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ABSTRACT 

It has been more than two decades since the first practical implementation of a memory 

corruption attack. Despite the fact that there has been much research done on efficiently 

protecting systems from this type of attack, memory corruption attacks still hold the 

lion’s share among all exploitation techniques used against software systems. The 

Windows family of operating systems, as the most used operating system in the world, 

has suffered from memory corruption attacks more than any other system. Through the 

years, Microsoft has introduced various mechanisms for the detection and prevention of 

memory corruption attacks on Windows platforms. This thesis provides a timeline and 

detailed analysis of the memory protection mechanisms introduced in the Windows 

family of operating systems. Using these measures, Microsoft has diminished the number 

of successful exploitations of their software products, yet adoption of these measures by 

independent software vendors (ISVs) developing software for the Windows platform has 

not materialized as expected. The results of this thesis show that while most ISVs 

implement mitigations offered by Microsoft, few applications implement all these 

mitigations thoroughly. 
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I. INTRODUCTION  

A. PROBLEM 

The year 2011 can be characterized as the “Year of the Hack.” Myriad high-

profile companies and government organizations fell victim to hacking attacks. Some of 

these attacks were quite sophisticated, while most were nothing new, in the sense that 

similar attacks had been seen before. The sheer volume of attacks got a lot of coverage in 

the news, which helped the public recognize the importance of computers in everyday life 

and, more importantly, the challenges in securing them. 

Today, almost all organizations try to protect their systems with perimeter 

defenses, such as firewalls, intrusion-detection systems, and antivirus software. All of 

these solutions are intended to keep attackers out, but they may fail badly, as seen many 

times in the past. The problem lies in the fact that all of these solutions deal with 

symptoms rather than the source of the problem. Bad software is the main source of a 

vast majority of computer security problems. However, it is also known that there is no 

real way to write perfectly secure code. There will always be vulnerabilities somewhere 

in the program, and it is impractical to identify and remove them all. 

Nowadays, a different approach to the “buggy” software problem is gaining 

strength in the software-development industry. Major software-development companies 

such as Microsoft and Google are trying to develop and integrate mitigation technologies 

that raise the bar against attackers exploiting their products. The sole purpose of these 

mitigations is to increase the cost and complexity of writing reliable exploits that can 

spread very quickly. These mitigations, in combination with secure software development 

practices, have proven to be successful for prominent software companies like Microsoft 

and Adobe. 

Microsoft, as the leading operating system (OS) supplier, as well as other OS 

vendors, has incorporated most of these mitigation technologies in their products. 

Nevertheless, with the widespread use of the Internet, end-users have started to get 
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software from a variety of sources, including independent software vendors (ISV). 

Depending on an ISV’s incentive, the security level of ISV software might be poor. A 

report by the security firm Secunia, which is limited to the Microsoft Windows platform, 

confirms this statement by showing that, in 2011, the majority of vulnerabilities (79%) 

were found in third-party applications (Secunia, 2012). Secunia’s findings support the 

emerging consensus that attackers have shifted from finding and exploiting 

vulnerabilities in OSs to focusing on third-party applications. As a result, today we have a 

significant problem in ensuring the security of third-party applications. 

B. RESEARCH OBJECTIVES 

Most of the malicious attacks that compromise the security of end systems exploit 

low-level programming errors, which are called vulnerabilities, in target programs. 

Attackers exploit vulnerabilities such as stack overflow and heap overflow to launch 

memory corruption attacks that enable them to control the target program, and 

subsequently the target end system. In the last decade, a wide range of defense 

mechanisms against memory corruption attacks has been proposed, and some were 

adopted by the industry. The purpose of this thesis is to present: 

• An overview of the most common memory corruption vulnerabilities found in 

software and their exploitation mechanisms 

• Principal defense mechanisms proposed by either academia or industry 

against memory corruption attacks 

• A detailed look at the defenses implemented by Microsoft 

• An analysis of popular third-party applications for their implementation of 

defenses offered by Microsoft 

C. ORGANIZATION OF THE THESIS 

This thesis is organized as follows. Chapter II familiarizes the reader with the 

fundamentals of memory corruption vulnerabilities, attacks, and defenses. Chapter III 

provides a detailed look at the defenses, or mitigations, offered by Microsoft in their OSs 
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and development suites. Chapter IV presents analysis of popular third-party applications, 

for adoption of these defenses and discussion of the findings. Finally, Chapter V 

summarizes the basic insights achieved, the significance of the study, and 

recommendations. 
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II. BACKGROUND 

A. PRELIMINARY 

1. Processes 

A process is an instance of a program running concurrently with other programs 

on a computer. These programs are mostly stored on disk in binary form, which is called 

an executable image, and these images include instructions and data. The steps taken 

from compiling a program from source code to loading its image from disk to memory 

(for execution) can be seen in Figure 1.  

 

Figure 1.   Compile–link–load stages for running a program (a process) 

Basically, a compiler transforms source code written in a high-level language into 

machine language that can be executed by processors.1 The output of the compilation is 

called an object file. The object files generated by a compiler are combined by a linker to 

produce a single, executable file. In the Microsoft Windows family of OSs, the standard 
                                                 

1 Assembler is considered as part of the compiler. 
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executable file format is called portable executable (PE) format. When a file is executed, 

the binary file in PE format is read by the Windows loader into memory and the OS 

passes control to the process. 

At any time, there are multiple processes running on a computer. Modern 

multitasking operating systems schedule processor time among these processes. In order 

to switch between different processes, the OS keeps track of the last instruction executed 

by each process. This is called program counter or instruction pointer (IP). When a 

process is stopped, its IP is saved. When this process regains processor next time, its IP is 

used to resume execution where it left off. 

2. Memory Layout of a Process 

Any process running on a computer has its own address space, which includes 

that process’ instructions and data. From process’ point of view, it has access to entire 

physical memory, but in reality, the OS shares this limited resource among processes via 

virtual memory management. Figure 2 shows a typical layout of process’ segments in 

memory. 
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Figure 2.   Typical memory layout of a process 

The address space of a process is divided into logical segments with different 

access permissions. These segments are defined in executable files. The text segment 

holds instructions of a process. It is defined as read-only so as not to allow the process to 

modify its instructions at runtime. Data and bss segments both hold static variables of the 

process. To save space on disk, two separate segments are defined. The data segment is 

used for initialized data and the bss segment is for uninitialized data. Only the size of the 

bss segment is stored in the binary image.  

A stack is a “last in, first out” (LIFO) data structure that allows two basic 

operations: push and pop. The push operation puts a new value on the top of the stack, 

and the pop operation removes the most recent value from the stack. The stack segment 

holds automatic variables, control-flow information, exception records, and other 

temporary information required for nesting of functions. The stack segment grows 
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downwards, towards lower memory addresses. More information about the stack will be 

given in the section, “Functions and the Stack.” 

The heap segment is where dynamic variables are stored. These variables can be 

allocated and released at runtime. Unlike stack segments, heap segments grow upwards, 

towards higher memory addresses. 

Segment Name Permissions Description 

text Read-Execute Contains instructions of the process 

data Read-Write Contains initialized static variables of the process 

bss Read-Write Contains uninitialized static variables of the process 

stack Read-Write Contains automatic variables 

heap Read-Write Contains dynamically allocated variables 

Table 1.   Memory segments in a process 

3. Registers  

Registers are small amounts of memory directly connected to the processor. They 

provide the fastest way to access data. Machine instructions use registers as variables, 

encoded as part of the machine instructions, which are defined in the instruction set of the 

processor. For the purposes of this thesis, registers can be categorized into four groups: 

• General purpose  

• Segment  

• Instruction pointer  

• Other 

General purpose registers are used for holding variables for mathematical or any 

other operation. They can hold data, address, offset, index variable, etc. This group of 

registers includes EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP. On a 32-bit 

processor, these registers are 32 bits in size, but 16-bit and 8-bit access also exists for 

backward compatibility. Table 2 shows all access methods for general purpose registers 

and their envisioned usage. 

32 bit 16 bit 8 bit (high) 8 bit (low) Description 
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EAX AX AH AL Accumulator 

EBX BX BH BL Base index (for use with arrays) 

ECX CX CH CL Counter 

EDX DX DH DL Data/general 

ESI SI   Source index for string operations 

EDI DI   Destination index for string operations 

EBP BP   Base pointer for the current stack frame 

ESP SP   Stack pointer 

Table 2.   General Purpose Registers 

Among these general purpose registers, ESP and EBP deserve a closer look. ESP 

points to the top of the stack where the next stack operation will take place. Its value is 

changed every time an instruction directly or indirectly manipulates the stack. By 

contrast, EBP keeps the base address of a function’s stack frame and is heavily used for 

accessing automatic variables defined in the scope of the function. The next section 

covers functions and their inner workings in more detail. 

Segment registers, such as CS, DS, SS, ES, FS, GS, are used to keep track of 

segments and allow backward compatibility for real-mode operation. These registers are 

all 16-bit in size. The code segment (CS) must be set to an executable segment, and the 

stack segment (SS) must be set to a writable data segment. The others are all used for 

data segments. 

The instruction pointer register, extended instruction pointer (EIP), contains the 

address of the machine instruction that will be executed next. If this register is 

successfully overwritten, the flow of execution can be controlled. It is incremented 

automatically after fetching a new instruction, but this sequential nature can be altered by 

machine instructions like subroutine calls, jumps, branches, and returns.  

There are many other registers with different functionalities such as control 

registers, test registers, debug registers, flags register, etc. For example, the extended 

flags (EFLAGS) register comprises 32 bits showing the current state of the processor. 
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General purpose registers and the instruction pointer register are the main registers 

discussed in this thesis. 

4.  Functions and the Stack 

Functions are the building blocks of any programming language. They allow the 

programmer to break a complex task into smaller, manageable subtasks. Programs are 

composed of functions, each of which has a specific task. The linear control flow of a 

process can be altered by calling functions. A function can be called from anywhere in 

the program and, after performing, returns to the next instruction following the call 

instruction.  

 To return back to the point where a function is called, the processor needs to 

remember the address that follows the call instruction. Function calls also can be 

cascaded, which requires the processor to remember the return addresses. The stack is 

used to keep these addresses. When a process calls a function, it automatically stores the 

value of its EIP on the stack, and restores it after execution finishes in the function. This 

enables the process to restore its original control flow. 

