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ABSTRACT: Air Force Research Lab (AFRL) research efforts to transition cognitive modeling from the laboratory 

to operational environments are finding that available architectures and tools are difficult to extend, lack support for 

interoperability standards, and struggle to scale. This paper describes a component-based cognitive modeling and 

simulation framework that exploits the Discrete Event System Specification (DEVS) formalism to eliminate these 

impediments. Domain specific languages (DSLs) used in the framework facilitate model scale and interoperability. 

The framework and an example DSL called research modeling language (RML) will be discussed. 

 

1. Introduction 

 

AFRL research efforts employing cognitive modeling 

are growing in scale and complexity. Researchers 

contributing to these efforts are struggling to meet the 

challenges of increasing the scale of their models and 

integrating them into software-intensive training 

environments. The struggle has two sources: (1) the 

need to specify detailed knowledge and process 

descriptions in our modeling frameworks; (2) a 

dependence on specialized simulators in our modeling 

frameworks that isolates our models from standards, 

methods, and tools utilized by the larger systems 

engineering community. 

 

An AFRL large-scale cognitive modeling (LSCM) 

research initiative is developing solutions to these scale 

and interoperability challenges based on high-level 

languages for describing cognitive models and 

simulation frameworks supporting them based on the 

Discrete Event System Specification (DEVS) 

formalism (Zeigler, Kim & Praehofer, 2000). This 

paper discusses a cognitive modeling and simulation 

framework that represents our best solution so far. The 

paper begins with an overview of the approaches and 

objectives of LSCM. Then the paper describes the 

actual framework. The remainder of the paper 

describes the research modeling language (RML), one 

of the domain-specific languages (DSLs) supported in 

the framework. This discussion of RML demonstrates 

how cognitive models can be specified in DSLs that 

facilitate scale through abstraction. The discussion also 

explains how RML models are executed in the 

cognitive modeling and simulation framework. 

 

2. Large Scale Cognitive Modeling (LSCM) 
 

The LSCM initiative is seeking to adapt and exploit 

methods and practices from Model Integrated 

Computing (MIC) and advanced modeling and 

simulation (M&S) in order to help cognitive modelers 

increase the scale and interoperability of their models: 

 

1. MIC is being adapted and exploited to facilitate 

DSL development and model/systems integration. 

2. Advanced M&S is being adapted and exploited to 

achieve increased scale and interoperability. 

2.1 Model Integrated Computing (MIC) 

 

The LSCM initiative is researching solutions to the 

scale and interoperability challenges based on Model 

Integrated Computing (MIC), a general modeling and 

systems integration paradigm (Sztipanovits & Karsai, 

1997). MIC facilitates LSCM because it: (1) allows 

cognitive modelers to specify models in DSLs tailored 

to the needs of cognitive modeling; (2) supports the 

composition of these DSLs (Balasubramanian, 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
MAR 2011 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2011 to 00-00-2011  

4. TITLE AND SUBTITLE 
Using Domain-Specific Languages to Improve the Scale and Integration
of Cognitive Models 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory,6030 S. Kent St,Mesa,AZ,85212 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Behavior Representation in Modeling and Simulation(BRIMS), Utah, March 2011 

14. ABSTRACT 
Air Force Research Lab (AFRL) research efforts to transition cognitive modeling from the laboratory to
operational environments are finding that available architectures and tools are difficult to extend, lack
support for interoperability standards, and struggle to scale. This paper describes a component-based
cognitive modeling and simulation framework that exploits the Discrete Event System Specification
(DEVS) formalism to eliminate these impediments. Domain specific languages (DSLs) used in the
framework facilitate model scale and interoperability. The framework and an example DSL called
research modeling language (RML) will be discussed. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Schmidt, Molnár, & Lédeczi, 2007): (3) automates the 

integration of models specified in these DSLs into task 

environments or larger systems (Balasubramanian, 

Schmidt, Molnár, & Lédeczi, 2008); and (4) provides 

automated model-to-model (M2M) transformation 

capabilities that produce executable code artifacts from 

models specified in these DSLs. 

