ∈ RP corresponding

to patches of pixels from the image(s). Let X ∈ RP×N have columns defined by the vectors {xi}i=1,N .

It is assumed that a randomly constituted subset of the components of X are measured, and our goal is to

recover the missing data using ideas analogous to those employed in matrix-completion theory. However,

as discussed above, each xi = Dwi + εi, for sparse wi. If we ignore εi for now, the columns of X

reside in a nonlinear subspace of RP , due to the fact that all wi are sparse (not necessarily with the

same sparsity patterns). Further, since the dictionary D is typically over-complete, X is generally not

low-rank. Therefore, linear matrix-completion theory is not applicable to X.

While a direct application of this theory may be inappropriate for image-processing problems, the

framework may be modified to make it applicable. As one way in which the model may be modified,

recall that images tend to possess significant self-similarity [4] and segments, implying that many B×B

patches have similar structure. This suggests that there may be a clustering of the B×B blocks, and that

within each cluster the associated data can constitute the columns of a matrix of low-rank, recoverable in

the presence of significant missing matrix values. The nonparametric Bayesian methods developed here

implement joint clustering of the observed image patches and inference of the missing pixel values.

III. SPARSE FACTOR ANALYSIS WITH THE BETA-BERNOULLI PROCESS

When presenting example results, we will consider three problems. For denoising, it is assumed we

measure xi = Dwi + εi, where εi represents measurement noise and model error; for the compressive-

sensing application we observe yi = Σ(Dwi + εi) = Φwi + νi, with Φ = ΣD and νi = Φεi; and,

finally, for the interpolation problem we observe Pφ(Dwi + εi), where Pφ(xi) is a vector of elements

from xi contained within the set φ, as in (4). For all three problems our objective is to infer the underlying

signal Dwi, with wi assumed sparse; we generally wish to simultaneously infer D and {wi}i=1,N . To

address each of these problems, we consider a statistical model for xi = Dwi + εi, placing Bayesian

priors on D, wi and εi; the way the model is used is modified slightly for each specific application. For
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example, when considering interpolation, only the observed Pφ(xi) are used within the model likelihood

function.

A. Beta-Bernoulli process for active-set selection

Let the binary vector zi ∈ {0, 1}K denote which of the K columns of D are used for representation

of xi (active set); if a particular component of zi is equal to one, then the corresponding column of D

is used in the representation of xi. Hence, for the data {xi}i=1,N there is an associated set of latent

binary vectors {zi}i=1,N , and the beta-Bernoulli process provides a convenient prior for these vectors

[30], [38], [42]. Specifically, consider the model

zi ∼
K∏

k=1

Bernoulli(πk)

π ∼
K∏

k=1

Beta(a/K, b(K − 1)/K) (6)

where πk is the kth component of π, and a and b are model parameters; the impact of these parameters

on the model are discussed below.

Considering the limit K →∞, and after integrating out π, the draws of {zi}i=1,N may be constituted as

follows. For each zi, draw ci ∼ Poisson( a
b+i−1) and define Ci =

∑i
j=1 cj , with C0 = 0. Let zik represent

the kth component of zi, and zik = 0 for k > Ci. For k = 1, . . . , Ci−1, zik ∼ Bernoulli( nik

b+i−1), where

nik =
∑i−1

j=1 zjk (nik represents the total number of times the kth component of {zj}j=1,i−1 is one). For

k = Ci−1 + 1, . . . , Ci, we set zik = 1. Note that as a/(b+ i− 1) becomes small, with increasing i, it is

probable that ci will be small. Hence, with increasing i, the number of new non-zero components of zi

diminishes. Further, as a consequence of Bernoulli( nik

b+i−1), when a particular component of the vectors

{zj}j=1,i−1 is frequently one, it is more probable that it will be one for subsequent zj , j ≥ i. When

b = 1 this construction for {zi}i=1,N corresponds to the Indian buffet process [18].

Since zi defines which columns of D are used to represent xi, (6) imposes that it is probable that

some columns of D are used repeatedly among the set {xi}i=1,N , while other columns of D may be

more specialized to particular xi. As demonstrated below, this has been found to be a good model when

{xi}i=1,N are patches of pixels extracted from natural images.
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B. Full hierarchical model

The hierarchical form of the model may now be expressed as

xi = Dwi + εi

wi = zi � si

dk ∼ N (0, P−1IP )

si ∼ N (0, γ−1
s IK)

εi ∼ N (0, γ−1
ε IP ) (7)

where dk represents the kth component (atom) of D, ◦ represents the pointwise or Hadamard vector

product, IP (IK) represents a P × P (K × K) identity matrix, and {zi}i=1,N are drawn as in (6).

Conjugate hyperpriors γs ∼ Gamma(c, d) and γε ∼ Gamma(e, f) are also imposed. The construction in

(7), and with the prior in (6) for {zi}i=1,N , is henceforth referred to as the beta process factor analysis

(BPFA) model.

