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A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a
Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quan-
titative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coeffi-
cient. The spectrumwe use does not include the inner and outer scales, it is valid only inside the inertial subrange,
and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak
turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and
scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across
the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direc-
tion. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation
index by the factor ς2−α. © 2011 Optical Society of America

OCIS codes: 010.0010, 010.1300, 010.1330.

1. INTRODUCTION
The atmosphere’s statistical behavior does not always follow
the Kolmogorov power spectrum density model; rather it
follows different power laws [1]. Several experimental data
and measurements indicate that the turbulence in the upper
troposphere and stratosphere, or along nonhomogeneous
path, deviates from predictions of the Kolmogorov model
[2–6]. Other experiments showed that atmospheric turbulence
in maritime environments can assume a different statistical
behavior with respect to Kolmogorov [7–13]. In addition, an-
isotropy in stratospheric turbulent inhomogeneities has been
experimentally investigated [14–17], and laboratory results
have shown that turbulence can be anisotropic. These studies
cast doubt on the correctness of the conventional assumption
of isotropic turbulence through the entire atmosphere. Also,
researchers have collected data at high altitudes that indicate
the existence of anisotropic turbulence and non-Kolmogorov
behavior [18].

Kon [19] qualitatively analyzed the effect of the anisotropic
turbulence on the long-term beam spread and scintillation
index using the classical Kolmogorov power-law exponent
α ¼ 11=3. In this paper, we show a quantitative analysis of the
anisotropic turbulence by using a non-Kolmogorov power
spectrum with an anisotropic coefficient. The spectrum used
here is based on the spectrum shown in [19]; it does not in-
clude the inner and outer scales, and it is valid only inside
the inertial subrange. Using this non-Kolmogorov spectrum,
in weak turbulence conditions, we analyze the impact of
exponent variations α on long-term beam spread and scintilla-
tion index for several anisotropic coefficient values ς. We con-
sider only propagation across the turbulence cells where
circular symmetry is maintained on the orthogonal plane to
the propagation direction. In other words, we suppose that
the anisotropic turbulence cells are a solid generated by

the rotation of an ellipse around its semiminor axis, which
is overlapped with the horizontal propagation direction. This
hypothesis is essential to maintain the symmetry assumptions
reported in [20] used to calculate turbulence statistics param-
eters, such as scintillation index. Although this hypothesis is
quite strong, it should be considered as a first step toward a
better understanding of a very complex problem such as ani-
sotropic turbulence. Finally, let us note that often is more
appropriate, in the context of concrete atmospheric problems,
to consider anisotropic propagation along the vertical direc-
tion. In such a case, our results remain valid if we take into
account the change of C2

n with altitude.

2. ANISOTROPIC NON-KOLMOGOROV
SPECTRUM
Published theoretical papers [21,22] were dedicated to the in-
terpretation of experiments on the scattering of radio waves,
particularly on the nonisotropic character of turbulence scat-
terers. Such papers used a nonisotropic power spectrum in
agreement with experimental data. Later, Kon [19] showed a
qualitative study of nonisotropic turbulence by using the men-
tioned power spectrum. In this paper, we assume, as in [19],
that for a laser beam propagating along a path exhibiting an-
isotropic turbulence, the structure function for the refractive-
index fluctuations is given by

Dnð~rÞ ¼ β · C2
n ·

�Δx2 þΔy2

ς þΔz2
�γ

2

; ð1Þ

where ~r is a vector spatial variable, γ is the power law, which
reduces to 2=3 in the case of conventional Kolmogorov turbu-
lence. Here, β is a constant equal to unity when γ ¼ 2=3, but
otherwise has units m−γþ2=3 and ς is the anisotropic coeffi-
cient. The corresponding power-law spectrum associated with
such structure function takes the form [20]
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Φnð~κ; αÞ ¼ AðαÞ · ~C2
n · ς2 · ½κ2z þ ςðκ2x þ κ2yÞ�−α