 

2.2 Modeling and Simulation (M&S) using DEVS 

 
The LSCM initiative is also exploring how the Discrete 

Event System Specification (DEVS) formalism 

(Zeigler, Kim & Praehofer, 2000) can be used to 

semantically anchor DSLs. This aspect of LSCM is 

investigating how computationally realizing DSLs in 

DEVS: (1) provides them  with a behavioral semantics 

that can be directly executed in advanced DEVS 

simulators; and (2) allows models specified in them  to 

interoperate with other DEVS and HLA compatible 

components in broader systems-of-systems (Zeigler, 

Mittal, & Hu, 2008). 

 

3. A Component-Based Cognitive Modeling 

and Simulation Framework 

 

As our cognitive modeling ambitions grow, the 

inability to share significant models, to make them 

components of larger system of integrated and 

extended models, amplifies the costs of cognitive 

modeling. To share and integrate our models, we must 

find a way to generally cast them as components in 

larger M&S frameworks. We are developing a 

cognitive M&S framework that will allow modelers to 

define and execute componentized models. 

 

From an architectural perspective, the framework 

consists of net-centric M&S infrastructure based on the 

DEVS formalism. The architecture technically realizes 

a Discrete Event System Specification Modeling 

Language (Mittal, Martin & Zeigler, 2007) in a 

DEVSML stack. From a user perspective, the 

framework consists of a set of DSLs that are 

automatically transformed into the DEVSML and 

executed in a transparent M&S infrastructure. 

 

3.1 DEVS Modeling Language (DEVSML) Stack 

 

An earlier DEVSML stack realized models in Java and 

in a platform independent DEVS Modeling Language 

that used XML as a means of message passing (Mittal, 

Martin & Zeigler, 2007). The model semantics were 

bound together by XML and JAVAML was used to 

translate Java models into the XML. DEVSML is 

based on an EBNF grammar and is supported by a 

DEVS standards-compliant middleware API. The 

middleware enables model execution in a net-centric 

service oriented architecture (SOA). 

 

 
 

Figure 1. Extended DEVSML stack using Model-to-

Model (M2M) and Model-to-DEVS (M2DEVS) 

transformations to enhance model and simulator 

transparency. 

 

Research efforts in LSCM are extending the current 

DEVSML stack so that DSLs can be used to specify 

platform independent models (PIMs) that are devoid of 

any DEVS and programming language constructs 

(Figure 1). The two pieces that have been added to the 

current DEVSML stack to enable the use of DSLs are 

the Model-to-Model (M2M) transformation and the 

Model-to-DEVS (M2DEVS) transformation. To 

capitalize on these new pieces, the user develops 

models in DSLs and employs M2M and/or M2DEVS 

transformations to provide a DEVS execution 

“backend” to the models. The key benefit of these 

additions is that domain specialists need not develop 

DEVS expertise to use the DEVSML stack. 

 

3.2 Domain-Specific Languages (DSLs) 

 

DSLs used in the DEVSML stack are developed using 

the Generic Modeling Environment (GME), the 

centerpiece modeling technology of MIC. To develop a 

DSL, a meta-modeler specifies its abstract and concrete 

syntaxes in GME. The abstract syntax captures the 

concepts, constraints and relationships relevant to a 

domain using abstractions that exploit domain-specific 

knowledge and processes. The concrete syntax allows a 

modeler, acting more like an end user than a 

programmer, to visually/textually specify models that 

people with similar domain expertise can easily 

comprehend. To use a DSL, a modeler configures 

GME so that it supports the use of the DSL and then 

specifies models in the DSL’s concrete syntax. 

 

DSLs developed in GME can be formally related to 

each other by integrating their abstract syntaxes. DSLs 

related in this way can undergo automated model-to-

model (M2M) transformations. These M2M 

transformations can translate a model specified in one 

DSL into a model expressed in another related DSL. 

