The section section process of the collection of information is estimated to average into the section of information. Section o	REPORT DOCUMENTATION PAGE					Form Approved OMB NO. 0704-0188			
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE New Reprint 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Characterization of Meander Dipole Antennas With a Geometry-Based, Frequency-Independent Lumped Element Model 5. CONTRACT NUMBER 5. GRANT NUMBER 5. GRANT NUMBER W911NF-04-D-0001 5c. FROGRAM ELEMENT NUMBER 6. AUTTIORS 5. GRANT NUMBER Olusola O. Olaode, W. Devereux Palmer, William T. Joines 5c. TASK NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 5c. TASK NUMBER Duke University 27705 - 10. MERONING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT Duke University 27705 - 10. SPONSOR/MONTORING AGENCY NAME(S) AND 10. SPONSOR/MONITORS ACRONYM(S) ADDRESS(ES) 10. SPONSOR/MONITORS ACRONYM(S) U.S. Amy Research Office 11. SPONSOR/MONITORS REPORT NUMBER 11. SPONSOR/MONITORS REPORT 12. DISTRIBUTION AVALUBBLITY STATEMENT 49428-ELL-SR.9 13. SUPFLEXITION AVALUBBLITY STATEMENT 49428-ELL-SR.9 13. SUPELENTARY NOTES 11. SPONSOR/MONITORS REPORT 13. SUPELENTARY NOTES 11. SPONSOR/MONITORS REPORT 14. ABSTRACT Values so designated by other documentation.	The public repr searching existir regarding this Headquarters S Respondents sho information if it do PLEASE DO NOT	orting burden for t ng data sources, g burden estimate o services, Directorate buld be aware that es not display a curre TRETURN YOUR FO	this collection of i jathering and main or any other aspe e for Information notwithstanding any ently valid OMB contro RM TO THE ABOVE	nformation is estimated t taining the data needed, ect of this collection of Operations and Report other provision of law, no I number. ADDRESS.	to avera and co informa ts, 1215 o person	ge 1 hour pe ompleting and tion, including 5 Jefferson D shall be sub	er res revie g sug avis ject to	sponse, including the time for reviewing instructions, wing the collection of information. Send comments ggesstions for reducing this burden, to Washington Highway, Suite 1204, Arlington VA, 22202-4302. o any oenalty for failing to comply with a collection of	
New Reprint - 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Characterization of Meander Dipole Antennas With a Geometry-Based, Frequency-Independent Lumped Element So. GRANT NUMBER Model - - 6. AUTHORS - So. GRANT NUMBER 0 losale O. Olaode, W. Devereux Palmer, William T. Joines So. GRANT NUMBER - 6. AUTHORS - So. W. Devereux Palmer, William T. Joines So. W. UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES So. W. UNIT NUMBER So. W. UNIT NUMBER Dude University 27705 - - - 10. SPONSOR/MONTIORS AGENCY NAME(S) AND 10. SPONSOR/MONTIORS ACKONYM(S) ADDRESSES 10. SPONSOR/MONTIORS ACKONYM(S) ARO 9. SPONSOR/ING/MONTIORING AGENCY NAME(S) AND 11. SPONSOR/MONTIORS REPORT NUMBER - 12. DISTRIBUTION AVALIBILITY STATEMENT - - Approved for public release; distribution is unlimited. - - 13. SUPPLEMENTARY NOTES - - - 14. ARSTRACT Valesson and release as an official Department of the author(s) and should not contrade as an official Department of the AMBY position, policy or decision, unless or distribution of nearman as limited or a low-frequency operation is required. Several size reduction and synthe	1. REPORT DATE (DD-MM-YYYY)			2. REPORT TYPE	2. REPORT TYPE		3. DATES COVERED (From - To)		
4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Characterization of Meander Dipole Antennas With a Geometry-Based, Frequency-Independent Lumped Element 5b. GRANT NUMBER Model 5b. GRANT NUMBER Model 5b. GRANT NUMBER Olisola O. Olaode, W. Devereux Palmer, William T. Joines 5d. PROGRAM FLEMENT NUMBER 6. AUTHORS 5d. PROFECT NUMBER Olisola O. Olaode, W. Devereux Palmer, William T. Joines 5d. PROFECT NUMBER 5c. TASK NUMHER 5c. TASK NUMHER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 5c. PERFORMING ORGANIZATION REPORT NUMBER NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(IS) 11. SPONSOR/MONITOR'S REPORT 9. SPONSORING/MONITORING AGENCY NAME(S) AND 11. SPONSOR/MONITOR'S REPORT 9. SPONSORING/MONITOR'S AGENCY NAME(S) AND 11. SPONSOR/MONITOR'S REPORT 9. SPONSORING/MONITOR'S AGENCY NAME (S) AND 11. SPONSOR/MONITOR'S REPORT 9. SPONSORING/MONITOR'S AGENCY NAME (S) AND 11. SPONSOR/MONITOR'S ACRONYM(S) 4. ADSTRACT The views, opinions and/of infalling contained in this report are those of the author(s) and should not contrued as an official Department of the Amy postotin, pol				New Reprint				-	