2; ð2Þ

where α ¼ γ þ 3 is the spectral index or power law, ~C2
n ¼ β ·

C2
n is a generalized structure parameter with units m−γ , and

AðαÞ is defined by

AðαÞ ¼ 1
4π2 Γðα − 1Þ cos

�απ
2

�
; 3 < α < 4; ð3Þ

and the symbol ΓðxÞ in the last expression is the gamma func-
tion. When α ¼ 11=3 and ς ¼ 1, we find that Að11=3Þ ¼ 0:033
and the generalized power spectrum reduces to the conven-
tional Kolmogorov spectrum. Also, when the power law
approaches the limiting value α ¼ 3, the function AðαÞ ap-
proaches zero. Consequently, the refractive-index power
spectral density vanishes in this limiting case.

3. LONG-TERM BEAM SPREAD
It is well known that the beam spot size of a laser beam
propagating in turbulence is affected from two main effects:
beam spreading and beam wander. Random temperature fluc-
tuations of the atmosphere yield random refractive-index fluc-
tuations; therefore, a laser beam propagating through the
atmosphere is randomly deviated from the direction of propa-
gation (beam wander), and it is more affected from beam
spreading than a diffraction-limited beam in absence of turbu-
lence. Physically, the turbulence acts like many lenses of dif-
ferent size that randomly change the effective optical path of
the beam. The combined effects of beam wander and beam
spreading is called long-term beam spread, which represents
the effective beam spot size, and it is used as one of the main
parameters to evaluate the intensity profile along the path.

The analytical form of long-term beam spread for a
Gaussian beam is [20]

W2
e ¼ W2

LT ðαÞ ¼ W2 · ½1þ TðαÞ�; ð4Þ

whereW is the diffraction-limited spot size radius, and TðαÞ is
the term that includes small-scale beam spreading and beam
wander atmospheric effects [20].

If we consider that circular symmetry is maintained on the
orthogonal plane to the propagation direction, we can use the
same procedure as reported in [20], but using the power
spectrum Eq. (2). We carry out

TðαÞ ¼ 4π2k2L ·

�Z
1

0

Z
∞

0
κ · ϕnðα; κÞdκdξ

−

Z
1

0

Z
∞

0
κ · ϕnðα; κÞ exp

�
−

ΛLκ2ξ2
k

�
dκdξ

�

¼ 0:25 ·
α

α − 1
·
�
sin

�
α ·

π
4

��
−1

· ~σ2RðαÞ ·Λ
α
2−1 · ς2−α

¼ TðαÞisotropic · ς2−α; ð5Þ

where ξ ¼ 1 − z
L, z is the propagation distance, L is the path

length, Λ ¼ 2L
kW2 k ¼ 2π

λ , ϕnðα; κÞ is the non-Kolmogorov

spectrum Eq. (2), and we have defined a non-Kolmogorov
Rytov variance as the plane wave scintillation index in non-
Kolmogorov turbulence [23]:

~σ2RðαÞ ¼ −8π2 · AðαÞ · 1α · Γ
�
1 −

α
2

�
· sin

�
α ·

π
4

�
· ~C2

n · k3−
α
2 · L

α
2:

ð6Þ

Note that, for α ¼ 11=3 and ς ¼ 1, we obtain the particular
case of the Kolmogorov spectrum already shown in [1]. Also,
for ς ¼ 1, Eq. (5) reduces to isotropic expression shown in [1].

Then, we plot in Fig. 1 the long-term beam spread as a
function of alpha for several ς setting the following param-
eters (W0 is the beam spot radius): L ¼ 50000m, ~C2

n ¼
7 · 10−18 m−αþ3, λ ¼ 1:55 μm, and W0 ¼ 0:01m. The value of ~C2

n

has been chosen to simulate a high-altitude path, where ani-
sotropic turbulence may be present.