Note that we impose independent Gaussian priors for dk, si and εi for modeling convenience (conju-

gacy of consecutive terms in the hierarchical model). However, the inferred posterior for these terms is

generally not independent or Gaussian. The independent priors essentially impose prior information about

the marginals of the posterior of each component, while the inferred posterior accounts for statistical

dependence as reflected in the data. To make connections of this model to more-typical optimization-based

approaches [24], [25], note that the negative logarithm of the posterior density function is

− log p(Θ|D,H) =
γε

2

N∑
i=1

‖xi −D(si ◦ zi)‖22 +
P

2

K∑
k=1

‖dk‖22 +
γs

2

N∑
i=1

‖si‖22 (8)

− log fBeta−Bern({zi}N
i=1;H)− log Gamma(γε|H)− log Gamma(γs|H) + Const.

where Θ represents all unknown model parameters, D = {xi}i=1,N , fBeta−Bern({zi}N
i=1;H) represents

the beta-Bernoulli process prior in (6), and H represents model hyper-parameters (i.e., a, b, c, d, e and

f ). Therefore, the typical `2 constraints [24], [25] on the dictionary elements dk and on the non-zero

weights si correspond here to the Gaussian priors employed in (7). However, rather than an employing

an `1 (Laplacian prior) constraint [24], [25] to impose sparseness on wi, we employ the beta-Bernoulli

process and wi = si◦zi. The beta-Bernoulli process imposes that the binary zi should be sparse, and that

there should be a relatively consistent (re)use of dictionary elements across the image, thereby imposing

self-similarity. Further, and perhaps most importantly, we do not constitute a point estimate, as one would

do if a single Θ was sought to minimize (8). We rather estimate the full posterior density p(Θ|D,H),
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implemented via Gibbs sampling. A significant advantage of the hierarchical construction in (7) is that

each Gibbs update equation is analytic, with detailed update equations provided in Appendix B. Note that

consistent use of atoms is encouraged because the active sets are defined by the binary vectors {zi}i=1,N ,

and these are all drawn from a shared probability vector π; this is distinct from drawing the active sets

i.i.d. from a Laplacian prior. Further, the beta-Bernoulli prior imposes that many components of wi are

exactly zero, while with a Laplacian prior many components are small but not exactly zero.

IV. PATCH CLUSTERING VIA DIRICHLET AND PROBIT STICK-BREAKING PROCESSES

A. Dirichlet process

As discussed in Section II-B, in many applications it is expected that the data patches {xi}i=1,N may

cluster, and it is of interest to infer this clustering nonparametrically (i.e., to infer the number of clusters

and their composition from the data). The imposition of such prior knowledge may improve the quality

of the inversion for {xi}i=1,N based upon incomplete measurements. The Dirichlet process (DP) [16]

constitutes a popular means of performing such nonparametric clustering. A random draw from a DP,

G ∼ DP(αG0), with precision α ∈ R+ and “base” measure G0, may be constituted via the stick-breaking

construction [36]

G =
∞∑
l=1

βlδθ∗l , θ∗l ∼ G0 (9)

where βl = Vl
∏l−1

h=1(1 − Vh) and Vh ∼ Beta(1, α). The βl may be viewed as a sequence of fractional

breaks from a “stick” of original length one, where the fraction of stick broken off on break l is Vl. The

θ∗l are model parameters, associated with the lth data cluster. For our problem it has proven effective to

set G0 =
∏K

k=1 Beta(a/K, b(K − 1)/K) analogous to (6), and hence G =
∑∞

l=1 βlδπ∗
l
. The π∗

l , drawn

from G0, correspond to distinct probability vectors for using the K dictionary elements (columns of D).

For sample i we draw πi ∼ G, and a separate sparse binary vector zi is drawn for each sample xi, as

zi ∼
∏K

k=1 Bernoulli(πik), with πik the kth component of πi. In practice we truncate the infinite sum for

G to NL elements, and impose VNL
= 1, such that

∑NL

l=1 βl = 1. A (conjugate) gamma prior is placed

on the DP parameter α.

We may view this DP construction as an “Indian buffet franchise,” generalizing the Indian buffet

analogy [18]. Specifically, there are NL Indian buffet restaurants; each restaurant is composed of the

same “menu” (columns of D), and is distinguished by different probabilities for selecting menu items.

The “customers” {xi}i=1,N cluster based upon which restaurant they go to. The {π∗
l }l=1,NL

represent

the probability of using each column of D in the respective NL different buffets. The {xi}i=1,N cluster
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themselves among the different restaurants in a manner that is consistent with the characteristics of the

data, with the model also simultaneously learning the dictionary/menu D. Note that we typically make

the truncation NL large, and the posterior distribution infers the number of clusters actually needed to

support the data, as represented by how many βl are of significant value. The model in (7), with the

above DP construction for {zi}i=1,N , is henceforth referred to as DP-BPFA.

B. Probit stick-breaking process

The DP yields a clustering of {xi}i=1,N , but it does not account for our knowledge of the location

of each patch within the image. It is natural to expect that if xi and xi′ are proximate then they are

likely to be constituted in terms of similar columns of D 1. To impose this information, we employ the

probit stick-breaking process (PSBP). A logistic stick-breaking process is discussed in detail in [34]. We

employ the closely related probit version here because it may be easily implemented in a Gibbs sampler.

We note that while the method in [34] is related to that discussed below, in [34] the concepts of learned

dictionaries and beta-Bernoulli priors were not considered.

We augment the data as {xi, ri}i=1,N , where xi again represents pixel values from the ith image patch,

and ri ∈ R2 represents the two-dimensional location of each patch. We wish to impose that proximate

patches are more likely to be composed of the same or similar columns of D. In the PSBP construction,

all aspects of (7) are retained, except for the manner in which zi are constituted. Rather than drawing a

single K-dimensional vector of probabilities π as in (6), we draw a library of such vectors:

π∗
l ∼

K∏
k=1

Beta(a/K, b(K − 1)/K) , l = 1, . . . , NL (10)

and each π∗
l is associated with a particular segment in the image. One πi is associated with location ri,

and drawn

πi ∼
NL∑
l=1

βl(ri)δπ∗
l

(11)

with
∑NL

l=1 βl(ri) = 1 for all ri, and δπ∗
l

represents a point measure concentrated at π∗
l . Once πi is

associated with a particular xi, the corresponding binary vector zi is drawn as in the first line of (6).