Functions require memory space to store temporary variables. These local 

variables are also stored on the stack. At the start of each function, the required amount of 

space for local variables is allocated on the stack. If the functions accept arguments, they 

are also passed to the function using the stack. Each function has a reserved area 

consisting of its arguments, local variables, and all information needed to restore the 

stack to its original form when the function finishes execution. All this information is 

called the stack frame. Figure 3 shows a function’s stack frame. 
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Figure 3.   Example stack frame 

Local variables and arguments should be accessible throughout a function’s 

lifetime. ESP cannot be used for this purpose because its value changes every time the 

program uses the stack; therefore, the base pointer (EBP) is used. When a function starts, 

it first saves the previous value of EBP to the stack, and then copies the value of ESP to 

EBP. After this point, variables and arguments are accessed relatively, using EBP. The 

instruction block for setting up EBP and allocating space for local variables on the stack 

is called the function prologue. Likewise, the instruction block used to release local 

variables, restore the stack pointer, and return from the function is called the function 

epilogue. The basic code block in the prologue and epilogue of a function is displayed in 

Figure 4. 
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Figure 4.   Prologue and epilogue of a function 

B. MEMORY CORRUPTION VULNERABILITIES 

1. Buffer Overflows 

Buffer overflow vulnerabilities are the most common programming errors 

exploited by malicious parties in the last decade (Mitre, 2012). It was first mentioned as 

early as 1972 (Anderson, 1972), but the first significant exploitation of a buffer overflow 

vulnerability dates back to 1988, when the Morris worm took advantage of a buffer 

overflow in the finger2 service (Spafford, 1989). Despite research and protections 

implemented by software developers over the years, buffer overflows are holding ground 

as the most widely exploited vulnerability. 

A buffer is a region of memory with a specific size, used for keeping data. If the 

data written to a buffer exceeds its size, it overflows to adjacent memory locations, where 

there may be other data, metadata, or program control-flow data. When this metadata or 

control-flow data is overwritten, it may be possible to redirect the program’s execution 

flow. Buffer overflow vulnerabilities are called after the memory segment where these 

buffers are stored. 

                                                 
2 Finger service is a service that dispenses information about the set of users logged into a UNIX-

based computer system. 
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a. Stack Overflows 

Stack overflow is the first type of buffer overflow vulnerability that caught 

public attention, and is exploited widely in the wild. Typically, stack overflows occur as a 

result of improper bounds-checking by string-handling functions in the C and C++ 

languages. Figure 5 shows a very basic piece of code that is vulnerable to stack overflow. 

There are various ways to exploit stack overflow vulnerabilities (Pincus & Baker, 2004).  

 

Figure 5.   Basic stack overflow vulnerability 

(1) Stack Smashing. This technique involves the overwriting of the 

return address (saved EIP) on the stack with a value supplied by the malicious user. 

Typically, the malicious user also supplies a piece of code, called shellcode3 or payload, 

as a part of the buffer. When the function returns, control flow is redirected to the address 

intended by the malicious user, and the shellcode is executed. Stack smashing was first 

introduced by Aleph One in his classic article, “Smashing the Stack for Fun and Profit” 

(Aleph One, 1996). 

(2) Off-by-One Overflow. An off-by-one overflow happens when a 

stack buffer overflows just one byte into the saved frame pointer (EBP) on the stack 

(Klog, 1999). Mostly this happens as a result of an overlooked NULL byte appended as 

the last character in a string operation, misunderstanding of how array indexing works, or 

misuse of operators (Dowd, McDonald, & Schuh, 2006). For example, if the saved frame 

pointer on the stack holds the value 0xABAD1DEA and there is an off-by-one overflow 
                                                 

3 This piece of code is called shell code because it is often used to spawn a shell (access to the 
computer through a command-line interface). 
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vulnerability in the current function, when this function restores the value of the previous 

frame pointer in its epilogue, an attacker can overwrite the last byte with NULL, making 

the value of restored frame pointer 0xABAD1D00. This modified address lies in the 

range of the overflowed buffer because the stack grows towards lower addresses. When 

the caller function wants to return, it uses the modified frame pointer to access its stack 

frame, so it ends up restoring the instruction pointer from the overflowed buffer, which 

includes attacker-supplied values. There are two restrictions for this technique. First, this 

approach is valid if the processor architecture is little endian.4 Second, the buffer should 

be next to the saved frame pointer on the stack. 

(3) Return-to-library. Return-to-library is a useful exploitation 

technique where the vulnerable program has some form of memory protection that does 

not allow a segment of memory to be both writable and executable. A common approach 

in this kind of situation is to overwrite the saved instruction pointer with the address of a 

function that resides in a library that is already loaded into the program’s address space. 

There are caveats to this approach. The address of the function should be known 

beforehand, and the arguments needed by the called function should also be supplied on 

the stack. Generalizing this approach enables the chaining of useful functions, called one 

after another, allowing the implementation of more complex tasks. This exploitation 

technique is mostly referred as “return to libc” because it was first introduced in Linux 

systems, and functions in the libc, the standard C library loaded into nearly every Linux 

program, were used in the early implementations of this technique (Solar Designer, 

1997). 

(4) Pointer Subterfuge. Pointer subterfuge is the general name 

given to exploitation techniques that involve overwriting of a pointer stored on the stack, 

other than the saved instruction pointer. Function pointers, data pointers, exception 

handler pointers, and virtual pointer (VPTR) are some of these pointers that have been  

 

exploited through years. These techniques were developed by attackers in response to 

                                                 
4 A little endian machine stores the least significant byte first. 
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integrity-checking mechanisms (which will be mentioned later) introduced against stack 

smashing attacks. 

Function pointers are used in C-like languages to simplify code by 

providing a simple access to a function and executing it based on runtime values. If a 

function pointer is stored as a local variable following a buffer on the stack, an attacker 

can trigger an overflow to modify the value of this pointer. Subsequently, any call to this 

function pointer will transfer control flow to the place of the attacker’s choice. This 

technique is first described by Matt Conover in his paper on heap overflows (Conover, 

1999). 

Another variation of function-pointer overwrite techniques is to 

overwrite the VPTR field stored in an object in memory (Rix, 2000). C++ stores a table 

of virtual function pointers and accesses this table using VPTR. These pointers are used 

for implementing dynamic binding at runtime, which enables polymorphism. An attacker 

can change the value of VPTR using a buffer overflow and make it point to any other 

place in memory. This allows the attacker to take control of execution when the next 

virtual function is invoked using this table. VPTR overwrite can also be possible on the 

heap if the object is created at runtime. 

The Windows family of OSs uses structured exception handling 

(SEH) mechanism for handling exceptions that occur as a result of any event outside the 

normal execution of a program. Exception handlers are defined in a program for 

resolving these exceptions and avoiding unexpected termination. Also, these handlers are 

chained in a linked list structure, and when an exception occurs, they are called in orderly 

fashion until one of them resolves the problem. The pointers for this mechanism are 

stored on the stack, so they are susceptible to buffer overflows. This technique is also 

called exception-handler hijacking (Litchfield, 2003). 

Finally, attackers also make use of data pointers for exploiting 

buffer overflows. If an attacker overflows into a data pointer, and this pointer is used as a 

target in a subsequent assignment, the attacker can modify any memory location 

arbitrarily (Bulba & Kil3r, 2000). The data-pointer-overwriting technique is mostly used 

in combination with other techniques discussed for exploitation of buffer overflows. 
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b. Heap Overflows 

The heap is the other memory region where buffer overflow vulnerabilities 

are exploited. Heaps are used by processes to store their dynamic variables and data with 

varying sizes at runtime. Unlike the stack, heaps grow towards higher memory addresses. 

In Windows, each process has a default heap, but there can be more than one heap 

present in any process. The heap manager, which is part of the OS, provides functions, 

such as allocating and releasing memory, for managing heaps. Memory allocations from 

the heap can be done using HeapAlloc in Windows API, malloc in C, and new in 

C++. Similarly, memory can be released using the HeapFree, free, and delete 

function calls, respectively. 

The heap manager divides heap segments into contiguous chunks that 

include both user and metadata. This metadata includes size, location, and other 

management information. Figure 6 shows how used and free heap chunks look. The heap 

manager keeps track of the allocated and free chunks with the help of this metadata 

stored next to user data. When a chunk of memory is allocated, a pointer to that chunk is 

returned to the caller. Size fields in allocated chunks allow the heap manager to walk 

forward and backward through chunks in the heap segment. When the process releases an 

allocated chunk of memory, this freed chunk is appended to a doubly linked list of free 

chunks with the same size, and pointers in the metadata of the chunk are updated to 

reflect this change. The heap manager uses the pointers in the chunks and doubly linked 

lists for tracking free blocks of memory with the same size. As more allocations and 

releases occur through the process’ lifetime, these pointers and lists are updated 

accordingly. Lastly, the heap manager does not allow two contiguous free chunks in 

memory to avoid fragmentation. If two free chunks come next to each other, they are 

coalesced into a larger free chunk. This consolidation is called unlinking. 
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Figure 6.   Free and in-use heap chunks 

The first implementations of heap overflow attacks targeted application 

data and function pointers kept on the heap (Conover, 1999). These attacks were very 

similar to their stack counterparts. Later, heap overflow attacks targeting heap metadata 

and the specifics of dynamic memory allocators were introduced (Solar Designer, 2000). 

This section will examine the details of the latter one.  

By overflowing a buffer on the heap, an attacker can overwrite the 

metadata of the adjacent chunk. Heap-based buffer overflow vulnerabilities can be 

exploited when a chunk of memory is freed, and heap manager tries to update the doubly 

linked lists of free chunks. At this point, with the help of forced unlink operation, heap-

based buffer overflows allow the attacker to write an arbitrary value anywhere in 

memory. Potential targets can be function pointers, pointers to exception handlers, etc. 