We deduce from Fig. 1 that the anisotropic parameter ς
influences the long-term beam spread, which is reduced if ς
assume high values. Also, we deduce from Fig. 1 that alpha
variations have less impact on long-term beam spread for high
ς values. These deductions can be physically explained by
mentioning the change of curvature of the anisotropic turbu-
lence cells with respect to the isotropic case. Anisotropic cells
change the focusing properties of the turbulence; in particu-
lar, a beam propagating along the short axis of the anisotropic
cells (z direction) will be less deviated from the direction of
propagation because these cells act as lenses with a higher
radius of curvature. Accordingly, the long-term beam spread
will be reduced, and, for high values of ς, this anisotropic ef-
fect dominates on the power-law variations.

We cannot deduce from this analysis how much impact an-
isotropy has on long-term beam spread with respect the inner
and outer scales, which are not included in the spectrum
Eq. (2); however, that could be an interesting future task.

4. SCINTILLATION INDEX
A laser beam propagating in turbulence is affected from an-
other main effect: the scintillation. The scintillation index is
denoted by

σ2I ¼
hI2i
hIi2 − 1; ð7Þ

Fig. 1. (Color online) Long-term beam spread as a function of alpha
for a horizontal path.
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where I is the optical field irradiance and the brackets denote
an ensemble, or long spatial distance, average.

In our analysis, as reported in [22], we include aperture
averaging effects of the receiver aperture of diameter DG,
so we carry out the flux variance in the plane of the detector
at a short distance Lf behind the collecting lens. We illustrate
such a system in Fig. 2.

A. PLANE WAVE MODEL
The procedure adopted in this paper is the same as discussed
in [20] for the standard Kolmogorov spectrum, but here we
use a non-Kolmogorov anisotropic spectrum Eq. (2). Our ana-
lysis for the plane wave model leads to

σ2Iplaneðα; DGÞ ¼ 8π2 · k2 · L · Re
�Z

1

0

Z
∞

0
κ ·Φnðκ; αÞ · exp

�
−

D2
G · κ2
16

�
·
�
1 − exp

�
−j

L · κ2 · ξ
k

��
dκdξ

�

¼ 8π2 · AðαÞ · ~C2
n · k3−

α
2 · L

α
2 · Γ

�
1 −

α
2

�
·
1
α · ς2−α ·

�α
2
·

�
k · D2

G

16 · L

�α
2−1

−

��
k · D2

G

16 · L

�
2
þ 1

�α
4

· sin

�α
2
· arctg

�
16 · L
k · D2

G

���

¼ −~σ2RðαÞ ·
�
sin

�
α ·

π
4

��
−1

· ς2−α ·
�α
2
·

�
k · D2

G

16 · L

�α
2−1

−

��
k · D2

G

16 · L

�
2
þ 1

�α
4

· sin

�α
2
· arctg

�
16 · L
k · D2

G

���

¼ σ2Iplaneðα; DGÞisotropic · ς2−α: ð8aÞ

Note that if we consider a point receiver (DG ¼ 0) no aperture
averaging is present and σ2I planeðα; DGÞ ¼ ~σ2RðαÞ, which is the
non-Kolmogorov Rytov variance [Eq. (6)]. Also, for ς ¼ 1,
Eq. (8a) reduces to the isotropic expression shown in [1].

We plot in Fig. 3 σ2Iplaneðα; DGÞ as a function of alpha for
several ς for a particular high-altitude horizontal path. We
use the following set of parameters:

L ¼ 50000m; ~C2
n ¼ 7 · 10−18 m−αþ3;

λ ¼ 1:55 μm; DG ¼ 0:1m:

B. SPHERICAL WAVE MODEL
Similar to the plane wave model case, the scintillation analysis
for the spherical wave model leads to