Canade Lizability of Mandal Jopon Antichias Will a Geometry-Based, Frequency-Independent Lumped Element Model	4. TITLE ANI	D SUBTITLE tion of Meander	r Dinole Antenn	as With a		5a. CO1	NTRA	ACT NUMBER	
Model Juncer Frequency Integrated in Fample Induction Juncer Frequency Matcher Proposition 6. AUTHORS Se. PROGRAM ELEMENT NUMBER Olusola O. Olaode, W. Devereux Palmer, William T. Joines Se. PROGRAM ELEMENT NUMBER 5c. TASK NUMBER Se. TASK NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES Se. TASK NUMBER Dake University NUMBER 136 University 27705 Dake University 27705 9. SPONSORING/MONITORING AGENCY NAME(S) AND Dake University 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESSES ARO U.S. Army Research Office 11. SPONSOR/MONITOR'S ACRONYM(S) P.O. Box 12211 VARIATION NAME(S) AND 137. UDISTRIBUTION AVALLIBILITY STATEMENT 49428-FL-SR.9 138. SUPPLEMENTARY NOTES 49428-FL-SR.9 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S REPORT The views, opinage park, NC 27709-2211 49428-FL-SR.9 13. ABUTRACT Headers antennas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have forequency-dependent, which means thave gained	Geometry-Based Frequency-Independent Lymped Element					Sh. CD ANT NUMDED			
6. AUTHORS 5c. PROJECT NUMBER Olusola O. Olaode, W. Devereux Palmer, William T. Joines 5d. PROJECT NUMBER 5r. TASK NUMBER 5c. TASK NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT Duke University 5d. PROJECT NUMBER 130 Hudson Hall, Box 90271 9. SPONSOR/MONITORING AGENCY NAME(S) AND Durham, NC 27705 - 9. SPONSOR/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(IS) 10. SPONSOR/MONITOR'S ACRONYM(S) V.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT PO. Box 12211 11. SPONSOR/MONITOR'S REPORT Research Triangle Park, NC 27709-2211 49428-EL-SR.9 12. INSTRIBUTION AVAILIBILITY STATEMENT 11. SPONSOR/MONITOR'S REPORT Approved for public release; distribution is unimited. 13. SUPPLEMENTARY NOTES The views, opinions and/or findings costained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Now Bearder office in report are those of the author(s) have been proposed over time. However, few studies have focused on developing models to characterize the operation on meander antennas. In addition, existing models are frequency-depenent, which means that they are inherently na	Model					30. GRANT NOMBER W911NF-04-D-0001			
6. AUTHORS 6. AUTHORS 0lusola O. Olaode, W. Devereux Palmer, William T. Joines 54. PROJECT NUMBER 5c. TASK NUMBER 55. WUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 57. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT Number 27705 - 9. SPONSORING/MONTORING AGENCY NAME(S) AND 10. SPONSOR/MONTOR'S ACRONYM(S) ADDRESS(ES) 10. SPONSOR/MONTOR'S ACRONYM(S) 9. SPONSOR/RING/MONTOR'S ACRONYM(S) 11. SPONSOR/MONTOR'S ACRONYM(S) ADDRESS(ES) 11. SPONSOR/MONTOR'S ACRONYM(S) 12. DISTRIBUTION AVAILIBUTTY STATEMENT NUMBER(S) Agroved for public release, distribution is unimited. 11. SPONSOR/MONTOR'S REPORT 13. SUPPLEMENTARY NOTE 11. SPONSOR/MONTOR'S REPORT Approved for public release, distribution is unimited. 13. SUPPLEMENTARY NOTE 4. ABSTRACT Prodesignated by other documentation. 14. ABSTRACT Meander antennas have gainer widespread use in applications such as Radio Erequerey. Identification (RFID) 14. ABSTRACT Meander antennas, meander antennas. In addition, existing models are frequency-dependent, which 15. SUBJECT TERMS Dipole antennas, meander antenna, equivalent circuit, lumped elements: 15.						5c. PROGRAM ELEMENT NUMBER			
6. AUTHORS Olisola O. Olaode, W. Devereux Palmer, William T. Joines 64. PROJECT NUMBER 54. PROJECT NUMBER 55. WIMBER 55. WIMBER 57. PERFORMING ORGANIZATION NAMES AND ADDRESSES 56. TASK NUMBER 57. PERFORMING ORGANIZATION NAMES AND ADDRESSES 57. WIMBER 58. PERFORMING ORGANIZATION REPORT NUMBER 59. PONSORING/MONITORING AGENCY NAME(S) AND 50. Particular Section 2010 50. SPONSOR/MONITOR'S ACRONYM(S) 40. SPONSOR/MONITOR'S ACRONYM(S						611102			