M2M transformations can also relate DSLs to 



languages that execute in simulators. Model-to-DEVS 

(M2DEVS) transformations available in the extended 

DEVSML stack (Figure 1) translate models specified 

in DSLs into DEVSML. Since DEVSML interoperates 

with DEVS middleware, the M2DEVS transformation 

process semantically anchors DSLs in DEVS and 

makes them executable. M2M transformation can be 

performed in GME and/or in technologies such as 

Xtext/Xpand (see references for information). 

 

3.3 Benefits of an Extended DEVSML Stack 

 

The addition of M2M and M2DEVS transformations to 

the DEVSML stack adds true model and simulator 

transparency to a net-centric SOA infrastructure. The 

transformations yield DEVS models that are platform 

independent models (PIMs) that can be developed, 

compared and shared in a collaborative process. 

Finally, the extended DEVML stack allows DSLs to 

interact with DEVS middleware through an API. This 

capability enables the development of simulations that 

combine and execute DEVS and non-DEVS models. 

This hybrid M&S capability facilitates interoperability. 

 

4. Research Modeling Language (RML) 

 

The research modeling language (RML) is a DSL used 

to specify cognitive models in the DEVSML stack. The 

abstract syntax of RML is influenced by the ACT-R 

cognitive architecture (Anderson, 2007). The concrete 

syntax of RML is designed so that a modeler with 

experience in ACT-R can specify behaviorally 

equivalent models at a higher level of abstraction. 

 

4.1 The Abstract Syntax of RML 

 

The abstract syntax of RML includes concepts, 

constraints and relations that capture the behavior of a 

set of independent modules that each processes a 

different kind of knowledge. Cognitive activity arises 

from interactions between behavioral representations 

and these modules. 

 

Module Role in Cognition 

Audio Localizing and identifying sounds in the 

environment 

Declarative Storing and retrieving information in an 

associative memory 

Motor Controlling the hands 

Speech Producing speech 

Vision Identifying objects in the visual field 

 

Table 1. Modules assumed in RML’s abstract syntax. 

 

4.1.1 Declarative Knowledge 

 

The abstract syntax of RML assumes that declarative 

knowledge is represented as predicates capturing 

relationships between entities. Transient declarative 

knowledge resides in a working memory. Knowledge 

is added to working memory by: (1) environment 

events; (2) active attention; (3) module processes; and 

(4) the direct utilization of procedural knowledge. 

 

Declarative knowledge is maintained in a semantic 

network. Nodes in the network represent the classes, 

properties, and instances constituting a body of 

knowledge. Nodes are connected by edges representing 

relations. Nodes maintain information about: (a) 

retrieval parameters; (b) reference histories; and (c) last 

activation levels. Nodes use ACT-R’s chunk activation 

equations to compute their activations and therefore 

mimic ACT-R’s frequency, recency and memory decay 

effects. New nodes are acquired and existing nodes 

strengthened in such a way that declarative learning in 

the semantic network replicates the behavior of ACT-

R’s declarative memory. Retrievals are achieved 

through ACT-R’s retrieval equations and parallel 

spreading activation in the semantic network. Douglass 

& Myers (2010) describe the design and performance 

of RML’s declarative memory system. 

 

4.1.2 Procedural Knowledge 

 

The abstract syntax of RML assumes that procedural 

knowledge is represented in behavior models that 

explicitly represent cognitive state, context, alternative 

courses of action, and failure. These models are 

formally represented as extended finite state machines 

(EFSMs). EFSMs are a 4-tuple: 

 

EFSM = <S, s0, LSV, TRA>, where 

 

S :  set of states 

s0 :  start state 

LSV :  set of locally scoped variables 

TRA :  set of transitions 

 

A single start state must be included in the set of states 

(S). A number of optional stop states may be included 

in S. The LSV and TRA sets can be empty.  There is 

nothing corresponding to EFSMs in ACT-R; it is not 

possible to explicitly represent behavior organized 

above the level of the production in ACT-R. 

