

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SCALABILITY ASSESSMENTS FOR THE MALICIOUS
ACTIVITY SIMULATION TOOL (MAST)

by

Ray Longoria Jr.

September 2012

 Thesis Co-Advisors: Gurminder Singh
 John H. Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Scalability Assessments for the
Malicious Activity Simulation Tool (MAST)

5. FUNDING NUMBERS

6. AUTHOR(S) Ray Longoria Jr.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government. IRB Protocol number: N/A.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

MAST – Malicious Activity Simulation Tool – aims to support the conduct of
network administrator security training on the very network that the
administrator is supposed to manage. A key element of MAST is to use malware
mimics to simulate malware behavior. Malware mimics look and behave like real
malware except for the damage that real malware causes. MAST enhances training
by providing realistic scenarios that are dynamic, repeatable, and provide
relevant feedback.

This thesis is meant to test the scalability characteristics of MAST.
Specifically, we show that an exponential increase in clients using the MAST
software does not impact network and system resources significantly.
Additionally, we demonstrate and discuss how MAST is installed on a new
network, and delivers feedback to the organization being trained.

14. SUBJECT TERMS Red Teams, Malware, Network Security, Training,
Computer Network Defense, Simulation, Scalability

15. NUMBER OF
PAGES

85
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SCALABILITY ASSESSMENTS FOR THE MALICIOUS ACTIVITY
SIMULATION TOOL (MAST)

Ray Longoria Jr.
Captain, United States Marine Corps

B.A., The Citadel, Military College of South Carolina, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2012

Author: Ray Longoria Jr.

Approved by: Gurminder Singh
Thesis Co-Advisor

John H. Gibson
Thesis Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

MAST – Malicious Activity Simulation Tool – aims to support

the conduct of network administrator security training on

the very network that the administrator is supposed to

manage. A key element of MAST is to use malware mimics to

simulate malware behavior. Malware mimics look and behave

like real malware except for the damage that real malware

causes. MAST enhances training by providing realistic

scenarios that are dynamic, repeatable, and provide

relevant feedback.

This thesis is meant to test the scalability

characteristics of MAST. Specifically, we show that an

exponential increase in clients using the MAST software

does not impact network and system resources significantly.

Additionally, we demonstrate and discuss how MAST is

installed on a new network, and delivers feedback to the

organization being trained.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. NETWORK SECURITY AND INFORMATION ASSURANCE

TRAINING ...1
B. SHORTFALLS WITH CURRENT TRAINING METHODS2
C. MALICIOUS ACTIVITY SIMULATION TOOL (MAST)3
D. OBJECTIVES ...3
E. ORGANIZATION4

II. BACKGROUND ..7
A. TRAINING METHODS FOR DOD NETWORK ADMINISTRATORS7

1. Red Teams7
a. Contemporary Example of a Red Team

Implementation8
b. Historical Example of a Red Team

Implementation9
c. Red Team Implementation within a Cyber

Domain9
2. Defense Information Systems Agency (DISA)

Training Programs10
3. USMC Communication Training Centers (CTCs) ...11

B. MALWARE ...12
1. Worms ..13
2. Viruses14
3. Botnets15

C. PROOF OF CONCEPT FOR A MALICIOUS ACTIVITY
SIMULATION TOOL16

D. SUMMARY ...17

III. DESIGN CONSIDERATIONS AND TEST PLATFORM19
A. TRAINING ..19

1. Training Objectives and Environment19
2. Shortfalls of Current Training Methods20

a. Finite Resources20
b. Non-standardized Training Methods20
c. Inconsistent Feedback21
d. Different Training Platform21

3. Benefits of Implementing MAST22
B. MALICIOUS ACTIVITY SIMULATION TOOL (MAST)22

1. System Functionality23
a. Scenario Generation24
b. Scenario Distribution24
c. Scenario Execution25
d. Reporting and Archiving25

2. System Architecture26

 viii

3. Safety Features27
a. Client Check-in27
b. Kill Switch28
c. Roll-Back Module28

4. Modular Features28
5. A Scenario Example29

C. TESTING PLATFORM31
1. Hardware31
2. Software32
3. Common PC Operating System Environment

(COMPOSE) CG-71 Virtual Machines33
a. Integrated Shipboard Network System

(ISNS) Domain Controller One and Two34
b. Integrated Shipboard Network System

(ISNS) Exchange Server34
c. Integrated Shipboard Network System

(ISNS) System Management Server34
d. Computer Network Defense-Operating

system Environment (CND-OSE) Host-Based
Security System (HBSS) Server35

e. Computer Network Defense-Operating
system Environment (CND-OSE) Microsoft
Structured Query Language (MSSQL)
Server35

f. CG-71 Common PC Operating System
Environment (COMPOSE) Server35

g. CG-71 Common PC Operating System
Environment (COMPOSE) Secure
Configuration Compliance Validation
Initiative (SCCVI) Host35

h. CG-71 Common PC Operating System
Environment (COMPOSE) Workstation36

D. HOST-BASED SECURITY SYSTEM (HBSS)36
1. McAfee ePolicy Orchestrator (ePO)37
2. McAfee Agent37
3. McAfee Host Intrusion Prevention System

(HIPS)37
a. Intrusion Prevention System (IPS)37
b. Host Intrusion Prevention System (HIPS)

Firewall37
c. Host Intrusion Prevention System (HIPS)

Application Blocking38
4. Device Control Module (DCM)38
5. McAfee Asset Baseline Module (ABM)38
6. McAfee Policy Auditor (PA)38
7. McAfee Virus Scan Enterprise (VSE)38

 ix

8. McAfee Rogue System Detection (RSD)38
E. SUMMARY ...39

IV. SCALABILITY ASSESSMENT METHODOLOGY AND RESULTS41
A. MAST DEPLOYMENT AND INSTALLATION41

1. Over-The-Air (OTA) Deployment41
2. Local distribution and Installation42

B. SCENARIO EXECUTION43
1. System Resources43
2. Network Resources44
3. Experiment Design44
4. Experiment Methodology47
5. Results50

a. System Resources50
b. Network Resources52

C. TRAINING FEEDBACK AND DISTRIBUTION55
D. SUMMARY ...56

V. CONCLUSIONS AND FUTURE WORK59
A. CONCLUSIONS59
B. FUTURE WORK60

1. Continued Development of Module Library60
2. Graphical User Interface61
3. Test and Evaluation on Operational Network ...61

LIST OF REFERENCES ..63

INITIAL DISTRIBUTION LIST65

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. The MAST Architecture Overview..................23
Figure 2. Logical View of MAST Architecture (From Greg

Belli and Erik Lowney)..........................27
Figure 3. Example of a MAST Scenario......................30
Figure 4. MAST Physical Equipment Setup (From Greg Belli

and Erik Lowney)................................32
Figure 5. Architecture for MAST deployment and

installation....................................42
Figure 6. Virtual test bed configuration..................45
Figure 7. MAST Scenario selection window..................46
Figure 8. Breakdown of MAST clients for experimentation...48
Figure 9. Experiment procedure............................49
Figure 10. Percentage of CPU resources used for

experiments.....................................51
Figure 11. Percentage of CPU used compared to number of

clients...52
Figure 12. Characteristics of network during experiments...53
Figure 13. Network traffic statistics captured by

Wireshark.......................................54
Figure 14. Percentage of network resources used............55

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AdWare Advertising Software

CND Computer Network Defense

CNSS Committee on National Security Systems

COMPOSE Common PC Operating System Environment

COTS Commercial Off The Shelf

CPU Central Processing Unit

CTC Communication Training Center

DC Domain Controller

DCM Device Control Module

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DHS Department of Homeland Security

DISA Defense Information Systems Agenct

DNS Domain Name System

DoD Department of Defense

ePO ePolicy Orchestrator

ExComm Executive Committee

FOC Full Operating Capability

Gb Gigabit

GB Gigabyte

GHz Gigahertz

GUI Graphical User Interface

HBSS Host Based Security System

 xiv

HIPS Host Intrusion Prevention System

IA Information Assurance

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IIS Internet Information Server

IIT Infantry Immersion Trainer

IOC Initial Operational Capability

IP Internet Protocol

IPS Intrusion Prevention System

ISNS Integrated Shipboard Network System

Malware Malicious Software

MAST Malicious Activity Simulation Tool

MEF Marine Expeditionary Force

NNTP Network News Transfer Protocol

NSA National Security Agency

OPFOR Opposing Forces

OTA Over The Air

RaD-X Rapid Experience Builder

RAM Random Access Memory

SMTP Simple Mail Transfer Protocol

TB Terabyte

TCP Transmission Control Protocol

TTP Tactics, Techniques and Procedures

UPS Uninterruptable Power Supply

USCYBERCOM United States Cyber Command

 xv

USMC United States Marine Corps

VM Virtual Machine

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

First and foremost, I give thanks to my Heavenly

Father, His Grace, and all the blessings I am so lucky to

have.

This thesis would not have been possible without the

guidance, patience, and support of my thesis advisor,

Professor Gurminder Singh. Thank you for your time and the

opportunity to work with you. My thesis co-advisor, Mr.