Ohsola O. Olaode, W. Devereux Palmer, William T. Joines 5: TASK NUMBER Se. TASK NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 5: WORK UNIT NUMBER Duke University 5: 27705 - Duke University 27705 - Duke University 27705 - Se. TASK NUMBER 8: PERFORMING ORGANIZATION REPORT NUMBER Number NC 27705 - 9. SPONSORING/MONTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARD ADDRESS(ES) 9. SPONSORING/MONTORING AGENCY NAME(S) AND ADDRESS (ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARD ADDRESS (ES) 10. SONSOR/MONITOR'S ACRONYM(S) ADDRESS(ES) 11. SPONSOR/MONITOR'S ACRONYM(S) ARD ADDRESS (ES) 11. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION AVAILIBILITY STATEMENT NUMBER(S) Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and shout = contrued as an official Department of the Amp position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander anternas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several	6. AUTHORS				5d. PROJECT NUMBER				
10: FIAE NOMBER 5f. WORK UNIT NUMBER 20: A DAR ONDER Duke University Dathaun, NC 27705 - 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office PO. Box 12211 Research Triangle Park, NC 27709-2211 10. SPONSOR/MONITOR'S ACRONYM(S) ARO 11. SPONSOR/MONITOR'S ACRONYM(S) ARO 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release, distribution is unlimited. 13. SUPPLEMENTARY NOTES The views, opinons and/of findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander antennas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a 15. SUBJECT TERMS Dipole autennas, meander antennas, equivalent circuit, lumped elements 16. SECURITY CLASSIFICATION OF: a REPORT 17. LIMITATION OF ABSTRACT 15. NUMBER UU 19a. NAME OF RESPONSIBL	Olusola O. Olaode, W. Devereux Palmer, William T. Joines					50. TASK NUMDED			
5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES Duke University 130 Hudson Hall, Box 90271 Duke University Durham, NC 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARO U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 10. SPONSOR/MONITOR'S ACRONYM(S) ARO 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. 49428-EL-SR.9 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander antennas have gained widespread use in applications such as Radio Frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a 15. SUBJECT TERMS Jopice antennas, meander antennas, equivalent circuit, lumped elements 15. NUMBER ADSTRACT UU 17. LIMITATION OF ADSTRACT UU 15. NUMBER ADSTRACT UU 19. NUMBER Diple antennas, meander antennas, equivalent circuit, lumped elements						Je. TASK NUMBER			
7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT Duke University 10. SPONSORING/MONITORING AGENCY NAME(S) AND NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(ES) 11. SPONSOR/MONITOR'S REPORT U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT P.O. Box 12211 49428-EL-SR.9 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander antemas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely or the geometry of a 15. SUBJECT TERMS In LIMITATION OF 15. NUMBER IPA NAME OF RESPONSIBLE PERSON Dipole antennas, meander antenna, equivalent circuit, lumped						5f. WORK UNIT NUMBER			
Duke University Duke University Duke University Duke University NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARO 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ARO 10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. INSPONSOR/MONITOR'S REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should as an official Department of the Amy position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander antennas have gained widespread use in applications such as Radio Frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are focused on developing models to characterize the operation of meander antennas. In addition, existing models are networy of a 15. SUBJECT TERMS Instributer VI CLASSIFICATION FOR the properties and the properties an	7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPO								
$ \begin{array}{c c c c c c } 130 \mbox{ Hull, Box 90271 \\ Durkam, NC & 27705 & . \\ \hline \end{array} \\ \hline \bigg \\ \hline \end{array} \\ \hline \end{array} \\ \hline \bigg \\ \hline \end{array} \\ \hline \Biggl \Biggl \\ \\ \hline \end{array} \\ \hline \Biggl \\ \\ \hline \end{array} \\ \\ \hline $ \\ \hline \Biggl \\ \\ \hline \Biggl \\ \hline \Biggl \Biggl \\ \\ \hline \Biggl \\ \\ \hline \Biggl \\ \\ \hline \Biggl \\ \\ \hline \end{array} \\ \\ \hline \Biggl \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \\ \\	Duke University						NUMBER		
$\begin{array}{ c c c c c c } \hline Duke University & 27705 & - & & & & & & & & & & & & & & & & & $	130 Hudson	Hall, Box 90271							
