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ABSTRACT 

We describe and apply an ensemble approach, similar to that used in environmental modeling, to 
quantify errors and produce uncertainty maps for satellite-derived ocean color chlorophyll, and we 
incorporate these uncertainties into hydrodynamic and biophysical models. Ensemble techniques 
allow the propagation and assessment of error sources, including those due to sensor calibration, sensor 
drift, atmospheric correction, and bio-optical inversion algorithms, through the end-to-end image 
processing stream. For an ocean color image, we first apply realistic noise to the satellite top-of- 
atmosphere radiances, which leads to an ensemble of chlorophyll values at each image pixel (and thus 
an ensemble of chlorophyll images). From this ensemble, we derive mean and standard deviation 
(uncertainty) images for the chlorophyll, which we then incorporate into both hydrodynamic and 
biophysical forecast models. The image of chlorophyll uncertainty allows improved estimates of 
correlation scales and error covariances in the models. There are two approaches to produce short- 
term (1-3 day) forecasts of bio-optical properties: (1) treat the property as a conservative tracer and 
advect a satellite-observed distribution forward in time using current fields from a hydrodynamic 
model, and (2) use a fully-coupled biophysical process model that includes applicable sources and 
sinks. The first case does not include biology in the simulation (it only accounts for dynamical 
processes such as winds, currents, and tides), whereas the second case does. For both these cases, we 
create forecast ensemble suites, where each ensemble member uses a different realization (e.g., forcing 
and/or initial field); the ensemble spread (variance) provides an indication of uncertainty, or 
confidence in the chlorophyll forecast. We examine mean and individual forecast ensemble members 
(R2, spread-skill statistics) to assess predictive value. Thus, we produce a final chlorophyll forecast 
field that includes uncertainties in both the initial satellite chlorophyll values as well as uncertainties in 
the hydrodynamic and biological models. 

INTRODUCTION 

Typically, to address uncertainties in satellite-retrieved water reflectances and bio-optical properties, 
the satellite values are compared to in situ measurements (Antoine et al., 2008), but this approach has 
limitations. Due to cloud cover in the satellite imagery, and the expense and spatial/temporal coverage 
limitations associated with in situ data collection, there are often very few match-ups between the 
satellite and in situ values, particularly for regional comparisons. With regard to satellite ocean color 
image products, such as the chlorophyll concentration, they are typically provided without any 
indication of the uncertainty in the estimation, so the end-user (scientists, coastal managers, and 
military personnel) have very limited information on the reliability of the satellite retrievals for a 
specific image. 

To help address this shortcoming, we have extended an approach used by the numerical modeling 
community to satellite ocean color imagery. In environmental modeling, for example in the physical 
and meteorological communities, ensembles are generated to assess model errors and improve 
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hydrodynamic and weather forecasts. The "spaghetti plots" of potential hurricane tracks are a familiar 
example. Monte-Carlo methods are applied to perturb the dominant sources of uncertainties (e.g. 
initial and boundary conditions, model physics, atmospheric forcing, etc.) in the forecast model. An 
ensemble forecast suite is generated; the ensemble mean represents the "best-guess" forecast track, and 
the ensemble variance or standard deviation represents a proxy estimate for the uncertainty in the 
forecast. Statistics and metrics can be utilized (ensemble mean, RMS error, and spread) to provide 
some estimate of how well the ensembles capture "reality," thereby providing insight into the 
underlying deterministic processes and aiding decision support. 

There are multiple error sources throughout the processing of satellite ocean color imagery. At each 
step of the processing, from measurement of top-of-the-atmosphere (TOA) radiances, through 
atmospheric correction, bio-optical inversion, and bio-optical forecasting, uncertainties propagate and 
are intertwined. Thus, ocean color image processing should lend itself to an ensemble approach to 
address the error cascading through the various steps; we have developed such an approach to partition 
and assess the error sources. We apply an ensemble of random noise (each ensemble applies ±2% 
random noise across an image) to the TOA radiance values. To partition the error sources, we apply 
the noise to separate sets of wavebands. For example, to examine the effect of noise (sensor radiance 
measurement uncertainty) during the atmospheric correction process, we apply noise only to the TOA 
radiances in the two near-infrared (NIR) MODIS channels used in the atmospheric correction routines 
(748 and 869 nm bands). To examine the effect of noise on the bio-optical inversion algorithms, we 
apply noise only to the TOA radiances in the seven visible MODIS channels used in the estimation of 
the bio-optical products, such as chlorophyll, absorption and backscattering coefficients (412,443, 
488, 531, 547, 667, 678nm bands). The Figure 1 schematic summarizes the ensemble approach 
applied to satellite ocean color imagery. 