Figure 7 illustrates a basic piece of code that is vulnerable to heap-based buffer overflow. 
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Figure 7.   Basic heap overflow vulnerability  

2. Format String Vulnerabilities 

Format functions, the printf family of functions, are used in C like languages 

for generating formatted output. These functions support a variable number of arguments, 

so they depend on the format string, which is also an argument, in deciding how many 

arguments they should expect. The format string is exactly copied to output unless a “%” 

character is encountered. This character, followed by a format specifier, allows the 

format functions to generate output according to the specifier. When a format specifier 

requires an argument, it is found on the stack. Some of the format specifiers used to 

exploit format string vulnerabilities are as follows: 

• “%s” prints a string to output, so format function expects a pointer to a 
char on the stack 

• “%d” prints the argument on the stack in decimal integer format 

• “%x” prints the argument on the stack in hexadecimal format 

• “%n” writes the number of bytes printed to output so far to a memory 
location pointed by a pointer, which is supplied as an argument on the 
stack 

• “%p” expects a pointer as an argument on the stack, and prints it in 
hexadecimal format 

A format string vulnerability occurs when format functions are used improperly 

by programmers, for example, (printf(buffer) instead of printf(“%s”, 
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buffer), where buffer is a user-supplied string). This allows an attacker to control 

what is read from the stack as the argument and write any value to any memory location 

(Scut, 2001), so an attacker can exploit format string vulnerabilities to control execution 

flow by overwriting a function pointer or any other interesting memory location. 

3. Integer Errors 

Integer errors (Blexim, 2002) are not directly exploitable vulnerabilities, but they 

can be used in combination with the other techniques to achieve exploitation of the 

program. There are two kinds of integer errors: integer overflows and integer sign errors. 

An integer overflow occurs when an integer variable is assigned a value that is 

larger than its upper limit. According to standard ISO/IEC 9899:1999, when this happens, 

the value is set to modulo of the variable with MAXINT+1 (i.e., 65536 + 2, will store the 

value 1 in an unsigned 16-bit short integer). This new value of the variable may become 

too small, which may lead to other vulnerabilities discussed above. In a scenario where a 

program allocates a buffer on the heap using the integer overflow variable, this may lead 

to heap-based buffer overflow vulnerability, because the length of the buffer becomes too 

small for holding the user-supplied input. An attacker can take control of the program by 

first overflowing an integer variable and then exploiting the newly created vulnerable 

situation. 

In C-like languages, integers are interpreted as signed or unsigned. Unless 

explicitly stated otherwise, all integers are signed. Implicit casting is applied to a signed 

integer variable when an unsigned variable is expected, or vice versa. An integer sign 

error occurs because of this implicit casting operation and may lead to exploitation of a 

program. For example, an attacker may pass a signed integer with a negative value as an 

argument to a function that will use it in a memory copy operation. This negative value 

can pass any maximum size tests before it is used, but it will be implicitly type casted to 

unsigned integer for the memory copy operation (e.g., memcpy in C is used to copy the  
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contents of memory from one location to another, and it expects an unsigned value as its 

size parameter). This situation may cause buffer overflow vulnerability on the heap or 

stack, and an attacker can use it to take control of the program. 

4. Dangling Pointers 

Pointers are special data types holding memory addresses as their value, which 

are used for accessing the value kept in that memory location. Dangling pointers is the 

general name given to pointers that do not point to a valid object in memory. This 

happens as a result of not automatically updating the pointers when the memory location 

they point is no longer valid. There are two basic types of dangling pointer 

vulnerabilities, based on the use of already freed memory location. 

The first type of vulnerabilities occurs because of the reuse of a dangling pointer 

that points to a freed memory location. The attacker can validly change the contents of 

the memory location after it is freed in the first place, so that later, when the dangling 

pointer is dereferenced (the pointer is used for accessing the contents of the memory 

location it points to), the attacker can access what he put in that memory location. For 

example, the dangling pointer may be a pointer to a function in a freed C++ object. If the 

attacker manages to allocate the same memory location and put shellcode to this very 

location, when the dangling pointer is dereferenced, it will jump to the attacker’s 

shellcode. 

The other dangling pointer vulnerability occurs when a released memory location 

is released a second time. This type of dangling pointer vulnerability is mostly called a 

double-free vulnerability in the literature (Dobrovitski, 2003). For example, if a program 

releases an object stored on the heap, a freed chunk is added to the free chunks list by the 

heap manager. If this memory location is erroneously freed again, the heap manager will 

add the chunk to the same list again, thus causing the chunk to point to itself in the list. In 

this situation, an attacker can force the program to allocate this double-freed chunk and 

overwrite pointer fields of the chunk with attacker-supplied data, because it is allocated. 

Then, a second allocation request with the same size will cause the heap manager to 
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return the very same chunk. This time, the unlink operation will use the pointer fields, 

assuming the chunk is free, but these fields will contain what was put in by attacker, 

allowing the attacker to overwrite any memory location with any value. 

There are two other variations in dangling pointers: uninitialized reads and invalid 

frees. These errors can also cause corruption of memory and allow an attacker to take 

control of execution flow. Uninitialized-read vulnerabilities occur when a program reads 

from newly allocated objects that contain data from previous allocations. On the other 

hand, the invalid-free type of vulnerability is the result of a program trying to release a 

memory location that is not allocated in the first place. In this thesis, these two types of 

vulnerabilities are not covered in detail. 

C. DEFENSES AGAINST MEMORY CORRUPTION VULNERABILITIES 

In the previous section, the basics of various memory corruption vulnerabilities 

and their exploitation techniques were discussed. During the past decade, numerous 

defense mechanisms against memory corruption attacks have been proposed by both 

academia and the security industry. Some of these mechanisms focus on removing the 

vulnerabilities in the first place, by using safe languages, safe libraries, static analyzers, 

etc., while others try to prevent the successful exploitation of the related vulnerability, 

such as a non-executable stack and stack canaries, or make the attacker’s job harder, as 

seen in address space or instruction-set randomization. This section will provide a list of 

notable defense mechanisms organized into categories. An overview of each mechanism 

and its limitations will be discussed briefly.  

1. Safe Languages 

Most of the memory corruption vulnerabilities are found in the code written in 

unsafe languages like C and C++. There are lots of security pitfalls inherent in these two 

languages, which can make the programs written in these languages vulnerable to 

exploitation. While the use of safe languages like C# and Java has increased considerably  

 

 



 

 
22 

since their introduction, C and C++ remain popular for various reasons, such as 

performance (Tiobe, 2012). Also, there is much legacy software written in these 

languages and still deployed in organizations.  

Safe languages eliminate memory corruption vulnerabilities by disallowing 

pointer arithmetic, unsafe memory operations, memory deallocation, etc. Programmers 

are not given explicit control over the management of dynamic memory (i.e., the garbage 

collection mechanism only deallocates memory when there are no references pointing to 

it, thus preventing dangling pointers from referring to deallocated memory). Safe 

languages also employ strong typing, which restricts the operations that attempt to 

disregard data types. Type safety can be provided at compile time (static typing) or run 

time (dynamic typing) by safe languages. 

Instead of switching to a new language, programmers can take advantage of safe-

language features by using a C dialect. These dialects prevent memory corruption 

vulnerabilities while retaining C’s syntax and semantics. Cyclone (Jim, et al., 2002) is 

one of these dialects, introduced as a safe alternative to the C language with the caveat of 

performance overhead. Cyclone implements garbage collection instead of manual 

memory management. 

2. Static Analysis 

Programmers can prevent memory corruption vulnerabilities before the 

deployment of the software. Static code-analysis tools examine the source code of a 

program, either lexically or semantically, for finding potential vulnerabilities. Since these 

tools lack runtime information, their coverage is limited. A more important problem with 

these tools is the high false-positive rate.  

Lexical analyzers do not try to understand the semantics of the code. They parse 

the source code and try to find suspicious constructs that may lead to vulnerability. This 

simple analysis is only capable of discovering basic vulnerabilities. Flawfinder  
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(http://www.dwheeler.com/flawfinder/) is a powerful lexical analysis tool that supports 

both C and C++. It keeps a signature database of well-known problematic constructs in C 

and C++ languages and checks the source code against these signatures. 

The second type of static analyzers checks the source code based on the semantics 

of the program. They consist of two modules: a front-end parser and a back-end analyzer. 

The parser creates a model from the source code and the analyzer employs formal 

methods or heuristics to find vulnerabilities in the model. The coverage of semantic 

analyzers is generally better than their lexical counterpart, and they can find more 

complex and obscure problems. BOON, BLAST, and PolySpace for C/C++ are some 

well-known examples for semantics-based static analyzers. 

3. Compiler Extensions and Libraries 

Early solutions to memory corruption attacks focused on preventing specific 

exploitation methods. They were not general solutions to the bigger problem. Most of 

these defense mechanisms came in the form of compiler extensions or runtime libraries 

and were limited to only providing defense against a specific exploitation technique only. 

StackGuard (Cowan, et al., 1998) is a good example of this approach, as it only 

protects programs from stack smashing attacks. It inserts a canary5 value between ESP 

and EIP on the call stack and verifies the canary’s integrity before the function returns. If 

this value is changed, StackGuard assumes the saved EIP on the stack is overwritten by 

an overflow, and terminates the execution of the program immediately. Another similar 

integrity-based concept was offered by Stack Shield (Vendicator, 2000). In this 

mechanism, the saved EIP is copied into a table in the data segment (in the function 

prologue) and it is copied back to the stack at function exit (in the function epilogue). 

These two mechanisms prevent only buffer overflow attacks that target the saved EIP, so 

there are various ways to bypass these defenses (Bulba & Kil3r, 2000).  

                                                 
5 The value on the stack is named after canaries in coal mines which are more sensitive to toxic gases 

and used as biological warning system by miners. 
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As indicated before, there may be other valuable targets on the stack, such as 

function pointers and data pointers, which can be overwritten in a memory corruption 

attack. ProPolice (Etoh & Yoda, 2001), an enhancement to StackGuard’s concept, 

overcomes this limitation by introducing the reordering of local variables stored on the 

stack. With ProPolice, array variables are stored at the highest addresses on the stack 

frame to prevent an overflow into other local variables. It also protects the integrity of a 

function’s arguments by making a copy and relocating them with local variables. 