 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 10. SPONSOR/MONITOR'S ACRONYM(S) ARO 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 49428-EL-SR.9 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander antennas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a 15. SUBJECT TERMS Dipole antennas, meander antenna, equivalent circuit, lumped elements 16. <u>SECURITY CLASSIFICATION OF:</u> <u>17. LIMITATION OF ABSTRACT</u> UU 17. LIMITATION OF <u>ABSTRACT</u> UU ABSTRACT UU ABSTRACT UU 	Duke Univer	sity	2770:	5 -					
U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 277/09-2211 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander antennas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a 15. SUBJECT TERMS Dipole antennas, meander antenna, equivalent circuit, lumped elements 16. <u>SECURITY CLASSIFICATION OF:</u> UU 17. LIMITATION OF <u>a REPORT</u> UU 19. ABSTRACT UU 19. ABSTRACT UU 19. ABSTRACT UU 19. AME OF RESPONSIBLE PERSON Dev Palmer 19. TELEPHONE NUMBER 919-549-4246	9. SPONSOR ADDRESS(ES	NG AGENCY NAM	ME(S) AND			10. SPONSOR/MONITOR'S ACRONYM(S) ARO			
Research Triangle Park, NC 277U9-2211 49428-EL-SR.9 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Amy position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander ant=nnas have gained widespread use in applications such as Radio Frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a 15. SUBJECT TERMS Dipole antennas, meander antennas, equivalent circuit, lumped elements 17. LIMITATION OF ABSTRACT UU NAME OF RESPONSIBLE PERSON Diev Palmer UU NAME OF RESPONSIBLE PERSON Diev Palmer INTERCENTION OF ABSTRACT UNU Note Cof RESPONSIBLE PERSON	U.S. Army Research Office P.O. Box 12211					11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander antennas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a 15. SUBJECT TERMS Dipole antennas, meander antenna, equivalent circuit, lumped elements 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF UU b. ABSTRACT UU C. THIS PAGE UU U 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON Dev Palmer 19b. NELEPHONE NUMBER 19b. ABSTRACT UU	Research Triangle Park, NC 27709-2211					49428-EL-SR.9			
13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander antennas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a 15. SUBJECT TERMS Dipole antennas, meander antenna, equivalent circuit, lumped elements 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT UU UU UU UU 19a. NAME OF RESPONSIBLE PERSON Dev Palmer 19b. TELEPHONE NUMBER	12. DISTRIBUTION AVAILIBILITY STATEMENT								
15. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT Meander antennas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a 15. SUBJECT TERMS Dipole antennas, meander antenna, equivalent circuit, lumped elements 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT UU UU UU UU		AENTA DV NOTE		u.					
14. ABSTRACT Meander antennas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a 15. SUBJECT TERMS Dipole antennas, meander antenna, equivalent circuit, lumped elements 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT UU UU UU UU UU UU	The views, opi of the Army po	nions and/or findir	s ngs contained in thi ecision, unless so c	is report are those of the a lesignated by other docum	author(s) nentatio) and should 1 n.	not co	ontrued as an official Department	
15. SUBJECT TERMS Dipole antennas, meander antenna, equivalent circuit, lumped elements 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c. THIS PAGE UU UU UU UU UU UU	14. ABSTRAC Meander ant devices when synthesis me characterize means that th	CT ennas have gain re space for the othods have been the operation of ney are inherent	ed widespread a antenna is limite proposed over f meander anten ly narrowband.	use in applications sure ed or a low-frequency time. However, few a nas. In addition, exist An alternative model	ch as F y opera studies ting mo	Radio Frequ tion is requ have focus odels are fre based entin	uency uired sed o equen rely o	y Identification (RFID) . Several size reduction and on developing models to ncy-dependent, which on the geometry of a	
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES Dev Palmer UU UU UU UU UU 19b. TELEPHONE NUMBER	15. SUBJECT Dipole antenn	Г TERMS as, meander antenr	na, equivalent circu	it, lumped elements					
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES Dev Palmer UU UU UU UU UU 01 01 01 01									
UU UU UU UU UU UU 19b. TELEPHONE NUMBER 919-549-4246	16. SECURIT	Y CLASSIFICATI	ON OF:	17. LIMITATION OF ABSTRACT UU	F	15. NUMBE OF PAGES	R	19a. NAME OF RESPONSIBLE PERSON Dev Palmer	
	a. KEPUKI UU	UU UU	UU					19b. TELEPHONE NUMBER 919-549-4246	