Note that the distinction between DP and PSBP is that in the former the mixture weights {βl}l=1,NL
are

independent of spatial position r, while the latter explicitly utilizes r within {βl(r)}l=1,NL
(and below

we impose that βl(r) changes smoothly with r).

1Proximity can be modeled as in “spatial proximity,” as here developed in detail, or “feature proximity” as in non-local means

and related approaches, see [27] and references therein.
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The space-dependent weights are constructed as βl(r) = Vl(r)
∏l−1

h=l[1− Vh(r)] where 0 < Vl(r) < 1

constitute space-dependent probabilities. We set VNL
= 1, and for l ≤ NL−1 the Vl are space-dependent

probit functions:

Vl(r) =
∫ gl(r)

−∞
dxN (x|0, 1), gl(r) = ζl0 +

N∑
i=1

ζliK(r, ri;ψl) (12)

where K(r, ri;ψl) is a kernel characterized by parameter ψl and {ζli}i=0,N are a sparse set of real

numbers. To implement the sparseness on {ζli}i=0,N , within the prior ζli ∼ N (0, α−1
li ), and (conjugate)

αli ∼ Gamma(a0, b0), with (a0, b0) set to favor most αli being large (if αli is large, a draw N (0, α−1
li ) is

likely to be near zero, such that most {ζli}i=0,N are near zero). This sparseness-promoting construction

is the same as that employed in the relevance vector machine (RVM) [39]. We here utilize a radial basis

function (RBF) kernel K(r, ri;ψl) = exp[−‖ri − r‖2/ψl].

Each gl(r) is encouraged to only be defined by a small set of localized kernel functions, and via the

probit link function
∫ gl(r)
−∞ dxN (x|0, 1) the probability Vl(r) is characterized by localized segments over

which the probability Vl(r) is contiguous and smoothly varying. The Vl(r) constitute a space-dependent

stick-breaking process. Since VNL
= 1,

∑NL

l=1 βl(r) = 1 for all r.

The PSBP model is relatively simple to implement within a Gibbs sampler. For example, as indicated

above, sparseness on ζli is imposed as in the RVM, and the probit link function is simply implemented

within a Gibbs sampler (which is why it was selected, rather than a logistic link function). Finally, we

define a finite set of possible kernel parameters {ψj}j=1,Np
, and a multinomial prior is placed on these

parameters, with the multinomial probability vector drawn from a Dirichlet distribution [34] (each of the

gl(r) draws a kernel parameter from {ψj}j=1,Np
). The model in (7), with the PSBP construction for

{zi}i=1,N , is henceforth referred to as PSBP-BPFA.

C. Discussion of proposed sparseness-imposing priors

The basic BPFA model is summarized in (7), and three related priors have been developed for the

sparse binary vectors {zi}i=1,N : (i) the basic truncated beta-Bernoulli process in (6), (ii) a DP-based

clustering of the underlying {πi}i=1,N , and (iii) a PSBP clustering of {πi}i=1,N that exploits knowledge

of the location of the image patches. For (ii) and (iii), the xi within a particular cluster have similar

zi, rather than exactly the same binary vector; we also considered the latter, but this worked less well in

practice. As discussed further when presenting results, for denoising and interpolation, all three methods

yield comparable performance. However, for CS, (ii) and (iii) yield marked improvements in image-

recovery accuracy relative to (i). In anticipation of these results, we provide a further discussion of the

three priors on {zi}i=1,N and on the three image-processing problems under consideration.

April 17, 2010 DRAFT



12

For the denoising and interpolation problems, we are provided with the data {xi}i=1,N , albeit in the

presence of noise and potentially with substantial missing pixels. However, for this problem N may

be made quite large, since we may consider all possible (overlapping) B × B patches. A given pixel

(apart from near the edges of the image) is present in B2 different patches. Perhaps because we have

such a large quantity of partially overlapping data, for denoising and interpolation we have found that

beta-Bernoulli process in (6) is sufficient for inferring the underlying relationships between the different

data {xi}i=1,N , and processing these data collaboratively. However, the beta-Bernoulli construction does

not explicitly segment the image, and therefore an advantage of the PSBP-BPFA construction is that it

yields comparable denoising and interpolation performance as (6), while also simultaneously yielding an

effective image segmentation.

For the CS problem, we measure yi = Σxi, and therefore each of the n measurements associated with

each image patch (Σ ∈ Rn×P ) loses the original pixels in xi (the projection matrix Σ may also change

with each patch, denoted Σi). Therefore, for CS one cannot consider all possible shifts of the patches, as

the patches are predefined and fixed in the CS measurement (in the denoising and interpolation problems

the patches are defined in the subsequent analysis). Therefore, for CS imposition of the clustering behavior

via DP or PSBP provides important information, yielding state-of-the-art CS-recovery results.