Microsoft uses the defense techniques discussed so far in its Visual Studio C++ compiler 

by providing a compiler option (/GS), which will be discussed comprehensively in the 

next chapter.  

Libsafe and Libverify are two library-based solutions suggested against buffer 

overflows on the stack. These libraries are loaded dynamically at runtime, so they do not 

require recompilation of the program unless statically linked. Libsafe intercepts every call 

to vulnerable library functions, such as strcpy, and replaces these calls with safer 

alternatives, which guarantees that a buffer cannot exceed stack frame boundaries. 

Libsafe also provides protection against format string attacks by rejecting any attempts to 

overwrite saved EIP using a “%n” specifier. By contrast, Libverify uses a technique 

similar to that of Stack Shield, but the canary values are stored on the heap. 

A more general approach to memory corruption attacks was proposed by 

PointGuard (Cowan, Beattie, Johansen, & Wagle, 2003). Attackers are mostly interested 

in overwriting pointers because they give the most advantage for controlling execution 

flow. PointGuard’s protection consists of encrypting the pointer values before they are 

stored in memory and decrypting them just before they are copied to registers. The 

encryption scheme is simple linear XOR operation, so it is possible for an attacker to 

brute force the overwriting of the least significant byte and to succeed in redirecting 

execution flow to an intended address (Alexander, 2005). Microsoft provides APIs in its 

latest OSs to encode and decode pointer values at the discretion of the programmer. 

Buffer overflows are not limited to the stack, so there are various defenses offered 

against heap-based buffer overflows. ContraPolice (Krennmair, 2003), the heap 
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counterpart of ProPolice, implements canary-based defenses on the heap, but again, this 

kind of solution protects only the integrity of inline heap metadata. There may be other 

valuable targets for attackers stored in the data portion, which is not protected by these 

mechanisms (such as function pointers). Heap canaries are also used by the Windows 

family of OSs. 

FormatGuard (Cowan, Barringer, Beattie, & Kroah-Hartman, 2001) is a library 

extension that provides safer alternatives to the printf family of functions, to protect 

programs from format string attacks. First, it counts the number of arguments passed to 

the functions and then compares this number with the number of “%” directives in the 

format string. If the latter is more than the number of provided arguments, it is assumed a 

format string attack attempt, and the execution of the program is aborted. 

4. Randomization-Based Defenses 

The success of diversity in retaining robustness in biological systems inspired 

security researchers to use the same concept to prevent IT monoculture6 and create more 

secure computer ecosystems (Forrest, Somayaji, & Ackley, 1997). Diversification in 

software systems is needed to decrease the number of common vulnerabilities, which in 

turn decreases the probability of large-scale exploitation of these vulnerabilities. 

Diversity can be introduced into software systems by building software from functionally 

same but structurally different components. In the context of memory corruption attacks, 

randomization is widely used to introduce diversity into programs in order to make 

exploitation of vulnerabilities harder for the attacker. Randomization can be applied to 

memory layout, instruction set, or data space.  

Most of the exploitation techniques used in the wild depend on overwriting return 

addresses or function pointers with a known address that mostly points to the shellcode 

supplied by attackers. Address space layout randomization (ASLR) prevents these attacks 

by making prediction of these hard-coded addresses more difficult. ASLR assigns 

                                                 
6 IT monoculture is a result of having large number of software instances running in a computational 

ecosystem with little or no diversity. 



 

 
26 

different base addresses to key memory regions in the process’ address space, such as 

executable image, libraries, stack, heap, etc., for each execution of the program. ASLR 

also protects programs from return-to-library attacks because the base addresses of 

libraries are randomized as well. ASLR was first implemented as a part of PaX project – 

a security patch for the Linux kernel (PaX, 2001). Microsoft has supported ASLR since 

2007. The effectiveness of ASLR depends on the entropy of randomized base addresses. 

Brute-force guessing attacks were shown to be successful against low entropy offered by 

ASLR defenses on 32-bit systems (Shacham, et al., 2004). ASLR is also susceptible to 

information-leakage attacks, such as attacks exploiting format string vulnerabilities. Heap 

spraying is the most recent technique for evading ASLR defenses. Spraying the heap with 

copious amounts of large heap objects containing malicious code would increase the 

attacker’s chances of redirecting execution into one of these objects and evading ASLR. 

Instruction set randomization (ISR) is another mechanism that introduces 

diversity into programs. ISR prevents attacks that try to inject malicious code into a 

program’s address space. The idea behind ISR is to provide every process its own 

instruction set. An attacker needs to know in advance which instruction set is used by a 

target process, in order to inject malicious code to the process’ address space. Process-

specific instruction sets are mostly generated using encryption. Instructions are kept 

encrypted while in memory and decrypted right before they are executed. XOR 

encryption, which is not a strong encryption scheme, is mostly used for performance 

reasons in different ISR implementations. The main problem in these implementations is 

poor performance, because they are mostly emulator-based solutions, but this can be 

surpassed by hardware support. Since every process has its own instruction set and 

encrypted code, shared libraries become another problem point for ISR (Barrantes, 

Ackley, Palmer, Stefanovic, & Zovi, 2003). 

A third type of randomization technique, inspired by PointGuard, randomizes data 

stored in program memory (Bhatkar & Sekar, 2008). Unlike PointGuard, which only 

protects pointer data, data space randomization (DSR) randomizes all types of data in 

memory. Data in memory is protected by encrypting (XOR) with random masks. Both 
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control and non-control data attacks can be prevented with DSR, but this requires 

masking and unmasking operations for each memory access, which degrades 

performance. 

5. Non-Executable Memory 

The attackers’ ultimate goal in most of the memory corruption attacks has always 

been to execute malicious code injected into target-system memory as part of these 

attacks. To prevent attacks involving code injection, various defense mechanisms have 

been proposed to separate writable and executable portions of memory. These defenses 

block any attempt to execute code in writable memory, thus rendering code-injection 

attacks ineffective. Non-executable memory protections can be divided into two groups: 

software (emulation) based and hardware based. 

Processors architectures like Harvard and Burroughs (tagged architecture) 

separate program and data portions of memory at the hardware level, so the processor can 

execute instructions from program memory only and can only write data in data memory. 

Memory corruption attacks that inject code into the data portion of memory and execute 

it are not applicable in these architectures. On the other hand, most commodity computer 

systems today use von Neumann architecture, which stores programs and data in the 

same memory. Thus, malicious code injected into data memory (e.g., the stack or heap) 

can be executed in computers supporting this architecture. Figure 8 shows the difference 

between Harvard and von Neumann architectures. The NX (No eXecute) bit is introduced 

in von Neumann architecture-based processors to prevent execution of code from the data 

portion of memory. An OS running on a processor that supports this feature can mark any 

portion of memory as writable or executable (but not both) at page level. 
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Figure 8.   Von Neumann vs. Harvard architectures 

Prior to NX bit support from processor manufacturers, a few software-based 

solutions were proposed to emulate this feature. ExecShield (van de Ven, 2004) and 

PaX’s PAGEEXEC (PaX, 2001) are the two widely accepted solutions that provide page-

level, non-executable memory protection for processors lacking NX-bit support. They 

both make use of segment limits feature in these processors to separate virtual memory 

into executable and non-executable halves. 

There are two problems in using non-executable memory defenses. First, some 

programs (e.g., JIT compilers, video encoders) depend on generating code at runtime and 

executing it. They use the stack or heap for storing code generated on the fly, and execute 

code from these memory portions, which are designed for data. This is exactly the 

opposite of what non-executable memory defenses try to accomplish. The second 

problem is return-to-library attacks, where the attacker does not inject code, and instead 

executes library functions in a chained fashion to achieve his goal. Non-executable 

memory defenses fall short in attacks involving code-reuse techniques, such as return to 

library. Return Oriented Programming (ROP) (Shacham H. , 2007) was introduced as an 

extension to return-to-library attacks and showed that it is possible to evade non-

executable memory defenses by chaining sequences of instruction blocks ending with 

“RET” instructions. These instruction sequences, which perform useful actions for the 

purposes of the attacker (i.e., pop a value stored on the stack, store it in a register, and 

return), are called gadgets.  
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6. Control-Flow Integrity  

In a typical memory corruption attack, the attacker aims to alter the control flow 

of a target program by, for example, overwriting a return address or a function pointer. 

Depending on the exploitation technique used, the destination of this illegal control 

transfer may be the injected shellcode (code-injection techniques) or code that is already 

present in program’s memory (return-to-library techniques). In both of these attacks, the 

attacker manages to change the expected control flow of the target program.  

Control-flow integrity (CFI) (Abadi, Budiu, Erlingsson, & Ligatti, 2005) is a 

defense mechanism that protects programs from this type of illegal control transfers by 

enforcing a predetermined control-flow graph (CFG). CFG specifies all of the control-

flow transfers that are allowed by the program and can be defined statically (source code 

or binary analysis) or dynamically (execution profiling). CFI implementation enforces 

CFG on a program by inserting runtime checks (binary rewriting) for instrumentation. 

CFI has a limitation, in that it requires binaries to be compiled with debug information, 

which may not be the case most of the time. 

Program shepherding (Kiriansky, Bruening, & Amarasinghe, 2002) is another 

defense mechanism that also provides control-flow integrity for a program. It employs 

dynamic instrumentation of a program for enforcing a broad range of security policies at 

runtime. An extra piece of software (DynamoRIO - http://www.dynamorio.org/) is used 

for implementing instrumentation which results in poor performance.  

CFI defenses have proven successful against attacks targeting control data with an 

overhead factor. However, they are ineffective against non-control data attacks (Chen, et 

al., 2005) that do not violate predetermined CFGs. 

7. Taint Tracking 

Non-control data attacks are similar to control-data attacks in that they use the 

same techniques, such as buffer overflows or format string attacks. They differ in the 

target of exploitation. As seen before, control-data attacks exploit various vulnerabilities 

to overwrite a return address, function pointer, or any other control data. Non-control data 
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attacks exploit similar vulnerabilities, but target security-critical data (e.g., user 

identification data, the user’s privilege level, the server configuration string) in program 

memory. Non-control data attacks do not try to divert the control flow of the target 

program. 