σ2I sphericalðα; DGÞ ¼ 8π2 · k2 · L · Re
�Z

1

0

Z
∞

0
κ ·Φnðκ; αÞ · exp

�
−

D2
G · κ2 · ξ2
16

�
·
�
1 − exp

�
−j

L · κ2 · ξ · ð1 − ξÞ
k

��
dκdξ

�

¼ 4π2 · k2 · L · AðαÞ · ~C2
n ·

�
16
D2

G

�
1−α

2

· Γ
�
1 −

α
2

�
· ς2−α ·

�
1

α − 1

− Re

��
j
16L
kD2

G

�α
2−1

·
2
α · 2F1

�
1 −

α
2
;
α
2
; 1þ α

2
; 1þ j

kD2
G

16L

���

¼ σ2I sphericalðα; DGÞisotropic · ς2−α; ð8bÞ

where 2F1ða; b; c; zÞ is the hypergeometric function that is
given by

2F1ða; b; c; zÞ ¼
X∞
0

ðaÞn · ðbÞn
ðcÞn

·
zn

n!
; jzj < ∞; ð9Þ

where

ðaÞn ¼ Γðaþ nÞ
ΓðaÞ : ð10Þ

We plot in Fig. 4 σ2I sphericalðα; DGÞ as a function of alpha for
several ς for a particular high-altitude horizontal path, taking
the same set of parameters as the plane wave case.

C. GAUSSIAN BEAM WAVE MODEL
To describe the beam characteristics at the input plane and
the front plane of the Gaussian lens, we use two sets of non-
dimensional beam parameters. We assume the transmitted
Gaussian beam at the input plane has finite radius W0 and
phase front radius of curvature given by F0. Thus, we have

Fig. 2. Propagation geometry for a laser beam originating at distance
L to the left of a thin Gaussian lens.
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at the transmitter ðz ¼ 0Þ:Θ0 ¼ 1 −
L
F0

; Λ0 ¼
2L

kW2
0

; ð11Þ

at the Gaussian lens ðz¼ LÞ:Θ1 ¼
Θ0

Θ2
0 þΛ2

0

; Λ1 ¼
Λ0

Θ2
0 þΛ2

0

:

ð12Þ

Following the same procedure discussed in [1] for the
standard Kolmogorov spectrum, but here using the non-
Kolmogorov anisotropic spectrum Eq. (2), our analysis for
a Gaussian beam leads to (neglecting beam wander effects)

σ2IGaussianðα;DGÞ

¼4π2 ·k3−α
2 ·L·×Re

Z
1

0

Z
∞

0
κ ·Φnðκ;αÞ

·exp
�
−

L·κ2
kðΛ1þΩGÞ

·½ð1− �Θ1ξÞ2þΛ1ΩGξ2�
�

·
�
1−exp

�
−j
Lκ2
k

�ΩG−Λ1

Λ1þΩG

�
ξð1− �Θ1ξÞ

��
dκdξ

¼4π2 ·k2 ·L·AðαÞ· ~C2
n ·Γ

�
1−

α
2

�

·

�
k
L
·ðΛ1þΩGÞ

�
1−α

2

·ς2−α

·
�Z

1

0
½ð1− �Θ1 ·ξÞ2þΛ1ΩGξ2�α2−1dξ

−Re
Z

1

0
½ð1− �Θ1 ·ξÞ2þΛ1ΩGξ2þjðΩG−Λ1Þ

·ξð1− �Θ1 ·ξÞ�α2−1dξ
�

¼σ2IGaussianðα;DGÞisotropic ·ς2−α: ð13Þ

We plot in Fig. 5 σ2IGaussianðα; DGÞ as a function of alpha for
several ς for a collimated beam (Θ0 ¼ 1), taking the same
set of parameters previously used.