Before proceeding to the results, we also reconsider the theorem in Section II-B. It proved convenient,

such that existing matrix-completion theory could be readily applied, to assume that the latent binary

vectors {zi}i=1,N clustered. While that analysis demonstrated the promise of recovering missing pixels in

natural images, our empirical results suggest that a more-thorough theoretical analysis of this problem is

needed. Assume we measure x′i = Pφi
(xi), where φi denotes the set of pixels observed for xi (different

subsets of pixels are observed for different patches, and by processing all pixels “collaboratively,” we

may infer the underlying dictionary D and the sparse wi). The logarithm of the posterior of (all) model

parameters Θ, given observed data D = {x′i}i=1,N and model hyperparameters H, may be expressed as

− log p(Θ|D,H) =
γε

2

N∑
i=1

‖Pφi
(xi −D(si ◦ zi))‖22 +

P

2

K∑
k=1

‖dk‖22 +
γs

2

N∑
i=1

‖si‖22 (13)

− log f({zi}N
i=1;H)− log Gamma(γε|H)− log Gamma(γs|H) + Const.

where density function f({zi}N
i=1;H) represents the particular prior placed on {zi}i=1,N , and we have

considered the beta-Bernoulli prior, as well as the DP and PSBP constructions. Note that the Gaussian

assumption on εi yields a Frobenius norm between the observed image data and that manifested by the

model (constituted via
∑N

i=1 ‖Pφi
(xi−D(si◦zi))‖22). Therefore, this construction is closely linked to the

optimization approach advocated for near-low-rank matrix completion [7], which also uses a Frobenius
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norm. The key distinction, however, is manifested here via f({zi}N
i=1;H), which moves beyond linear

(low-rank) models to nonlinear constructions (the subspace used to represent missing data is patch-

dependent).

V. EXAMPLE RESULTS

A. Reproducible research

The test results and the Matlab code to reproduce them can be downloaded from http : //www.ee.duke.edu/ ∼

mz1/Results/BPFAImage/.

B. Parameter settings

For all BPFA, DP-BPFA and PSBP-BPFA computations, the dictionary truncation level was set at

K = 256 or K = 512 based on the size of the image. Not all K dictionary elements are used in

the model; the truncated beta-Bernoulli process infers the subset of dictionary elements employed to

represent the data {xi}i=1,N . The number of DP and PSBP sticks was set at NL = 20. The library

of PSBP parameters is defined as in [34]. The hyperparameters within the gamma distributions were

set as c = d = e = f = 10−6, as is typically done in models of this type [39] (the same settings

were used for the gamma prior for the DP precision parameter α). The beta-distribution parameters are

set as a = K and b = 1 if random initialization is used or a = K and b = N/8 if a singular value

decomposition (SVD) based initialization is used. None of these parameters have been optimized or

tuned. When performing inference, all parameters are initialized randomly (as a draw from the associated

prior) or based on the SVD of the image under test. The Gibbs samplers for the BPFA, DP-BPFA and

PSBP-BPFA have been found to mix and converge quickly, producing satisfactory results with as few

as 20 iterations. The inferred images represent the average from the collection samples. All software

was written in non-optimized Matlab. On a Dell Precision T3500 computer with a 2.4 GHz CPU, for

N = 148, 836 patches of size 8 × 8 × 3 with 20% of the RGB pixels observed at random, the BPFA

required about 2 minutes per Gibbs iteration (the DP version was comparable), and PSBP-BPFA required

about 3 minutes per iteration. For the 106-band hyperspectral imagery, which employed N = 428, 578

patches of size 4× 4× 106 with 2% of the voxels observed uniformly at random, each Gibbs iteration

required about 15 minutes.

C. Denoising

The BPFA denoising algorithm is compared with the original KSVD [13], for both grey-scale and color

images. Newer denoising algorithms include block matching with 3D filtering (BM3D) [9], the multiscale
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KSVD [29], and KSVD with the non-local mean constraints [26]. These algorithms assume the noise

variance is known, while the proposed model automatically infers the noise variance from the image under

test. Moreover, the BPFA, DP-BPFA and PSBP-BPFA models infer a potentially non-stationary variance,

with a broad prior on the variance imposed by the gamma distribution. In the denoising examples we

consider the BPFA model in (6); similar results are obtained via the DP-BPFA and PSBP-BPFA models

discussed in Section IV.

In Table I we consider images from [13]. The proposed BPFA performs very similarly to KSVD. As

one representative example of the model’s ability to infer the noise variance, we consider the Lena image

from Table I. The mean inferred noise standard deviations are 5.83, 10.59, 15.53, 20.48, 25.44, 50.46

and 100.54 for images contaminated by noise with respective standard deviations of 5, 10, 15, 20, 25, 50

and 100. Each of these noise variances were automatically inferred using exactly the same model, with

no changes to the gamma hyperparameters.

In Table II we present similar results, for denoising RGB images; the KSVD comparisons come from

[28]. An example denoising result is shown in Figure 1. As another example of the BPFA’s ability to

infer the underlying noise variance, for the castle image, the mean (automatically) inferred variances are

5.15, 10.18, 15.22 and 25.23 for images with additive noise with true respective standard deviations 5,

10, 15 and 25. The sensitivity of the KSVD algorithm to a mismatch between the assumed and true noise

variances is shown in Figure 1 in [42], and the insensitivity of BPFA to changes in the noise variance

and to requiring knowledge of the noise variance is deemed an important advantage.

Fig. 1. From left to right: the original horses image, the noisy horses image with the noise standard deviation of

25, the denoised image and the inferred dictionary with its elements ordered in the probability to be used (from

top-left). The low-probability dictionary elements are never used to represent {xi}i=1,N , and are draws from the

prior, showing the ability of the model to learn the number of dictionary elements needed for the data.

It is also important to note that the grey-scale KSVD results in Table I were initialized using an over-

complete DCT dictionary, while the RGB KSVD results in Table II employed an extensive set of training

imagery to learn a dictionary D that was used to initialize the denoising computations. All BPFA, DP-

BPFA and PSBP-BPFA results employ no training data, with the dictionary initialized at random using
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draws from the prior or with the SVD of the data under test.

