
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR
FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
6 April 2012

2. REPORT TYPE

Briefing Charts
3. DATES COVERED (From - To)

1 April 2012 – 6 April 2012
4. TITLE AND SUBTITLE

SOLVCON: An Unstructured PDE Framework (BRIEFING CHARTS)
5a. CONTRACT NUMBER

5b. GRANT NUMBER

 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Chen, Y. and Bilyeu, D.
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

23011158

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory (AFMC)

AFRL/RZSS

1 Ara Drive

Edwards AFB CA 93524-7013

8. PERFORMING ORGANIZATION
REPORT NO.

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Air Force Research Laboratory (AFMC)

AFRL/RQR

5 Pollux Drive

Edwards AFB CA 93524-7048

11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)

AFRL-RZ-ED-VG-2012-102

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution A: Approved for public release; distribution unlimited PA# 12229

13. SUPPLEMENTARY NOTES

Presentation for Ohio State University, 6 April 2012

14. ABSTRACT

This presentation discusses the construction of the new software framework that supports, pluggable multi-physics, hybrid

parallelism for HPC, and productive work flows, to deliver analyzed results by using high-fidelity solutions of hyperbolic

conservation laws. The new software framework is called SOLVer CONstructor, i.e., SOLVCON; it is a platform to construct

PDE-solving codes.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION

OF ABSTRACT
18. NUMBER

OF PAGES
19a. NAME OF
RESPONSIBLE PERSON

Jean-Luc Cambier

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

SAR

20

19b. TELEPHONE NO

(include area code)

NA

 Standard Form
298 (Rev. 8-98)
Prescribed by ANSI
Std. 239.18

SOLVCON: An Unstructured PDE Framework

Yung-Yu Chen, David Bilyeu

Department of Mechanical Engineering
The Ohio State University

October 2011

Distribution A: For Public
Release; Distribution Unlimited OSU 1/19

Outline

New Software Framework for Solving Hyperbolic

Conservation Laws

This presentation discusses the construction of the new software
framework that supports

pluggable multi-physics,
hybrid parallelism for HPC, and
productive work flows,

to deliver analyzed results by using high-fidelity solutions of
hyperbolic conservation laws.

The new software framework is called SOLVer CONstructor, i.e.,
SOLVCON; it is a platform to construct PDE-solving codes.

Distribution A: For Public
Release; Distribution Unlimited OSU 2/19

Outline

Outline

1 SOLVCON Framework
Design of the Software Framework
Code Development for SOLVCON

Distribution A: For Public
Release; Distribution Unlimited OSU 3/19

SOLVCON Framework Design of the Software Framework

Python Programming Language

Python enables high-level constructs:

Pluggable multi-physics.
Automatic hybrid parallelism.
Parallel I/O and in situ analysis/visualization.

Python is a dynamically-typed programming language.

Support multiple programming paradigms: procedural (like Fortran or
C), object-oriented (like C++ or Java), and functional (like Lisp or
Scheme).
Realize high-level construct: type registries, plug-ins, etc.

Python is designed to glue multiple programming languages together.

Use CUDA, C, pthread, and MPI simultaneously.

Python is suitable to extend SOLVCON’s functionalities:

100+ packages in standard library and 13000+ 3rd-party packages.
Wrappers to many existing toolkits: VTK, netCDF, MPI, etc.

Distribution A: For Public
Release; Distribution Unlimited OSU 4/19

SOLVCON Framework Design of the Software Framework

Python and C/C++

Python and C - Ctypes

Compile the C code as a shared object
Python/ctypes cannot read in c header files so some of the contents of
the header files will need to be rewritten in python, function definitions
do not need to be rewritten.
Load the library from python using ctypes module and save to an object
This object contains each subroutine from the shared object file.

Python and C++ - Boost

This is accomplished by writing wrappers to the C++ classes
Does not require any changes to the C++ code
I have not used this before as python handles the objects

Distribution A: For Public
Release; Distribution Unlimited OSU 5/19

SOLVCON Framework Design of the Software Framework

Two-Loop Structure

All time-accurate
finite-volume methods contain
two loops.

Temporal loop time-marches
for temporal integration.
Spatial loops iterate over
elements to calculate flux.

These two loops form the
basic structure of SOLVCON.