Taint tracking is a powerful technique for detecting both control and non-control 

data attacks. It is a form of data flow analysis that marks data introduced from untrusted 

sources (e.g., command-line arguments, network sockets) as tainted and keeps track of 

propagation of this tainted data during program execution. If tainted data is used as a 

source operand in any instruction, the destination also becomes tainted. Using this simple 

principle, it is possible to differentiate any address or data that is tainted by input from 

untrusted sources. If tainted data is used as an address to access data or code, it is 

regarded as a potential memory corruption attack, and execution is stopped. 

Taint tracking can be implemented using various techniques, such as binary 

rewriting (Newsome & Song, 2005), compiler-based extensions (Xu, Bhatkar, & Sekar, 

2006), and architectural support (Suh, Lee, Zhang, & Devadas, 2004). However, most of 

these techniques have high false-positive rates and overhead and otherwise require 

hardware support. 

8. Sandboxing 

 Sandboxing is a security enforcement mechanism for creating limited execution 

environments, which are used for running untrusted programs or components of 

programs. It is not a defense mechanism especially designed against memory corruption 

attacks; however, with appropriate security policies, the damage from these attacks can 

be contained using sandboxing. The concept of sandboxing is first introduced in the form 

of software fault isolation (Wahbe, Lucco, Anderson, & Graham, 1993). Sandboxing can 

be implemented at various levels, such as the language (Java and C#), process (protected 

mode in Internet Explorer), and kernel (OS level virtualization). 

 Extensibility requirements of many commercial, off-the-shelf (COTS) programs 

(e.g., browsers, text editors, media players) pose a great risk to the security of these 



 

 
31 

programs. Untrusted third-party code introduced as extensions drastically increases the 

attack surface. To contain this problem, user-level sandboxing presents a valuable 

defense-in-depth mechanism to alleviate the impacts of attacks involving these 

extensions. 

D. SUMMARY 

Despite the large amount of research done on protection techniques, memory 

corruption attacks persist as one of the biggest problems in information security. The 

ideal solution to the problem is writing secure code that is free of vulnerabilities. 

However, there is a large legacy code base written in unsafe languages such as C and 

C++, and developers still opt in favor of these languages when it comes to performance. 

Among the proposed solutions, those that do not require any significant modification to 

programs or special hardware support have seen wide adoption in the software industry. 

Canary-based schemes, non-executable memory, randomized address space, etc., are a 

few examples of defense mechanisms that are easy to implement and do not induce 

significant performance penalty.  

Since the introduction of Windows XP Service Pack (SP) 2 and Windows Server 

2003, Microsoft has started to implement some of these defense mechanisms in their 

products. In the next chapter, the defense mechanisms offered by Microsoft to ISVs to 

protect applications against memory corruption attacks will be observed in detail. 
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III. MEMORY CORRUPTION DEFENSES IN WINDOWS 

In the past, we've made our software and services more compelling for 
users by adding new features and functionality, and by making our 
platform richly extensible. We've done a terrific job at that, but all those 
great features won't matter unless customers trust our software. So now, 
when we face a choice between adding features and resolving security 
issues, we need to choose security. (Gates, 2002) 

Ten years ago, Bill Gates, then chief software architect of Microsoft, sent an 

email to all employees announcing the start of the Trustworthy Computing (TwC) 

initiative. In the above citation from that letter, it is clearly seen that Microsoft has 

chosen increasing the security and reliability of their products over adding new features. 

This was an imperative decision for Microsoft because, security-wise, the company had 

experienced an awful year in 2001. CodeRed and Nimda, the two worms that affected 

Microsoft’s Internet Information Server (IIS) product, had a massive impact on the newly 

developing Internet. These two worms took down a large number of public and private 

organization’s networks, and some organizations voluntarily took down their networks as 

a precaution against these threats. 

After Gates’ TwC memo, Microsoft started “security pushes” to improve existing 

products by eliminating bugs, reducing the attack surface, training developers, etc. 

Lessons learned from these security pushes resulted in initiation of the “Secure 

Development Lifecycle” (SDL), which constitutes the core of TwC. Microsoft describes 

the SDL as “a security assurance process that focuses on software development and 

introduces security and privacy throughout all phases of the development process” 

(Lipner, et al., 2011). The SDL has been an integral part of the company’s software 

development and maintenance practices since its introduction in 2004. It has helped 

Microsoft to lessen the number and severity of vulnerabilities in their products. Microsoft 

has also shared its SDL practices with the software industry since the release of version 

3.2 in 2008. As seen in Figure 9, the SDL practices are gathered under the seven phases 

of the traditional software development process. 
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Figure 9.   SDL process and practices (From: Lipner, et al., 2011) 

The SDL is a success for Microsoft, but it is not a silver bullet for developing 

software free of vulnerabilities. Attackers are still able to find new vulnerabilities in 

Microsoft products or they can exploit old vulnerabilities on systems that are not properly 

patched. To solve this problem, Microsoft follows a defense-in-depth strategy to protect 

their customers against various threats. Security features such as firewalls, access control 

lists, patch management, configuration hardening, and exploit mitigations are 

implemented at different levels to protect users from malicious attackers.  

This chapter examines the various exploit mitigation technologies against 

memory corruption attacks introduced by Microsoft through the years. These are: 

• Stack-based buffer overflow detection (GS) 

• Heap protections 

• Pointer encoding 

• Safe exception handling (SafeSEH and SEHOP) 

• Data execution prevention (DEP) 

• Address space layout randomization (ASLR) 

These mitigations are intended to make the exploitation of vulnerabilities 

impossible, or at least hard and costly enough to deter attackers. The increased time and 

cost of creating exploits gains software developers enough time to address the 

vulnerability and deploy a patch; likewise, it protects users from attackers during this 
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time window. These mitigations have been widely used in Windows and other Microsoft 

products for a while now, but in order to prevent exploitation of third-party applications, 

these mitigations should also be adopted by ISVs. Some of these mitigation technologies 

are supported by Microsoft’s Visual Studio (VS) software development suite, and others 

are integrated into the Windows family of OSs. 

A. STACK-BASED BUFFER OVERFLOW DETECTION 

Stack-based buffer overflow detection was first introduced to the C/C++ compiler 

in VS2002 and has been improved in subsequent releases of Microsoft’s software 

development suite. It employs techniques like those used by StackGuard and ProPolice, 

which are discussed in the previous chapter. This detection capability is also known as 

GS, because Microsoft stores the original canary or cookie value in the data segment, 

which is accessed using GS segment register. It can be enabled by passing /GS option to 

the compiler and disabled by /GS- option (it is on by default since VS2003).  

The GS option inserts a canary value, a four-byte, pseudo-random value, between 

the saved return address (old EIP) and the local variables on the stack. This random value 

is calculated by applying logical XOR operation to the master canary value (created once 

at load-time and stored in the data segment) and the saved return address. If a buffer 

overflow occurs on the stack, it will also overwrite the canary value, because buffer 

overflow attacks overwrite contiguous ranges of memory. Since the value of the canary is 

assumed to be unpredictable, there will be a mismatch when it is checked against the 

master canary value before the function returns, and the program will be terminated. As 

seen in Figure 10, extra pieces of code are added to the prologue and epilogue of the 

protected functions for creating the canary on the stack and checking its value. 

While the GS option prevents successful exploitation of a subset of stack-based 

buffer overflows, it incurs a performance overhead because of the additional runtime 

checks, code, and storage. For performance reasons, GS protection is applied selectively  
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to functions that are susceptible to buffer overflow attacks. The decision as to whether a 

function is susceptible is based on heuristics applied by the compiler. A function is only 

protected if it possesses: 

• An array that is larger than 4 bytes, has more than two elements, and has 

an element type that is not a pointer type 

• A data structure whose size is more than 8 bytes and contains no pointers 

• A buffer allocated using the _alloca function 

• Any class or structure that contains a GS buffer 

In 2007, this selective policy failed to protect a file compiled with GS option. 

After the successful exploitation of the animated cursor (.ani) vulnerability (CVE-2007-

0038), Microsoft released VS2005 SP1 which included a new pragma7, #pragma 

strict_gs_check, which can be used to force the compiler to apply GS protections 

more comprehensively. 

 

Figure 10.   Prologue and epilogue of a GS protected function 
                                                 

7 Pragmas are compiler directives used for telling the compiler to implement specific features. 
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Another protection offered by GS option (since VS2005) is the reordering of local 

variables on the stack to prevent buffers from overflowing into other local variables. As 

discussed in the previous chapter, there are various memory corruption attacks that 

exploit critical variables on the stack, such as function pointers, to redirect execution 

flow. With variable reordering, buffers are moved to higher memory addresses than non-

buffer, local variables on the stack, so such attacks are rendered ineffective. Additionally, 

parameter shadowing is used for protecting each GS-protected function’s arguments. 

Potentially vulnerable arguments, such as pointers and buffers, are copied to lower 

memory addresses than local buffers, and instead of originals, these shadowed copies are 

used whenever needed. Figure 11 depicts the different layouts of the same function on the 

stack in the absence and presence of the GS option. 

 

Figure 11.   Stack frame layouts of the same function, with and without GS protection 
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B. SAFE EXCEPTION HANDLING  

Exceptions are erroneous events, such as division by zero, that occur during a 

program’s execution and require special handling to recover from these events, or in 

some cases to execute housekeeping code and terminate the program. Software 

developers using C-like languages put code that is susceptible to create exceptions under 

blocks known as “try,” and code written for handling these exceptions is put under 

“catch” blocks. Figure 12 shows a piece of code that uses the exception handling 

mechanism. 

 

Figure 12.   Sample code using exception handling mechanism 

In Windows, two modes of exception handling, Structured Exception Handling 

(SEH) and Vectored Exception Handling (VEH), are provided to software developers. 

VEH is an extension to the SEH mechanism and differs from SEH in that VEH neither 

uses try/catch statements (it uses API calls instead) nor is tied to the stack frame of 

a specific function, which is the case for SEH. Exploit writers have mostly abused the 

SEH mechanism (as in the well-known Code Red worm), because of the poor design 

choice of keeping structures required by SEH on the stack next to local variables. 
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Microsoft implements SEH at the thread8 level. Each thread has a pointer to a list 

of SEH records (_EXCEPTION_REGISTRATION_RECORD) that are created at runtime 

on the stack. These structures contain two pointers: one for accessing the exception 

handling code (catch block) and the other one for accessing the next SEH record on the 

list. This singly linked list of exception handler records ends with a default exception 

handler. When an exception occurs, the OS traverses this list until it finds a proper 

handler or reaches the end. The SEH records are valuable targets for attackers because 

they contain pointers to handlers, which are called whenever an exception occurs. As 

shown in Figure 11, SEH records are not protected by the canary mechanism. 