TABLE I

GREY-SCALE IMAGE DENOISING PSNR RESULTS, COMPARING KSVD [13] AND BPFA, USING PATCH SIZE

8× 8. THE TOP AND BOTTOM PARTS OF EACH CELL ARE RESULTS OF KSVD AND BPFA, RESPECTIVELY.

σ C.man House Peppers Lena Barbara Boats F.print Couple Hill

5
37.87 39.37 37.78 38.60 38.08 37.22 36.65 37.31 37.02

37.32 39.18 37.24 38.20 37.94 36.43 36.29 36.77 36.24

10
33.73 35.98 34.28 35.47 34.42 33.64 32.39 33.52 33.37

33.40 36.29 34.31 35.62 34.63 33.70 32.42 33.63 33.31

15
31.42 34.32 32.22 33.70 32.37 31.73 30.06 31.45 31.47

31.34 34.52 32.46 33.93 32.61 31.97 30.23 31.73 31.64

20
29.91 33.20 30.82 32.38 30.83 30.36 28.47 30.00 30.18

30.03 33.25 31.10 32.65 31.10 30.70 28.72 30.34 30.47

25
28.85 32.15 29.73 31.32 29.60 29.28 27.26 28.90 29.18

28.99 32.24 30.00 31.63 29.88 29.70 27.58 29.28 29.57

50
25.73 27.95 26.13 27.79 25.47 25.95 23.24 25.32 26.27

25.67 28.49 26.46 28.29 26.03 26.50 24.14 25.94 26.81

100
21.69 23.71 21.75 24.46 21.89 22.81 18.30 22.60 23.98

21.93 24.37 22.73 24.95 22.13 23.32 20.44 23.01 24.22

D. Image interpolation

For the initial interpolation examples, we consider standard RGB images, with 80% of the RGB pixels

missing uniformly at random (the data under test are shown in Figure 2). Results are first presented for

the Castle and Mushroom images, with comparisons between the BPFA model in (6) and the PSBP-

BPFA model discussed in Section IV. The difference between the two is that the former is a “bag-of-

patches” model, while the latter accounts for the spatial locations of the patches. Further, the PSBP-BPFA

simultaneously performs image recovery and segmentation. The results are shown in Figure 3, presenting

the mean reconstructed images and inferred segmentations. Each color in the inferred segmentation

represents one PSBP mixture component, and the figure shows the last Gibbs iteration (to avoid issues
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TABLE II

RGB IMAGE DENOISING PSNR RESULTS COMPARING KSVD [28] AND BPFA, BOTH USING A PATCH SIZE OF

7× 7. THE TOP AND BOTTOM PARTS OF EACH CELL SHOW THE RESULTS OF KSVD AND BPFA, RESPECTIVELY.

σ Castle Mushroom Train Horses Kangroo

5
40.37 39.93 39.76 40.09 39.00

40.34 39.73 39.38 39.96 39.00

10
36.24 35.60 34.72 35.43 34.06

36.28 35.70 34.48 35.48 34.21

15
33.98 33.18 31.70 32.76 31.30

34.04 33.41 31.63 32.98 31.68

25
31.19 30.26 28.16 29.81 28.39

31.24 30.62 28.28 30.11 28.86

with label switching between Gibbs iterations). While the BPFA does not directly yield a segmentation,

its PSNR results are comparable to those inferred by PSBP-BPFA, as summarized in Table III.

TABLE III

COMPARISON OF INTERPOLATION OF THE CASTLE AND MUSHROOM IMAGES, BASED UPON OBSERVING 20%

OF THE PIXELS, SELECTED UNIFORMLY AT RANDOM. RESULTS ARE SHOWN USING BPFA AND PSBP-BPFA,

AND THE ANALYSIS IS SEPARATELY PERFORMED USING 8× 8× 3 AND 5× 5× 3 IMAGE PATCHES.

Castle 8× 8× 3 Castle 5× 5× 3 Mushroom 8× 8× 3 Mushroom 5× 5× 3

BPFA 29.32 28.48 31.63 31.17

PSBP-BPFA 29.54 28.46 32.03 31.27

An important additional advantage of Bayesian models like BPFA, DP-BPFA and PSBP-BPFA is that

they provide a measure of confidence in the accuracy of the inferred image. In Figure 4 we plot the

variance of the inferred error {εi}i=1,N , computed via the Gibbs collection samples.

To provide a more-thorough examination of model performance, in Table IV we present results for

several well-studied grey-scale and RGB images, as a function of the fraction of pixels missing. All of

these results are based upon BPFA, with DP-BPFA and PSBP-BPFA yielding similar results. Finally, in

Table V we perform interpolation and denoising simultaneously, again with no training data and without
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Fig. 2. Images with 80% of the RGB pixels missing at random. Left: castle image, right: mushroom image.

Fig. 3. PSBP-BPFA analysis with 80% of the RGB pixels missing uniformly at random (see Figure 2). The analysis

is based on 8× 8× 3 image patches, considering all possible (overlapping) parches. For a given pixel, the results

are the average based upon all patches in which it is contained. For each example, recovered image based on an

average of Gibbs collection samples (left), and each color representing one of the PSBP mixture components (right).

prior knowledge of the noise level. An example result is shown in Figure 5. To our knowledge, this is

the first time such a result has been presented.

For all of the examples considered above, for both grey-scale and RGB images, we also attempted

a direct application of matrix completion based on the incomplete matrix X ∈ RP×N , with columns

defined by the image patches. We specifically considered the algorithm in [19], using software from

Prof. Candès’ website. For most of the examples considered above, even after very careful tuning of the

April 17, 2010 DRAFT



18

Fig. 4. Expected variance of each pixel for the (Mushroom) data considered in Figure 3.