John Gibson, provided guidance and mentorship not only for

this thesis, but throughout my NPS career as well. Thank

you.

I would be remiss if I did not offer my heartfelt

thanks and appreciation to CDR Jim Hammond and LT Justin

Neff. I cannot say enough about Jim’s effort, hard work,

and leadership while working on the MAST project. I thank

Justin for his dedication and motivation to not only the

MAST project, but to all our endeavors together. Also, I

would like to thank Mr. Arijit Das, Mr. Erik Lowney, and

Mr. Greg Belli. Their hard work and contributions advanced

and elevated this project to levels we hadn’t considered

possible within our timeline. Thank you gentlemen.

Additionally, I want to thank Ms. Susan Hood from

SPAWARSYSCEN-PACIFIC and Mr. Quincy Taitt from Man Tech

Systems for providing the software and training that

allowed us to test MAST in our shipboard simulated

environment.

I would also like to acknowledge and thank all my

professors and fellow cohort members over the last two

years. Specifically, I would like to acknowledge, CDR Al

 xviii

Shaffer, J.D. Fulp, Scott Cote, Professor Rob Beverly, LT

Joey Carter, and of course all my fellow Marines. Semper

Fi brothers.

Finally, to my amazing wife Tara, I thank you from the

bottom of my heart. I could not have done this without

your love and support. I am forever grateful and thankful

that God brought us together. I love you. To my beautiful

children, Emeline, Everett, Elianna, and the twins, you all

are my drive and motivation. Thank you for your love,

support, sacrifices, and occasional drama. I wouldn’t have

it any other way.

 1

I. INTRODUCTION

During the summer of 2009, then Secretary of Defense

Robert Gates directed the establishment of United States

Cyber Command (USCYBERCOM). The new command achieved

Initial Operational Capability (IOC) the following summer,

followed by Full Operating Capability (FOC) on October 31,

2010. USCYBEROM is:

Responsible for planning, coordinating, integrating,

synchronizing, and directing activities to operate and

defend the Department of Defense information networks and

when directed, conducts full-spectrum military cyberspace

operations (in accordance with all applicable laws and

regulations) in order to ensure U.S. and allied freedom of

action in cyberspace, while denying the same to our

adversaries. [1]

A key directive in USCYBERCOM’s mission statement is

to defend the DoD information network. While there are

many methods and techniques used to execute this task, the

underlying foundation for each of those methods is

training. Training occurs at all levels and stages. It

must be relevant, continuous, and above all effective.

A. NETWORK SECURITY AND INFORMATION ASSURANCE TRAINING

As the use of computing devices, Internet

connectivity, and cloud-based services rises, the need for

more personnel trained to install, maintain, and protect

these services also rises. These developments are not

isolated to business, government, or private communities.

These same technological developments are also in demand

 2

and in use by the U.S. military. However, a key difference

between military use and all other is the critical need to

protect those services and the network they propagate over

due to military’s national defense mission.

Training for U.S. service members and DoD personnel

varies based on location, experience, level of expertise

required, and mission. Options for training range from

classroom-type training, computer-based training, and red

team training. Classroom training offers a lot of “hands-

on” experience in a controlled setting, while red teams

provide a more realistic experience, as their training is

conducted on the actual network the administrators

maintain.

B. SHORTFALLS WITH CURRENT TRAINING METHODS

While our current training methods are effective,

there are a few key shortfalls we wish to address with this

thesis. Red teams, for example, are finite resources that

are in very high demand. As more commanders understand the

threat in the cyber domain, they want to ensure their

unit’s preparedness by providing relevant and effective

training. While red teams are capable of providing this,

the reality is there are not enough of them. Additionally,

the training offered through the use of red teams is

dynamic in nature, which in turn can lead to inconsistent

training results and feedback for the unit or organization

being trained or evaluated.

Classroom or laboratory training can also be effective

and relevant. However, a potential shortfall is the

operating environment in which a trainee will train. The

computer systems and network to which they are connected

 3

are often not be the same type of systems and configuration

they would use on their operational network.

C. MALICIOUS ACTIVITY SIMULATION TOOL (MAST)

To address the shortfalls mentioned above we developed

a software-based tool that provides relevant and dynamic

training on the very network that the trainee will manage.

The Malicious Activity Simulation Tool (MAST) was designed

around a command and control architecture that allows

training to be executed from a remote location with minimal

impact on system and network resources.

MAST uses scenarios, which are made up of multiple

modules and commands, to conduct the training. The modules

are benign programmed behaviors that mimic the signature of

real malware but do not include the “infectious” behavior

that causes harm to the network and computing resources.

All events and actions are captured and formatted into a

report that provides the training unit and their leadership

a view into their unit’s cyber security posture and

preparedness.

The current MAST architecture leverages the research,

development, and framework of CDR Will Taff, LCDR Paul

Salevski, and LT Justin Neff [1] [2]. Their efforts have

led to the development of a prototype that is used as the

foundation for experimentation in this thesis.

D. OBJECTIVES

In this thesis, we detail the properties of MAST with

respect to scalability. The intent of the tool is to

provide training in an environment consisting of hundreds

of clients. In order to continue our development, it is

 4

important we understand how MAST uses system and network

resources while conducting training. MAST must be able to

train hundreds of clients while utilizing minimal

resources.

E. ORGANIZATION

Chapter I provides a brief description of current

shortfalls in network security and IA training.

Additionally, a general description of MAST and its

functionality is detailed along with the objectives of this

thesis.

Chapter II outlines previous research, current

training methods and the work of Taff, Salevski, and Neff.

Additionally, we provide a detail description of red teams

and some historical examples of their use. We conclude the

chapter with a discussion of varying types of malicious

software (Malware).

Chapter III discusses our design considerations with

respect to MAST and the test platform. Specifically, we

detail MAST’s functionality and architecture, and provide

an example of a training scenario. We provide details of

the test platform’s hardware and software features along

with a detailed discussion of training and the aspects

involved in conducting training. We conclude the chapter

with an overview of the Host-Based Security System (HBSS)

software suite.

Chapter IV provides a detailed description of the

assessments required to determine MAST’s scalability

characteristics. We discuss the installation of the

software from a remote location on a network that does not

 5

have MAST. Additionally, we show how MAST uses system and

network resources when executing a training scenario. We

conclude the chapter with a discussion of MAST’s feedback

and reporting capabilities.

Chapter V provides conclusions and recommendations as

a result of this experiment. We give our assessment of

MAST’s implementation of a large network and the

utilization of resources by the tool. We conclude the

chapter with a discussion of future work to be conducted to

prepare MAST for implementation in an operational

environment.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. BACKGROUND

This chapter details some of the varying cyber

security and Information Assurance (IA) training methods

utilized by the United States (U.S.) uniformed service

members and Department of Defense (DoD) personnel.

Specifically, we provide some insight into red teams, who

they are, and how they operate, and other sources of

training within the DoD. Additionally, we discuss some

malicious threat signatures and behaviors, and the proof of

concept for our system, called Malicious Activity

Simulation Tool (MAST).

A. TRAINING METHODS FOR DOD NETWORK ADMINISTRATORS

1. Red Teams

In a 2008 interview, Popular Mechanics was given

unprecedented access to a National Security Agency (NSA)

red team member. The interviewee revealed that the main

task of the red teams was to provide “adversarial network

services” to all units and personal within the DoD while

ensuring strict adherence to their first rule of operation:

“do no harm [4]”. Within this context, and in general, a

red team is made up of highly skilled and experienced

personnel whose mission is to “anticipate and simulate the

decision-making and behaviors of potential adversaries

[5]”. Red teams allow units to “train as [they] fight” by

conducting their actions in the actual operational

environment, while utilizing the same tactics, techniques,

and procedures (TTPs) of a real enemy.

 8

According to the Committee on National Security

Systems (CNSS), a red team is defined as:

A group of people authorized and organized to
emulate a potential adversary’s attack or
exploitation capabilities against an enterprise’s
security posture. The Red Team’s objective is to
improve enterprise Information Assurance by
demonstrating the impacts of successful attacks
and by demonstrating what works for the defenders
(i.e., the Blue Team) in an operational
environmental. [6]

The use of red teams is not limited to the computer

security or computer network domain. Red teams, who are

sometimes referred to as an Opposing Force (OPFOR), are

utilized for training, planning, and evaluating at the

strategic level down to the tactical level.

a. Contemporary Example of a Red Team
Implementation

One way in which U.S. Marine Corps infantry units

prepare for operations in a hostile urban environment is to

send their members through the Infantry Immersion Trainer

(IIT) facility located on Marine Corps Base Camp Pendleton,

California. IIT is a physical training environment that

incorporates computer simulation technology to provide “a

vivid and realistic virtual environment to prepare

warfighters for a range of possible scenarios” [7]. The

scenarios and simulations incorporated into the training

program, known as TTPs, are integrated by a red-team-like

entity.