Report Title

Characterization of Meander Dipole Antennas With a Geometry-Based, Frequency-Independent Lumped Element Model

ABSTRACT

Meander antennas have gained widespread use in applications such as Radio Frequency Identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a Meander Dipole Antenna (MDA) and is frequency independent is proposed. To enhance the accuracy of the proposed model, the effect of mutual capacitances introduced through bending of the antenna wire is incorporated. The mutual capacitances are also a function of the antenna geometry. This model is expected to be more broadband relative to existing models. The equivalent circuit model proposed is validated through comparison with numerical simulations in EMCoS, a moment method-based software package. The discrepancies between predictions of the resonant frequencies of MDAs with our model and simulation results are found to be less than 3 %. Two classes of meander dipole antennas are introduced.

REPORT DOCUMENTATION PAGE (SF298) (Continuation Sheet)

Continuation for Block 13

ARO Report Number 49428.9-EL-SR Characterization of Meander Dipole Antennas W

Block 13: Supplementary Note

© 2012 . Published in IEEE Antennas and Wireless Propagation Letters, Vol. Ed. 0 11, (0) (2012), (, (0). DoD Components reserve a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, and to authroize others to do so (DODGARS §32.36). The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Approved for public release; distribution is unlimited.

Characterization of Meander Dipole Antennas With a Geometry-Based, Frequency-Independent Lumped Element Model

Olusola O. Olaode, Member, IEEE, W. Devereux Palmer, Fellow, IEEE, and William T. Joines, Life Fellow, IEEE

Abstract-Meander antennas have gained widespread use in applications such as radio frequency identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size-reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a meander dipole antenna (MDA) and is frequency-independent is proposed. To enhance the accuracy of the proposed model, the effect of mutual capacitances introduced through bending of the antenna wire is incorporated. The mutual capacitances are also a function of the antenna geometry. This model is expected to be more broadband relative to existing models. The equivalent circuit model proposed is validated through comparison to numerical simulations in EMCoS, a moment-method-based software package. The discrepancies between predictions of the resonant frequencies of MDAs with our model and simulation results are found to be less than 3%. Two classes of meander dipole antennas are introduced.

Index Terms—Dipole antennas, equivalent circuit, lumped elements, meander antenna.

I. INTRODUCTION

EANDER antennas have been widely studied and applied since the concept was introduced by Rashed and Tai [1]. For applications where the antenna size is critical, meandering or folding an antenna wire increases its resonant length without the commensurate increase in its physical size. An example of such an application of meander antennas is in radio frequency identification (RFID) devices [2]–[4]. While much focus had been on the reconfiguration [5], [6] and optimization [4] of meander antennas for (physical) size reduction and impedance match reasons, it is also important to define broadband theoretical models in which structural changes are easily incorporated. Our focus will be on two classes of meander dipole antennas

Manuscript received February 16, 2012; accepted March 08, 2012. Date of publication March 19, 2012; date of current version April 09, 2012. This work was supported in part by the US Army Research Laboratory and the US Army Research Office under Agreement Number W911NF-04-D-0001, Delivery Order 0003.