Fig. 5. From left to right: the original barbara256 image, the noisy and incomplete barbara256 image with the noise

standard deviation of 15 and 70% of its pixels missing at random, the restored image and the inferred dictionary

with its elements ordered in the probability to be used (from top-left).

parameters, the algorithm diverged, suggesting that the low-rank assumptions were violated. For examples

for which the algorithm did work, the PSNR values were typically 4 to 5 dB worse than those reported

here for our model.

E. Interpolation of hyperspectral imagery

The basic BPFA, DP-BPFA and PSBP-BPFA technology may also be applied to hyperspectral imagery,

and it is here where these methods may have significant practical utility. Specifically, the amount of data

that need be measured and read off a hyperspectral camera is often enormous. By selecting a small

fraction of voxels for measurement and read-out, selected uniformly at random, the quantity of data that

need be handled is reduced substantially. Further, one may simply modify existing hyperspectral cameras.

We consider hyperspectral data with 106 spectral bands, measured by the US National Geospatial Agency
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TABLE IV

TOP: BPFA GRAY-SCALE IMAGE INTERPOLATION PSNR RESULTS, USING PATCH SIZE 8× 8. BOTTOM: BPFA

RGB IMAGE INTERPOLATION PSNR RESULTS, USING PATCH SIZE 7× 7.

data ratio C.man House Peppers Lena Barbara Boats F.print Man Couple Hill

20% 24.11 30.12 25.92 31.00 24.80 27.81 26.03 28.24 27.72 29.33

30% 25.71 33.14 28.19 33.31 27.52 30.00 09.01 30.06 30.00 31.21

50% 28.90 38.02 32.58 36.94 33.17 33.78 33.53 33.29 35.56 34.23

80% 34.70 43.03 37.73 41.27 40.76 39.50 40.17 39.11 38.71 38.75

data ratio Castle Mushroom Train Horses Kangroo

20% 29.12 31.56 24.59 29.99 29.59

30% 32.02 34.63 27.00 32.52 32.21

50% 36.45 38.88 32.00 37.27 37.34

80% 41.51 42.56 40.73 41.97 42.74

TABLE V

SIMULTANEOUS IMAGE DENOISING AND INTERPOLATION PSNR RESULTS FOR BPFA, CONSIDERING THE

BARBARA256 IMAGE AND USING PATCH SIZE 8× 8.

σ 10% 20% 30% 50% 100%

0 23.47 26.87 29.83 35.60 42.94

5 23.34 26.73 29.27 33.61 37.70

10 23.16 26.07 28.17 31.17 34.31

15 22.66 25.17 26.82 29.31 32.14

20 22.17 24.27 25.62 27.90 30.55

25 21.68 23.49 24.72 26.79 29.30

(NGA). Because of the significant statistical correlation across the multiple spectral bands, the fraction

of data that need be read is further reduced, relative to grey-scale or RGB imagery. In this example we

considered 2% of the voxels, selected uniformly at random, and used image patches of size 4× 4× 106.

Other than the increased data dimensionality, nothing in the model was changed.

In Figure 6 we show example (mean) inferred images, at two (arbitrarily selected) spectral bands, as

computed via BPFA. All 106 spectral bands are analyzed simultaneously. The average PSNR for the data
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cube (size 845× 512× 106) is 30.96 dB. While the PSNR value is of interest, for data of this type the

more important question concerns the ability to classify different materials based upon the hyperspectral

data. In a separate forthcoming paper we consider classification based on the full datacube, and based

upon the BPFA-inferred datacube using 2% of the voxels, with encouraging results reported. We also tried

the low-rank matrix completion algorithm from [19] for the hyperspectral data, and even after extensive

parameter tuning, the algorithm diverged for all hyperspectral data considered.

In Table VI we summarize algorithm performance on another hyperspectral data set, composed of 210

spectral bands. We show the PSNR values as a function of percentage of observed data, and as a function

of the size of the image patch. Note that the 1 × 1 patches only exploit spectral information, while the

other patch sizes exploit both spatial and spectral information.

TABLE VI

BPFA HYPERSPECTRAL IMAGE INTERPOLATION PSNR RESULTS. FOR THIS EXAMPLE THE TEST IMAGE IS A

150× 150 URBAN IMAGE WITH 210 SPECTRAL BANDS. RESULTS ARE SHOWN AS A FUNCTION OF THE

PERCENTAGE OF OBSERVED VOXELS, FOR DIFFERENT SIZED PATCHES (e.g., THE 4× 4 CASE CORRESPONDS TO

4× 4× 210 “PATCHES”).

Observed data (%) 1× 1 2× 2 3× 3 4× 4

2 15.34 21.09 22.72 23.46

5 17.98 23.58 25.30 25.88

10 20.41 25.27 26.36 26.68

20 22.22 26.50 27.02 27.16

F. Compressive sensing

We consider a CS example in which the image is divided into 8×8 patches, with these constituting the

underlying data {xi}i=1,N to be inferred. For each of the N blocks, a vector of CS measurements yi =

Σxi is measured, where the number of projections per patch is n, and the total number of CS projections

is n ·N . In our first examples the elements of Σ are constructed randomly, as draws from N (0, 1); many

other random projection classes may be considered [2] (and below we also consider optimized projections

Σ, matched to the dictionary D). Each xi is assumed represented in terms of a dictionary xi = Dwi+εi,

and three constructions for D were considered: (i) a DCT expansion; (ii) learning of D using BPFA,

using training images; (iii) using the BPFA to perform joint CS inversion and learning of D. For (ii),
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the training data consisted of 4000 8× 8 patches chosen at random from 100 images selected from the

Microsoft database (http : //research.microsoft.com/en − us/projects/objectclassrecognition).