 9

b. Historical Example of a Red Team
Implementation

At the height of the Cuban Missile Crisis,

President Kennedy established the Executive Committee (Ex

Comm) of the National Security Council to provide him

guidance and response options that were based on a careful

analysis of the enemy and their potential courses of

action. Specifically, these red-team-like members were

non-military members who helped provide information and

courses of action that countered the recommendations of the

highly influential military members on the committee [8].

c. Red Team Implementation within a Cyber
Domain

As stated earlier, the number one rule for NSA

red team members is to “do no harm”. This approach to

training parallels the methodology taught in the E-Commerce

(EC) Council’s Ethical Hacking and Countermeasures course.

According to the Certified Ethical Hacking courseware

manual, an ethical hacker is an individual “hired by

organizations to attack their information systems and

networks in order to discover vulnerabilities and verify

that security measures are functioning correctly [9]”. The

ethical hacker, or red team member, can then provide the

organization or unit the status of their security posture,

identify any weaknesses, and most importantly, identify

remedial actions that can be taken to enhance security.

The duties of the red team are limited to the

time and resources available and the experience of the

individuals on the team. Like any other team or group of

individuals working together towards a common goal, there

 10

are varying levels of competency and experience among the

individual members of the team. The amount of red-teaming

or depth of penetration a team can make on a respective

network is unpredictable and not standardized due to

variables associated with the particular red team, the

network being probed, and the personnel administering that

network. Additionally, feedback to the respective unit

being tested or trained is critical to its security

enhancements, operational security posture, and most

importantly mission accomplishment but it is often

inconsistent and neglected.

2. Defense Information Systems Agency (DISA)
Training Programs

Another resource for cyber security and IA training

for network administrators is the training products offered

by the Defense Information Systems Agency (DISA). DISA

offers a variety of computer-based and web-based training

programs; instructor led training programs; and virtual

training environments. One course in particular, the Rapid

Experience Builder (RaD-X) course, is designed to expose

students to malicious software (malware) and provide hands-

on training with firewall log reviews, intrusion detection

system (IDS) analysis and configuration, and anomaly

detection using computer network defense (CND) tools [10].

Trainees in this course are able to observe and interact

with a variety of real malware in a laboratory setting.

The laboratory environment is air-gapped, or isolated from

all other networks and the Internet. While there are many

positive aspects to this hands-on, instructor-led training,

there are a few shortfalls. First, the cost of

 11

transporting the laboratory for training or sending

personnel to be trained can be very high. Second, there is

a very high maintenance cost associated with managing and

maintaining the systems. After each class, each system

within the RaD-X environment must be “wiped,” that is,

electronically cleared, and re-imaged to prepare for the

next session. Finally, for the trainee, there is no

guarantee that the RaD-X computer systems and network

topology mirror the operational network with which they are

familiar.

3. USMC Communication Training Centers (CTCs)

Within the Marine Corps there exist three

Communication Training Centers (CTCs), located respectively

within each Marine Expeditionary Force (MEF). The classes

available through one of these CTCs range from tactical

radios to Cisco routing protocols and concepts. The depth

of instruction on cyber security and IA is limited due to

the limited resources available at each location and the

additional military commitments for all service members.

Like the RaD-X architecture mentioned above, the

configuration and system design used in training often does

not mirror what the actual service member will administer

during an exercise or while deployed.

All the training methods mentioned above are

undoubtedly beneficial and critical to the continued

security of our computer network infrastructure. We

propose that the incorporation of MAST will enhance network

administrator training by allowing units to train on their

very own operational network in a safe and controlled

 12

environment. MAST will provide consistent training and,

most importantly, provide consistent feedback to the users.

B. MALWARE

Malicious software, or malware, is a general term used

to describe software that is specifically designed to cause

a computer system, its network, or peripherals to perform

actions not intended by the user, or deny the user a

resource resident within the computer or network. In a

2005 case study describing attacks against critical

infrastructure, the U.S. Department of Homeland Security

(DHS) defined malware as:

Programming (code, scripts, active content, and
other software) designed to disrupt or deny
operation, gather information that leads to loss
of privacy or exploitation, gain unauthorized
access to system resources, and other abusive
behavior. Examples include various forms of
adware, dialers, hijackware, slag code (logic
bombs), spyware, Trojan horses, viruses, web
bugs, and worms. [11]

The impact of malware on a computer system can range from

harmless and annoying to severely devastating and damaging.

Advertising software (adware) or spam e-mails, while

inconvenient, will have little to no impact on the system’s

resources and services. A Trojan horse, conversely, could

give a hacker complete access to a system at the

administrator level, thereby compromising the

confidentiality, integrity, or accessibility of files and

resources located within the system.

For the scope of this thesis, and MAST in general, the

term “malware” will refer to those exploits and their

behaviors that can cause catastrophic damages or deny the

 13

end user the ability to accomplish the mission. Specific

types of malware behavior MAST will simulate include, but

may not be limited to, worms, botnets, and viruses.

1. Worms

According to the Froehlich/Kent Encyclopedia of

Telecommunications, a worm is defined as “self-replicating

programs that spread with no human intervention after they

are started” [9]. Gu et al. identify three characteristics

common to most Internet worms [12]:

• The first characteristic deals with the volume
and type of traffic generated by an Internet
worm. A worm is more susceptible to
identification based on its patterns and
signatures. Since worms are self-replicating,
they do not evolve or change as they propagate.
A worm’s uniform characteristics make it easier
to detect with network traffic analysis software,
such as Wireshark and TCPDump.

• A second characteristic deals with the worm’s
scanning behavior. Most Internet worms will use
a pseudo-random search algorithm to discover open
ports on a vulnerable system. A worm with this
behavior will attempt to connect to numerous
closed ports, which will result in the same
number of failed connections. A brief analysis
of these failed connections could reveal the
presence of a worm.

• The final characteristic is a noticeable increase
in system resource utilization. The host uses a
lot of resources responding to the initial
scanning done by a worm, followed by a further
depletion of resources to find more vulnerable
systems.

The scanning and propagation features of an Internet

worm are normally only part of its behavior. Most malware

carry or deliver some sort of malicious payload that can be

 14

used to capture sensitive information, report back to a

base station, or in the worst case, corrupt or delete

essential system files.

Cornell University student, Robert Morris, released

the first known instance of an Internet worm in 1988. The

Morris worm, which was initially designed to measure the

size of the Internet-ancestor, ARPANET, had a self-

replicating and self-propagating feature that caused 10% of

all computers connected to the ARPANET to become

ineffective due to the allocation of resources dedicated to

the Morris worm [13].

2. Viruses

Like Internet worms, viruses are also self-replicating

software that can carry a malicious payload. The

distinguishing characteristic between worms and viruses is

that viruses require some sort of action on the part of the

end-user to initiate its behavior. Viruses propagate

through e-mails or malicious attachments, not through

system vulnerabilities as a worm does. Peter Szor, author

of The Art of Virus Research and Defense, defines a

computer virus as:

Code that recursively replicates a possibly
evolved copy of itself. Viruses infect a host
file or system area, or they simply modify a
reference to such objects to take control and
then multiply again to form new generations. [14]

Viruses, like worms, have distinct characteristics and

signatures that can be detected with an Intrusion Detection

System (IDS). Unfortunately, these combative methods tend

to be reactive in nature due to the virus’ stealth nature

and various infection methods. Viruses can be programmed

 15

to attach themselves to other executable files, self-

modify, and replicate. The signature database associated

with the IDS must be updated constantly and reviewed to

ensure maximum protection.

3. Botnets

Another form of malware that has become more widely

used, due to the increase in computing systems connected to

the Internet, is a “botnet”. A “bot” is a computer system

that has been compromised with malicious software and the

“net” is the network on which the infected host

communicates. While there are many common characteristics

among viruses, worms, and botnets, the distinguishing

factor for botnets is its command and control architecture.

In this command and control architecture there is normally

one bot that acts as the master while the other bots

execute the commands given by the master.

As stated earlier, the rise in computer usage and

Internet connectivity has led to the increase in botnet

attacks. The most common attack associated with botnets is

the Distributed Denial of Service (DDoS) attack. A DDoS

attack is designed to overwhelm the resources of a single

entity by sending it more requests than it can handle.

These request normally come from multiple machines at the

same time, which are all a part of a botnet. However,

botnets can be used for more than just a DDoS attack.

According to Ellen Messmer, who published an article on the

growth of botnet usage:

 16

It’s not just DDoS attacks that are associated
with bots. Botnets are usually specialized,
designed for criminal tasks that range from spam
distribution; stealing identity credentials such
as passwords, bank account data or credit cards
and key-logging; click fraud; and warez (stealing
intellectual property or obtaining pirated
software). [15]

Like viruses, bots that are a part of a botnet, can be

difficult to detect. Most bots are programmed to lay

dormant until activated by the master bot. When they are

activated, the bots exhibit scanning behaviors similar to a

worm. The worm-like behavior makes the bot detectable with

traffic analysis tools, such as Snort or Wireshark.