Water-Leaving Radiance Ensembles 

uncertainty map 
Chlorophyll, IOP Ensembles 

(calibrate range of variability using image climatology) 

Figure 1. Schematic representation of the ensemble process applied to satellite ocean color imagery. 
The goal is to derive an uncertainty estimate for the bio-optical products (chlorophyll in this 
example), using the ensemble variance as a proxy. 
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In addition, we are interested in forecasting the bio-optical products (in this case, chlorophyll) by 
coupling the satellite images with hydrodynamic and biological models. We would like to propagate 
the uncertainties in the chlorophyll image values through the modeling process. There are two 
approaches to produce short-term (1-3 day) forecasts of bio-optical properties: Case (1) treat the 
property as a conservative tracer and advect a satellite-observed distribution forward in time using 
current fields from a hydrodynamic model, and case (2) use a fully-coupled biophysical process model 
that includes applicable sources and sinks. The first case does not include biology in the simulation (it 
only accounts for dynamical processes such as winds, currents, and tides), whereas the second case 
does. We examine both of these cases. Initially, for the first case, we forecast the chlorophyll 
distribution without any uncertainty in the initial image, and we compare this with the modeling result 
including uncertainty (from the chlorophyll ensembles). Since the second case relies on the biological 
model spin-up to equilibrium to set initial chlorophyll distributions (rather than a satellite chlorophyll 
field), the satellite chlorophyll uncertainties are not included for this case. Although not presented 
here, we will use the satellite uncertainties to improve the spatial representation of the chlorophyll 
error covariances in the model. Ultimately, we will assimilate satellite bio-optical products into the 
coupled bio-physical model; some ofthat work will be presented by Shulman et al. (2012) at this 
conference. Figure 2 shows the conceptual framework. 
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Figure 2. Schematic representation of the modeling framework for bio-optical forecasting. 
Progression from advection of chlorophyll as a passive tracer using a hydrodynamic model, to 
incorporation of source/sink terms with a coupled biochemical model, to ultimate assimilation of 
satellite ocean color imagery. 

OBJECTIVES 

Our objectives are to: (I) apply noise to satellite TOA radiances in an ensemble approach to quantify 
uncertainties in satellite-derived ocean color chlorophyll estimates; (2) determine whether the 
ensembles are realistic; (3) generate ensembles using different wavelength sets to partition the 
uncertainties at various stages of the processing (atmospheric correction, bio-optical inversion) to 
assess the effect of the uncertainties on the chlorophyll images; (4) incorporate the uncertainties into 
hydrodynamic and biophysical model simulations; (5) assess the effect of biology in the simulations 
and the impact of the chlorophyll uncertainties on the model forecast fields. 
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METHODS 

The Naval Research Laboratory (NRL) at the Stennis Space Center (SSC) in Mississippi has developed 
an Automated Processing System (APS) that ingests and processes AVHRR, SeaWiFS, MODIS, 
MERIS, and OCM satellite imagery (Martinolich and Scardino, 2011). APS is a powerful, extendable, 
image-processing tool. It is a complete end-to-end system that includes sensor calibration, 
atmospheric correction (with near-infrared correction for coastal waters), image de-striping, and bio- 
optical inversion. APS incorporates the latest NASA MODIS code and enables us to produce the 
NASA standard SeaWiFS and MODIS products, as well as Navy-specific products using NRL 
algorithms. We can reprocess many data files (dozens of scenes/day). We maintain compatibility with 
NASA/Goddard algorithms and processing code. All imagery was processed with consistent 
atmospheric correction and bio-optical algorithms using the NRL APS version 4.6, which is consistent 
with SeaDAS version 6.3. An iterative, near-infrared atmospheric correction tuned for coastal waters 
was applied (Stumpfet al., 2003). 

Satellite Imaeery/Processine 
With the NRL APS, the architecture is in place for the image ensemble analysis. From an initial 
MODIS image, we simply create an ensemble of new images by applying the ± 2% random noise to 
the TOA radiance values. Each ensemble image is then reprocessed through APS to yield an ensemble 
of derived products, such as normalized water-leaving radiances (nLw) and chlorophyll (that we 
examine here) among others. The random noise that is applied to the TOA radiances varies spectrally, 
but is held constant across an image. For the analyses below, we produce either 100 image ensembles 
(for the error partitioning analyses) or 20 image ensembles (for the hydrodynamic advection forecast). 
To assess the reality or "representativeness" of the generated ensemble suite, we compare the 
variability in the ensemble results to the natural variability observed in a 2-year climatology of 
imagery covering the same region (2006-2007 northern Gulf of Mexico). 

