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1. ABSTRACT 
The evolution of a solid-gas mixture under the influence of a shock wave depends on particle-
particle and particle-shock interactions; i.e. the macroscopic distribution of particles is subject to 
physics at the particle-scale. This work seeks to simulate the macro-scale dynamics of gas-solid 
mixtures by employing information accumulated from direct numerical simulations (DNS) at the 
micro-scale.  Data on the forces experienced by particles in a cloud are collected from DNS using 
a compressible Eulerian solver and provided to an artificial neural network (ANN); the 
simulations are performed for a range of control parameters, such as Mach number, particle radii, 
particle-fluid density ratio, position, and volume fraction. Beginning with a simple single 
stationary particle case and progressing to moving particle laden clouds, the ANN is trained to 
evolve and reproduce correlations between the control parameters and particle dynamics. The 
trained ANN is then used in computing the macro-scale flow behavior in a model of shocked 
dusty gas advection. The model predicts particle motion and other macro-scale phenomena in 
agreement with experimental observations. 

2. INTRODUCTION 
Phenomena involving high-speed multiphase flows occur in dust explosions, condensation 
shocks, explosive debris transport, detonation in heterogeneous media and so on. In these flows 
complex interactions occur between the various coexisting phases, including carrier fluid-particle 
interactions and particle-particle interactions[1-2].  Such flows are difficult to visualize (due to 
the wide range of length scales and short time scales involved); experimental measurements are 
difficult and expensive to obtain.  Even where experimental data are available, yielding empirical 
correlations that encapsulate behavior (e.g. drag laws) the modeling of the mixture dynamics can 
lead to loss of important physics, i.e. the fine-scale behavior may be homogenized and diffused.  
Preserving simplicity of the closure model (which transmits fine-scale behavior to the coarse-
scale) can exact a toll on the extent to which fine-scale physics is captured at the coarse-scale. 

As an archetype of compressible flows of mixtures, computational modeling of shocked particle-
laden flows has received much attention. However, in such simulations, one must rely on 
empirical models to describe the dynamics of the particle phase; in particular empirical drag laws 
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are employed in effecting particle motions in both Lagrangian and Eulerian treatment of the solid 
phase. Since the length scales of the discrete particles in a multi-material system and the time 
scales of response of the particulate phases may be vastly different from that of the bulk flow, 
resolving the dynamics of the individual components of the mixture is impossible. Therefore 
some overall (averaged or homogenized) behavior of the multi-material mixture needs to be 
modeled and computed, and resorting to empiricism is unavoidable. While such averaged 
material representations may be sufficient for many engineering applications, there are some 
physical problems where the local behavior of the material, i.e. the detailed interactions between 
the (unresolved) individual phases in the mixture can become important and can influence the 
observed global dynamics.  

An example of macroscale phenomena that reflect particle-scale dynamics can be seen in the 
excellent experiments of Boiko et al [1]. In their experiments a cloud of particles (polystyrene, 
average particle diameter 𝑑𝑝 of 80 microns) is hit by a shock wave (traveling from left to right).  
The overall behavior of the particles subjected to the shock is very interesting; in particular, for 
the high particle volume fraction case the particle distribution assumes a triangular form as 
illustrated in Figure 1, while the low particle volume fraction case does not produce a distinct 
structure. Boiko et al also produced a column of particles in a shock tube and studied the 
evolution of the column and its interaction with a planar shock. Figure 1 illustrates the response 
of a column of particles to the shock. In each case, the geometry of the initial particle distribution 
as well as the volume fraction of the initial cloud determines the macro-scale distribution of the 
particles following interaction with the shock. For example, the formation of the triangular 
structure in the case of the heavily loaded gas-solid mixture must hinge upon the interactions 
between the more densely packed particles; the physics behind the formation of a triangular 
pattern is recovered by the ANN-based multiscale modeling scheme developed herein and is 
explained later in this paper.  

The particle motions in a macro-scale particle-fluid mixture model traditionally follow from 
Newton’s laws applied to the individual particles and reflect the force transmitted to the 
individual particles by the impinging shock [2-5]. This force will depend on the shock strength 
(Mach number, M), the density of the particle relative to the fluid (

𝜌𝑝
𝜌𝑓

), the volume fraction of the 

solid (𝜑𝑝)  and the particle size (𝑑𝑝) . The key question is: how does one determine the 
dependency of the force on a given particle on each of these parameters?  

The  route pursued in this work is to perform direct numerical simulations (i.e. in silico 
experiments) on small clusters of particles subject to a range of conditions in the parameter space 
defined above (consisting of M,  𝜌𝑝

𝜌𝑓
,  𝜑𝑝 ,  𝑑𝑝)  to learn about the behavior of “representative 

particles”. For example, one can compute the drag versus time curves for particles based on such 
simulations as a function of the above four parameters. Then one can encapsulate the dependence 
of the drag on time as well as on the parameters in the form: 𝐷(𝑡) = 𝑓(𝑀, 𝜌𝑝

𝜌𝑓
,𝜑𝑝,𝑑𝑝, 𝑡), which is 

conventionally the route taken in establishing experimental correlations or drag laws.  However, 
since the drag law to be derived is dependent in a rather complex way on multiple parameters, the 
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resulting manifold in the parameter space that describes the drag law can be quite difficult to 
obtain.  Therefore, the idea of employing a device to “learn” this law from a series of 
computational experiments becomes attractive. The general concept of utilizing neural 
architectures to learn behaviors at a given scale that can be transmitted to other scales opens the 
possibility of using artificial neural networks (ANNs) [6-8] for multiscale modeling.  The current 
approach follows the route of ANN-based learning to effect inter-scale communication, which 
has been applied in a few instances of multiscale modeling thus far [9-14].  