C. PROOF OF CONCEPT FOR A MALICIOUS ACTIVITY SIMULATION
TOOL

The foundation for this thesis lies in the research

started by Commander William Taff, Lieutenant Commander

Paul Salevski, and Lieutenant Justin Neff. Taff and

Salevski, whose thesis “Malware Mimics for Network Security

Assessment” described a “red team” approach to network

training, some of the shortfalls in network security

training for U.S. military personnel, and a proposed

software solution that addresses some of these shortfalls

by utilizing techniques associated with red teams. More

specifically, the tool they proposed and developed has the

following characteristics [2]:

• The tool’s architectural design is based on a
command-and-control or server-client model. The
operator of the master server is the trainer,
while the end-users are the trainees.
Additionally, this design allows for the trainer
to be located either locally or remotely.

 17

• The tool is designed to allow users to “train as
you fight” by executing the training on the
users’ operational network. All actions and
behaviors are benign in nature, thereby causing
no threats to the network or end-hosts. Also,
the network traffic generated by the system does
not overwhelm network resources and impact users
not involved in the training.

• Finally, the tool is designed to capture all
commands and actions so that a report could be
generated to profile the training. This is an
important characteristic that is fundamental to
any training scenario.

Neff furthered Taff and Salevski’s research by

verifying and validating their proposed approach to network

security training. Specifically, Neff defined various

metrics that were used to compare MAST training approach to

other methods of training currently available. His

research asserted that the MAST system is a viable approach

and can improve network security and the IA posture of a

unit when augmented to the other resources currently

available [3].

The theses authored by Taff, Salevski, and Neff are

the proof-of-concept and foundation upon which MAST has

been built. It is their work that we intend to expand and

further develop.

D. SUMMARY

In this chapter, we discussed varying methods used to

train computer network administrators. Specifically, we

detailed who and what red teams are, and examples of their

implementation, along with other forms of DoD-sourced

training. We also discussed the malware domain and some of

the categories of malware that fall within that domain.

 18

Finally, we discussed the research and development of a

software-based approach to training network administrators.

In the following chapter we will expand on this software-

based approach by detailing how this approach can augment

current training methods. Additionally, we will provide an

overview of MAST and describe the implementation platform

for experimentation.

 19

III. DESIGN CONSIDERATIONS AND TEST PLATFORM

In this chapter, we detail our assumptions about the

training objectives and training environment for which the

Malicious Activity Simulation Tool (MAST) is to be

implemented. Along with these assumptions, we provide a

detailed overview of MAST’s functionality, architecture,

benefits over current training methods, and an example

training scenario MAST could implement. We conclude the

chapter with a discussion on the Host-Based Security System

(HBSS) and the virtual shipboard network we are using for

testing and evaluating.

A. TRAINING

1. Training Objectives and Environment

As stated in the previous chapters, the foundation for

this thesis lies in the previous work, research, and

development by Taft, Salevski, and Neff [2] [3]. An

important topic they helped define and scope for this

project is the training paradigm. Specifically, they

defined a training objective as “the skill or behavior that

we wish to reinforce” [2]. This definition is a

foundational principle of the MAST design. Since training

objectives vary by unit, size, location, experience, and

numerous other factors, MAST is designed to be modular in

nature. MAST can be “customized” to fit varying training

objectives.

The implementation of MAST assumes a training

environment where there is a trainer, trainee, safety

observer, and computer network that is inter-connected and

 20

accessible by all these individuals. The person(s) or

organization responsible for developing training objectives

and overseeing the training is the trainer. The individual

or organization receiving the training and trying to meet

the objectives is the trainee. The person or organization

responsible for the safety of the training and the

adherence to any constraints or restraints is the safety

observer. Finally, the platform upon which the training is

conducted is an inter-connected network of computers on an

approved DoD computer network. The computer systems

attached to this network have a baseline computer image

approved by its respective service or agency, and includes

the installation of HBSS.

2. Shortfalls of Current Training Methods

As stated in the previous chapter, there are varying

training methods available to network administrators for

network security and IA. We believe there are four major

shortfalls with these methods that the MAST addresses:

a. Finite Resources

Taft and Salevski stated that the use of red

teams for training is “the pinnacle of a unit’s training

[13].” But unfortunately, red teams are a finite resource

that are over-taxed and in high demand. If a unit is lucky,

they may have an opportunity to train with a red team just

prior to a deployment or commencement of an exercise.

b. Non-standardized Training Methods

As stated in the previous chapter, the attack

methods and probing techniques used by red teams vary due

 21

to factors such as experience, time available, complexity

of the network, discovered vulnerabilities, and many more.

These variables make standardized training with respect to

red teams virtually impossible.

c. Inconsistent Feedback

The dynamic training approach and non-

standardized training methods offered by red teams can lead

to inconsistent feedback for the unit being trained. The

task of capturing all events and actions is very manpower

intensive and time-consuming. Time and manpower are two

resources of which the red teams do not have enough. If

detailed feedback is desired, then the amount and quality

of training provided by the red team will be diminished.

d. Different Training Platform

While laboratory or schoolhouse type training can

mitigate some of the issues with standardization and

feedback, there are two issues other issues with this type

of training:

• First, the cost of sending personnel to be
trained or transporting the laboratory to the
training location can be very high.
Additionally, the costs for managing and
maintaining the laboratories can be very
expensive.

• Second, there is no guarantee that the system and
network settings and configuration will mirror
that of the actual network the trainees will use
for their exercise or deployment.

In the following sections we will discuss the benefits

and details of the MAST and its role in the training

domain.

 22

3. Benefits of Implementing MAST

MAST is designed to address the shortfalls mentioned

in the previous section by providing a software-based

solution that is realistic, repeatable, modular and

dynamic. MAST is designed to simulate and automate some of

the training methods conducted by red teams. MAST’s

training methods, which would be available to all DoD

personnel, can be repeated an unlimited number of times to

ensure the training objectives are met. One of the MAST’s

key functions is to provide reports on the events

surrounding a training scenario. The reports will help a

unit identify its strengths and weaknesses, which in turn

will allow it to better focus its training resources.

Finally, MAST is designed to be used on the same network

the trainees use for their day-to-day operations. The

command and control design of MAST allows the trainer to

scale the training only to those desired hosts and, most

importantly, the training can be ceased expeditiously to

allow trainees the ability to resume their operational

commitments. Finally, MAST is designed to “do no harm” to

the network or the hosts attached to the network.

B. MALICIOUS ACTIVITY SIMULATION TOOL (MAST)

During Taff and Salevski’s initial research and

prototype development of MAST, formerly known as Malware

Mimics, it was determined that MAST be implemented

according to a client-server paradigm [2]. As shown in

Figure 1, the client-server paradigm allows for the trainer

to conduct the training from a local or remote location

using a command-and-control architecture. Additionally,

 23

there are local and remote databases for capturing actions

on all events, and a local and remote “kill switch” to

cease training at any time.

Figure 1. The MAST Architecture Overview

More granular details on the system’s functionality,

architecture, and safety measures are described below.

Additionally, the chapter concludes with an example

training scenario utilizing the MAST.

1. System Functionality

In the previous section we described how MAST fills

the shortfalls created by the current methods of training.

In this section we describe the functionality that exists

within MAST to fill these voids.

 24

a. Scenario Generation

Scenario generation is an important function that

allows for dynamic and relevant training. As new threats

develop, or existing threats remain persistent, it is

critical that trainers have the ability to create unique

situations that enforce a certain training objective. A

scenario is made up of commands, which are executed by the

MAST client, and modules, which are pre-programmed

behaviors the client will execute. A library of modules

will exist at all levels of the MAST and can be combined or

used interchangeably to create unique scenarios.

For example, if the signature of a certain piece

of malware is to perform a network scan followed by an

Internet Control Message Protocol (ICMP) echo-request

(“ping”) out of a specific network port to a specific

Internet Protocol (IP) address, this action can be

recreated into multiple modules for re-use in other

scenarios. The scanning behavior is one module while the

ping request is another module.

Ideally, the creation of new modules and

scenarios is done by the remote trainer whose experience

and skills are equivalent to that of an ethical hacker or a

member of a red team.

b. Scenario Distribution

The next important system function is scenario

distribution. This function is accomplished using a top-

down approach. The trainer, from a remote location, pushes

new scenarios, modules, or updates from the remote server,

known as the Scenario Generation Server (SG Server) to the

 25

MAST-server located locally where the training is to be

conducted. The local server, known as the Scenario

Execution Server (SE Server), then pushes the updates to

the clients as needed.

The distribution of new scenarios or updates can

be “pulled” or “pushed” from the respective server. The SG

Server can push the updates down to the SE Server, or the

SE Server can check-in with the SG Server and determine if

any update needs to be pulled. The same process applies to

the SE Server and the clients it serves.

c. Scenario Execution

Scenario execution occurs at all levels of the

MAST system. A remote trainer can execute a scenario from

the SG Server via the SE Server co-located with the

training unit. For localized training, a scenario can be

executed directly by utilizing only the SE Server. Upon

receipt of an execution command, the MAST Client executes

the specified scenario.

d. Reporting and Archiving

Following a bottom-up approach, reporting begins

when a MAST Client completes a given module or scenario and

reports its actions and events to the SE Server. The SE

Server, with a limited database capability, archives the

information in order to generate reports for the local or

remote trainers. The remote trainer, who can leverage the

SG Server to manage multiple SE Servers, determines the

level of granularity desired from the SE servers. These

reports give the trainers and leaders of the unit being

trained a snapshot of how the trainees performed, which in

 26

turn can be used to create a profile of strengths and

weaknesses. This will allow for a better and more

efficient use of training resources.