Hydrodynamic Model 
To advect the surface SeaWiFS satellite chlorophyll field and produce 24, 48, and 72-hour forecast 
simulations, we used currents derived from the Relocatable Navy Coastal Ocean Model (RELO- 
NCOM). RELO-NCOM is based on a standardized development and an efficient configuration 
management to facilitate transitions of new tools and real-time configurations of regional high 
resolution (order 1 km) ocean predictions. The physics and numerical procedures of NCOM are based 
on the Princeton Ocean Model (POM) and a Sigma/Z-level Model (SZM). It is a primitive-equation, 
3D, hydrostatic model that solves a three-dimensional, primitive equation, baroclinic, hydrostatic and 
free surface system using a cartesian horizontal grid, a combination of o7z level (i.e., bottom- 
following/constant depth) vertical grid and implicit treatment of the free surface (Ko et al., 2008). It 
uses the Mellor-Yamada level 2.5 turbulence closure scheme, and the Smagorinsky formulation for 
horizontal mixing (Martin 2000). For mesoscale real-time applications, boundary conditions are taken 
from an operational run of the global NCOM (GNCOM). The domain of this particular experiment 
covered the entire Gulf of Mexico (18N 98W, 40N 79W), from 1 April to 30 October 2010. The 
atmospheric forcing was taken from the regional 15km COAMPS run by the Fleet Numerical 
Meteorological and Oceanographic Center (FNMOC). Tides were introduced at the boundaries and 
through local tidal potentials. The horizontal grid spacing was set at 3km and used 50 sigma/z levels in 
the vertical. The model assimilates local in-situ observations along with satellite altimetry and sea- 
surface temperature (SST) data using a combination of model analysis and data; all available 
observations from global and local data bases were assimilated over the full period. 
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For the chlorophyll forecasts with the hydrodynamic model (Case 1 in the INTRODUCTION), a 
"pseudo 3-dimensional" Eulerian advection scheme was used (without molecular or turbulent diffusion 
terms). With this approach, there are essentially two vertical layers, a 1 meter-thick surface layer and a 
conceptual deep layer to preserve continuity (i.e., there is vertical flux between the two layers, but they 
move together horizontally). These simulations only include current advection and an assumed 
uniform vertical chlorophyll distribution based on the surface values. Future enhancements will 
include addition of diffusion terms, full 3D vertical layering, and the capability to include more 
realistic vertical chlorophyll profiles. The forecast simulations do not include any assimilation of in 
situ chlorophyll data or additional satellite imagery, so currently the values are unconstrained. Also, 
with this approach, there is an implicit assumption that the bio-optical property (chlorophyll) is 
conservative. Although this is not strictly true, of course, it may be approximately valid over the short 
time scales (1 -3 days) that we are examining, particularly in coastal areas where transport processes 
might be expected to dominate biological processes. Therefore, we consider the optical properties to 
be "pseudo-conservative" tracers for our purposes. This allows us to ignore growth and grazing terms 
for this case and treat the distributional changes as though they are due entirely to dynamical processes 
(Gould et al., 2008). 

Coupled Biophysical Model 
For the chlorophyll forecasts with the coupled hydrodynamic and ecological model (Case 2 in the 
INTRODUCTION), we couple NCOM with the Carbon, Silicon, Nitrogen Ecosystem (CoSINE) 
model (Chai et al., 2002), and perform simulations in Monterey Bay, California. In this case, 
source/sink terms (growth, grazing) are explicitly modeled, so chlorophyll is no longer considered a 
passive tracer as in Case 1. We examine model runs with and without biology included, to examine 
the differences in the forecast results. 