A particular application of artificial intelligence which closely parallels the application herein is 
that of pattern recognition or knowledge assimilation; this feature has been adopted for use in a 
variety of fluid dynamics applications [12-13, 15-16]. An ANN is capable of learning 
complicated behavior, i.e. effectively building a representation of functions of several variables 
by modifying a collection of weights attached to its “neurons”[8, 18]. The computational effort in 
ANN applications comes from the need to train the ANN by providing it with sufficient samples 
of training data, so that the ANN can adequately construct  the manifold (in a specified 
multidimensional parameter space) representing the behavior of the system. The number of 
samples required to train the ANN depends on the complexity of the behavior to be represented 
and also depends on the complexity of the ANN itself. Once the ANN is trained however, 
knowledge recovery is rather rapid, and is performed by interrogating the ANN. This work will 
seek to demonstrate these concepts by applying it to solve the problem of shock-impacted particle 
laden flows as pictured in Figure 1.  

3. NUMERICS AND CALCULATIONS 

3.1 COMPUTATIONAL SET-UP 
The micro-scale calculations are in the category of DNS, i.e. they are highly resolved. The 
computational setup for such simulations would require a domain large enough to contain the 
incident shockwave, the cloud of particles, bow shocks, and shock reflections. However, the grid 
size would need to be small enough to capture necessary details of shock-particle interaction, 
particle motion, shock wave dynamics, transient forces, and sharp interfaces.  

Current drag laws for supersonic flow were obtained through physical experiments [2, 25-29]. 
Most previous work has resorted to using drag laws as functions of Reynolds and Mach numbers. 
These types of drag laws do not explicitly define unsteady drag but rather an overall drag 
coefficient once the shock has already passed over the particles. In fact, for small enough 
particles (i.e. in the micron-range), shock passage is rapid enough that viscous effects can be 
neglected and the Euler equations can be employed to predict forces on the particles; then, 
viscous effects come into play at much longer time scales. The inertial time scale can be 
estimated as: 

 𝜏𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 =  𝑑𝑝
𝑈∞

=  𝑑𝑝
𝑎
∗ 𝑎
𝑈∞

=  𝑑𝑝
𝑎
∗ 1
𝑀

  

and the viscous time scale as: 
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The ratio between the inertial and viscous time scale is: 

 𝜏𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝜏𝑣𝑖𝑠𝑐𝑜𝑢𝑠
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𝑎

1
𝑀
� ∗ �𝑈∞

𝑑𝑝

1
𝑅𝑒
� =  �𝑈∞

𝑎
1
𝑀
� ∗ � 1

𝑅𝑒
� = 𝑅𝑒−1  

where dp is the particle diameter, U∞ is the flow velocity, a is the speed of sound, M is the Mach 
number, ν is the kinematic viscosity, and Re is the Reynolds number. The Reynolds number is 
defined as the ratio of inertial forces to viscous forces. For high speed compressible flows, the 
Reynolds number is very large. It usually lies in the range of 105 to 106 even for small particles. 
The implication is that the effects of the viscosity of a fluid would not be significant until the 
shock is already 105 to 106 particle diameters away;  thus in determining the motion of particles in 
the instants following shock impingement viscosity may be neglected and the driving force 
behind shocked particle motion is mainly inertial drag from the shock wave. 

For the purpose of making comparisons, our simulations were kept fairly close to numerical 
calculations[4, 31-35] and experiments performed [1, 19, 27-28, 32, 36-39] and published by 
others. As mentioned before the parameter space is defined by the Mach number, the particle 
volume fraction, the relative density of the particle to the fluid and time. Mach numbers were set 
between 1.2 and 4.0, 

𝜌𝑝
𝜌𝑓

 was kept between 100 and 3100, and 𝜑𝑝 between 2.0% and 22.4% when 

large particle arrays were used. For larger particle arrays the setup is similar to the 41 particle 
cases; whose setup is seen in Figure 14. The shock wave was placed at 5 units from the left wall 
and traveled to the right. 

Because the physics of the problem certain assumptions can be made to simplify the problem 
without sacrificing accuracy of results. The forces of gravity are negligible; the weight of each 
particle and movement affected by gravity and buoyancy are neglected in comparison to the drag 
forces. The fluid phase behaves as an ideal gas; the equation of state is the same as the ideal gas 
law.  The gas and particles are calorically perfect; the specific heat values are constant for both 
phases.  The solid particles are perfectly rigid; they undergo no deformation. There are no 
collisions; simulations stop when particle level-sets come in contact. In the macro-scale 
Lagrangian advection, particles are treated as points and may overlap. Thermal boundary layers 
do not develop in the time frame of shock-particle interaction; therefore adiabatic particle 
surfaces are assumed, thermal conductivity is set to zero. Kinetic boundary layers do not develop 
in the time domain; the model is inviscid, dynamic viscosity is ignored, no particle rotation 
occurs.  

3.3 GOVERNING EQUATIONS 
The method used solved a set of a governing set of hyperbolic equations for compressible fluid 
flow[40]. These governing equations when simplified and placed in conservation form in 
Cartesian coordinates are: 
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In the equations above, 

 ( )222

2
1 w+v+u+e=E

 
Equation 2 

where E is the total internal energy and e is the specific internal energy. For the Euler equations in 

Cartesian coordinates, the source term S


, is set to zero. Closure for the governing equations can 
be achieved by utilizing a stiffened equation of state, 

 ( ) ∞−− γPγρe=P 1  Equation 3 

where γ is the specific heat ratio and ∞P is a material dependent constant. Under the assumption of 

an ideal gas, we would then have 0=P∞  and 𝛾 = 𝑐𝑝 𝑐𝑣⁄ . 