 

In the following descriptions of locally scoped 

variables and transitions, type information is included 

in parentheses.  Definitions and a grammar formally 

describing these types can be found in Appendix A. 

 

Locally scoped variables are a 2-tuple: 

 

LSV = <N, V>, where 

 

N :  name (Variable_Name) 

V :  value (Variable_Value) 



 

LSVs maintain representations of context. For 

example, aspects of declarative knowledge originating 

in the declarative module can be maintained in LSVs 

over the course of cognitive activity. LSVs maintain 

context in the same way key/value pairs represent 

context in ACT-R buffer chunks. 

 

Transitions are a 9-tuple: 

 

TRA = <P, S, D, L, Pr, Cp, F, A, Ps>, where 

 

P :  priority (Integer) 

S  :  source (State_Name) 

D  :  destination (State_Name) 

L  :  label (String) 

Pr :  pre-bindings (Binding) 

Cp :  context patterns (Pattern) 

F :  functions (Function) 

A :  assertions (Assertion) 

Ps :  post-bindings (Binding) 

 

Priority (P): preferences/estimates of utility that 

resolve conflict when more than one transition is 

possible from a state. 

Source (S): the state from which a transition originates. 

A destination (D) is the state to which a transition 

leads. Source and destination indicators are similar 

to state-specific key/value pairs used in ACT-R 

models to maintain behavior across productions. 

Label (L): a description of the function/purpose of a 

transition. Labels are similar to documentation 

strings that can be associated with ACT-R 

productions. 

Pre-bindings (Pr): “name=value” pairs used to: (1) 

ensure that LSVs have a specific value (values are 

constants); or (2) retrieve elements from context 

(values are variables). Pre-bindings are similar to 

left-hand-side key/value constraints in ACT-R. 

Context patterns (Cp): predicate constraints that must 

be met for a transition to be allowed. Patterns can 

be: (1) used to ensure that particular pieces of 

declarative knowledge are in working memory or 

not (predicate patterns contain only constants); or 

(2) used to bind elements related by predicates in 

working memory (predicate patterns contain 

variables). Context patterns are similar to left-hand-

side (LHS) key/value constraints in ACT-R. 

Functions (F): execute calculations involving LSVs 

and context pattern elements. They are provided in 

RML because they significantly increase the 

representational power of state machines. 

Assertions (A): predicates added to working memory 

after a transition has completed. Assertions are 

similar to right-hand-side (RHS) key/value actions 

in ACT-R. 

Post-bindings (Ps): name/value pairs that will add to 

or overwrite LSVs maintained by an EFSM. 

 

4.2 The Concrete Syntax of RML 

 

RML’s concrete syntax provides users with a hybrid 

(visual/textual) language in which they specify the 

declarative and procedural knowledge underlying a 

model. RML’s meta-model includes constraints that 

check the validity of models. These constraints guide 

modeler actions and ensure that the concrete syntax of 

a RML model is correct by construction. 

 

4.2.1 Declarative Knowledge 

 

As previously stated, RML’s abstract syntax assumes 

that declarative knowledge is represented as predicates 

capturing binary relationships between entities. This 

assumption allows RML to accommodate declarative 

knowledge specified in any OWL-compatible ontology 

authoring application. Declarative knowledge can 

currently be specified in GME or Protégé. Douglass & 

Myers (2010) describe the role ontologies play in RML 

and give visual/textual examples of declarative 

knowledge. 

 

4.2.2 Procedural Knowledge 

 

RML’s concrete syntax allows modelers to 

visually/textually specify procedural knowledge 

(EFSMs) in GME. EFSMs are individually specified 

and can be grouped into libraries that facilitate the 

development of behavior model repositories. 

 

 
 

Figure 2. Visual aspects of RML’s concrete syntax. 

The Part Browser provides users with a pallet of states 

and the GME Browser helps them to organize behavior 

models into libraries. 

 

The individual EFSM corresponding to the 

attend_and_comprehend aggregate selected in Figure 

2 is shown in Figure 3. Notice how transition labels 

and state names summarize and document the 

represented behavior at a high level of abstraction; 

effectively concealing the formal details of the EFSM 

from the user. 