Microsoft introduced a new mechanism known as SafeSEH (beginning with 

VS2003) to mitigate attacks that hijack SEH records on the stack to alter execution flow. 

SafeSEH can be enabled by passing /SafeSEH option to the linker. The linker adds a 

static list of legitimate exception handlers as metadata to the binary file. More precisely, 

the list of legitimate pointers is stored in an optional header known as “Load 

Configuration” which is a part of the PE file. At runtime, when an exception occurs, the 

exception dispatcher routine, which is part of the OS, checks this list of pointers to verify 

the authenticity of the exception handler found on the stack. 

SafeSEH is an effective mitigation against memory corruption attacks that target 

SEH records on the stack, but it requires re-linking of already deployed binaries to 

protect them. Starting with Windows Vista SP1 and Server 2008 OSs, Microsoft 

introduced structured exception handling overwrite protection (SEHOP) which does not 

require re-linking and protects applications against SEH corruption. It works by walking 

down the list of exception handlers using the pointers in SEH records till it reaches the 

final exception handler (FinalExceptionHandler function resides in ntdll.dll 

and is initially added to the list as the last record). If an attacker overwrites the pointer to  

 

 

                                                 
8 A thread is a lightweight process which is the basic unit of processing that can be scheduled by an 

operating system.  



 

 
40 

the next SEH record, the validation walk will not reach the final exception handler, which 

signals the corruption of SEH records list. In Windows 7, SEHOP can be enabled per 

application basis at the registry level. 

C. HEAP PROTECTIONS 

Microsoft’s Windows family of OSs, as described in the previous chapter, uses 

free-list-based allocators to manage the heap. To keep track of the chunks allocated and 

freed on the heap, the Windows heap manager stores heap management metadata in-band 

next to the data. Also, like many free-list based allocators, it performs coalescing, the 

merging of free chunks into a larger chunk, to avoid memory fragmentation. Attackers 

traditionally relied on these structures and behaviors of the Windows heap manager for 

exploiting heap-based, memory corruption vulnerabilities.  

Starting with Windows XP SP2 and Windows Server 2003 SP1, Microsoft 

introduced safe unlinking, which replaced the former vulnerable unlink operation. Before 

safe unlinking, attackers were able to write four bytes of their choice to an address of 

their choice (write4 primitive) by exploiting the coalescing operation of the heap 

manager. To prevent this technique, the new version of unlink operation, safe unlink, 

includes a validity check of pointers in the metadata of freed chunks to verify that they 

are consistent with each other. Also, with the release of safe unlinking, Microsoft started 

to add canary values to the metadata portion of the heap chunks. Like the stack canary, 

the heap canary provides an integrity-based detection mechanism against memory 

corruptions on the heap. 

Microsoft gradually added additional protections against heap corruptions in 

Windows Vista, Windows 7, and Windows Server 2008. The heap canary’s role was 

extended to cover more fields in the metadata section of the chunks. Important fields in 

metadata are now encrypted by XORing with a random value, and whenever accessed, 

these fields are decrypted and verified for integrity. Look-aside lists9, which are widely 

exploited by attackers, were replaced by safer structures. A new API call 

                                                 
9 A look-aside list is a list of fixed-sized blocks used for fast memory allocation. 
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(HeapSetInformation) was added to enable software developers to dynamically 

instruct termination of the program whenever a heap-based memory corruption is 

detected. The allocation algorithms used by the heap manager were revised to prevent 

attackers from predicting allocation patterns and abusing them with brute-force attacks. 

D. POINTER ENCODING 

Pointers, especially function pointers, have become the most valuable target for 

attackers after Microsoft implemented stack-based memory protection mechanisms such 

as stack canary, variable reordering and safe exception handling. Overwritten function 

pointers, either on the stack or on the heap, allow attackers to redirect the execution flow 

of the program when these functions are called. As discussed in the previous chapter, 

protections, such as PointGuard (Cowan, Beattie, Johansen, & Wagle, 2003) store 

pointers encrypted while they reside in memory and decrypt them when they are 

accessed. This kind of protection thwarts attackers from overwriting and exploiting 

function pointers. 

With Windows XP SP2 and Windows Server 2003 SP1, Microsoft introduced a 

pair of API calls: EncodePointer/DecodePointer and 

EncodeSystemPointer/DecodeSystemPointer. These APIs use the XOR 

operation for encoding and decoding, similar to PointGuard’s implementation. The first 

pair uses a random number that is generated per application basis, while the second pair 

uses a global random number generated per system basis at each boot. 

E. DATA EXECUTION PREVENTION 

For many years, attackers have relied on injecting malicious code in memory 

sections that are supposed to contain only program data (stack, heap, and data segments), 

and later forcing the program to redirect its control flow into this injected code. The 

introduction of data execution prevention (DEP) technology has rendered this basic 

exploitation technique ineffective in Windows family of OSs. DEP enables programs to  
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declare memory sections as either executable or writable (but not both at the same time) 

at page level. The implementation of DEP requires both software and hardware 

components.  

The hardware support to mark memory pages exclusively as executable or 

writable was first introduced by Advanced Micro Devices (AMD) under the name No 

eXecute (NX) and followed by Intel’s introduction of eXecute Disable (XD) technology. 

Both of these main processor manufacturers implement these supportive technologies by 

allocating a bit field (63rd bit) in the page table entry (PTE)10 for marking a related page 

as executable (the bit is set to 0) or not executable (if the bit is set to 1). Since 32-bit, x86 

processor architectures only have 32 bits for page table entries, the physical address 

extension (PAE) feature, which allows the processor to access more than 4GB of physical 

memory, should be enabled. 

DEP has been available in Windows OSs running on processors that support the 

NX bit starting from Windows XP SP2 and Windows Server 2003 SP1. Microsoft 

maintains DEP settings in two levels: program and system. Developers can enable DEP 

for programs by setting the NXCOMPAT flag in the DllCharacteristics field of 

PE header. VS linker supports an option, /NXCOMPAT, that sets this flag. Microsoft also 

supports the SetProcessDEPPolicy API call for programmatically setting DEP 

policy at runtime. System-level DEP policy can be enforced in four different modes: 

• Opt-In: Programs need to explicitly enable DEP (the default configuration 

for client OSs, such as Windows 7) 

• Opt-Out: DEP is enabled for all programs which do not disable it 

explicitly (the default configuration for server OSs, such as Windows 

Server 2008) 

• Always On: DEP is enabled for all programs without exception 

• Always Off: DEP is disabled for all programs without exception 

                                                 
10 PTEs are data structures used by OS’s memory manager to keep track of memory pages. 



 

 
43 

The reason behind this distinction is the fact that many applications, either legacy 

or not, rely on generating code at runtime; storing it on heap, stack, or data segments; and 

executing it. With the help of these configuration options, compatibility issues are 

resolved by the setting proper mode of operation for different programs. Lastly, there is 

no “software DEP,” which appears in error messages of some Windows OSs running on 

processors with no NX-bit support, because it is nothing but the SafeSEH mitigation 

technology discussed before. 

F. ADDRESS SPACE LAYOUT RANDOMIZATION 

Most of the exploitation techniques seen in the wild replace return addresses or 

function pointers on the stack with the address of injected malicious code or library 

functions (as in return-to-library attacks). What is common in all of these attacks is that 

attackers assume that the memory layout of the target program is fixed, so they can 

hardcode the address where they want to redirect the execution flow. Address Space 

Layout Randomization (ASLR) is a feature that breaks this assumption by changing the 

layout of the programs in each boot of the system, as seen in Figure 13. The increased 

entropy as a result of ASLR makes writing reliable exploits that will work in every target 

harder. Especially, ASLR is an effective mitigation technology against fast spreading 

worms, which have taken advantage of software monoculture for many years. 
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Figure 13.   Visualization of ASLR 

Although the ASLR concept has been known for a long time (PaX, 2001), 

Microsoft was able to implement it first in 2007 with the release of Windows Vista OS. 

However, Microsoft used randomization before the release of ASLR (since Windows XP 

SP2) to prevent attackers from exploiting internal data structures such as the process 

environment block (PEB) and thread environment block (TEB)11. With ASLR, the base 

addresses of executable images, stacks, and heaps are also randomized, besides PEB and 

TEB. There is a subtle difference between the randomization of these elements: the base 

addresses for PEB, TEB, stack, and heap are randomized per each execution, while the 

base addresses for other segments in the executable and dynamic libraries are randomized 

per each boot. Also, the amount of entropy obtained for these program structures differs 

in Windows’ ASLR implementation (Whitehouse, 2007). Table 3 shows the amount of 

effective entropy provided by ASLR for different program structures. 

 

                                                 
11 PEB and TEB are internal data structures used by Windows OS kernel for keeping track of 

processes and threads running on the system. 
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 Entropy Provided (in number of bits) 

Images 8 

Heaps 14 

Stacks 5 

PEBs/TEBs 4 

Table 3.   Entropy provided by ASLR for different program structures 

The effectiveness of ASLR is heavily contingent on randomizing the base 

addresses of all program structures in the process’ memory space. A talented attacker has 

the ability to bypass the overall protection offered by ASLR if the target program 

includes a single module that is not ASLR-enabled. Software developers can enable 

ASLR for their executable images by passing the /DYNAMICBASE option to VS linker 

(which is on by default since VS2008) or they can set this flag in the PE header of their 

binaries manually. The Windows loader checks the DYNAMIC_BASE flag, which is 

found in DllCharacteristics field of the PE header, for applying ASLR or not. 

Lately, Microsoft added a new feature at the registry level, “Force ASLR”, for forcing 

applications to relocate images that are not built with the /DYNAMICBASE linker flag. 