For stiff fluids such as water, the specific heat ratio and the material dependent constant would 
assume the values of 5.5 GPa and 6.13 GPa, respectively. Lastly, from the definition of the speed 
of sound and using the stiffened equation of state, the speed of sound can be calculated by 

 
( )
ρ

P+Pγ
=c ∞

 
Equation 4 

3.4 IMMERSED BOUNDARY METHOD 
For the consideration of boundary conditions at an interface, an immersed boundary method is 
used. The algorithm used is an Eulerian-Lagrangian algorithm for interface tracking in three 
dimensions, otherwise known as ELAFINT3D. The ELAFINT3D code utilizes a sharp interface 
treatment method as described by Sambasivan [40]. The sharp interface treatment requires 
continuous tracking and representation for the interface surface. To represent the embedded 
interface surfaces, Level-sets were used, first introduced by Osher and Sethian[41]. The level-set 
is simply an intersection between a defined level-set field and the working plane. The level-set 
field is advected using the level-set advection equation: 
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∂
∂

ll
l V

t
φ

φ 
 Equation 5 

where φl represents the level-set and lV


represents the level-set velocity field for the lth embedded 

surface. For the solution methodology, a fourth-order essentially non-oscillatory scheme for was 
used for spatial discretization and a fourth order Runge-Kutta time integration was used to solve 
the level-set advection equation. The value of the level-set field at φl any point is the signed 
normal distance from the lth interface with φl ≤ 0 inside the immersed boundary and φl ≥ 0 
outside. The interface is implicitly determined by the zero level-set field defined when φl = 0 , 
and where the contours represent the lth immersed boundary.  

3.5 BOUNDARY CONDITIONS 
To handle the jumps in the mass, momentum and energy fluxes along with the material properties 
across the interface, the tracked interface will have to be coupled with the flow solver to insure an 
accurate depiction. In the ghost fluid method, this translates to suitably populating the number of 
ghost points [40, 42-43]. At the interface of a solid body immersed in a compressible flow, the 
following boundary conditions were applied for velocity, temperature and pressure fields. For no-
penetration for normal velocity: 

 nn U=v  Equation 6 

where Un is the center of mass velocity for the embedded rigid object. To satisfy the slip 
condition for the tangential velocity: 

 01 =
n

vt

∂

∂

  
and  02 =

n

vt

∂

∂
 Equation 7 

To satisfy the adiabatic temperature condition: 

 0=
n
T
∂
∂  Equation 8 

To keep the normal force pressure balance: 

 ns
ts

aρ
R

vρ
=

n
p

−
∂
∂

2
1  Equation 9 

and 

 nV=vn ˆ⋅


,  11
t̂V=vt ⋅


, 22

t̂V=vt ⋅
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 Equation 10 
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where vn is the normal velocity, vt is the tangential velocity in the interface referenced curvilinear 

coordinate, V


is the velocity vector in the global Cartesian coordinate, n̂ , 1̂t , 2̂t are the normal 
and tangential vectors, R is the radius of curvature and an is the acceleration of the interface; the 
set of boundary conditions that govern the behavior of the flow near the embedded solid body and 
must be enforced on the real fluid by suitably populating the corresponding ghost points[40].  

3.6 ARTIFICIAL NEURAL NETWORK  
 The neural network used is a single hidden layer, feed-forward, back-propagation 
network[6]. It possesses one hidden layer of neurons between the input layer and output layer. 
The input layer includes one bias neuron to facilitate different levels of activation for each hidden 
neuron. The last layer consists of outputs where a final prediction can be used to find an error in 
the prediction and adapt the weights to the previous layers allowing the ANN to learn. The basic 
network topography is show in Figure 7. 

 The ANN must go through two important phases before it will be capable of producing 
useful predictions. The first phase is the training phase where a set of data is provided and the 
ANN learns from the data. The algorithm used to learn and edit the weights for each neuron is 
called a back-propagation algorithm. Every neuron in the network contains the same basis 
function for processing data. For most cases, there is only one output neuron that sums all its 
inputs to arrive at a final prediction. A back-propagation algorithm[6] takes the predicted values 
and compares it to the expected values (i.e. to the target output for the given inputs in the training 
set). Depending on the error between the two, the weights for each neuron is edited. The testing 
of the neural network is performed by making a random selection from the data set (until all the 
data are run through) and each data point is tested and used to train the neural network once per 
cycle. When the ANN is in training, it should be learning from every point in a data set, otherwise 
learning will be biased. Every iteration step for an ANN consists of cycling through the total 
number of data points in a data set. The error produced on every iteration step can be plotted to 
show a convergence curve on how the ANN is being trained. One such convergence curve for the 
training of ANN is shown in Figure 8. Note that as the iterations increase the learning of the ANN 
saturates and convergence is declared at a pre-specified error tolerance or maximum iteration 
count. 

When the training phase is complete, an artificial neural network can be tested by querying with a 
testing set of input data. The resulting output from the ANN is compared against the desired 
output corresponding to the input parameters for that testing set. The ANN is assessed to have 
successfully learned if the error produced for the testing set is below a desired tolerance. 
Querying an ANN at multiple points inside the parameter space allows testing for the robustness 
of the prediction from the ANN; in general the prediction deteriorates at the fringes of the 
parameter space or in regions of parameter space where training data are sparse.  The 
performance of the ANN as a function approximation device is illustrated with some examples 
below.  

4.  RESULTS 
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EXAMPLES OF ANN LEARNING PROCESS 

LEARNING A DRAG LAW 
When a planar shock wave hits a stationary spherical particle and passes over it, the drag force on 
the particle (i.e. force exerted on the particle) changes throughout shock passage. Once such drag 
versus time curve obtained by Tanno et al. [19] in an experimental (shock tube) setup is displayed 
in Figure 12. 

EMPIRICAL DRAG LAWS 
Empirical drag laws do not provide the transient drag experienced by the particle as the shock 
passes over it. Instead, some measure of steady drag is available that omits the details of the 
shock passage. With trained ANNs, however, one can retain the information on the drag versus 
time for a wide range of parameter space. Thus, information obtained from experiments or 
computations need not be discarded; it can be learned and retained as “knowledge” by the 
ANN[17].  This does not imply that a large data set is stored. Once the ANN is trained the 
information on the drag versus time behavior is stored in the weights attached to the individual 
neurons in the ANN; the individual data sets used for training can then be discarded.  