 



 
 

Figure 3. EFSM representing behavior that locates, 

attends to, and retrieves declarative knowledge about 

an object. 

 

States are added to an EFSM by selecting one of the 

desired types from GME’s Part Browser and clicking 

where in the EFSM the new state should be positioned. 

Transitions are added to an EFSM by clicking the 

source state and then dragging a connection to the 

destination state. The formal attributes of a transition 

can be edited by selecting it and adding/editing textual 

aspects of its underlying 9-tuple. 

 

 
 

Figure 4. Transition attributes specifying how attention 

is focused onto the Lx/Ly coordinates of a visual 

location. Note how the source (S) and destination (D) 

attributes are missing. They are explicit in EFSM 

diagrams and therefore not textual transition attributes. 

 

4.3 The Semantic Anchoring of RML 

 

Models specified in RML can obtain behavioral 

semantics through two transformation processes. Each 

process semantically anchors RML in a M&S 

framework that supports model execution and 

performance logging. 

 

4.3.1. Transforming RML to Erlang 

 

To explore how concurrency in computer languages 

and multi-core CPUs facilitate scale, we have 

developed a RML translation and runtime environment 

(RTE) in the Erlang programming language (Cesarini 

& Thompson, 2009). The RTE automatically translates 

OWL-compatible ontologies (declarative knowledge) 

and EFSMs authored in GME (procedural knowledge) 

into executable Erlang. Ontologies are translated into 

node and edge descriptions that are used by the RTE to 

configure a semantic network. EFSMs are transformed 

into executable Erlang modules. 

 

4.3.2. Transforming RML to DEVS 

 

To explore how a component-based M&S framework 

facilitates scale and interoperability, we have also 

developed a M2DEVS transformation that anchors 

RML in the DEVSML-based framework. The 

transformation is based on a subset of DEVS called 

XML-Based Finite Deterministic DEVS (XFDDEVS) 

(Mittal, Zeigler, Ho 2008). XFDDEVS is essentially a 

DSL that is semantically anchored in DEVS. 

XFDDEVS allows users to specify finite-deterministic 

state machines. These specifications can then be 

automatically transformed into the DEVS formalism. 

To transform RML EFSMs into DEVS the M2DEVS 

translation process: (1) transforms RML into 

XFDDEVS; and (2) transforms XFDVEVS into DEVS. 

 

passive(inf)

beginLocating (0)

?attend_comprehend

locating(50)

  !get_vis_location

? Encoding_complete

! 

Attended_and_comprehended 

(Id, Lobj, T2) beginAttending(0)

attending(50)

! focus_attention

! focusing_on (lx,ly)

! resource(Visual,busy)

? Vis_location

beginRemembering(0)

remembering(50)

! Exec_retrieval (name=LS, type=Type, C)

! Resouce (Declarative, busy)

remeberingComplete(0)

? retrieval_success

 
 

Figure 5: FDDEVS state machine corresponding to 

attend_and_comprehend. The state labeled “passive” 

corresponds to the start state of the EFSM. 

 

Figure 5 shows a FDDEVS state machine after the 

automated transformation process. The solid lines show 

external events i.e. incoming messages depicted with 

prefix ?. The dotted lines show internal event 

transitions. The generated messages are depicted with a 

prefix !. The timeout for each state are in the 

parenthesis. The FDDEVS state machine in Figure 5 

computationally realizes the RML EFSM in Figure 3 in 

the DEVSML stack and is executed in simulation. 



5. RML Model of the Fan-Effect 

 

The fan-effect (Anderson & Reder, 1999) reflects the 

impact of knowledge complexity on human memory. 

As a person memorizes additional facts involving a 

concept, the amount of time it takes them to retrieve 

any one of these facts increases. A model of the fan-

effect has been developed in RML in order to 

demonstrate its application in cognitive modeling. 