The SE Server and the SG Server have access to a

database for data archiving. The database is used to store

scenarios, modules, and reports from all clients and

servers in the system.

2. System Architecture

The MAST system functions mentioned above are

implemented with the use of three main components:

• Scenario Generation Server (SG Server)

• Scenario Execution Server (SE Server)

• MAST Client(s)

All three components are Java-based software programs

consisting of multiple classes or files designed to run on

a variety of Microsoft Windows-based operating systems.

Figure 2 provides a notional implementation view of the

system design.

 27

Figure 2. Logical View of MAST Architecture
(From Greg Belli and Erik Lowney)

3. Safety Features

Like any military training exercise, safety is always

a priority. MAST provides numerous safety features to

ensure the integrity of the network and hosts connected to

the network.

a. Client Check-in

Prior to the commencement of training, each

client or end-host participating in the training must

check-in with the SE Server. When the execution of a

scenario begins, the SE Server communicates only with those

clients on its checked-in list. This ensures non-training

users and end-host systems are not affected by the ongoing

training and can perform their duties as normal.

 28

b. Kill Switch

The “kill switch” is a simple mechanism or

command located at both the SG Server and SE Server. This

command, if executed, will cease all training and begin the

roll-back module. The “kill switch” ensures immediate and

full access to the network and end-hosts in the event the

users that are participating in the training need to

immediately resume their operational duties.

c. Roll-Back Module

The roll-back module is similar in design to

other training modules in that it is designed to run on the

MAST Clients. The main purpose is to ensure the end-host

system being used as a MAST Client is returned to the state

in which it was prior to the commencement of training.

For example, if a training scenario called for

the creation of a text file on the user’s desktop, the

roll-back module, which is executed after the SE Server

receives its reports, will remove or revert to original

construct the text file and any other files created or

modified, respectively, during the training.

4. Modular Features

A final characteristic about the MAST that makes it an

extensible training tool is its modularity. As stated

earlier, scenarios are a combination of computer commands

and modules. The modules are designed to execute a single

behavior and interact effectively with other modules. For

example, if a piece of malware performs multiple behaviors,

then those individual behaviors are broken down into

 29

individual modules. The scenario created to simulate this

malicious behavior would consist of multiple modules.

5. A Scenario Example

Now that we have discussed the characteristics and

components of MAST, we can view an example of a scenario

that can be used for training. Figure 3 overviews the

actions that occur when the Drive-by Download scenario is

executed.

In this scenario, a pop-up window appears on the

user’s desktop. The window is a simple image that performs

no action other than recording the user’s response. The

pop-up window asks the user if they would like to execute

or download a specific file. The user’s actions are

recorded in the SE Server’s database.

The objectives of this scenario are to see how the

users respond to the download question and if any users

report the events to a system or network administrator.

Such events may be characteristic of a phishing attack. The

results of the training can let a unit know where to focus

future training resources.

 30

Figure 3. Example of a MAST Scenario

I
I
I
l

Malicious Activity Simulation Tool: Drive-by Download Scenario

-- - - -
SC Server

Send execuee
ccaxr:na.nd 'Co SE

Server

Remote
Location - - -- -

Archive eraining
e \.-enes and

aC'tions in local
d aeabase

..

Execu't.e Driv~-by
SE Server
Receiv-es
execuee

c on:mand fran
S G Server

Chec k SG Server 'tO

see if there are

Gee
updaees Yes
from SG
Server

Yes

Execuee rollback
scripe

Prepare for
eraininq

Allow MAST
clien-cs t.o

check- i n

Log cliene as
infeC'Ced.

Loq cliene as
NOI infeC'ted

No

Yes

Yes

No

Begin Dri v e-by
Scenario

Log all. ev enes
and s.C"tions

 31

C. TESTING PLATFORM

An important aspect in the research and development of

MAST is the platform on which the tool is tested and

evaluated. In an effort to create a realistic training

environment, we have created a virtual environment that

simulates the unclassified network of a U.S. Navy ship. By

using a network that simulates a real world operational

network, we hope to validate MAST as a legitimate training

tool for network administrators throughout the DoD.

1. Hardware

The computer hardware used to implement and test the

MAST architecture is specifically designed to support

virtualization software and the creation of multiple client

machines. We are using three Dell PowerEdge R610 servers

to run VMware’s ESXi 5.0 software. The hardware

specifications for the Dell servers are as follows:

• Server 1: 4 x 1TB Hard Drives, 96GB RAM,
(2)Intel® Xeon® Quad-core 2.4GHz processors

• Server 2: 4 x 1TB Hard Drives, 48GB RAM,
(2)Intel® Xeon® Quad-core 2.4GHz processors

• Server 3: 4 x 500GB Hard Drives, 24GB RAM,
(2)Intel® Xeon® Quad-core 2.4GHz processors

As Figure 4 shows, all three servers are connected

using a Dell 2716 Gigabit (Gb) switch. This configuration

allows for full duplex communication between the servers

and the switch. This setup is important because the three

servers, while physically separate, must act as one logical

system. The servers need to communicate with each other

with little to no latency.

 32

Figure 4. MAST Physical Equipment Setup
(From Greg Belli and Erik Lowney)

Additionally, a Cisco 2811 router is used as an access

point for remote hosts to connect to the VMs. Finally, all

physical resources are connected to a Dell 1920

Uninterruptable Power Supply (UPS) to ensure protection of

the hardware and software in the event of a power loss.

2. Software

The resources required to actually replicate a

shipboard network are large and very expensive. A more

efficient way to validate the MASTs capabilities is to test

the system on a virtualized network. By using

virtualization, we were able to reduce the amount of

physical resources required to mock the shipboard network.

ESXi 5.0 is a specialized operating system developed by

 33

VMware to manage the physical resources available on a

server. In our setup, we use VMware software to manage and

create virtual machines for testing. A virtual machine

(VM), according to VMware, is “a tightly isolated software

container that can run its own operating system and

applications as if it were a physical computer” [17].

A key element in creating and managing VMs is to

ensure you have the appropriate amount of resources

available for that virtual machine. For example, if you

create a Windows XP VM and allocate 2GB of RAM and 50GB of

storage, then those resources will be reserved for that

machine on the physical server itself. There is a one-to-

one mapping with respect to a VM’s allocated memory and

storage and the actual memory and storage on the server on

which the VM resides.

In the following section we discuss the actual VMs

used for testing. These VMs are managed by the VMware

software and reside on the three physical servers mentioned

above.

3. Common PC Operating System Environment (COMPOSE)
CG-71 Virtual Machines

The virtual machines used to test and develop MAST are

a replica of the U.S. Navy cruiser, U.S.S. Cape St. George,

also known as CG-71. The VMs, which were developed by

Space and Naval Warfare System Center (SPAWARSYSCEN)

Pacific contractor, ManTech, are unclassified and have the

Common PC Operating System Environment (COMPOSE) installed.

COMPOSE is a standardized load for all computers to ensure

 34

easier and more efficient management by network

administrators. The VMs provided by SPAWARSYSCEN are

described below.

a. Integrated Shipboard Network System (ISNS)
Domain Controller One and Two

Virtualized Domain Controllers One and Two (DC1

and DC2) have Microsoft Windows Server 2003 Standard

Edition installed. The following services are installed as

well:

• COMPOSE Data Server

• Dynamic Host Configuration Protocol (DHCP)

• Domain Name System (DNS)

• Active Directory

• Symantec Antivirus Server

• File and Print Servers

b. Integrated Shipboard Network System (ISNS)
Exchange Server

The virtualized exchange server has Microsoft

Windows Server 2003 Standard Edition installed. The

following services are installed as well:

• Exchange Server Standard Edition

• Internet Information Server (IIS) for Simple Mail
Transfer Protocol (SMTP)

• Network News Transfer Protocol (NNTP)

c. Integrated Shipboard Network System (ISNS)
System Management Server

The virtualized System Management Server has

Microsoft Windows Server 2003 Standard Edition installed.

The following services are installed as well:

• SQL Server 2005 Standard Edition

 35

• Internet Information Server (IIS) for Simple mail
Transfer Protocol (SMTP)

• Network News Transfer Protocol (NNTP)

d. Computer Network Defense-Operating System
Environment (CND-OSE) Host-Based Security
System (HBSS) Server

The virtualized HBSS Server has Microsoft Windows

Server 2003 Standard Edition installed. The following

services are installed as well:

• Host-Based Security System (HBSS) Server which
includes the ePolicy Orchestrator (ePO)

e. Computer Network Defense-Operating system
Environment (CND-OSE) Microsoft Structured
Query Language (MSSQL) Server

The virtualized MSSQL Server has Microsoft

Windows Server 2003 Standard Edition installed. The server

provides a database for HBSS and Secure Configuration

Compliance Validation Initiative (SCCVI).

f. CG-71 Common PC Operating System Environment
(COMPOSE) Server

The virtualized COMPOSE Server has Microsoft

Windows Server 2003 (32 bit) installed. The server manages

the COMPOSE environment.

g. CG-71 Common PC Operating System Environment
(COMPOSE) Secure Configuration Compliance
Validation Initiative (SCCVI) Host

The virtualized SCCVI Host has Microsoft Windows

XP Professional (32 bit) installed. The server ensures the

COMPOSE workstations are in compliance with HBSS.