 “LIFTING” INFORMATION FROM MESO-SCALE CALCULATIONS 
The driving force behind particle motion in shock-impacted particle-laden flows is the drag force 
produced on the particle. Once a shock wave has passed over a particle, the subsequent trajectory 
of the particle can be determined from Newton’s law if the impulse provided to the particle by the 
shock is known. To model a particle’s trajectory at the macro-scale, information must be “lifted” 
from the meso-scale. To limit the amount of information passage between scales, only the most 
pertinent data is passed. A particle’s position, trajectory and velocity are dependent only on the 
initial location, mass and force applied. Since the force is transient in nature, its characteristics 
must be quantified. When viewing a shocked particle drag curve (Figure 12), it is evident that 
there is a maximum value of force that is reached as the shock impinges on the particle and the 
drag force decays over time. These two values are maximum drag coefficient, 𝐶𝑑𝑚𝑎𝑥 and 
relaxation time, τr. Once the drag versus time curve is established and the 𝐶𝑑𝑚𝑎𝑥 and τr is known, 
the total impulse delivered by the shock, It , can be computed as the area under the curve. For a 
standard drag curve (obtained from experiment or simulation), we can set τr to be represented by 
exponential decay and thus the impulse would be: 

 𝐼𝑡 = ∫ 𝐶𝑑𝑚𝑎𝑥 ∗ 𝑒
−𝑡 𝜏𝑟�𝑡𝑓

𝑡𝑜
 Equation 11 

where It is the impulse, to is the impact time, tf is the final time, 𝐶𝑑𝑚𝑎𝑥 is the maximum drag 
force, t is time, and τr is the relaxation time. It turns out that in macro-scale calculations, the 
quantity of interest is It. In addition, since the impulse It acts over a time characterized by τr, once 
these two values are known, the momentum change of a particle hit by a shock can be calculated. 
These two pieces of information are all that is needed to quantify a particle’s trajectory in a 
macro-scale calculation. Thus, the ANN can be trained to learn these two quantities as functions 
of the input parameters.  
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MACRO-SCALE CALCULATIONS 
Since the main idea behind using an ANN-based learning scheme was to create an “equation-
free” lifting scheme[20-21], macro-scale calculations can employ the information obtained from 
the ANN in effecting Lagrangian particle motion. Given the Mach number, 

𝜌𝑝
𝜌𝑓

, and 𝑑𝑝, an ANN 

can predict 𝐶𝑑𝑚𝑎𝑥  and τr. These values can then be placed in a Lagrangian algorithm using 
Newton’s second law and the particle trajectory calculated.  

VERIFICATION 
 To insure the reliability of our code, the computed drag force obtained was non-
dimensionalized using the same parameters as Drikakis et al.[31]. The comparison of the non-
dimensional drag force is shown in Figure 15.  A visual comparison between the results obtained 
from the present approach and that of Drikakis et al. is shown in Figure 16 using isodensity lines. 
The transient drag curves produced by Drikakis et al. and those produced by the present 
calculations show minimal difference in peak magnitude and are rather similar, even though 
Drikakis et al. employed Navier-Stokes computations for rather modest Reynolds numbers for 
their calculations.  The similarity of the drag behavior for the Euler and Navier-Stokes 
computations supports the present inviscid computations for the shock-particle interaction, 
particularly for the high Reynolds numbers that apply to the particles considered by Boiko et al 
and targeted in the present work.  

SINGLE PARTICLE CASES 
 The ELAFINT3D code was first used to test a cylindrical particle in a fluid flow during 
varying conditions. This included experiments of post-shocked flow, a shocked stationary 
particle, and shocked moving particle. Later on, cases of shocked particle arrays with large 
number of particles were examined. The single particle tests were set up to illustrate the evolution 
of data processing the ANN needed to learn in an order of increasing complexity. 

STATIONARY PARTICLE 
In this case the particle was held stationary and then hit with a shock. The boundary conditions 
were set the same as the post-shocked particle case except the lower wall set as symmetry. A grid 
domain of 500 by 250 cells was used for the drag curves calculated from the ELAFINT3D code. 
This was to match and verify the results by the ELAFINT3D code to those of Drikakis[31] as 
seen previously. The initial starting distance for the shock wave was set more than the radius of 
the cylinder away from the cylinder itself. The shock was allowed to impact the cylinder and 
continue to travel as data for horizontal force was recorded over time. A Schlieren image of the 
one of the cases is shown in Figure 20. 

With a smaller domain size, it would be reasonable to test the effect of grid size and the use of 
local mesh refinement. For the fine grid, the number of grid cells was increased by four times 
with the grid sizes half the original. For the local mesh refinement two levels of refinement were 
used to provide grid cells near the interface with edges a fourth of the original. It was discovered 
that both the finer grid structure and the use of local mesh refinement show some differences. The 
differences were rather negligible given the previous error for the neural network's prediction, 
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and in the interest of time, the remaining cases were carried out with the original grid size. The 
resulting drag curves from the ELAFINT3D code at Mach numbers ranging from 1.1 to 2.6 are 
shown in Figure 21. 

The ANN was trained using this data set and the same number of neurons and number of 
iterations were used. The same order of computational time was observed as in the post-shocked 
flow calculations. The prediction curve of the neural network as well as the calculated transient 
drag curve is displayed in Figure 22. 

