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I. Executive Summary 
The research program is proceeding as scheduled other than a slight delay in the experimental 
work due to arrival of the funds for capital equipment purchases. In the first quarter we have 
focused primarily on the amplitude-encoded link, distortion correction, and RIN transfer. We 
have experimentally analyzed the amplitude encoded link for gain and 3rd order distortion and 
are identifying the proper conditions for maximizing the overall spurious-free dynamic range 
(SFDR) of the link. In addition, we have investigated new methods for cascaded four-wave 
mixing (FWM) through a multi-stage nonlinear interaction. Finally, we are performing numerical 
simulations of the transfer of laser relative intensity noise (RIN) and quantum noise through the 
cascaded FWM process. 

This research program currently supports two graduate students pursuing their doctoral 
degree. One student is fully supported through this program and the other student is partially 
supported. In addition, two undergraduate students are currently participating in the research 
program and they are receiving a small amount of support from this grant. 

aoßo^oioos 



II. Research Summary 
We have focused our research efforts in 
the first quarter of this program on the 
amplitude-encoded link. We have 
experimentally characterized the link gain 
and 3rd order distortion as a function of the 
power of the FWM pump laser sources for 
a nonlinear fiber with an anomalous 
group-velocity dispersion (GVD) value of 
2 ps/nm/km. The results of this experiment 
are displayed in Fig. 1. As is shown, we 
observe a improvement in link 
transmission of over 10 dB and also 
observe an  improvement in third-order 
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Figure 1. Improvement in link gain and third-order intercept 
point (OIP3) as a function of the pump laser power for the 
FWM interaction. For these measurements the highly 
nonlinear fiber has an anomalous GVD value of 2 ps/nm/km 
and the received optical power at the photodetector is held 
constant (0 HRmY 

intercept (OIP3) of 10 dB. As seen in the plot, the improvement in third-order distortion is highly 
dependent on the pump laser operating power since the third-order distortion compensation of 
the FWM process can be tuned through this parameter. Importantly this provides a route to 
compensation of additional sources of distortion through fine adjustment of the pump laser 
power. For these measurements the received optical power at the photodetector is fixed at 0 dBm 
to eliminate the impact of photodetector effects from this measurement. 

These two curves are shaped by the GVD of the nonlinear medium. Through a different 
choice of GVD we can expect a different amount of gain and third-order distortion correction. 
Additionally, the laser separation and the choice of FWM sideband number will also impact 
these performance metrics. We are currently implementing numerical simulation of the 
interaction to first verify our current measurements and subsequently determine the optimal 
operating conditions for maximum SFDR improvement. Additionally, we are developing a 
numerical model of the noise transfer 
(both RIN and quantum noise) resulting 
from these cascaded FWM interactions. 
An example of the numerically calculated 
RIN transfer resulting from the cascaded 
FWM interaction is shown in Fig. 2. Since 
the signal is encoded on both laser sources 
and the RIN of each laser source is 
uncorrelated the SNR of the FWM 
sideband is generally better than the SNR 
of each individual pump laser. Our goal 
through this modeling is to identify a 
nonlinear regime to maximize this SNR 
improvement. 
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Figure 2. Numerically modeled RIN transfer (top) for a multi- 
stage cascaded FWM interaction producing the optical 
spectrum shown Oxrttom). 
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We are also investigating 
multiple approaches to 
implementing the FWM 
interaction. The primary concern is 
minimizing the impact of 
stimulated Brillouin scattering 
(SBS) from the interaction. It is 
crucial to limit SBS as it acts to 
saturate the FWM process and 
prohibits the efficient generation of 
FWM sidebands. We currently 
implement phase modulation to 
broaden the laser linewidth and 
reduce the impact of SBS. 
Unfortunately, we have found that 
the noise floor of the system is 
dominated by phase to amplitude conversion of this broadband phase noise. For this reason it is 
necessary to implement alternative approaches to SBS suppression to maximize the noise figure 
of the demonstrated links. We have successfully developed an approach using a multistage 
process incorporating fiber isolators and periodic nonlinearity and dispersive compression to 
eliminate SBS. The experimental diagram of this approach and the resulting cascaded FWM 
spectrum are shown in Fig. 3. Unfortunately, the overall loss of this approach is undesireable for 
analog applications such as those investigated here. We are currently purchasing a fiber spooling 
apparatus that will allow for SBS suppression through fiber tensioning to overcome the 
limitations of the two approaches described above. 
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Figure 3. Cascaded FWM generation through a multistage nonlinear 
interaction involving periodic nonlinearity and dispersive compression. 
Brillouin scattering is mitigated through fiber isolators positioned 
between the stages. The scheme is depicted on the top and an example 
experimentally generated spectrum is shown on the bottom. 

III. Management Summary 
Two graduate students, Hong-Fu Ting and Walter Wall, are currently employed to carry out this 
research program. Hong-Fu Ting is currently supported full time on the project while Walter 
Wall is currently supported part time on the project. In addition, two undergraduate students, 
Jasper Stroud and Mitchell Sacks, are currently assisting with the research program and their 
work is supported by the funding. All of the student's progress and research directions are 
overseen by Prof. Mark Foster through weekly research meetings and hands-on experimental 
assistance. The research team has made very good progress towards the completion of the tasks 
as depicted graphically in Fig. 4. However, the progress of the experimental work has been 
delayed slightly relative to the anticipated schedule due to delays in receiving the funds for the 
capital equipment purchases. However, we anticipate that we will be able to make up for this 
delay in the future quarters. The tasks descriptions are detailed below the figure for reference. 
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A. Amplitude-Encoded Link 
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B. Phase-Encoded Link 
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Figure 4. Anticipated task schedule and current progress towards task completion. The black 
dotted line indicates the current date. 