 36

h. CG-71 Common PC Operating System Environment
(COMPOSE) Workstation

The virtualized COMPOSE Workstation has Microsoft

Windows XP Professional (32 bit) installed. The

workstation is used by all users and interacts with HBSS

through the McAfee Agent installed on the system.

D. HOST-BASED SECURITY SYSTEM (HBSS)

According to the Defense Information Systems Agency

(DISA) HBSS website:

The Host Based Security System (HBSS) baseline is
a flexible, commercial-off-the-shelf (COTS) –
based application. It monitors, detects, and
counters against known cyber-threats to
Department of Defense (DoD) Enterprise. Under the
sponsorship of the Enterprise-wide Information
Assurance and Computer Network Defense Solutions
Steering Group (ESSG), the HBSS solution will be
attached to each host (server, desktop, and
laptop) in DoD. The system will be managed by
local administrators and configured to address
known exploit traffic using an Intrusion
Prevention System (IPS) and host firewall. DISA
PEO-MA is providing the program management and
supporting the deployment of this solution. [16]

HBSS is currently being deployed by the DoD to

standardize the way DoD manages networks with respect to

security and IA. Like the use of the COMPOSE CG-71 VMs

mentioned in the previous section, it was important to

implement HBSS into our testing and evaluation of the MAST.

In his thesis, “Verification and Validation of the

Malicious Activity Simulation Tool (MAST) for Network

Administrator Training and Evaluation,” Neff provides a

detailed description of HBSS and its interaction with the

MAST [14].

 37

1. McAfee ePolicy Orchestrator (ePO)

Serves as the central policy management point for all

of the systems HBSS manages.

2. McAfee Agent

The agent is the distributed client-side software that

communicates directly with the ePO server. It also

enforces all HBSS policies on the respective workstation.

3. McAfee Host Intrusion Prevention System (HIPS)

The HIPS is the component of HBSS that provides

several fundamental security features, such as application

blocking or firewalls. The system’s functionality is

implemented using the following features:

a. Intrusion Prevention System (IPS)

The IPS monitors all system and Application

Program Interface (API) calls. It blocks the execution of

any program whose signature matches one of the malicious

signatures in its database.

b. Host Intrusion Prevention System (HIPS)
Firewall

The HIPS firewall protects managed hosts by

analyzing network traffic for malicious content and

preventing it from compromising any data, applications, or

host operating systems.

 38

c. Host Intrusion Prevention System (HIPS)
Application Blocking

The HIPS application blocking feature prevents

unauthorized applications from executing or binding

themselves to another authorized application.

4. Device Control Module (DCM)

The DCM restricts or limits the access of peripheral

devices, such as thumb drives and other removable storage

devices.

5. McAfee Asset Baseline Module (ABM)

The ABM, which is an extension of the ePO, conducts

baseline scans to ensure the state of the system is

captured. The latest baseline scan can then be compared to

the previous scan to determine updates or changes made.

6. McAfee Policy Auditor (PA)

The PA validates the integrity of a system by scanning

and auditing the configuration settings and options of all

systems managed by HBSS.

7. McAfee Virus Scan Enterprise (VSE)

The VSE allows for fast and scalable protection of the

entire network against known viruses, worms, and other

malicious software.

8. McAfee Rogue System Detection (RSD)

The RSP provides the network with multiple “eyes and

ears” to determine if any hosts attached to the network are

not authorized or not registered.

 39

E. SUMMARY

In this chapter we discussed some issues with current

training methods for network administrators. We introduced

the characteristics and components of the MAST that address

the training shortfalls and an example training scenario

used by the MAST. Additionally, we discussed the hardware

and software used for testing and evaluating the MAST. We

concluded with an overview of the CG-71 VMs and HBSS. In

the next chapter we will describe the methodology and

results of scalability testing with the MAST.

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

IV. SCALABILITY ASSESSMENT METHODOLOGY AND RESULTS

In this chapter, we discuss the objectives of our

experiment and the methodology used to determine MAST’s

scalability properties. Specifically, we discuss

• the deployment of MAST on a new network

• MAST’s impact on system and network resources

when a scenario is executed for a varying number

of clients participating in training, and

• the procedure for generating and distributing all

feedback and final reports.

We conclude the chapter with our analysis of the

results.

A. MAST DEPLOYMENT AND INSTALLATION

The objective of this assessment was to discuss the

methodology and impact of deploying MAST from a remote

location to a new training network that does not have MAST

installed. Our demonstration and analysis of the MAST

software shows that an over-the-air (OTA) deployment and

local installation is fast and efficient.

1. Over-The-Air (OTA) Deployment

Figure 5 shows an example architecture where, from a

remote location, MAST software is pushed to a local server,

which in turn pushes it out to all clients. MAST

deployment from a remote location was shown to be effective

and efficient because of the small size of the software and

the one-time deployment from a remote location. The size

of MAST software, to include the server, client, and

 42

modules software, is less than 700KB. These packaged files

are transmitted once to the SE server, or local server,

which in turn handles the distribution to all clients

associated with the training network.

Future OTA transmissions will be limited to updates or

feedback in the form of reports and statistics pertinent to

the training conducted.

Figure 5. Architecture for MAST deployment and
installation.

2. Local distribution and Installation

Once the local (SE) server receives the software from

the remote location, it can distribute the client software

to all hosts on the training network. The client software

and training modules are less than 400KB in size. The SE

 43

server can easily deploy this software during any of

standard updates that occur with HBSS, Microsoft software,

or any other DoD authorized updates.

Installation of the software on local hosts is as

simple as placing a file on the desktop. MAST client

software is designed to run, or execute, only when the

respective host is participating in training. The software

is resident on all hosts, but takes up very little space

and zero system resources when not in use. The following

section discusses the impact on system resources when a

scenario is executed and the software is utilized.

B. SCENARIO EXECUTION

The overall goal of this experiment was to determine

how MAST uses and impacts system and network resources.

Through a standardized set of input and procedures, we wish

to show that MAST performs as expected when utilized in an

environment simulating an operational network that consists

of multiple clients in a remote location.

1. System Resources

For this objective, our goal was to monitor and report

the processing resources utilized by the SE server. It was

critical that we understood how much of the server’s

central processing unit (CPU) was used to serve as few as

five clients and as many as 80 clients. These observations

would help us estimate and plan for testing and evaluating

on a non-virtual operational network consisting of hundreds

of clients.

 44

2. Network Resources

For this objective, our goal was to monitor and report

the amount of network traffic generated between the SE

server and clients when executing a scenario. Since MAST

is designed to run on a network that is not only being used

for training, but for operational purposes as well, it was

important we understood the impact on the network while

conducting training. These observations would help us

understand the network traffic attributes of our current

scenarios, and assist in the planning and design of future

training modules and scenarios.

3. Experiment Design

In order to conduct this experiment, we used the

hardware and software described in Chapter III, Section C.

Specifically, we created a Windows XP Service Pack (SP) 3

virtual machine, which hosted the MAST SE server software

and Wireshark for network traffic monitoring. The machine

was configured with a 2.4 GHz Intel Xeon processor and

Gigabit (Gbit) network adapter card. The machine was also

inter-connected to five COMPOSE servers and 75 COMPOSE

workstations, each of which had the MAST Client software

installed. Figure 6 shows a graphical view of the

simulated environment in which the experiment was

conducted. The physical setup upon which these virtual

machines are hosted is detailed in Chapter III, Figure 4.

One limitation identified during the creation and

configuration of the 75 COMPOSE workstations was the impact

of the VMs on the physical servers when all VMs were

operational. While the server had plenty of remaining

memory and storage for more workstations, the creation of

 45

more VMs would have been counter-productive to the

experiment due to the workload on the physical server’s

CPU.

Figure 6. Virtual test bed configuration

In order to create 75 COMPOSE workstations, we created

a template from the CG71 COMPOSE workstation VM. That

template was then deployed 75 times to create 75 individual

machines. Once all 75 were created and deployed, we

manually updated the Internet Protocol (IP) address and

computer name for each workstation. This ensured there

were no conflicts on the network and ease of registration

with the network’s domain controllers. Connectivity among

 46

all the systems was confirmed with “ping” requests to

neighboring systems and systems located on other sub-

networks.