The neural network was capable of matching the curve even into the negative force domain. The 
negative drag force arises when the incident normal shock traverses to the rear of the cylinder and 
a reflected bow shock has formed at the front of the cylinder, which leads to a higher pressure at 
the rear for a short period of time. However, in this case, the peak value of the drag was 
underestimated by the neural network. The cause of this is due to the neural network’s activation 
function, and the summation of which is fitting a series of sigmoid functions to the curve. With 
data evenly distributed, a small number of data points exist near the peak. The unbalanced set 
causes the neural network to spend more time fitting to the rest of the curve than the peak. 
Another reason is that the neural network is attempting to fit with a global array, thus the overall 
prediction curve will be similar to a smoothing function and reduce peaks. The sharper the peak, 
the less likely the neural network will capture an accurate depiction. For a moving particle these 
sharper peaks do occur. Several solutions including the use of wavelet basis functions, neural 
network expansion, multi-resolution and segmentation exist; these will be discussed in detail 
later. 

MOVING PARTICLE 
For the moving particle problem, the boundary conditions, the initial conditions, domain size, and 
particle size remained unchanged from the previous experiment. The chosen Mach numbers allow 
for easier comparison to conditions used in various experiments[1, 19]. The artificial neural 
network was set up to segment the drag curves in time to facilitate more customized fitting in the 
respective segments. This would allow for a better fit to the drag curve. The training data 
provided to the artificial neural network is shown in Figure 23. 

The total training time for the neural network was still under 30 seconds because the amount of 
data per iteration for each partition of the neural network was reduced. The root mean square 
error was significantly reduced and was less than 0.5% for 700 data points in the later time 
section. The resulting prediction output was also segmented according to which partition of the 
artificial neural network was responsible for learning the curve characteristics of the function. 
The resulting 40 neuron, partitioned artificial neural network produced a remarkably good 
prediction as shown in Figure 24. 

MULTIPLE PARTICLE CASES 
The drag versus time curve for a single particle is fairly easily predicted by an artificial neural 
network with only one interacting shock wave. It may be necessary to implement another method 
of data assimilation to describe more complicated functions and drag curves. The previous 
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experiments grew in difficulty to examine the different properties of supersonic fluid flow around 
a cylindrical particle. From the post-shocked experiment, the neural network observed that the 
drag increased as the Mach number increased and the drag went down over time. The drag force 
of the stationary particle displayed negative values. With the cylinder moving, the drag peaks 
became more prominent. A single neural network is able to derive the drag correlations from 
numerical methods given a single particle. When there is particle laden flow field, a new 
approach is needed to extract the drag correlations.  

In order to obtain a general drag curve with characteristics that could be applied to any particle 
embedded in a cloud, there needed to be data obtained from many particles in many possible 
arrangements. The best way to obtain data like this was to run simulations of randomly seeded 
clouds and to define a “representative particle (RP)” embedded in the flow; much as in the case of 
“representative elementary volumes” (RVEs) employed in volume-averaged formulations of 
multiphase flows One way to define such representative particles is to locate them at the center of 
a cloud of particles; this avoids edge effects and wave reflections from domain boundaries. The 
representative particles for one particular case are illustrated by the outline in Figure 30.  To 
ensure the proper tracking of the same centralized particles, a particle array was first formed and 
then the particle centers were perturbed. The boundary conditions were set to simulate a shock 
tube for comparison to the works Boiko et al.[1], Tanno et al.[19] and Sun et al.[28] The left edge 
of the domain was set as an inlet, the right edge an outlet, and both the top and bottom edges were 
set as reflective boundaries. An example of the flow can be seen in Figure 31. 

The particles in this case number 41, each are seeded in a respective location where a 4 by 4 grid 
of 16 particles is embedded in 5 by 5 grid of 25 particles as seen in Figure 14. This enabled the 
users to easily code the location of each particle, yet create an array where every particle is 
staggered off the one directly in front. The slight randomization completed the task of attempting 
to simulate a random dispersal of particles while still being able to easily track a few. The few 
that were important enough were the particles embedded directly in the center of the array. The 
center particles experience a much more randomized collision of reflected shocks by the few rows 
and columns of particles behind and to each side. The drag curves for these particles were 
extracted by the integration of pressure over the level set boundary. The drag curves of 5 particles 
from the center of the cloud were then averaged. The results of the averaging of the drag curves 
for the RPs can be seen as the bold curve in Figure 32. 

Apart from the Mach number, the other parameters that can affect the behavior of particles in a 
cloud include the volume fraction of particles, the particle density relative to the fluid, particle 
shape, collisions between particles and viscous effects as controlled by the Reynolds number. The 
last three effects are not considered in this work as they are expected to have secondary effects in 
the initial phase of shock-particle interactions.  Of the three parameters considered, namely Mach 
number (M), particle density ratio (

𝜌𝑝
𝜌𝑓

) and volume fraction𝜑𝑝, the effects of the 𝜑𝑝 variable are 

much more easily verified by direct viewing of the flow field. Upon comparison of the shape of 
the incident shock already passed over the particle arrays in Figure 31 and Figure 33, there is a 
very definitive concavity resulting from the passage over the more dense cloud. Such an obvious 
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change (due to the higher impedance to shock propagation presented by the denser cloud) in the 
flow field would imply an equally large effect in drag force and thus the motion of the particles 
inside the cloud. Even though all other parameters were set the same, the dense cloud case in 
Figure 33 depicts more of a compressing of the cloud along the direction of flow. 

Volume fraction, 𝜑𝑝, is an important parameter that is different throughout any dust cloud and 
changes over time. It is only one of a few parameters that we chose to vary that we deemed to 
have the largest affect on particle motion. A comparison of the averaged drag curves (for the 
representative particle) for varied 𝜑𝑝 can be seen in Figure 34. 

It may be deduced that the increase of 𝜑𝑝 decreases the impulse It delivered by the shock on a 
particle. The 𝐶𝑑𝑚𝑎𝑥  force experienced remains fairly constant but the decay of the force 
diminishes much more rapidly. This is due to the decreases in strength of the shock waves 
impinging on the RPs in the center of the cloud. Another more obvious variable that affects the 
drag force felt by shocked particles is the Mach number. In Figure 35 the effect of the Mach 
number is very obvious. As the Mach number increases, the 𝐶𝑑𝑚𝑎𝑥  felt rises dramatically. 