O. O. Olaode and W. T. Joines are with the Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA (e-mail: olusola.olaode@duke.edu; william.joines@duke.edu).

W. D. Palmer is with the Electronics Division, Engineering Sciences Directorate, US Army Research Office, Durham, NC 27709 USA (e-mail: william.d. palmer44.civ@mail.mil).

Color versions of one or more of the figures in this letter are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LAWP.2012.2191380

(MDA) that we have defined: Class 1 and Class 2. For a Class-1 MDA, the total length of the wire L is kept constant while the height H is allowed to vary. As each meander is introduced, the mutual capacitance in each meander section increases while the overall capacitances in the antenna structure decreases because the mutual capacitances in adjacent meander sections combine in series. As the number of bends N increases, the overall capacitance of the antenna decreases while the inductance of the wire remains constant, and for a Class-1 MDA, we observe a consistent increase in the resonant frequency of the antenna with increasing N.

For a Class-2 MDA, the height H of the antenna remains fixed while L is allowed to increase as bends are added. As the length of wire increases, so does the total inductance. Although adding bends has a similar effect on the overall capacitance as described for a Class-1 MDA, the increase in inductance dominates, and for a Class-2 MDA, we observe a consistent decrease in the resonant frequency of the antenna with increasing N.

Meander dipole antennas were modeled and characterized previously by Endo *et al.* [7]. In [7], a center-fed meander dipole antenna was decomposed into short-terminated transmissionline sections. Each section was modeled with lumped elements (inductors) and analyzed with transmission-line equations. The resonant frequency of the MDA was predicted from the equation of the total inductance, i.e., self- and mutual inductance of the antenna wire. Best and Morrow [8] concluded that the inductive circuit representation of meander antennas, which does not account for the capacitance of the meander sections, is inaccurate in predicting the resonant frequency and does not accommodate geometrical changes in the antenna. The difference between our approach and the others mentioned previously is that we represent an MDA model adapted from the half-wave dipole model presented in [10] with lumped elements that are entirely a function of the antenna geometry rather than frequency, an approach that is inherently more broadband and more easily accommodates changes in geometry and configuration.

II. THEORETICAL ANALYSIS OF THE MEANDER DIPOLE ANTENNA MODEL

An MDA has many similarities to its straight dipole counterpart. Nakano [9] found the radiation patterns to be similar. Fig. 1(a) shows the familiar cosine current distribution on onehalf of a straight dipole antenna (SDA). The current is maximum at the feed point and diminishes to zero at the antenna tip. In Fig. 1(b), the horizontal segments w of the MDA do not contribute significantly to the radiated fields, but are part

Fig. 1. (a) The familiar cosine current distribution on one half of an SDA is continuous from the feed point to the antenna tip. (b) The horizontal segments w of the meander dipole antenna do not contribute to the radiated field, so the current distribution on the vertical segments l forms a piecewise approximation of a cosine current distribution, only compacted into the smaller overall length.

	L31
C31	R31
	C32
	L

Fig. 2. Broadband equivalent circuit model from Tang *et al.* [11] used for both the SDA and the MDA.

of the overall electrical length of the MDA. As a result, the current distribution on the vertical sections l of the MDA forms a piecewise representation of the current distribution on the SDA, only compacted into the smaller overall length. These similarities will be exploited later to create a frequency-independent, geometry-based MDA model.

Tang *et al.* [10] derived a four-element model (see Fig. 2) for a straight dipole antenna. The equations to calculate all the lumped elements were solely a function of the antenna geometry. Based

Fig. 3. One arm of a three-bend (N = 3) MDA. The total length of one arm of the wire is L i.e. L = (7l + 6w). H is the height. For each N considered, the lengths of all vertical segments, l are equal. The lengths of all horizontal segments, w are also equal.