G. SUMMARY 

This chapter has discussed the most prominent exploit mitigations that are 

incorporated into Microsoft products such as software development suites and operating 

systems. The availability of the discussed exploit mitigations in the latest versions of 

these products can be found in Appendix A. Figure 14 shows a timeline of the 

introduction of these mitigation technologies, both in Microsoft and outside. However, 

while these protections make exploit development harder and more unreliable, they also 

present weaknesses that enable talented attackers to bypass them (Sotirov & Dowd, 

2008). Nevertheless, this does not mean that these protections are rendered totally 

ineffective. In the never-ending arms race between malicious attackers and defenders, 

there are two key points to consider: First, these mitigations are complementary to each 

other, so they are more effective when used together. Second, if any of these protections 
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is to be used, then all modules of the program should be protected, without exception. 

When applied together, these two factors obstruct most bypass techniques and, more 

importantly, increase the time and effort required to create reliable exploits. 

 

Figure 14.   Timeline of exploit mitigations since Aleph One’s paper 

Since Gates’ memo, Microsoft has covered a lot of ground in securing their 

products. Almost all applications that come with the latest consumer and server OSs, 

Windows 7 and Windows Server 2008, are protected with the mitigations discussed. 

However, the overall security of a system is also highly contingent on the security of 

third-party applications that are developed by myriad ISVs. The ISV adoption of 

mitigation technologies against memory corruption attacks represents an important part 

of the overall security posture of the system. In the next chapter, a wide range of third-

party applications will be observed to depict and assess the implementation progress of 

these protections by ISVs. 
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IV. ANALYSIS OF SELECTED APPLICATIONS 

In the previous chapter, various mitigation technologies offered by Microsoft 

were covered in detail. Microsoft ships all of its most recent OSs with software that has 

these mitigations enabled by default. However, it is clear that the overall security of a 

computer system not only depends on software that comes with the OS, but also software 

from other sources, such as ISVs.  Therefore, adoption of these mitigations by ISVs plays 

a great role in making computer systems more secure against memory corruption attacks. 

This chapter will present an analysis of forty-five applications that are widely 

used by end users all over the world, for implementation of these mitigations. First, the 

testing environment, selection criteria for applications, and scope will be covered. Then, 

methods used for validating the presence of these mitigations will be provided. Lastly, 

the results of the analysis will be presented.  

A. ENVIRONMENT AND APPLICATION SELECTION 

1. Selection of Operating System 

According to Wikimedia Traffic Analysis Report (Zachte, 2012), which is based 

on monthly requests to Wikimedia pages,12 as of April 2012, the Windows family of OSs 

constitute 74.67% of OSs that visited its pages. As seen in Figure 15, Windows 7 

accounts for 38.73% of the worldwide page visits to Wikimedia websites, such as 

http://www.wikipedia.org. In the light of these statistics, it would be fair to say that 

Windows 7 is the most widely installed OS at the endpoints. Thus, Windows 7 SP1 was 

selected as the testing platform.  

 

                                                 
12 Wikimedia operates online collaborative wiki projects including Wikipedia, Wiktionary, Wikiquote, 

etc. Wikipedia is among the top ten most-visited websites worldwide. 
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Figure 15.   Market share of OSs based on Wikimedia statistics 

2. 32-bit vs. 64-bit Architecture 

Both for the OS and applications, 32-bit versions were selected over 64-bit 

versions. The underpinnings of this decision can be listed as: 

• DEP is automatically turned on for 64-bit processes, so there is no need to 

check the availability of DEP in 64-bit applications. 

• Termination of process on heap corruption is enabled by default on 64-bit 

processes, so HeapSetInformation API call is not needed. 

• Exception handlers are no longer kept on the stack in 64-bit applications, 

so SafeSEH and SEHOP are not applicable for 64-bit processes. 

For all these reasons and more (for example, ASLR is more effective in 64-bit 

architectures because of increased entropy), it would be reasonable to say that 64-bit 

applications running on 64-bit architectures are less vulnerable to successful exploitation 

than their 32-bit counterparts. More responsibility is left to software developers and ISVs 

when it comes to implementing these mitigations in 32-bit applications. That is why 

analysis was limited to 32-bit applications running on the 32-bit Windows 7 SP1. 
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3. Selection of Applications 

For the selection of applications, nine distinct categories were determined, and for 

each category, five applications were selected for analysis. The categorization in general 

was based on well-known and widely used applications offered by Microsoft as part of 

their OSs, such as MS Office, Internet Explorer, Windows Media Player, etc. 

Applications were chosen among many alternatives based on popularity and wide user 

base. Another consideration during selection of the applications was the release date of 

these applications. Figure 16 shows the distribution of release dates of the selected 

applications.  

 

Figure 16.   Distribution of the selected applications based on their release dates 

Since the most recent mitigation introduced by Microsoft, SEHOP, dates back to 

2008, ISVs had enough time (regarded as from two to four years), to implement these 

mitigations in their products. The categories and selected applications for each category 

are listed in Table 4. A more detailed list, which includes release dates and version info, 

is provided in Appendix B. 

Another key point to note is that installers for some of the selected applications 

were found to contain extra software, such as browser toolbars. In this analysis, they were 



 

 
50 

considered part of their related applications, because most of the time users install these 

applications with default settings which confirm the installation of this extra software. 

Category Applications 

Office Suites Adobe Acrobat Reader, openOffice.org, Foxit Reader, AbiWord 
Word Processor, Nitro PDF Reader 

Browsers Firefox, Opera, Chrome, Safari, Maxthon 

Media Players Winamp, VLC Media Player, Quicktime Player, iTunes, Real 
Player 

Instant Messaging 
Applications 

mIRC, Yahoo Messenger, AIM, Nimbuzz, Trillian 

Mail Applications Thunderbird, MailCOPA, Zimbra Desktop, The Bat Home Edition, 
Spicebird 

Antivirus 
Applications 

Avast Antivirus, Norton Antivirus, McAfee Antivirus, AVG 
Antivirus, Kaspersky Antivirus 

IE Plugins Adobe Flash Player, Sun JRE, Google Toolbar, LastPass, Yahoo 
Toolbar 

Download 
Managers 

Download Accelerator Plus, Internet Download Manager, 
BitTorrent, iMesh, Flashget 

Utilities Winrar, Winzip, Nero, Babylon, Ccleaner 

Table 4.   Selected applications for analysis 

B. METHODOLOGY 

In order to test the selected applications for their implementation of the various 

mitigations described in Chapter III, three sources of information were checked. These 

are: 

• The PE header of the executable (for SafeSEH, ASLR and DEP) 

• The Windows Registry (for SEHOP) 

• The binary contents of the executable file (GS, pointer encoding, and heap 

protection)  

As touched upon a few times in the previous chapters, executable files in the 

Windows family of OSs have to be in a predefined format, i.e., portable executable (PE) 
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format. PE format is used to encapsulate information related to the executable file and is 

used by the Windows OS loader to manage these executable files. Files that adhere to PE 

format consist of headers and sections. One of these headers is called 

IMAGE_OPTIONAL_HEADER and has a 4-byte field named DllCharacteristics, 

which informs the loader about various settings for the executable file. The compatibility 

of each executable for ASLR and DEP is embedded in this four-byte value, so this field 

was checked in each executable file for verifying DEP and ASLR. 

DllCharacteristics field also encapsulates information that specifies whether an 

executable file includes SEH structures or not. Implementation of SafeSEH was checked 

using this data, as well as the presence of the safe exception handler table which is 

included in another part of PE header called the “Load Configuration Directory”.   

The Windows registry, where configuration settings and options for both OS and 

applications are stored, was checked for the implementation of SEHOP mitigation. 

SEHOP setting of an application (SEHOP setting is applied per application basis) was 

checked by verifying that “Image File Execution Options” registry key under 

“HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\CurrentVers

ion\” portion of the registry have the related application’s 

“DisableExceptionChainValidation” value set to zero. 

Pointer encoding mitigation which can be enabled by EncodePointer / 

DecodePointer API calls, heap corruption mitigation, which can be enabled by 

HeapSetInformation API call, and DEP, which can also be enabled at runtime by 

SetDEPProcessPolicy API call, were all checked by inspecting the binary contents 

of the executable file. This inspection included searching the names of these APIs in the 

strings dump of the executable file. Both import address table (IAT)13 entries for these 

APIs, and calls made to these APIs by using LoadLibrary and GetProcAddress 

API pair, were captured using this inspection. Finally, implementation of stack canary 

mitigation (GS) was also checked by inspecting the binary contents of the executable file. 

                                                 
13 A section in PE header that holds a lookup table for calling functions in different modules. 



 

 
52 

It was assumed that the file was protected by GS if any code pattern, like extra code 

added to a function’s epilogue and prologue (shown in Figure 10), were found in the 

contents of the file. Also, any executable file protected by GS includes a code block for 

the initialization of the stack canary. This code block can easily be spotted in the contents 

of the binary file because it consists of five back-to-back API calls: 

GetSystemTimeAsFileTime, GetCurrentProcessId, 

GetCurrentThreadId, GetTickCount, and QueryPerformanceCounter. A 

random stack canary is generated by applying the XOR operation on the values returned 

from all these functions and used throughout the execution of the program. 

For the inspection of all mentioned mitigations, three tools were used: PeStudio 

(Ochsenmeier, 2012), the strings utility from SysInternals Suite (Russinovich, 2012) and 

Recx SDL Binary Assurance for Windows (Whitehouse, 2012). 

C. RESULTS 

 The analysis consisted of forty-five applications categorized into nine categories. 

A total of 8,012 files in PE format were inspected. Out of 8,012 files, 931 were .NET 

binaries (managed code), and thirty-two were 64-bit binaries. As the scope of this thesis 

does not include binaries that fall into these two categories (.NET and 64-bit), they were 

excluded from analysis. Among the remaining 7,049 files, 564 were directly executable 

files (executable files with an .exe extension). Finally, a total of 2,154 files were found to 

be in PE format, but did not include any code. These files are mostly used to store 

resources for programs, such as menus, pictures, and dialog templates. Table 5 

summarizes these general descriptive statistics from the analysis. 