This dramatic rise is directly correlated to the shock strength in the high Mach number flow. It is 
the flow velocity that in turns defines the Reynolds number that most fluid codes based on the 
non-dimensional parameters. This is why so many drag laws depend on the Reynolds number, but 
the Mach number is a far more relevant parameter in the initial shock-particle interaction phase. It 
has already been shown that the main separating factor between Reynolds and Mach number is 
viscosity. It has also been shown that viscosity does not affect the drag force on a particle this 
early. This is why we believe that developing the variation of the drag on an RP with respect to 
the Mach number in an inviscid model is a better parameter for lifting drag information from the 
meso-scale to the macro-scale. 

 The next parameter examined in our experiments was that of the mass of the particle. In 
terms of non-dimensional variables, this correlates to the mass of the particle as a ratio of the 
density of the solid particle and the fluid surrounding it. Most of the experimental models of 
shock-particle interactions employed spheres made of acrylic and bronze [1]. The medium used 
was air, and because of those models we chose to set 

𝜌𝑝
𝜌𝑓

 near 1000. To encapsulate motion a little 

easier, we mainly varied 
𝜌𝑝
𝜌𝑓

 lower. The comparison of drag forces are displayed in Figure 36. The 

data obtained shows correlations per each variable, the ANN will hopefully connect them 
together and engage its application to multiscale modeling. 

5. APPLICATION OF ANN-BASED LEARNING TO MULTI-SCALE COMPUTATIONS 

INFORMATION PASSAGE 
To utilize the correlations obtained previously to use in multi-scale modeling, information must 
be lifted from the meso-scale. The transient drag curve is quite a lot of information to pass 
between scaling levels in multiscale modeling. With regard to the drag curves acquired, there 
were two important parameters needed for particle motion. Both Kosinska[44] and Kosinski[3] 
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showed that the linear motion of a rigid body even those immersed in shock waves can be found 
directly from Newton’s second law and derivations of it. Newton’s second law directly correlates 
force to mass and acceleration. To determine the speed and position we would need to know the 
momentum transferred and the rate of momentum transferred. The momentum and rate of transfer 
can be found as an expression of It and τr. 

From Equation 11, we have a simple method of determining the total impulse, 𝐼𝑡, a particle would 
experience over time. Integrating Equation 11 from instant of shock impact to long times (when 
the inertia delivered by the shock has equilibrated particle motion, but still short enough that 
viscous effects can be neglected)  results in: 

 𝐼𝑡 = 𝐶𝑑𝑚𝑎𝑥 ∗  𝜏𝑟 Equation 12 

The maximum drag, 𝐶𝑑𝑚𝑎𝑥 , is easily acquired, thus the next step be to fit the relaxation time, 𝜏𝑟, 

to the drag curve of each case the ANN will learn from for Mach number, 
𝜌𝑝
𝜌𝑓

 and 𝜑𝑝. 

SINGLE PARTICLE MOTION 
For each case presented, the quantified values for particle motion, 𝐶𝑑𝑚𝑎𝑥and 𝜏𝑟 to attain It were 
found. The value of It and τr were found by numerical integration and fitting an exponential decay 
function by minimizing the error between the drag curve and the exponential function. One such 
fitting with the impulse highlighted can be seen in Figure 37. 

We began with the data from our single particle cases because the drag curve fitting was simpler 
and straight forward without large errors due to the oscillations in drag. From that data we fed it 
into the ANN and obtained a hyper-surface to incorporate each variable. The 3 dimensional 
breakdown between two of the variables and there target parameter can be seen in the plots of 
Figure 38 and Figure 39 

It has already been determined, and one can see from the plots, that both the It and τr increase 
with Mach number. This has been shown many times before by other researchers. [19, 34] [28] It is 
interesting that the value of It actually gets steeper as the Mach number increases, making it a 
high order relationship. It is also important to note that both It and 𝜏𝑟 seem to approach zero near 
Mach 1. One can accredit that to the dramatic decrease in drag once relative velocity falls below 
the supersonic range. As for the effect that  

𝜌𝑝
𝜌𝑓

 has, both It and τr level off toward higher values, 

as 
𝜌𝑝
𝜌𝑓

 approaches the representation of an infinitely massive or stationary particle. For when 
𝜌𝑝
𝜌𝑓

 approaches zero, both It and τr approach zero as a very small particle’s motion should nearly 

behave the same as the fluid. 

GENERAL PARTICLE MOTION 
It is easy to see how a single particle would behave, but with multiple particles there occurs many 
complex reflective shock waves. To ensure that the general behavior of shocked particles is 
accurately learned by a neural network, data needs to be collected from many particles in a 
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random orientation. Therefore the effect of a specific array setup would be diluted and more 
general values could be collected. The values of 𝐶𝑑𝑚𝑎𝑥 force and τr are still the two most 
important parameters that can be directly obtained from the ELAFINT3D code. For particle 
motion that occurs in a dusty gas, another input parameter should be taken into consideration. The 
value of 𝜑𝑝 plays a particularly important part in shock-impacted particle laden flows to learn 
how much the 𝐶𝑑𝑚𝑎𝑥 , τr and It is affected by the 𝜑𝑝 in a multiple particle cloud, 45 different cases 
were performed using initial values recorded in Table 3. Each case had 41 particles placed in a 
staggered array and then randomly perturbed to simulate a dusty gas while still being set at a 
standard interval to better capture the affects of 𝜑𝑝. 

The ANN was trained twice, once for 𝑪𝒅𝒎𝒂𝒙 and once for τr. The value of It is implied by the 
application of these two variables. The training period lasted for 5000 iterations with 25 neurons 
and the convergence curve is seen in Figure 40. The relationship of Mach number and 𝝋𝒑 
versus𝑪𝒅𝒎𝒂𝒙 can be seen in Figure 41, Mach number and 𝝋𝒑 versus τr, in Figure 42, and Mach 
number and 𝝋𝒑 versus It in Figure 43. 

