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1. Objectives  

The suitability of a substrate is typically a subjective condition that takes into consideration the 

lattice constants, elastic properties, thermal expansion coefficients, respective 

chemistries/reactivities, and relative ease of fabrication of the two juxtaposed materials.  A 

cursory analysis suggests that aluminum nitride (AlN) would be a good candidate as a substrate 

for aluminum gallium nitride ((Al)GaN), and recently, companies such as HexaTech have been 

able to grow high quality AlN crystals.  While the AlN lattice does not perfectly match gallium 

nitride (GaN), it is much closer than that of silicon carbide (SiC) or sapphire, and it is chemically 

very similar to GaN.  In addition, the lattice strain caused by the lattice mismatch can be 

distributed over three dimensions instead of two by using a graded interlayer of AlxGa1–xN, 

where x varies from 1 → 0 over a finite thickness.  Superlattices, which are structures in which 

the aluminum (Al) composition abruptly changes back and forth between two concentrations, 

that block the propagation of dislocations can also be grown.  

The main objective of this report is to establish a multiscale approach for the simulation of 

dislocations in (Al)GaN semiconductors. The organization of the report is as follows. After an 

introduction section, we provide a brief review of dislocations in wurtzite (W) and zincblende 

(ZB) structures.  Next, we present classical molecular dynamics (MD) simulations of 

dislocations in different slip systems to estimate dislocation velocities as a function of applied 

stress. The main goal of the classical MD work is to calculate mobility functions for the next 

microstructural scale of simulations presented in section 5.  In that section, different junction 

configurations are studied using a discrete dislocation dynamics (DDD) simulator, ParaDiS, with 

different elasticities and a variety of Burgers vector pairs to examine their effects on the junction 

strengths.  Given the complexity of multiple available interacting slip systems, this work focuses 

on detecting any similarity and differences in junction strengths and results are presented for 

hexagonal metals. In section 6 of the report, we performed quantum mechanical simulations of 

atomic and electronic structure of threading edge and screw dislocations in AlGaN in order to 

understand the structure of the dislocation core and electrical activity of dislocations. Finally, in 

the last section of the report we present predictions of the possible slip planes in wurtzite 

(Al)GaN semiconductors based on general crystallographic principles. 

2. Introduction 

With its large, direct energy gap, EG, GaN is an important semiconductor. It can be used to 

fabricate diodes that enable electric vehicles to run more efficiently than they can if they used 

diodes made from silicon because GaN has a much larger breakdown field. The large value of EG 
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also enables GaN diodes to efficiently emit blue/ultraviolet (UV) light that is used to read/write 

on high density information storage disks. The wavelength of light that is emitted can be tuned 

by forming solid solutions with other group III elements such as indium for indium gallium 

nitride (InGaN), or with Al for AlGaN. AlGaN is of particular interest to the Army because it 

can be made to emit at wavelengths that will sterilize water for troops in the field or at 

wavelengths that are solar blind—wavelengths from the sun that are screened out by the 

ionosphere. With its larger EG, a two-dimensional electron gas (2DEG) is formed at the 

AlGaN/GaN interface when AlGaN films are grown on GaN substrates. These electrons have a 

mobility, μ, that is larger than it is in the bulk, enabling high electron mobility transistors 

(HEMTs) that exploit this effect to operate at the GHz frequencies used in radar systems. They 

can also generate more power for longer distance communication systems than HEMTs made 

from gallium arsenide (GaAs) both because GaN has a larger breakdown field and a more dense 

2DEG. The 2DEG is denser because the AlGaN is in tension due to AlN having a smaller lattice 

parameter than GaN, since the Al atom is smaller than the gallium (Ga) atom. The tensile strain 

will generate a positive charge at the AlGaN/GaN interface that attracts electrons. It will also 

have a denser 2DEG because there is a spontaneous positive charge at the interface due to the 

nitrides have the hexagonal W structure. In this hexagonal structure, the vertical bond in the sp
3
 

hybrid bonding structure has a length different than the other three bonds. This causes the center 

of positive charge to be different than the center of negative charge, which creates a permanent 

dipole. Because the vertical bond in the III-N is smaller, it too will create a positive charge at the 

interface. This greatly enhanced carrier concentration in the 2DEG of the HEMTs can be 

exploited for high power electronic applications, as well as for high power radio frequency (RF) 

applications, by reducing the on-loss with its greater conductivity. In addition to enabling electric 

vehicles to operate more efficiently, these HEMTs could be used in high power integrated 

circuits (HPICs) that could enable micro-grids to operate more efficiently. 