 

The exercise of specifying a RML model of the fan-

effect illustrates two points: (1) a DSL with an abstract 

syntax employing critical aspects of a cognitive 

architecture like ACT-R retains the cognitive fidelity of 

those aspects; (2) a DSL permitting the specification of 

behavior at a level of organization above the 

production supports the development of behavioral 

sub-assemblies. The first point demonstrates that new 

modeling formalisms designed to facilitate scale and 

interoperability need not abstract their users from 

empirically important details. The second point 

illustrates how complexity can be managed through 

hierarchy. Models can be built from sub-assemblies 

that conceal complexity rather than large numbers of 

primitives that expose complexity. 

 

 
Figure 6. EFSM representing behavior that 

comprehends a person, comprehends a location, and 

then identifies a trial as a target or a foil. 

 

The RML fan-effect model consists of two 

communicating EFSMs: 

 

- attend_and_comprehend: (Figure 3) representing 

behavior during a repeated attend/comprehend 

subtask. 

- fan_task: (Figure 6) representing behavior at the 

task level. 

While a complete description of the RML model is 

beyond the scope of this paper, a description of a single 

transition will illustrate the similarity between RML 

transitions and ACT-R productions. The top cell of 

Figure 7 shows the attributes of the transition selected 

(bold) in Figure 6. These attributes are expressed in a 

transition-centric textual DSL developed in Xtext. The 

DSL provides users with an alternative way to 

author/edit RML EFSMs. The bottom cell of Figure 7 

shows a comparable production from an ACT-R model 

of the fan-effect. 

 
transition { 

    priority   2 

    label      "person and location match" 

    src        identifying_target_or_foil 

    dst        stopstate 

    pre_binds  p=P,l=L 

    patterns   {retrieval_success, C, _}, 

               {has_person, C, P}, 

               {has_location, C, L} 

    assertions {respond, {press_key, “k”}} 

} 

(P yes 

    =imaginal> 

       ISA     comprehend-sentence 

       arg1    =p 

       arg2    =l 

    =retrieval> 

       ISA     comprehend-sentence 

       arg1    =p 

       arg2    =l 

    ?manual>    

       state   free    

==> 

    +manual> 

       ISA     press-key 

       key     "k" 

) 

 

Figure 7. RML EFSM transition “person and location 

match” compared to an equivalent ACT-R production. 

 

The RML transition explicitly represents source (src) 

and destination (dst) states. The ACT-R production 

lacks explicit state constraints and therefore either: (a) 

depends on implicit state constraints; or (b) represents 

key press behavior in any context where matching 

chunks of type comprehend-sentence are available in 

the imaginal and retrieval buffers. The RML transition 

uses pre-bindings P and L to ensure that binary 

relations has_person and has_location relate C (an 

event) to P (a person) and L (a location). The ACT-R 

production uses variables =p and =l to similarly ensure 

that the retrieved comprehend-sentence conforms with 

arg1 (a person) and arg2 (a location) represented in the 

imaginal buffer. The RML transition and the ACT-R 

production have functionally equivalent assertions and 

right-hand-side actions. 

 

The EFSM transition process in the RML RTE during 

simulation is based on: (1) the accumulation of match 

bindings when patterns match context (knowledge in 

working memory); (2) the optional augmentation of 

match bindings through functions; and (3) the 

instantiation of assertions with match bindings. As 

transitions occur during runtime, a sequential pattern 



matching process realizes a type of forward chaining. If 

a transition time cost of 50ms and ACT-R’s time costs 

for attention shifts, motor responses, and declarative 

retrievals are adopted during simulation, this forward 

chaining closely matches production firing in ACT-R. 

When the RML model of the fan-effect is simulated in 

either the Erlang RTE or the DEVSML stack, retrieval 

successes, failures, latencies, and task actions precisely 

matching those of the fan-effect model described in the 

ACT-R instructional materials are produced. 