It becomes obvious that the major contributor for 𝐶𝑑𝑚𝑎𝑥  is the Mach number. The 𝜑𝑝 does not 
seem to affect 𝐶𝑑𝑚𝑎𝑥  at low Mach numbers. As for τr, both Mach number and 𝜑𝑝  have great 
affects. At low Mach numbers, the τr greatly increases. Drag force at subsonic velocities are 
relatively slow to apply. The 𝜑𝑝 has a major affect only at low Mach numbers. At higher Mach 
numbers the effect of 𝜑𝑝 goes away, soon thereafter, one may assume that the particles are no 
longer going to be shielded by particles, but actually hit by them. The surface trend for It is 
somewhat expected, the general trend being that It increases as the 𝜑𝑝  decreases and Mach 
number increases. For the averaged data for all cases, refer to Table 4 in the appendix. 

Of course there exist errors in our model that arise from many areas, for example the averaging of 
multiple individually shocked particles. Very little error was displayed in the single particle cases 
because there was no random particle-shock interaction from reflections. Testing consisted of 
randomly selecting a single data point and removing it from the training set. The ANN would be 
reset and learn the new training set without the point being tested. The ANN was then queued at 
the test point and was then checked for error. The testing phase consisted of testing a few points 
by this method; with only one point missing on a multidimensional map, visualization is difficult 
to show. Testing by selection and removal showed errors all under 2%. For the multiple particle 
cases, errors ranged greatly. During the training phase of the multiple particle cases, the average 
error for the training data was less than 1%. However, due to the unsteady curvature and some 
areas of inconsistent trends, the average error for the prediction of randomly removed and tested 
points inside the ANN prediction curve for It were 7.3%. The largest error for the tested cases 
resulted from the Mach 4.4 cases which are also responsible for the extra bump on the plots of 
𝐶𝑑𝑚𝑎𝑥 and It. When cases where the Mach number was 4.0 or above was left out and tested for, 
errors between 12.2% and 14.6% would occur.  

LAGRANGIAN ADVECTION 
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Now that we have a trained ANN with the correlation of Mach number, 
𝜌𝑝
𝜌𝑓

 and 𝜑𝑝 to It on a 

particle, we can use it to predict how a shock impacted particle will move. Restating what was 
mentioned before, one may use the 𝐶𝑑𝑚𝑎𝑥  and τr to recreate a drag curve represented by 
exponential decay from the 𝐶𝑑𝑚𝑎𝑥  at the “point” of impact. With a defined drag curve, the 
trajectory of a particle can be predicted by simple Lagrangian advection using Newton’s first law 
of motion. We performed this advection scheme with case data to match previous experiments of 
Boiko. Our data was limiting to simulating values of 𝜑𝑝  down to 2.0 percent due to the 
constraints of domain size, particles placed ever 15 diameters away would have produced over 5 
million grid cells. The result of using data from the ANN and this Lagrangian advection scheme 
can be seen as the solid line alongside the experimental work of Boiko et al.[1] in Figure 44.  

The symbols are directly from experimentation, the dashed line is Boiko’s computation, and the 
solid line is our Lagrangian advection using lifted behavior learned by the ANN. To insure the 
proper values of It were used, an numerical integration scheme was used on our data. This lead to 
a slightly higher initial peak and exponential representation tends to decay a slightly faster than 
normal as seen in Figure 37. The largest error is near the beginning where the initial impact of our 
model is piecewise and thus sharper. However, the ANN and Lagrangian advection model is a 
close representation of how a particle moves. 

MACRO-SCALE PHENOMENA 
 Now that we are able to predict movement of a particle using data from the meso-scale, 
we should be able to adapt that to multiple particles at the macro-scale. With the ELAFINT3D 
code running on a serial machine with limited random access memory, we are currently limited to 
particle clouds of less than 180 particles. To maintain the same staggered and perturbed setup, we 
chose to model a cloud using 145 particles. This particular case ran with a domain size of 60 by 
70 𝑑𝑝 and the smallest cells having a grid size of 0.03 𝑑𝑝 approaching 4 million cells and thus 
reaching the limit of memory on the machine. To arrive at this point, the model ran more than 25 
non-dimensional units of time for about a wall clock time of three weeks. A Schlieren image of 
this case can be seen in Figure 45. We were able to then use the drag data from each particle to 
advect their location further. The result was merely the compression of the cloud moved a few 
domains along the flow direction. 

 There are no experimental demonstrations of this type of cloud; however, in the 
experimental work of Boiko et al. [1]a macro-scale phenomenon of larger and denser dusty gas 
clouds emerges. Referring once again to Figure 2 (Chapter 1), one can observe the formation of a 
sideways “V”. This is a phenomenon that arises only in the cases where the dust clouds are 
sufficiently dense. It is not observable Figure 1 or in the other cases performed by Boiko et al.[1] 
as seen in Figure 46. In each of the cases presented, a thin band of particles is shocked.  

In any case, the Mach number and the 
𝜌𝑝
𝜌𝑓

 remains virtually the same throughout the whole 

domain, yet the particles obviously move at different velocities, which mean they would have 
different values of It. The first two factors that arise that may affect It are 𝜑𝑝 and the shielding of 
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the shock wave by particles ahead in the flow domain. Shielding is of course directly related to 
𝜑𝑝 as well as the total number of particle in the domain. Since the total number of particles in a 
domain is an extrinsic property of a dust cloud, it is not advisable to use it. This would have to be 
utilized via a decrease in Mach number. Another case was performed in where a triangular dust 
cloud was shocked to observe the effect of shielding. Both this case and others found that within a 
certain 𝜑𝑝, the total number of particles does not drastically affect particle motion.[1] [45-46] Thus 
the main contributing factor to the variance in particle motion in a single domain with constant 
Mach number and 

𝜌𝑝
𝜌𝑓

, is 𝜑𝑝. Knowing this, a much larger simulation can be performed with drag 

forces obtained from an ANN which learned from cases with varying 𝜑𝑝. 