We deduce from Figs. 3–5 that the anisotropic coefficient
influences the scintillation index. In particular, high values

of the anisotropy coefficient ς decrease the scintillation index
and, at the same time, reduce the impact of α variation. These
deductions can be physically explained by mentioning the
change of curvature of the anisotropic turbulence cells with
respect to the isotropic case. Turbulence cells act as lenses
with a higher radius of curvature, leading to a reduction of
amplitude fluctuations and, consequently, scintillation index.
As for long-term beam spread, we cannot deduce from this
analysis how much impact anisotropy has on the scintillation
index with respect to the inner and outer scales. For ς ¼ 1,
Eq. (13) reduces to the isotropic expression shown in [24].

5. ANISOTROPIC FACTOR
The main result deduced from all the previously reported ex-
pressions is the multiplicative factor ς2−α, which essentially
introduces a turbulence rescaling due to anisotropic and
non-Kolmogorov turbulence.

We plot the anisotropic factor ς2−α as a function of α for
several ς values. Results are shown in Fig. 6.

Fig. 5. (Color online) Scintillation index for the Gaussian beam as a
function of alpha for several anisotropic coefficient values.

Fig. 3. (Color online) Scintillation index for the plane wave as a
function of alpha for several anisotropic coefficient values.

Fig. 4. (Color online) Scintillation index for the spherical wave as a
function of alpha for several anisotropic coefficient values.
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We deduce from Fig. 6 that the anisotropic factor decreases
as the alpha value increases for every zeta value. Also, high
zeta values reduce the anisotropic factor and, consequently,
the atmospheric turbulence parameters (scintillation index
and long-term beam spread).

In this paper, we supposed that the anisotropic factor has
the same effect on all the turbulence scales. However, in
stable atmospheric boundary layers, isotropy probably pre-
vails at small scales. Therefore, in this case, we should distin-
guish small scales from other scales by using a more complete
power spectrum with a filter function. Finally, we cannot de-
duce from Fig. 6 howmuch the anisotropic factor is significant
in practice, given all the inaccuracies in estimating structure
function parameters, outer scales, etc., that occur. Future ex-
periments will give us an idea about the validity of this theo-
retical model.

6. DISCUSSION
In this paper, we used a non-Kolmogorov refractive-index
structure function and a non-Kolmogorov power spectrum
with an anisotropic coefficient ς to describe anisotropic tur-
bulence. We assumed that the circular symmetry is main-
tained on the orthogonal plane to the propagation direction
z, and we analyzed, in weak turbulence condition, long-term
beam spread and scintillation index for a horizontal path and
for several anisotropic coefficient values ς. We concluded that
the anisotropic parameter influences both the long-term beam
spread and the scintillation index by the factor ς2−α. Therefore,
a high value of ς decreases both the long-term beam spread
and the scintillation index. Finally, we showed that power-
law α variations have less impact on both the long-term beam
spread and the scintillation index as ς increase.

These conclusions can be physically explained by mention-
ing the change of curvature of the anisotropic turbulence cells
with respect to the isotropic case. Anisotropic cells change
the focusing properties of the turbulence; in particular, a laser
beam propagating along the short axis of the cells (z direc-
tion) will be less deviated from the direction of propagation
because these cells act as lenses with a higher radius of
curvature. Accordingly, the long-term beam spread will be re-
duced, and, for high values of ς, this anisotropic effect dom-

inates on the α variations. For the same reason, amplitude
fluctuations decrease as compared with the isotropic case,
leading to a reduction of the scintillation index.

Unfortunately, we cannot deduce from this analysis how
much impact anisotropy has on both the long-term beam
spread and the scintillation index with respect the inner and
outer scales. Also, we supposed that the anisotropic factor has
the same effect on all the turbulence scales; however, in stable
atmospheric boundary layers, isotropy probably prevails at
small scales. Therefore, in this case, we should distinguish
small scales from other scales by using a more complete
power spectrum, which should include also a filter function.
Finally, we are aware that this anisotropic turbulence spec-
trum needs to be validated by comparing theoretical results
with experimental data. Therefore, this paper should be con-
sidered the first step of a more complete analysis that should
be based on new experiments.
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