Total Files Inspected 8012 

Number of .NET binaries 931 

Number of 64-bit binaries 32 

Number of No-Code binaries 2154 

Number .EXE binaries 564 

Table 5.   General statistics from the analysis 
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Before giving the adoption rates obtained in the analysis, it may be as well to point 

out an important finding. Three quarters of all of the analyzed applications (thirty-four 

out of forty-five) consisted of files from multiple vendors. This ratio is important because 

it shows that ISVs might not have full control over all of the files that are delivered as 

part of their products. Figure 17 provides more detailed insight about this observation. 

 

Figure 17.   The distribution of vendor counts per analyzed application 

The analysis showed that GS adoption is quite high among ISVs. Of the files 

checked, 93% are protected by GS, but of forty-five applications, only four have all of 

their executable files protected by GS. GS check was only applied to PE files that contain 

code and have a linker version associated with Microsoft Visual Studio products. 

Although the linker version does not guarantee that the file was compiled with the 

compiler that comes with that linker, it is mostly applied this way. Table 6 shows the 

distribution of linker versions and the number of GS protected files among inspected 

files. 

 



 

 
54 

Development 
Platform Linker Version Number of Files 

(contains code) GS Protected Files 

VS6 6.0 113 0 

VS2002 7.0 9 1 

VS2003 7.1 234 222 

VS2005 8.0 1188 1085 

VS2008 9.0 1641 1600 

VS2010 10.0 1278 1244 

 

Total 4463 4152 

Table 6.   Distribution of linker versions and GS adoption among inspected files 

Variable reordering and parameter shadowing, which were discussed in the 

previous chapter, have been supported by the GS option starting with VS2005, so it is 

also important to note that GS protected files compiled with VS2002 and VS2003 are 

vulnerable to certain type of attacks that were mentioned in Chapter II.  

SafeSEH adoption was also inspected for the same subset of files as in the GS 

option. The analysis showed that 91% of the files were protected by SafeSEH. Like GS 

mitigation, the number of applications that have all of their files protected by SafeSEH is 

only five out of forty-five. The situation is a little worse for SEHOP adoption: only two 

applications are protected. This should not be surprising, because SEHOP was introduced 

five years later than SafeSEH. Another reason for the low adoption of SEHOP is that it 

requires ISVs to enable it by modifying the registry, whereas SafeSEH has been enabled 

by default since VS2003. 

Another mitigation technology that exhibited low adoption rate among ISVs was 

heap corruption mitigation. The HeapSetInformation API call was detected in only 

126 files of the 4895 files that contained code. This corresponds to 2%. Furthermore, 

twenty-four applications out of forty-five did not have a single file that includes a call to  
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this API. This mitigation suffers from the similar problems as SEHOP. It was introduced 

in 2008, and requires ISVs to enable it by calling HeapSetInformation API 

programmatically. 

Pointer encoding, which has been supported since 2004, was found to have a high 

adoption rate among ISVs. Roughly 77% of the files (3,809 files out of 4,895 files) 

contain references to EncodePointer / DecodePointer API pair. Of all the 

applications inspected, only one does not include any files that use this mitigation. 

DEP was found to be enabled by only 65% of the directly executable files, which 

corresponds to 368 out of 564 files. DEP was inspected for directly executable files only, 

because it is a process-wide setting. Furthermore, nine out of forty-five applications have 

all of their files DEP enabled, while seven out of forty-five applications have none of 

their files DEP enabled.   

Finally, the analysis showed that ASLR has relatively higher adoption rate than 

DEP. 76% of inspected executable files (5342 out of 7049 files) come with ASLR 

support. Application-wise, four out of forty-five applications come with all of their files 

ASLR enabled, and again four of them come with all of their files ASLR disabled. 

In general, and not surprisingly, mitigations that are enabled by default, such as 

GS and SafeSEH, were found to have high adoption rates. DEP and ASLR, which are 

both prominent mitigations separately and further reduce the likelihood of a successful 

exploit when enabled together, were found to have room for improvement. Pointer 

encoding mitigation showed a high adoption rate, which is surprising as it requires extra 

API calls. SEHOP and heap corruption mitigation, both of which have been supported 

since 2008, showed that they need more time to become widely adopted. Figure 18 

summarizes the overall situation by depicting all adoption rates from the analysis. 
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Figure 18.   Adoption rates for all mitigations emerged from the analysis 
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V. CONCLUSION 

In the last decade, global Internet usage has grown by 528%.14 Increased use of 

mobile devices, such as cell phones and tablets, may boost this ratio in the upcoming 

years. In such a highly connected world, it is becoming more and more challenging to 

secure endpoints, and attackers enjoy an increasing number of potential victims. The 

biggest challenge in securing endpoints is the difficulty of controlling wide attack 

surfaces. Numerous third-party applications from many different ISVs with varying 

security postures broaden the attack surface for attackers. 

The results of the analysis in Chapter IV showed that while most of the ISVs 

implement mitigations that are offered by Microsoft, it is hard to find any application that 

implements all these mitigations thoroughly. These mitigations are not silver-bullet 

solutions, especially when they are not implemented thoroughly and all together. There 

are various ways to bypass them singly, but when combined, it becomes harder and 

costlier for the attacker. Another interesting point observed in the analysis was that it 

takes time to adopt mitigations. It was seen that older mitigations have higher adoption 

ratios than newer ones. Also, as expected, making mitigations default results in higher 

adoption ratios. 

This analysis shows that third-party applications coming from various ISVs pose 

greater risks to the security of endpoints than applications that come with operating 

systems. It would be wise for both simple home users and system administrators to keep 

track of the portfolio of third-party applications installed on their systems, assess these 

applications for their adoption of available mitigations, and make sure that they are 

updated periodically. Home users or system administrators should use tools such as  

 

 

 

                                                 
14 Source: http://www.internetworldstats.com. 
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Microsoft’s Enhanced Mitigation Experience Toolkit (EMET), which requires neither 

recompilation nor relink of applications, as a last resort to enforce some of the missing 

mitigations on critical applications.15  

                                                 
15 Available at http://support.microsoft.com/kb/2458544. 



 

 
59 

APPENDIX 

A. AVAILABILITY OF EXPLOIT MITIGATIONS 

This appendix contains two tables: the first shows the availability of exploit 

mitigations in different versions of Windows family of OSs and the second one shows the 

availability of these mitigations in different versions of Visual Studio products. 

 SafeSEH SEHOP Heap 
Protections DEP ASLR 

C
on

su
m

er
 M

ar
ke

t 

XP RTM & SP1 - - - - - 
XP SP2 + - Partial Opt In Partial 
XP SP3 + - Partial Opt In Partial 

Vista RTM + - + Opt In Opt In 
Vista SP1 & SP2 + Opt In + Opt In Opt In 

Windows 7 RTM & 
SP1 + Opt In + Opt In Opt In 

Se
rv

er
 M

ar
ke

t Server 2003 RTM - - - - - 
Server 2003 SP1 & 

SP2 + - Partial Opt Out Partial 

Server 2008 RTM + Opt Out + Opt Out Opt In 
Server 2008 SP1 + Opt Out + Opt Out Opt In 
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 /GS /SAFESEH /NXCOMPAT /DYNAMICBASE 

VS6 - - - - 
VS2002 Opt Out - Opt In - 
VS2003 Opt Out Opt Out Opt In Opt In 

VS2005 Opt Out Opt Out Opt In Opt In 

VS2008 Opt Out Opt Out Opt In Opt In 

VS2010 Opt Out Opt Out Opt Out Opt Out 

 

B. THE LIST OF ANALYZED APPLICATIONS 

This appendix contains the list of analyzed applications including each 

application’s version number and release date. 

No. Application Name Version Release Date 
1 Adobe Reader X 10.1.3 10.04.2012 
2 OpenOffice 3.3.0 18.01.2011 
3 Foxit Reader 5.1.4 06.01.2012 
4 AbiWord 2.8.6 13.06.2010 
5 Nitro PDF Reader 2.3.1.7 23.04.2012 
6 Firefox 12.0 24.04.2012 
7 Opera 11.62 27.03.2012 
8 Chrome 19.0.1084.46 15.05.2012 
9 Safari 5.1.5 26.03.2012 

10 Maxthon 3.3.7.2000 19.04.2012 
11 Winamp 5.6.2.3199 09.12.2011 
12 VLC Media Player 2.0.1 19.03.2012 
13 Quicktime Player 7.71.80.42 26.10.2011 
14 iTunes 10.6.1.7 28.03.2012 
15 Real Player 15.0.4.53 15.11.2011 
16 Winrar 4.11 20.02.2012 
17 Winzip 16.5 17.04.2012 
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18 Nero 11.2 29.02.2012 
19 Babylon 9 26.03.2012 
20 CCleaner 3.18.1707 25.04.2012 
21 mIRC 7.22 13.10.2011 
22 Yahoo Messenger 11.5 13.03.2012 
23 AIM 7.5.12.6 05.03.2012 
24 Nimbuzz 2.2.1 01.05.2012 
25 Trillian 5.1.0.19 26.04.2012 
26 Avast Antivirus 7.0.1426 07.03.2012 
27 Norton Antivirus 19.1.0.28 02.05.2012 
28 McAfee Antivirus 11.0.669.0 25.04.2012 
29 AVG Antivirus 2012.0.2176 16.05.2012 
30 Kaspersky Antivirus 12.0.0.374 04.05.2012 
31 Adobe Flash Player 11.2.202.235 09.04.2012 
32 Sun JRE 7.4 12.04.2012 
33 Google Toolbar 7.3.2710.138 30.04.2012 
34 LastPass 1.90.0 27.01.2012 
35 Yahoo Toolbar 8.4.3.34 12.02.2012 
36 Download Accelerator Plus 9.7 12.12.2011 
37 Internet Download Manager 6.11 02.05.2012 
38 BitTorrent 7.6.1 25.04.2012 
39 iMesh 11.124124 29.04.2012 
40 Flashget 3.7 16.03.2012 
41 MailCOPA 12.01 21.05.2012 
42 Thunderbird 12.0.1 30.04.2012 
43 Zimbra Desktop 7.1.4 01.04.2012 
44 The Bat Home Edition 5.1.2 23.04.2012 
45 Spicebird 0.8 23.06.2010 
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