Project Schedule and Milestones 
The anticipated schedule of the events, milestones, and deliverables are detailed below by period. 
Period 1 (months 1-6) 
Milestones: 

1) Fully characterized 14-GHz bandwidth amplitude-encoded link and with 9-dB FWM 
gain enhancement. 

2) Phase-encoded link with 10-GHz bandwidth and 6-dB FWM gain enhancement. 
Task A. Amplitude-Encoded Link 

Pl.A.l. Generate a pair of cascaded FWM spectra using the two output of the MZM. 
P1.A.2. Characterize the noise figure of the amplitude encoded link with 9-dB gain 
enhancement. 

Task B. Phase-Encoded Link 
Pl.B.l. Implement local oscillator generation and FWM phase multiplication. 
P1.B.2. Demonstrate 6-dB of FWM gain enhancement in the phase-encoded link. 



Task C. Distortion Compensation 
Pl.C.l. Characterize the SFDR of the amplitude encoded link with 9-dB gain 
enhancement. 
P1.C.2. Characterize the power transfer characteristics for the generated wavelength 
channels in the cascaded FWM interaction. 

Period 2 (months 7-18) 
Milestones: 

1) Amplitude-encoded link with 20-GHz bandwidth, >16 dB FWM gain enhancement, 
and <10 dB noise figure. 

2) Phase-encoded link with 20-GHz bandwidth, >10 dB FWM gain enhancement, and 
<10 dB noise figure. 

3) Distortion compensation capable of 10-dB improvement in SFDR. 
Task A. Amplitude-Encoded Link 

P2.A.1. Demonstrate a 20-GHz amplitude-encoded link with FWM gain enhancement. 
P2.A.2. Demonstrate > 16 dB of FWM gain enhancement in the amplitude-encoded link. 
P2.A.3. Demonstrate < 10 dB noise figure in the amplitude-encoded link. 

Task B. Phase-Encoded Link 
P2.B.1. Demonstrate a 20-GHz phase-encoded link with FWM gain enhancement. 
P2.B.2. Demonstrate >10 dB FWM gain enhancement in phase-encoded link. 
P2.B.3. Demonstrate < 10 dB noise figure in the phase-encoded link. 

Task C. Distortion Compensation 
P2.C.1. Characterize the SFDR of the demonstrated links. 
P2.C.2. Demonstrate 10-dB SFDR improvement using transfer function synthesis. 

Period 3 (months 19-30) 
Milestones: 

1) Amplitude-encoded link with 30-GHz bandwidth, >23 dB FWM gain enhancement, 
and <8 dB noise figure. 

2) Phase-encoded link with 30-GHz bandwidth, >16 dB FWM gain enhancement, and <8 
dB noise figure. 

3) Distortion compensation capable of 20-dB improvement in SFDR. 
Task A. Amplitude-Encoded Link 

P3.A.1. Demonstrate a 30-GHz amplitude-encoded link with FWM gain enhancement. 
P3.A.2. Demonstrate > 23 dB of FWM gain enhancement in the amplitude-encoded link. 
P3.A.3. Demonstrate < 8 dB noise figure in the amplitude-encoded link. 

Task B. Phase-Encoded Link 
P3.B.1. Demonstrate a 30-GHz phase-encoded link with FWM gain enhancement. 
P3.B.2. Demonstrate >16 dB FWM gain enhancement in phase-encoded link. 
P3.B.2. Demonstrate < 8 dB noise figure in the phase-encoded link. 

Task C. Distortion Compensation 
P3.C.1. Characterize the SFDR of the demonstrated links. 
P3.C.2. Demonstrate 20-dB SFDR improvement using transfer function synthesis. 



  

Period 4 (months 31-36) 
Milestones: 

1) Amplitude-encoded link with 40-GHz bandwidth, >30 dB FWM gain enhancement, 
and <6 dB noise figure. 

2) Phase-encoded link with 40-GHz bandwidth, >23 dB FWM gain enhancement, and <6 
dB noise figure. 

3) Distortion compensation capable of 30-dB improvement in SFDR. 
Task A. Amplitude-Encoded Link 

P4.A.1. Demonstrate a 40-GHz amplitude-encoded link with FWM gain enhancement. 
P4.A.2. Demonstrate > 30 dB of FWM gain enhancement in the amplitude-encoded link. 
P4.A.3. Demonstrate < 6 dB noise figure in the amplitude-encoded link. 

Task B. Phase-Encoded Link 
P4.B.1. Demonstrate a 40-GHz phase-encoded link with FWM gain enhancement. 
P4.B.2. Demonstrate >23 dB FWM gain enhancement in phase-encoded link. 
P4.B.3. Demonstrate < 6 dB noise figure in the phase-encoded link. 

Task C. Distortion Compensation 
P4.C.1. Characterize the SFDR of the demonstrated links. 
P4.C.2. Demonstrate 30-dB SFDR improvement using transfer function synthesis. 



IV. Financial Status Report 
We are currently spending below the anticipated rate as depicted in Fig. 5. We are spending at 
the planned monthly rate other than the initial capital equipment purchases which will be made 
in the next quarter due to the delay in fund availability. 
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Figure 5. Graphical depiction of planned spending and current financial status. 