The Monterey Bay model consists of the physical model (Shulman et al., 2007), which is coupled to 
the biochemical model (Chai et al., 2002, Shulman et al., 2011). The physical model of the Monterey 
Bay is based on the NCOM model described above. The Monterey Bay model is set up on a 
curvilinear orthogonal grid with resolution ranging from 1 to 4 km. The model is forced with surface 
fluxes from the Coupled Ocean and Atmospheric Mesoscale Prediction System (COAMPS) (Doyle et 
al., 2009) at 3 km horizontal resolution. The 3-km resolution COAMPS grid mesh is centered over 
Central California and the Monterey Bay. The biochemical model (CoSINE) of the Monterey model 
simulates dynamics of two sizes of phytoplankton, small phytoplankton cells (< 5 urn in diameter) and 
diatoms, two Zooplankton grazers, nitrate, silicate, ammonium, and two detritus pools. Phytoplankton 
photosynthesis in the biochemical model is driven by Photosynthetically Active Radiation (PAR), 
which is estimated based on the shortwave radiation flux from the COAMPS model. The Penta et al. 
(2008) scheme is used for PAR attenuation with depth. Open boundary conditions for the Monterey 
Bay model are derived from the regional model of the California Current (NCOM CCS, Shulman et 
al., 2007). The NCOM CCS has a horizontal resolution of about 9 km and, the model is forced with 
atmospheric products derived from the COAMPS (Doyle et al., 2009). As in NCOM ICON model, the 
biochemical model of the NCOM CCS is also 9-compartment model of Chai et al. (2002). 

RESULTS 

As an example test case, we selected the MODIS 14 October 2011 image covering the northern Gulf of 
Mexico for ensemble analysis. As mentioned above, we generated 100 chlorophyll ensembles from 
this image by randomly applying ± 2% noise to the TOA radiances in the visible and NIR bands. 
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Different random noise was applied to each band, but there was no variation from pixel-to-pixel (i.e., it 
was constant across the scene). Figure 3 shows the mean chlorophyll image from the ensemble suite 
and the associated uncertainty image (the ensemble standard deviation). 
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Figure 3. MODIS14 October 2011. A. Mean ensemble chlorophyll. B. Ensemble chlorophyll 
standard deviation (proxy for uncertainty). 

An initial step with the use of ensembles is to assess whether the ensemble suite adequately represent 
reality. In other words, is the ensemble variability representative of natural variability? For this 
assessment, since we applied noise to the image TOA radiances (Lt), we compared the ensemble Lt 
radiances to the Lt radiances from the original image, and to mean Lt radiances derived from selected 
clear MODIS scenes covering the same area over a 2-year period from 2006-2007 (Figure 4). We 
refer to the 2-year values as climatological values. The values in Figure 4 are spatial averages across 
the entire scene, as well as temporal averages over the 2-year period. The ensemble mean and original 
Lt values, and the minimum/maximum values are nearly identical (Figure 4a). Also, for the most part, 
the natural variability derived from the climatology encompasses the ensemble variability, although the 
mean values for this image (original as well as ensemble values) are lower than the climatological 
means at all wavelengths (Figure 4b). 
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Figure 4. Lt radiance (mean, minimum/maximum values) vs. wavelength. A. Original 14 October 
2011 radiances and ensemble radiances. B. Climatological radiances and ensemble radiances. 
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So, the ensemble suite is not generating "unusual" variability outside the realm of observed or natural 
variability, and our assessment is that the ensemble suite is realistic. Also, the vicarious gain 
coefficients that are applied to the MODIS Lt values during calibration are in the range of 2-3% 
(http://oceancolor.gsfc.nasa.gov/VALIDAT10N/operational gains.htmO. similar to the noise ranges 
that we are applying here. 

We also examined the effect of the Lt noise on the derived normalized water-leaving radiance (nLw) 
values, to verify that the radiance values following atmospheric correction were also realistic. Again, 
we compared the ensemble values to the original values and the climatological values (Figure 5). The 
ensemble nLw values at the short wavelengths are slightly higher than the original values (Figure 5A). 
Both the ensemble and original nLw values are significantly lower than the climatological values at 
412 nm, but the mean and min/max values are generally similar at the other wavelngths (Figure 5B). 
As a result of the slightly higher nLw radiances for the ensemble mean as compared to the original 
values, the chlorophyll distribution is skewed to slightly lower values across the scene (Figure 6A). 
This is also apparent in the frequency distribution of the percent differences between the original 
chlorophyll values and the ensemble chlorophyll values (Figure 6B). 
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Figure 5. nLw radiance (mean, minimum/maximum values) vs. wavelength. A. Original 14 
October 2011 radiances and ensemble radiances. B.Climatological radiances and ensemble 
radiances. 
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Figure 6. Chlorophyll frequency distributions, ensemble mean vs. original. A. Log chlorophyll 
values. B. Percent difference between ensemble mean and original chlorophyll values. 
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We also examined the spatial distributions of the differences between the mean ensemble and original 
chlorophyll values; Figure 7 shows the percent differences.   We first apply noise to the Lt values in 
both the visible and NIR channels (Figure 7A). This demonstrates the noise impact on the complete 
processing. Then, by only applying noise to the Lt values in the two NIR bands (748, 869 nm), wecan 