Begin/Initialization

Temporal Loop (Time-March):

Current Time and Step, Time Increment

Execution Controller

Spatial Loops (Sub-Loops):

Flux Phase 1

Flux Phase 2
...

Flux Phase N

If Termination

End/Finalization

No

Yes

Distribution A: For Public
Release; Distribution Unlimited OSU 6/19

SOLVCON Framework Design of the Software Framework

Five-Layer Architecture

Code is organized by using Python modules (blue solid boxes).

A module depends only on other modules in the same layer or in the
lower layers.
The two-loop structure is hosted in the execution layer.

foundation mesh

domain

block

distributed
parallel

rpc

mpy

connection

shared
parallel

scuda

mthread

utility

conf

gendata

dependency

execution case

hook

solver

anchor

boundcond

employment batch io visual vtk command

calculation

elaslin vslin

euler gasdyn
Physics-Jacobian

lincese lincuse

cese cuse
CESE Solver. . .

application driving scripts

machine

user

Distribution A: For Public
Release; Distribution Unlimited OSU 7/19

SOLVCON Framework Code Development for SOLVCON

Driving Scripts

The driving scripts are the highest-level construct of SOLVCON.

A driving script must create a Case object and call its (i) init(), (ii)
run(), and (iii) cleanup() methods.

The Case object represents the overall execution flow of the
simulation, and contains the temporal loop.

The driving scripts can specify logic to the simulations in addition to
parameters.

Anything higher than the foundation layer (the lowest layer) can be
replaced by code written in driving scripts.
Including but not limited to Case, Solver, BC classes, Hook and
Anchor classes.

SOLVCON does not use input files, but uses driving scripts instead
(because Python code needs no explicit compilation).

Distribution A: For Public
Release; Distribution Unlimited OSU 8/19

SOLVCON Framework Code Development for SOLVCON

Calculation

Solver

This is a generic hyperbolic non-linear solver that has been optimized
for both CPU and GPU and has been simplified for linear equations.
This is accomplished through the use of pre-processors that
optimize/simplified certain portions of the code
Through the use of functional pointers these routines will call the
required Jacobian subroutines.

Constitutive Equations

These subroutines are called by the solver schemes and calculate the
Jacobian and fluxes
SOLVCON has built in support for Euler and linear solvers.
New physics can be added by creating new Jacobian routines and by
modifying certain parts of the default case and solver codes.
This is accomplished through inheritance

Distribution A: For Public
Release; Distribution Unlimited OSU 9/19

SOLVCON Framework Code Development for SOLVCON

Employment

batch: Used to submit parallel jobs on a cluster. Built in support for
Torque

io: Reads in the mesh and writes the VTK output files

Input capable of reading in: Gambit Neutral and Genesis/Exodus.
Output capable of writing: VTK in both serial and parallel, ASCII and
binary.

visual vtk: Provides real time visualization and access to VTK
through the VTK python wrappers.

command: Provides the infrastructure for command line arguments

Distribution A: For Public
Release; Distribution Unlimited OSU 10/19

SOLVCON Framework Code Development for SOLVCON

Execution

hook: Allocates locations where the user can insert code into the
temporal loop. Code inserted here can run in serial mode only

anchor: Similar to the hook but the code is inserted into spatial loop.
Code inserted here runs on each compute node.

case: Provides the basic helper subroutines to support the solver such
as:

cfl calculations
Convergence checks
I/O post processing support such as track results along a line or at a
particular point

solver: Defines the structure of the main program.

Defines the main data structure
Initializes/creates the data in the structure
Provides the routine to be called in the marching routine

Distribution A: For Public
Release; Distribution Unlimited OSU 11/19

SOLVCON Framework Code Development for SOLVCON

Boundary-Condition Treatments

SOLVCON uses ghost cells to treat boundary conditions (BC).

BC treatments depend on (i) numerical algorithms, (i) physical models,
and (iii) mesh data structures.

SOLVCON decouples BC treatments from numerical algorithms.

The BC class hierarchy is used to hold the code.

A BC treatment is a spatial sub-loop that iterates over only boundary
cells.

ConcreteSolver(Solver):
def bound flux():
for bc in self.bclist:

bc.bound flux()
def bound gradient():
for bc in self.bclist:

bc.bound gradient()

ConcreteBC(BC):

def bound flux():
...

def bound gradient():
...