on the MDA-SDA similarities identified previously, these equations can be adapted to MDAs as well. They are as follows:

$$C_{31} = \left\{ \frac{12.0674(L - 2wN)}{\log\left(\frac{2L - 2wN}{a}\right) - 0.7245} \right\} pF$$
(1a)
$$C_{32} = 2(L - 2wN) \left\{ \frac{0.89075}{0.89075} \right\}$$

$$= 2(L - 2wN) \left\{ \frac{1}{\left[\log\left(\frac{2(L - 2wN)}{a}\right) \right]^{0.8006} - 0.861} - 0.02541 \right\} pF$$
(1b)

$$L_{31} = 0.2L \left\{ \begin{bmatrix} 1.4813 \log\left(\frac{2L}{a}\right) \end{bmatrix}^{1.012} \\ -0.6188 \end{bmatrix} \mu H$$
 (1c)

where N is the number of bends, a is the radius of the wire, and L is the total wire length of each arm of the MDA. In Fig. 3, L = (7l + 6w). The equations for C_{31} and C_{32} do not consider the horizontal segments. The self-inductance of a wire remains relatively unchanged as long as the length of the horizontal segment, w, is electrically small. Therefore, L_{31} is approximately equal to the self-inductance of a straight dipole given in [10]. The bending of the wire introduced mutual capacitances between the adjacent wire segments that constitute a meander section. The mutual capacitance of a meander section is

$$C_m = \frac{\pi\epsilon_0 w}{\ln\left[\frac{l_S}{a} + \sqrt{\left(\frac{l_S}{a}\right)^2 - 1}\right]}$$
(2)

where l_S is the spacing between two parallel wires that form a meander section, w is the width of the section, and a is the radius of the wire

$$l_S = \frac{(l - 2wN)}{2(2N - 1)}.$$
(3)

Therefore, the resonant frequency f_0 of an MDA can be predicted as follows:

$$f_0 = \frac{1}{2\pi \sqrt{L_{31} \left(C_{31} + C_{32} + \frac{C_m}{2(2N-1)}\right)}} \tag{4}$$

where N is the number of bends.

Fig. 4. Class-1 MDA. Resonant frequency f_0 as a function of the number of bends in one arm. Plot compares the results from numerical simulation in EMCoS and prediction from the frequency-independent, geometry-based MDA model. The length of the wire L = 100 cm, and width w = 4.3 cm.

III. RESULTS AND ANALYSIS

To validate our model, both classes of meander dipole antennas were examined. A wire with a fixed length L = 100 cm, width w = 4.3 cm, and radius a = 0.0525 cm was chosen. Varying the number of bends, N in a Class-1 MDA from zero to eight and comparing predictions of the resonant frequencies from (4) and [7] with numerical simulations in EMCoS [11], we obtain the result in Fig. 4. In comparing both predictions accurately, it is worth noting that a bend is defined differently in this letter than in [7], but there is a correlation given in (5). Let N' represent the number of bends in an MDA as defined in [7] and N be the number of bends as defined in our letter. Therefore, N' is related to N by

$$N' = 2N - 1. (5)$$

The width of a section, w, is defined the same way in both works. In Fig. 4, there is good agreement between both models considered and the simulation results from N = 3 to N = 7, but a divergence could be observed below N = 3 and above N = 7. The largest deviations in the resonant frequency of our MDA model and [7] from the simulation results were 2.3% and 9.8%, respectively.

Similarly, for a Class-2 MDA, the height H of each arm of the MDA was fixed at 30 cm while w = 4.3 cm. The number of bends was again varied from zero to eight. Resonant frequency predictions of our MDA model (4) and the inductive-circuit model [7] were compared to EMCoS simulation values and presented in Fig. 5. There is good agreement between both models considered with EMCoS simulation results for N = 2 and above. For N = 2 and below, the inductive-circuit model [7] deviated substantially, by up to 28% at N = 0. The largest deviation in the resonant frequency observed between our model and simulation results from N = 0 to N = 8 was 3.4%.

IV. RADIATION RESISTANCE

The radiation resistance of an antenna is an integral part of characterizing the antenna in terms of its performance and efficiency. Therefore, we present an equation for estimating the

Fig. 5. Class-2 MDA. Resonant frequency f_0 as a function of the number of bends in one arm. Plot compares the results from numerical simulation in EMCoS and prediction from the frequency-independent, geometry-based MDA model. The height of the antenna above the ground plane H = 30 cm, and width w = 4.3 cm.