The dictionary was set to K = 256, and the offline beta process inferred a dictionary of size M = 237.

Representative CS reconstruction results are shown in Figure 7 (left) based upon a DCT dictionary, for a

grey-scale version of the “castle” image. The results in Figure 7 (right) are based on a learned dictionary;

except for the “online BP” results (where D and {wi}i=1,N are learned jointly), all of these results

employ the same dictionary D learned off-line as mentioned above, and the algorithms are distinguished

by different ways of estimating {wi}i=1,N . A range of CS-inversion algorithms are considered from the

literature, and several BPFA-based constructions are considered as well for CS inversion. The online

BPFA results (with no training data) are quite competitive with those based on a dictionary learned

off-line.

Note that results based on a learned dictionary are markedly better than those based on the DCT; similar

results were achieved when the DCT was replaced by a wavelet representation. For the DCT-based results,

note that the DP-BPFA and PSBP-BPFA CS inversion results are significantly better than those of all

other CS inversion algorithms. The results reported here are consistent with tests we performed using

over 100 images from the aforementioned Microsoft database, not reported here in detail for brevity.

In all previous results the projection matrix Σ was constituted randomly. We now consider a simple

means of matching Σ to a D learned offline, based upon representative training images. Assume a

learned D ∈ RP×K , with K > P , which may be represented via SVD as D = UΛVT ; U ∈ RP×P

and V ∈ RK×P are each composed of orthonormal columns, and Λ is a P × P diagonal matrix. The

columns of U span the linear subspace of RP in which the columns of D reside. Further, since the

columns of D are generally not orthonormal, each column of D is “spread out” when expanded in the

columns of U. Therefore, one expects that U and D are incoherent. Hence, a simple means of matching

CS projections to the data is to define the rows of Σ in terms of randomly selected columns of U. This

was done in Figure 8 for the grey-scale “castle” image, using the same learned dictionary as considered

in Figure 7. It is observed that this procedure yields a marked improvement in CS recovery accuracy, for

all CS inversion algorithms considered.

Concerning computational costs, all CS inversions were run efficiently on PCs, with the specifics

computational times dictated by the detailed Matlab implementation and the machine run on. A rough

ranking of the computational speeds, from fastest to slowest, is as follows: StOMP-CFAR, Fast BCS,

OMP, BPFA, LARS/Lasso, Online BPFA, DP-BPFA, PSBP-BPFA, VB BCS, Basis Pursuit; in this list,

algorithms BPFA through Basis Pursuits have approximately the same computational costs.
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VI. CONCLUSIONS

The truncated beta-Bernoulli process has been employed to learn dictionaries matched to image

patches {xi}i=1,N . The basic nonparametric Bayesian model is termed a beta process factor analysis

(BPFA) framework, and extensions have also been considered. Specifically, the Dirichlet process (DP) has

been employed to cluster the {xi}i=1,N , encouraging similar dictionary-element usage within respective

clusters. Further, the probit stick-breaking process (PSBP) has been used to impose that proximate

patches are more likely to be clustered similarly (imposing that they are more probable to employ similar

dictionary elements). All inference has been performed by a Gibbs sampler, with analytic update equations.

The PBFA, DP-BPFA and PSBP-BPFA have been applied to three problems in image processing: (i)

denoising, (ii) image interpolation based upon a subset of pixels selected uniformly at random, and

(iii) learning dictionaries for compressive sensing and also compressive sensing inversion. We have also

considered jointly performing (i) and (ii). Important advantages of the proposed methods are: (i) a full

posterior on model parameters are inferred, and therefore “error bars” may be placed on the inverted

images; (ii) the noise variance need not be known, and is inferred within the analysis and may be

nonstationary; (iii) while training data may be used to initialize the dictionary learning, this is not

needed, and the BPFA results are highly competitive even based upon random initializations. In the

context of compressive sensing, the DP-BPFA and PSBP-BPFA results are state of the art, significantly

better than existing published methods. Finally, based upon the learned dictionary, a simple method has

been constituted for optimizing the CS projections.

The interpolation problem is related to CS, in that we exploit the fact that {xi}i=1,N reside on a low-

dimensional nonlinear subspace of RP , such that the total number of measurements is small relative to

N · P (recall xi ∈ RP ). However, in CS one employs projection measurements Σxi, where Σ ∈ Rn×P ,

ideally with n� P . The interpolation problem corresponds to the special case in which the rows of Σ

are randomly selected rows of the P ×P identity matrix. This problem is closely related to the problem

of matrix completion [6], [22], [35], where the incomplete matrix X ∈ RP×N has columns defined by

{xi}i=1,N . However, the {xi}i=1,N reside in a nonlinear subspace of RP , while low-rank-based methods

assume that the data reside in a low-dimensional linear subspace. We showed that if the {xi}i=1,N may

be clustered, manifesting a union-of-subspace model, then matrix completion theory may be employed

relatively simply to place bounds on anticipated accuracy of recovered missing data.

While the PSBP-BPFA successfully segmented the image while recovering missing data, we found

that the PSNR performance of direct BPFA analysis performed very close to that of PSBP-BPFA. This

suggests that the properties of the beta-Bernoulli process (recall the Indian buffet process discussion
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in Section III-A) naturally manifests an effective clustering of these data. An important area of future

research is to extend the matrix-completion theory to the case for which the columns of X come from

a general non-linear subspace of RP , such as that impose via the beta-Bernoulli prior.