Distribution A: For Public
Release; Distribution Unlimited OSU 12/19

SOLVCON Framework Code Development for SOLVCON

Boundary-Conditions

Boundary conditions can be defined by either the solver or the physics.

Boundary conditions specified by the solver are generic and are
applicable to all physics. These boundary conditions are:

Non-reflecting
Periodic

Boundary conditions specified by the physics are only available to the
physics that creates them. Some examples are:

Non-Viscous wall
Pressure inlet/outlet
Non-Conducting
. . .

Distribution A: For Public
Release; Distribution Unlimited OSU 13/19

SOLVCON Framework Code Development for SOLVCON

Foundation

Mesh

domain: oversees the domain decomposition using Metis or Scotch and
distributes the domains over the network
block: Provides the data structures for the unstructured mesh

distributed parallel

rpc: Remote Procedure call and inter-process communication
mpy: Python wrappers to MPI
connection: Remote connections and communications between nodes

Shared parallel

scuda: A wrapper to the CUDA shared libraries through ctypes
mthread: Multi-threading though pthreads, OpenMP, MPI

utility

conf: Info about the configuration of SOLVCON
gendata: Generic data structure
dependency: Manages the external shared libraries

Distribution A: For Public
Release; Distribution Unlimited OSU 14/19

SOLVCON Framework Code Development for SOLVCON

Currently Supported 2/3D Primitive shapes

Two-dimensional elements:

b0

b
1

b 2

triangle

b0

b

1

b 2b3

quadrilateral

Three-dimensional elements:

b

0

b 1

b2

b
3

tetrahedron

b

0
b 1

b 2b3

b
4

b
5

b 6b7

hexahedron

b

0

b 1

b 2
b

3

b

4

b5

prism

b0 b 1

b 2b3

b
4

pyramid

Distribution A: For Public
Release; Distribution Unlimited OSU 15/19

SOLVCON Framework Code Development for SOLVCON

Data Structures of Unstructured Meshes

Three types of entities: nodes, faces, and cells.

The spatial domain of interest is covered by non-overlapping cells.

Two sets of arrays define the meshes.

Connectivity

clnds: nodes in each cell.

clfcs: faces in each cell.

fcnds: nodes in each face.

fccls: cells related by each
face.

Geometry

ndcrd: coordinates of each
node.

fccnd: center of each face.

fcnml: unit normal vector of
each face.

fcara: area of each face.

clcnd: center of each cell.

clvol: volume of each cell.

Distribution A: For Public
Release; Distribution Unlimited OSU 16/19

SOLVCON Framework Code Development for SOLVCON

On-the-Fly Analysis

Solution processing is not part of the numerical algorithms.

SOLVCON uses the callback mechanism to separate the supportive
functionalities from numerical algorithms and physical models.

Hook: The outer temporal loop.
Anchor: The inner spatial loops.

Example 1: Initial condition.

SOLVCON calls the preloop() method before entering the temporal
loop.

Example 2: Calculate physical quantities.

SOLVCON calls the postmarch() method after finishing all spatial
loops for each time step.

The analysis code can be packaged with solver kernels.

Distribution A: For Public
Release; Distribution Unlimited OSU 17/19

SOLVCON Framework Code Development for SOLVCON

Coding for In Situ Visualization

SOLVCON directly calls external visualizing libraries by using Python.

Currently support VTK.

VTK interface is provided in SOLVCON.

Provide one-way data converter from SOLVCON to VTK.
Use VTK’s official Python wrappers to access all VTK functionalities,
e.g., cut surface, contour, iso-surface, etc.

In situ visualization is programmed in driving scripts.

Visualization differs from one case to another.
No hard-wired code.

The driving scripts become an application program that can deliver
analyzed results including graphic files.

Distribution A: For Public
Release; Distribution Unlimited OSU 18/19

SOLVCON Framework Open-Source Practice

SOLVCON is Open-Sourced

Released under GNU GPL v2 with full source.
Freely available at http://solvcon.net/

Systematic open-source practices: (i) Distributed version control
system, (ii) unit testing, (iii) issue tracking, (iv) continuous
integration, (v) auto-generated API documentation.

Distribution A: For Public
Release; Distribution Unlimited OSU 19/19

http://solvcon.net/

	12-102.pdf
	 Outline
	 SOLVCON Framework
	 Design of the Software Framework
	 Code Development for SOLVCON
	