MACRO-SCALE SIMULATION 
For the macro-scale simulation, we used a Lagrangian advection scheme to move particles based 
on the drag force obtained from 𝐶𝑑𝑚𝑎𝑥 and τr predicted by an ANN given Mach number, 

𝜌𝑝
𝜌𝑓

 and 

𝜑𝑝 . The Mach number and 
𝜌𝑝
𝜌𝑓

 was predefined while the 𝜑𝑝  was calculated based on the area 

fraction (in 2D) occupied by the particles, computed for a box of 20 by 20 diameters in the level 
set field with a domain size of 1024 by 512 grid points as seen in Figure 47, Figure 48 and Figure 
49. 

ASSUMPTIONS 
To aid in modeling the shock-impacted particle-laden flow, certain assumptions were made. The 
assumptions and their implications are as follows: 

Particles are normally distributed in both the x and y directions for dust clouds. They are 
completely still at beginning with no velocity components. 

All small scale forces are neglected. This ignores the effects of buoyancy, gravity, 
electromagnetic forces, chemical attraction, or Brownian motion. 

Particles are treated as points. No collisions occur in calculations and particles may over lap or 
pass through each other. To stimulate y direction and small forces, a random purturbment of 
location was included. 

𝜑𝑝  is computed by summing the surrounding first level set, particle volumes overlapping are 
neglected. 

𝐶𝑑𝑚𝑎𝑥  force and τr computed by ANN in the first step, thus this is as if the incident shock 
impacted every particle at the same time 

Largest variable factor in drag is 𝜑𝑝, particles with very high 𝜑𝑝 barely move, due to lack of 
collisions. 

For an example of the algorithm, a pseudo code has been provided in the attachments. 
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GENERAL MOTION 
To ascertain that indeed the formation of the “V” shaped phenomenon is due to that of the 
variation in 𝜑𝑝 several macro-scale models were performed. They included simulations that were 
drag law based, with low 𝜑𝑝, with high 𝜑𝑝, and with a uniform band 𝜑𝑝. For the case based on a 
drag law, the “standard” drag law found in Table 2 was used to determine the force an each 
particle. This straightforward method and the assumptions made above caused every point to 
move roughly the same amount as seen in Figure 50.  

For the sparse dust cloud case, Figure 51, similar actions occurred due to a small variance in𝜑𝑝. 
Demonstrated experimentally, little difference in movement also occurs in Figure 1, of Boiko’s 
experiments. With 𝜑𝑝  and other parameters all the same, each particle should experience the 
same motion. When the density of particle is increased such as in Figure 52, a “V” phenomenon 
would appear as seen in Figure 2 by Boiko et al.[1] The formation of this phenomenon occurs 
only at the macro-scale when there is a wide range in 𝜑𝑝. In Boiko’s experiment one can observe 
a block of particles in the middle. Just a block alone is not capable of producing a strong enough 
variance in particle velocity to form a “V”. The simulation in Figure 45 demonstrated no large 
differences in It or velocity. When a band a particles was used, as in Figure 53, more particles 
were spread out just behind the cloud. This is most obvious in Figure 53d and Figure 46d frame 2 
where the left side of the block is evidently denser than the right. 

6.  CONCLUSIONS  
The objective of this thesis was to efficiently model the interaction of a shock wave and a dusty 
gas. We wanted to accomplish this by formulating an algorithm to learn the behavior of meso-
scale simulations. We successfully set up and used a feed-forward back propagation artificial 
neural network to learn the drag curves from single and multiple particle cases. For application to 
multiscale modeling, we chose important characteristics from the meso-scale simulations to be 
“lifted” in to a macro-scale simulation. The values of 𝐶𝑑𝑚𝑎𝑥  and τr formulated a transient 
representation of It. The values of It learned using the ANN and had an average error of less than 
0.5% in training and 2.0% in testing for single particles and less than 1.0% and 8.0% for multiple 
particles. The multiple particle cases provided more variance in the data of each particle 
separately than the variance of the ANN learning. The learned behaviors by the ANN were used 
in macro-scale simulations. The different macro-scale simulations demonstrated the great 
improvement of using an ANN and multiscale methods over traditional methods using predefined 
drag laws. 

The largest simulation that was performed for this thesis was that of a shock impacted 145 
particle cloud. This simulation took a wall clock time of nearly 3 weeks on a serial processor and 
used 16 gigabytes of random access memory prior to stalling out near 30 non-dimensional units 
of time between 3 million and 4 million cells. To run a simulation with 1000 particles in a domain 
nearly 125 times larger it would take the same machine, assuming limitless memory, roughly 50 
years. The ANN learned behavior in the macro-scale simulation performed such a task in less 
than one minute. The data processed was 45 cases each lasting a few days but is capable of 
running in parallel. In either case, with the use of behavioral learning of ‘lifted’ meso-scale 
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variables, much time was saved. Disregarding a lifting of single variables, the ANN could still 
learn the entirety of the drag curve for complicated scenarios if aided by multi-resolution 
analysis.  
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Φvol [%] Mach 𝜌𝑝
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Φvol [%] Mach 𝜌𝑝
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Φvol [%] 

1.2 100 2.0 2.0 1000 8.0 2.8 1000 22.4 

1.2 100 8.0 2.0 1000 12.6 2.8 3100 8.0 

1.2 100 12.6 2.0 1000 22.4 3.2 310 8.0 

1.2 310 22.4 2.4 100 8.0 3.2 310 22.4 

1.2 1000 2.0 2.4 100 22.4 3.6 100 2.0 

1.2 1000 8.0 2.4 310 2.0 3.6 100 8.0 

1.2 1000 12.6 2.8 31 8.0 3.6 100 12.6 
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