APPENDIX: GIBBS SAMPLING INFERENCE

The Gibbs sampling update equations are given below; we provide the update equations for the BPFA,

and the DP and PSBP versions are relatively simple extensions. Below, Σi represents the projection

matrix on the data, for image patch xi. For the CS problem, Σi is typically fully populated, while for

the interpolation problem each row of Σi is all zeros except for a single one, corresponding to the

specific pixel that is measured. The update equations are the conditional probability of each parameter,

conditioned on all other parameters in the model.

Sample dk

p(dk|−) ∝
N∏

i=1

N (yi;ΣiD(si � zi), γ−1
ε I‖Σi‖0)N (dk; 0, P−1IP )

It can be shown that dk can be drawn from a normal distribution

p(dk|−) ∼ N (µdk
,Σdk

)

with the covariance Σdk
and mean µdk

expressed as

Σdk
=

(
P I + γε

N∑
i=1

z2
iks

2
ikΣ

T
i Σi

)−1

µdk
= γεΣdk

N∑
i=1

ziksikx̃
−k
i

where

x̃−k
i = ΣT

i yi −ΣT
i ΣiD(si � zi) + ΣT

i Σidk(sik � zik).

Sample zk: = [z1k, z2k, · · · , zNk]

p(zik|−) ∝ N (yi;ΣiD(si � zi), γ−1
ε I‖Σi‖0)Bernoulli(zik;πk)

The posterior probability that zik = 1 is proportional to

p1 = πk exp
[
−γε

2
(s2ikd

T
k ΣT

i Σidk − 2sikd
T
k x̃−k

i )
]
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and the posterior probability that zik = 0 is proportional to

p0 = 1− πk

so zik can be drawn from a Bernoulli distribution as

zik ∼ Bernoulli(
p1

p0 + p1
). (14)

Sample sk: = [s1k, s2k, · · · , sNk]

p(sik|−) ∝ N (yi;ΣiD(si � zi), γ−1
ε I‖Σi‖0)N (si; 0, γ−1

s IK)

It can be shown that sik can be drawn from a normal distribution

p(sik|−) ∼ N (µsik
,Σsik

) (15)

with the variance Σsik
and mean µsik

expressed as

Σsik
=
(
γs + γεz

2
ikd

T
k ΣT

i Σidk

)−1

µsik
= γεΣsik

zikd
T
k ΣT

i Σix̃−k
i .

Note zik is equal to either 1 or 0, Σsik
and µsik

can be further expressed as

Σsik
=


(
γs + γεd

T
k ΣT

i Σidk

)−1
if zik = 1

γ−1
s if zik = 0

µsik
=

 γεΣsik
dT

k ΣT
i Σix̃−k

i if zik = 1

0 if zik = 0
.

Sample πk

p(πk|−) ∝ Beta(πk; a, b)
N∏

i=1

Bernoulli(zik;πk)

It can be shown that πk can be drawn from a Beta distribution as

p(πk|−) ∼ Beta(
a

K
+

N∑
i=1

zik,
b0(K − 1)

K
+N −

N∑
i=1

zik)

Sample γs

p(γs|−) ∝ Γ(γs; c0, d0)
N∏

i=1

N (si; 0, γ−1
s IK)
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It can be shown that γs can be drawn from a Gamma distribution as

p(γs|−) ∼ Γ

(
c0 +

1
2
KN, d0 +

1
2

N∑
i=1

sT
i si

)

Sample γε

p(γε|−) ∝ Γ(γε; e0, f0)
N∏

i=1

N (yi;ΣiD(si � zi), γ−1
ε I‖Σi‖0) (16)

It can be shown that γε can be drawn from a Gamma distribution as

p(γε|−) ∼ Γ

(
e0 +

1
2

N∑
i=1

‖Σi‖0, f0 +
1
2

N∑
i=1

‖ΣT
i yi −ΣT

i ΣiD(si � zi)‖`2

)
. (17)

Note that ΣT
i Σi is a sparse identity matrix, Σdk

is a diagonal matrix, and Z is a sparse matrix, it is

easy to find that only basic arithmetical operations are needed and many unnecessary calculations can

be avoided, leading to fast computation and low memory requirement.
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Fig. 6. Comparison of recovered band (average from Gibbs collection iterations) for hyperspectral imagery with

106 spectral bands. The interpolation is performed using 2% of the hyperspectral datacube, selected uniformly at

random. The analysis employs 4 × 4 × 106 patches. All spectral bands are analyzed at once, and here the data

(recovered and original) are shown (arbitrarily) for bands 1 (top) and 50 (bottom). Results are computed using the

BPFA model.
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Fig. 7. Left: Compressive sensing (CS) results on grey-scale Castle image, based on a DCT dictionary D. The CS

projection matrix Σ is constituted randomly, with elements drawn iid from N (0, 1). Results are shown using the

DP-BPFA and PSBP-BPFA models in Section IV. Comparisons are also made with several CS inversion algorithms

from the literature. Right: Same as on the left but based on a learned dictionary D instead of DCT. The online BP

results employ BPFA to learn D and do CS inversion jointly. All other results are based upon a learned D with

learning performed offline using distinct training images.

Fig. 8. Compressive sensing (CS) results on grey-scale Castle image, based on a learned dictionary D (learning

performed offline, using distinct training data). The projection matrix Σ is matched to D, based upon an SVD of

D.
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