assess the effects of the noise due to only the atmospheric correction process (i.e., differences due to 
different aerosol selection models, Figure 7B). Similarly, by only applying noise to the visible 
channels (412, 443,488, 531, 547,667, 678 nm), we can assess the effects of the noise on the bio- 
optical inversion algorithms. Figure 7A indicates that the mean ensemble chlorophyll values are 
generally lower than the original chlorophyll values by about 5-10% when noise is applied to all 
channels (c.f. Figure 6B). A much lower percent difference is observed when noise is applied to just 
the NIR channels (Figure 7B). When noise is applied to just the visible wavelengths, some mean 
ensemble chlorophyll values are higher than the original values in certain parts of the image (yellow 
pixels in Figure 7C). Using this partitioning, we can also examine the separate effects on the 
uncertainty distributions (Figure 8). Figure 8 A shows the coefficient of variation (expressed as the 
standard deviation percent of the mean) across the image, when Lt noise is applied to all wavelengths 
(both visible and NIR). Figure 8B shows the result when noise is applied only to the NIR bands, and 
Figure 8C shows the results for noise applied only to the seven visible bands. As in Figure 7, Figure 8 
indicates that most of the uncertainty is associated with adding noise to the visible band, as opposed to 
adding noise to the NIR bands. 

Figure 7. Percent difference between the ensemble mean chlorophyll and the original chlorophyll 
for the 14 October 2011 MODIS image. A. Lt noise applied to both NIR and visible wavelengths. B. 
Lt noise applied to just NIR wavelengths. C. Lt noise applied to only the visible wavelengths.   Blue 
pixels indicate the original chlorophyll values were larger than the ensemble values, yellow pixels, 
vice versa. 

Chlorophyll Forecasts - Hvdrodvnamic Model 
To access and estimate uncertainty in chlorophyll forecasts using only a hydrodynamic model (treating 
chlorophyll as a passive tracer, Case 2 in the INTRODUCTION), we examined a clear, 3-day period 
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Figure 8. Chlorophyll standard deviation percent of mean (partitioned uncertainty) for the 14 
October 2011MODIS image. A. Lt noise applied to both NIR and visible wavelengths. B. Lt noise 
applied to just NIR wavelengths. C. Lt noise applied to only the visible wavelengths. 

(14-17 October) covering the Mississippi Bight region in the northern Gulf of Mexico in 2011. This 
hydrodynamic approach only accounts for dynamical processes (winds, currents, tides) and does not 
include biogeochemical mechanistic processes (growth, grazing); it allowed us to examine the effect of 
only current variability on the bio-optical forecasts. An ensemble of 20 chlorophyll images was 
generated for the initial 14 October MODIS scene by applying random noise (± 2%) to the Lt radiances 
for all the visible (7) and NIR (2) channels. An ensemble of 32 ocean model members was generated 
by varying initial and boundary conditions, and atmospheric forcing. Thus a total of 640 (32x20) 
chlorophyll forecasts were generated by advecting the initial chlorophyll image from 14 October (with 
noise included through the 20 ensembles) for three days with the 32 ocean ensembles. In Figure 9A, 
the mean ensemble chlorophyll forecast resulting from this simulation is shown for 17 October, along 
with the MODIS image for the same day for comparison (Figure 9B). A spread-skill scatter plot of the 
standard deviation of the observed mismatch between the forecast and observed distribution vs. the 
ensemble predicted standard deviation is shown in Figure 9C. Good spread-skill (a linear distribution 
following the one-to-one line) indicates that the predicted variance increases with the mismatch 
variance. In the example shown here, the ensemble predicted standard deviation values are slightly 
higher than the observed mismatch standard deviations for the low values, but, in general, the forecast 
demonstrates good spread-skill with both properties increasing fairly linearly. 