Fig. 6. Class-1 and Class-2 radiation resistances as a function of wavelength and predictions by (6). "sim." indicates that data was obtained by simulation in EMCoS.

resonant frequency of the MDA, which is a function of the geometry and frequency. This method considers the vertical segments of the MDA such as that shown in Fig. 3 as its main radiating elements. The input resistance of an MDA is given by

$$R_{\rm in} = 34.15 \left(2\pi \frac{(L-2wN)}{\lambda} \right)^{1.8} \tag{6}$$

where L is the total length, i.e., both vertical and horizontal segments of each arm of the MDA, w is the width, and N is the number of bends. The input resistance equation in (6) was modeled after input resistance equations of dipoles in [12], but with the constants adapted to the MDA configuration. Assuming ohmic losses are negligible, the input resistance is the radiation resistance. An overlay of predicted radiation resistances on the values obtained via EMCoS [11] is contained in Fig. 6.

V. CONCLUSION

An alternative model to characterize the resonant frequency and radiation resistance of a meander dipole antenna has been presented, and contrasts with existing models have been identified. The proposed model of an MDA, which is frequency-independent and based entirely on the geometry of the antenna, had been adapted from a model for straight dipole antennas [10]. The work described in this letter has produced an equation for calculating the resonant frequency of an MDA, incorporating the mutual inductance between adjacent parallel wires formed through the process of bending the wire. Through analysis of the two possible "classes" of MDAs identified in the letter, the presented model has been validated due to a good agreement between the predicted [by (4)] and simulated resonant frequencies in Figs. 4 and 5. A discrepancy of less than 3% was observed for the various number of bends considered. An equation for calculating the radiation resistance of a meander dipole antenna that is a function of its geometry and frequency has been derived and presented. It is found to be consistent with prediction of radiation resistance from the EMCoS simulation tool. The proposed model is expected to be more broadband and versatile with the structure of the meander dipole antenna than existing models.

REFERENCES

- J. Rashed and C.-T. Tai, "A new class of resonant antennas," *IEEE Trans. Antennas Propag.*, vol. 39, no. 9, pp. 1428–1430, Sep. 1991.
- [2] G. Marrocco, "Gain-optimized self-resonant meander line antennas for RFID applications," *IEEE Antennas Wireless Propag. Lett.*, vol. 2, pp. 302–305, 2003.

- [3] K. V. S. Rao, P. V. Nikitin, and S. F. Lam, "Antenna design for UHF RFID tags: A review and a practical application," *IEEE Trans. Antennas Propag.*, vol. 53, no. 12, pp. 3870–3876, Dec. 2005.
- [4] H. Makimura, Y. Watanabe, K. Watanabe, and H. Igarashi, "Evolutional design of small antennas for passive UHF-band RFID," *IEEE Trans. Magn.*, vol. 47, no. 5, pp. 1510–1513, May 2011.
- [5] D. K. C. Chew and S. R. Saunders, "Meander line technique for size reduction of quadrifilar helix antenna," *IEEE Antennas Wireless Propag. Lett.*, vol. 1, pp. 109–111, 2002.
- [6] M. Ali and S. S. Stuchly, "A meander-line bow-tie antenna," in *IEEE AP-S Int. Symp. Dig.*, Jul. 21–26, 1996, vol. 3, pp. 1566–1569.
- [7] T. Endo, Y. Sunahara, S. Satoh, and T. Katagi, "Resonant frequency and radiation efficiency of meander line antennas," *Electron. Commun. Jpn.*, vol. 83, no. 1, pt. II, pp. 52–58, Jan. 2000.
- [8] S. R. Best and J. D. Morrow, "Limitations of inductive circuit model representations of meander line antennas," in *Proc. IEEE Antennas Propag. Soc. Int. Symp.*, Jun. 22–27, 2003, vol. 1, pp. 852–855.
- [9] H. Nakano, H. Tagami, A. Yoshizawa, and J. Yamauchi, "Shortening ratios of modified dipole antennas," *IEEE Trans. Antennas Propag.*, vol. 32, no. 4, pp. 385–386, Apr. 1984.
- [10] T. G. Tang, Q. M. Tieng, and M. W. Gunn, "Equivalent circuit of a dipole antenna using frequency-independent lumped elements," *IEEE Trans. Antennas Propag.*, vol. 41, no. 1, pp. 100–103, Jan 1993.
- [11] EMCoS Antenna VLab. EMCoS, Ltd., Tbilisi, Georgia, 2011 [Online]. Available: http://www.emcos.com
- [12] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. New York: Wiley, 1998, p. 171.