The final step in completing the experiment setup was

to test the pre-installed scenarios’ functionality and

correctness. A training scenario is executed by starting

the SE server first, followed by all of the clients

participating in the training. This order is critical as

the server must be operational in order for the clients to

“check-in.” Once all the clients participating in the

training are logged onto the SE server, a training scenario

is selected from the SE server menu. The scenario

continues until the stop, halt, or quit command is issued.

Figure 7. MAST Scenario selection window

 47

4. Experiment Methodology

In order to determine MAST’s scalability

characteristics, we conducted five different experiments

using the same scenario for each evolution. Figure 8 shows

how we divided the MAST clients.

 48

Figure 8. Breakdown of MAST clients for experimentation

ExperimentS (80 MAST Cli ents)

Experiment 4 (40 MAST Cl ients)

Experiment 3 (20 MAST Cl ients)

Experiment 2 (10 MAST Clients)

Experiment 1 (S MAST Clients)

 49

Each experiment followed the procedures shown in

Figure 9. The only difference between each experiment was

the number of clients involved in the training.

Figure 9. Experiment procedure

For CPU utilization analysis, we used the

“performance” tab offered by the vSphere Client window.

Additionally, this same tab was used to gather data on the

network resources used during training. A final tool used

for analysis was Wireshark. Wireshark captured all traffic

traversing the network during all experiments. We then

applied a filter to each capture to isolate and view only

the traffic to and from the SE server.

The final analysis used all the above resources to

compare the amount of network traffic generated by each

experiment along with the SE server’s CPU utilization for

each experiment.

 50

5. Results

Overall, the experiment verified system performance

with respect to scalability. An increase in the number of

clients tested did not result in a similar proportional

increase in utilization of processing resources.

Additionally, an increase in the number of clients and

network traffic generated to control those clients resulted

in very minimal use of network resources.

a. System Resources

The performance of the computer hosting MAST

showed limited impact as the number clients involved in the

experiment grew exponentially.

Figure 10 graphs shows CPU utilization for each

experiment when a scenario was executed. Specifically, the

rectangles labeled with numbers show the percentage of the

CPU’s resources used during that respective experiment.

Experiment five for example, which connected to 80 clients

simultaneously, utilized just over 15% of the systems CPU

resources.

There were some spikes and lulls depicted in the

graph that are not associated to the experiment (3:30 –

3:40 PM). Analysis of the network traffic during these

periods shows administrative communication between the

virtual machine and the vSphere client.

 51

Figure 10. Percentage of CPU resources used for
experiments

= ..
u
t
Q.

c ..
l:! ..
Q.

8

0 •..•. . ••.....••.

7129112
3 :10 PM

7/2Q/12

3 :20 PM

CPU (ll) (Top 10)

7/'}.g/12

3:30 PM

712Q/12

3 :40PM

7/29/12

3:~PM

• Ready for 0 • Ready • Usage

CPU(%) (Top 10)

• ••<0-

712Q/12

4:00 PM

. . 0 .•••••••••.•.••..•..••....•••....••..••••. ...•...•.•.•..•..••••.•.•...•..••.....••.....•..•••.•.•.••••.•

712G/12

3:5! PM

15.0

12.5

10.0

7.!5

5.0

2.!5

0.0

7t.N112

7:00PM

7/2Q/12

4:05PM

7!20112
4:18PM

712GJ12

4!25 PM

7120/12

4 :35PM

• Ready for 0 • Ready • Usage

7t.!GI12
7:10PM

CPU (ll) (Top 10)

7129112

7:20PM

712W12

7:30PM

712Git2

7:40 PM

• Ready for 0 • Ready • usage

7J2g/12

4-146 PM

7/2Qf12

7:60 PM

 52

As Figure 11 depicts, an exponential increase in

clients does not exponentially increase the amount of

resources needed to conduct training. MAST’s performance

demonstrates the minimal impact on CPU resources and the

capability to serve more clients with ease.

Figure 11. Percentage of CPU used compared to number of
clients.

b. Network Resources

The utilization of network resources during the

execution of all scenarios was extremely minimal. Figure

12 details the statistics of the network traffic generated

during all five experiments.

 53

Figure 12. Characteristics of network during
experiments

The exponential increase among these

characteristics during all experiments was expected.

Unlike the use of CPU resources, there is a direct

correlation between the number of clients and the amount of

traffic generated. An exponential increase in clients

means a mirrored increase in network traffic to control

those clients.

Despite this increase in network traffic, the

percentage of network resources used to support the

training was very minimal. The experimental network was

configured to support a Gbit/sec throughput between all

systems.

Figure 13 provides a summary of the network

statistics captured by Wireshark for all experiments. The

 54

“captured” column details all packets captured during the

experiment while the “displayed” column shows the details

of network traffic directly associated with the SE server

and our experiments.

Figure 13. Network traffic statistics captured by
Wireshark

 55

Figure 14 details the percentage of network

resources used during each experiment. The amount of

traffic generated for all experiments was so low, it was

not reported by the vSphere client. We used our Wireshark

captures to determine the amount and size of packets

generated during all experiments.

Figure 14. Percentage of network resources used

As the analysis of the network traffic has shown,

an exponential increase does not significantly impact the

resources available. A correlation between the two does

not exist. The demonstration of the MAST design and

implementation and the scenarios utilized assert its

ability to have very minimal impact on a network.

C. TRAINING FEEDBACK AND DISTRIBUTION

The final scalability factor that we analyzed was the

distribution of feedback and results to the SE server and

the SG server. As stated in the previous chapter, one of

MASTs key functionalities is its reporting capability.

 56

The method in which the SE server captures user

actions for reports and feedback is network and system

efficient. MAST client software is designed to report all

user actions to the SE server as they happen and capture

only those actions on the local client that affect the

state of the machine. It captures these actions by

documenting all changes to the system in a text file, which

is then used as part of the roll-back module. The roll-

back module parses the file to determine what needs to be

done to return the system to its pre-training state. Once

the host is back to its original state, the text file is

deleted.

While training is being conducted, MAST captures all

user actions by sending them directly to the SE server, as

they happen, for storage in the local database. This

approach does increase the amount of traffic but the size

of the traffic is very small with very minimal impact on

network resources.

Finally, the report to the SG server can vary based on

the needs of the trainer or evaluator. The SE server and

local database can customize reports to send only high-

level statistics or compile all data into a user friendly

text file to transmit back to the SG server. The SG server

can take the data and produce its own reports and diagrams.

D. SUMMARY

Overall, the analysis and experiment demonstrated

MASTs ability to be deployed, scale up with little to no

impact on network and system resources, and submit feedback

 57

and reports with efficiency. All the experiment objectives

were met along with an observable validation for each

portion of the experiment.

Next, in Chapter V, we discuss our conclusions. We

also discuss our thoughts on the development of future

scenarios and the implementation of MAST on an operational

network.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

In this thesis, we showed that MAST’s use of system

and network resources is minimal and the ability to scale

up to train more clients will not impact other users and

processes not participating in the training. We also

discussed and analyzed the method in which MAST would be

installed on a network and the process and procedures for

providing reports on all events and actions.

In Chapter III, we outlined our assumptions about

training objectives and the training environment in which

MAST would be implemented. We discussed the shortfalls

with current network security and IA training methods and

the benefits of implementing MAST to address those

shortfalls. We detailed MAST’s architecture and

functionality along with an example training scenario using

MAST. We described and defined the hardware and software

configurations used to test MAST’s scalability properties.

In Chapter IV, we discussed three factors of MAST that

are critical to scalability. First, we discussed how MAST

would be installed on a new network and the impact of that

installation from a remote location. We followed that

analysis with a set of experiments of MAST on a simulated

shipboard network. The results showed that an exponential

increase in host systems being trained did not result in an

exponential increase in utilization of processing

resources. Additionally, we showed that the network

traffic generated to control all the clients being trained

 60

was minimal in size and barely noticeable when monitoring

all network traffic. We concluded the chapter with a

demonstration of MAST’s reporting capabilities.

We demonstrated that MAST can scale up to train more

clients while minimizing the use of system and network

resources. Additionally, we demonstrated that MAST can be

effectively and efficiently installed on a new network and

provide reports and feedback as needed to meet projected

training goals and objectives.

B. FUTURE WORK

1. Continued Development of Module Library

A critical component of MAST is the modules used to

create scenarios. Currently, there are a limited number of

modules that can be used for creating scenarios. As

discussed in Chapter II, modules are the actions or

behaviors we program that simulate a real world threat.

Varying types of modules are needed to ensure the training

provided is realistic and relevant. As malware is created

or evolves, it is important to develop modules that

simulate their behavior to ensure new and updated scenarios

can be created and used. The development of such may be

appropriate for small student projects in a network

security course. Developing a methodology for developing

the modules that could be exported to other organizations,

such as the red teams units. This methodology could also be

used to capture lessons-learned at Cyber Defense Exercises

(CDX).

 61

2. Graphical User Interface

As the reporting functionality of MAST improves, it is

important to maximize this value by providing a graphical

user interface (GUI) that is informative and user friendly.

Currently, the GUI for interaction, feedback, and results

is limited. Areas that will benefit from the

implementation of a GUI include the scenario generation

function and the reporting function.