Chlorophyll Forecasts - Coupled Biophysical Model 
To access and estimate uncertainty in chlorophyll forecasts using a coupled bio-physical model (Case 2 
in the INTRODUCTION), we have created two ensembles of the Monterey Bay model runs. Ensemble 
1 (El) consists of 10 coupled bio-chemical, physical model runs for the Monterey Bay area (Shulman 
et al., 2011). Two factors affecting the bio-chemical, physical model variability were considered: the 
amount of physical observations assimilated and the choices of the vertical coordinate system in the 
model. For each model run in the El ensemble, the chlorophyll was derived from the constituents of 
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Figure 9. A. Forecast ensemble mean chlorophyll for 17 October 2011 (3-day simulation). 
MODIS image for 17 October 2011. C. Spread-skill metric plot. 

B. 

the bio-chemical model (CoSINE) coupled to the physical model (NCOM). Ensemble 2 (E2) consists 
of the same 10 model runs as El, but the bio-chemical component of the coupled model was turn off. 
Instead, in each member of E2, the chlorophyll was treated as a passive tracer (controlled only by 
advective and diffusive processes of the physical model).   Both ensembles (El and E2) were 
initialized on 19 April of 2008, and spun up until 2 June. On June 2, the second ensemble run (E2) 
was started with biology turned off. Model simulation results were compared to actual chlorophyll 
distributions (MODIS data) for June 5th (3 days of forecast) and June 10th (8 days of forecast). 
Comparisons of ensembles El and E2 provide the assessment of the bio-chemical model contribution 
to the variability and uncertainty in the chlorophyll forecasts in comparison to the case where 
chlorophyll is treated as the passive tracer and controlled only by advective and diffusive processes 
(Figure 10). 

The El ensemble chlorophyll mean reproduced the observed productivity (chlorophyll values) inside 
the Bay after 3 days (June 5th), and especially after 8 days (June 10th) of simulation. Also, the El 
ensemble mean reproduced the observed increase in productivity from June 5th to June 10th. The 
primary modeling focus of the field program was on predictions inside the Bay (especially in the 
upwelling shadow area in the northern part of the Bay), and is encouraging given that the model 
demonstrated good skill in chlorophyll predictions even without any bio-chemical data assimilation. 
The E2 ensemble chlorophyll mean (reminder that the chlorophyll is treated as passive tracer in the E2) 
demonstrated significantly reduced productivity inside the Bay in comparison to observations during 8 
days of simulations. Also, ensemble E2 did not reproduce the observed increase of productivity from 
June 5th to June 10th. In addition, the variability in ensemble E2 predictions is much lower in 
comparison to the variability in ensemble El. These results show that in upwelling dominated areas 
(like along the West Coast of US); the coupling to bio-chemical model is needed to reproduce the 
observed chlorophyll variability along the coast even for short-term forecasts (only advective and 
diffusive processes are not able to reproduce observed productivity). On June 5th (3 days of 
simulation), the root mean square (RMS) error for ensemble El is 80 % less than for ensemble E2 

10 
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Figure 10. El (bottom panel, with biology) and E2 (top panel, without biology) ensemble model 
results for Monterey Bay, June 1008. With biology included, the results more closely match the 
MODIS image for 10 June in the bay. 

inside the Bay. For June 10th (8 days of simulations), the RMS error for ensemble El is 53% (almost 
double) less than for E2. Outside the Bay, the ensemble El mean demonstrated higher than observed 
productivity. This is due to the fact that rates of grazing, mortality, nutrients uptakes, CHL to nitrogen 
ratios etc are the same through the model domain while ecosystems inside and outside the Bay are 
quite different. Good model predictions inside the Bay indicate that the ecosystem model parameters 
are appropriate for dynamics inside the bay, but should be corrected outside the Bay. This is a 
complicated task due to lack of observations to constrain the ecosystem model parameters. Preliminary 
experiments with assimilating satellite ocean color data for a better initialization of the bio-chemical 
model constituents show improvement in the model offshore chlorophyll predictions (Shulman et al., 
2012). 

DISCUSSION AND SUMMARY 

The environmental modeling community commonly employs an ensemble approach to propagate 
initialization, forcing, and algorithm error sources through the simulation process. We have extended 
this approach to satellite ocean color image processing/analysis, to allow quantitative error evaluations 
and error cascading, and to estimate uncertainties in the derived bio-optical products. In addition to 
analysis of the satellite chlorophyll uncertainty, we further incorporated this uncertainty into short-term 
(1-3 day) hydrodynamic forecasts of the chlorophyll field. We examined the effect of including 
biology in the forecast by coupling the hydrodynamic model to an ecosystem model. We compared 
the forecast distributions with actual distributions observed from satellite imagery, and employed 
spread-skill statistics as a metric to assess forecast errors. 

11 
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