 

6. Conclusions 

 

AFRL research efforts employing cognitive modeling 

are growing in scope. These efforts to transition 

cognitive modeling from the laboratory to operations 

settings are struggling to meet challenges associated 

with: (1) increasing the scale of models; and (2) 

integrating models into software-intensive task 

environments. An AFRL LSCM initiative is 

researching solutions to these challenges based on 

high-level languages (DSLs) for describing cognitive 

models and simulation frameworks supporting them. 

These DSLs allow users to specify models in 

formalisms that use abstractions and re-useable sub-

assemblies to achieve scale. The M&S frameworks 

allow users to simulate models in architecture that 

improves model integration and interoperability using 

the DEVSML stack. 

 

This paper describes RML, a DSL influenced by ACT-

R in which cognitive activity can be explicitly 

represented above the level of the production. RML 

illustrates how DSLs designed to facilitate scale need 

not isolate users from empirically important details. In 

introducing RML, we faced a choice of either showing 

how organizing behavior models above the level of the 

production facilitates scale or demonstrating how 

models executing in the DEVSML stack can be as 

cognitively plausible as an ACT-R model. We opted 

for the latter choice and demonstrated, with a model of 

the fan effect, that RML does not abstract users from 

empirically important details. On-going and future 

research efforts will demonstrate the usability and 

scalability of RML and other LSCM initiative DSLs. 
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Appendix A 
 
Atoms are constant literals that stand for themselves. They start with a lowercase letter. Subsequent characters can be 

uppercase, lowercase, numbers, or '_'. 

 

Variables are used to store the value of simple or composite data types. They start with an uppercase letter. Subsequent 

characters can be uppercase, lowercase, numbers, or '_'. 

 

Tuples are a composite data type. They are used to store collections of items. These items need not be the same type. 

Tuples are delimited by "{" and "}". Elements in a tuple are separated by ",". 

 

Lists are a composite data type. They are used to store collections of items. List items need not be the same type. Lists 

are delimited by "[" and "]". Elements in a list are separated by ",". Lists can be broken into a head and a tail with a 

constructor operator "|".  

 

Additional aspects of RML EFSMs are defined in the following grammar. 

 

Note: 

A  : Exactly 1 A 

A? : 0 or 1 A 

A+ : 1 or more A 

A* : 0 or more A 

 

Base Types 

Number   ->  (Integer | Float) 

Atomic   ->  (Atom | Variable | String | Number | [] | _) 

Composite  ->  (List | Tuple) 

 

States and Variables 

State_Name ->  Atom 

Variable_Name  ->  Atom 

Variable_Value ->  Member 

 

Transitions 

Binding  ->  Variable_Name '=' Member 

Pattern   ->  Tuple ('=' Variable_Name)* Guard* 

Function  ->  (Atomic | Composite) '=' (Case | Comp_Exp | Arith_Exp | Funcall | Atomic | Composite) 

      | Logic_Exp 

Assertion ->  Tuple

 

Expessions 

Arith_Literal  ->  (Funcall | Number | Symbol | Variable) 

Arith_Exp ->  Expression using arithmetic operators, optional parentheses and Arith_Literals 

Comp_Literal  ->  (Arith_Exp | Atomic | Composite) 

Comp_Exp  ->  Expression using comparison operators, optional parentheses and Comp_Literals 

Logic_Literal  ->  (Comp_Exp | Arith_Exp) 

Logic_Exp ->  Expression using logical operators, optional parentheses and Logic_Literals 

 

Miscellaneous 

Funcall   ->  Function '(' (Member (',' Member)*)? ')' 

Member  ->  (Logic_Exp | Funcall | Atomic | Composite) 

Guard   ->  'when' Logic_Exp ; 

CaseTest ->  (Atomic | Composite) Guard? ; 

CaseRes  ->  (Case | Atomic | Composite | Logic_Exp) ; 

Case   ->  'case' (Logic_Exp | Funcall | Var_Name | Atomic | Composite) 'of' 

((CaseTest '->' CaseRes+) (';' (CaseTest '->' CaseRes+))*)? 

      'end' 
 