As the module library becomes more populated, the

trainer will have the ability to create more scenarios that

are unique or robust. The manner in which these scenarios

are created and tested can be expedited with the use of a

GUI. Additionally, the reporting functionality of MAST is

critical to the feedback required for any training

evolution. A report GUI would allow for immediate

feedback, which in turn can help prioritize and utilize

training resources for future evolutions.

3. Test and Evaluation on Operational Network

Finally, as MAST continues to evolve, develop, and

perform as expected in a simulated training environment, it

is important to begin some assessments on a physical

network. Currently, all assessments on performed in a

virtual environment. Utilizing a physical environment will

help further test and evaluate MAST’s system properties and

scalability characteristics. Additionally, it will allow

for assessments of the module library and their performance

on host systems with varying operating systems. Such

assessments and demonstrations are critical to its

acceptance by the operational community and its subsequent

porting to the target objective: operational networks.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

LIST OF REFERENCES

[1] U.S. Department of Defense. Cyber Command Fact Sheet
 [Online]. Available:
 http://www.defense.gov/home/features/2010/0410_cyberse
 c/docs/cyberfactsheet%20updated%20replaces%20may%2021%
 20fact%20sheet.pdf

[2] W. R. Taff Jr. and P. M. Salevski, “Malware Mimics for

Network Security Assessment,” M.S. thesis, Dept.
Comput. Sci., Naval Postgraduate School, Monterey,
California, 2011.

[3] J. M. Neff, “Verification and Validation of the

Malicious Activity Simulation Tool (MAST) for Network
Administrator Training and Evaluation,” M.S. thesis,
Dept. Comput. Sci., Naval Postgraduate School,

 Monterey, California, 2012.

[4] G. Derene, “Inside NSA Red Team Secret Ops With

Government’s Top Hackers,” Popular Mechanics, 30-Jun-
2008. [Online]. Available:
http://www.popularmechanics.com/technology/how-
to/computer-security/4270420. [Accessed: 02-Apr-
2012].

[5] J. F. Sandoz, “Red Teaming: A Means to Military

Transformation,” Final IDA Paper P-3580, Jan 2001.
Available from DTIC, Alexandria, VA.

[6] “National Information Assurance (IA) Glossary.”

Committee on National Security Systems, 26 Apr 2010.

[7] C. Babb, “ONR Demonstrates Revolutionary Infantry

Immersion Trainer to Joint Chiefs Chairman,” Office of
Naval Research (ONR), Media Release, 2008.

[8] T. Gold and B. Hermann, “The Role and Status of DoD

Red Teaming Activities,” Office of the Under Secretary
of Defense for Acquisition, Technology, and Logistics,
Defense Science Board (DSB) Task Force, Washington
D.C., 2003.

 64

[9] S. Cote, R. Petrunic, P. Branka, N. T. Khalil, M.
Schumak, C. Chavez and A. Silva, Certified Ethical
Hacker: Ethical Hacking and Countermeasures,
Courseware Guide v7.1, vol. 1. Albuquerque, NM: EC-
Council USA, 2011.

[10] R.S. Greenwell, “DoD IA Training Products, Tools
 Integration, and Operationalization.” [Online].
 Available: http://www.disa.mil/News/Conferences-and
 Events/~/media/Files/DISA/News/Conference/CIF/Briefing
 /IA_DOD_IA_Training_Products.pdf

[11] T. Nash, “An Undirected Attack Against Critical

Infrastructure: A Case Study for Improving Your System
Security.” U.S. Department of Homeland Security (DHS),
Vulnerability & Risk Assessment Program (VRAP), Sept
2005.

[12] F. E. Froehlich and A. Kent, “The Froehlich/Kent

Encyclopedia of Telecommunications,” vol. 15, New
York, New York: Marcel Dekker, Inc., 1997, pp. 231–
255.

[13] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee and G.
 Riley,“Worm Detection, Early Warning and Response
 Based on Local Victim Information,” in Computer
 Security Applications Conference, 2004, pp. 136-145.

[14] P. Szor, The Art of Computer Virus Research and

Defense, 1st ed. Upper Saddle River, NJ: Addison
Wesley, 2005.

[15] E. Messmer.(2009, Jul. 9).The Botnet World is Booming.

[Online].Available:
http://www.networkworld.com/news/2009/070909-botnets-
increasing.html

[16] “Virtual Machines, Virtual Server, Virtual
 Infrastructure,” Virtualization Basics. [Online].
 Available:
 http://www.vmware.com/virtualization/virtual
 -machine.html. Accessed 10 Jul 2012.

[17] “Host Based Security System.” [Online]. Available:
 http://www.disa.mil/Services/Information-
 Assurance/HBS/HBSS. Accessed 12 Jul 2012.

 65

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

4. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code
 C40RC
 Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity
 (Attn: Operations Officer)
 Camp Pendleton, California

7. Captain David Aland, USN (Ret.)
 Office of the Director, Operational Test & Evaluation
 Washington, D.C.

8. Dr. Gurminder Singh
 Naval Postgraduate School
 Monterey, California

9. Mr. John H. Gibson
 Naval Postgraduate School
 Monterey, California

	I. INTRODUCTION
	A. NETWORK SECURITY AND INFORMATION ASSURANCE TRAINING
	B. SHORTFALLS WITH CURRENT TRAINING METHODS
	C. MALICIOUS ACTIVITY SIMULATION TOOL (MAST)
	D. OBJECTIVES
	E. ORGANIZATION

	II. BACKGROUND
	A. TRAINING METHODS FOR DOD NETWORK ADMINISTRATORS
	1. Red Teams
	a. Contemporary Example of a Red Team Implementation
	b. Historical Example of a Red Team Implementation
	c. Red Team Implementation within a Cyber Domain

	2. Defense Information Systems Agency (DISA) Training Programs
	3. USMC Communication Training Centers (CTCs)

	B. MALWARE
	1. Worms
	2. Viruses
	3. Botnets

	C. PROOF OF CONCEPT FOR A MALICIOUS ACTIVITY SIMULATION TOOL
	D. SUMMARY

	III. DESIGN CONSIDERATIONS AND TEST PLATFORM
	A. TRAINING
	1. Training Objectives and Environment
	2. Shortfalls of Current Training Methods
	a. Finite Resources
	b. Non-standardized Training Methods
	c. Inconsistent Feedback
	d. Different Training Platform

	3. Benefits of Implementing MAST

	B. MALICIOUS ACTIVITY SIMULATION TOOL (MAST)
	1. System Functionality
	a. Scenario Generation
	b. Scenario Distribution
	c. Scenario Execution
	d. Reporting and Archiving

	2. System Architecture
	3. Safety Features
	a. Client Check-in
	b. Kill Switch
	c. Roll-Back Module

	4. Modular Features
	5. A Scenario Example

	C. TESTING PLATFORM
	1. Hardware
	2. Software
	3. Common PC Operating System Environment (COMPOSE) CG-71 Virtual Machines
	a. Integrated Shipboard Network System (ISNS) Domain Controller One and Two
	b. Integrated Shipboard Network System (ISNS) Exchange Server
	c. Integrated Shipboard Network System (ISNS) System Management Server
	d. Computer Network Defense-Operating System Environment (CND-OSE) Host-Based Security System (HBSS) Server
	e. Computer Network Defense-Operating system Environment (CND-OSE) Microsoft Structured Query Language (MSSQL) Server
	f. CG-71 Common PC Operating System Environment (COMPOSE) Server
	g. CG-71 Common PC Operating System Environment (COMPOSE) Secure Configuration Compliance Validation Initiative (SCCVI) Host
	h. CG-71 Common PC Operating System Environment (COMPOSE) Workstation

	D. HOST-BASED SECURITY SYSTEM (HBSS)
	1. McAfee ePolicy Orchestrator (ePO)
	2. McAfee Agent
	3. McAfee Host Intrusion Prevention System (HIPS)
	a. Intrusion Prevention System (IPS)
	b. Host Intrusion Prevention System (HIPS) Firewall
	c. Host Intrusion Prevention System (HIPS) Application Blocking

	4. Device Control Module (DCM)
	5. McAfee Asset Baseline Module (ABM)
	6. McAfee Policy Auditor (PA)
	7. McAfee Virus Scan Enterprise (VSE)
	8. McAfee Rogue System Detection (RSD)

	E. SUMMARY

	IV. SCALABILITY ASSESSMENT METHODOLOGY AND RESULTS
	A. MAST DEPLOYMENT AND INSTALLATION
	1. Over-The-Air (OTA) Deployment
	2. Local distribution and Installation

	B. SCENARIO EXECUTION
	1. System Resources
	2. Network Resources
	3. Experiment Design
	4. Experiment Methodology
	5. Results
	a. System Resources
	b. Network Resources

	C. TRAINING FEEDBACK AND DISTRIBUTION
	D. SUMMARY

	V. CONCLUSIONS AND FUTURE WORK
	A. CONCLUSIONS
	B. FUTURE WORK
	1. Continued Development of Module Library
	2. Graphical User Interface
	3. Test and Evaluation on Operational Network

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