However, having different lattice parameters and not having the more traditional cubic ZB 

crystal structure comes at a price. Having different lattice parameters causes mismatch 

dislocations to form at or near the interface to compensate for the lattice mismatch when the 

thickness of the film exceeds its critical thickness, and these dislocations have different 

structures that slip (move) on different planes. In the case of silicon germanium (SiGe), films are 

grown in such a way as to minimize the dislocation concentration near the top surface where the 

SiGe lateral devices used in integrated circuits (ICs) are fabricated (1). We would like to learn 

how to emulate that process for W-AlGaN films because the mismatch dislocations degrade the 

properties of devices made from these films. To do this, we must determine through theory what 

the likely initial mismatch dislocation structure looks like and then compute how these 

dislocations will move through the lattice.  
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3. Description of the Dislocations 

The fundamental bonding element for semiconductors is the sp
3
 hybrid shown in figure 1a with 

the nitrogen (N) anion at the center of a tetrahedron with Ga cations at the four corners. In the 

cubic ZB structure all of the bond lengths and bond angles are the same (109.5°) and the 

tetrahedron is a perfect tetrahedron. In the hexagonal W structure, the vertical bond can have any 

length, but for the nitrides it is shorter than the other three. The base of the inverted tetrahedron 

shown in figure 1b is an equilateral triangle, and if the atoms represented as hard spheres were 

allowed to touch, each atom would be surrounded by six others all touching it, as is shown in 

figure 1c. This is called the close packed plane (cpp).  

 

Figure 1.  The sp
3
 bonding structure typical in most semiconductors. (a) The tetrahedron  

formed by the four cations that surround the anion inside of it. (b) Same, with ions  

not visualized.  (c) A cpp and the B and C sites for the cpp that can lie above it. 
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There is only one such plane in the W structure, and it is parallel to the base of the inverted 

pyramid in figure 2a. Given that it is parallel to the base of the W unit cell, as shown figure 2b, it 

is also parallel to the        plane using the Miller indices notation for hexagonal crystals and 

the 3-indices notation for the other crystal systems, making it the        plane. The tip of the 

inverted tetrahedron lies at the origin of the unit cell and the three other atoms that form the base 

of the unit cell are the red spheres in figure 2b.  

 

Figure 2.  (a) The sp
3
 tetrahedron in the hexagonal W structure with its green base parallel to the        

cpp. (b) The stacking structure of W crystal. 

The base of the tetrahedron, which is a cpp parallel to the base, has the same planar structure as 

the one in the base, but it is shifted in the plane of the paper so the atoms lie directly above the 

points marked with a B in figure 1c. The next plane up that contains Ga atoms lies directly above 

those in the plane of the paper, and it lies in the plane that forms the top of the unit cell. One 

could therefore say that the stacking sequence for the cpps for the W structure is ABAB…—the 

Ga atoms at the eight corners of the unit cell and the yellow atom in the base of the tetrahedron 

that lies inside of the unit cell are said to form a hexagonal close packed (hcp) unit cell. The cell 

is defined by the basis vectors, a1 and a2 that are of equal length, aH, lie in the cpp, and make an 

angle of 120° with each other. The third basis vector, a3, is normal to the cpp with a length, c. 

The ratio, γ = c/aH is often used to characterize the cell. If all of the bond lengths of the sp
3
 

hybrid bonds are of equal length, γ = √
8
/3 = 1.633. Since the N atom lies directly above a Ga 

atom they have an identical packing sequence, but to distinguish N atoms from Ga atoms, Greek 

letters are used to describe their stacking sequence.  The overall stacking sequence for all of the 

ccps containing atoms in the W structure is therefore AαBβAαBβ…, as seen in figure 2b.  

Because the plane containing the Ga atoms in the base of the tetrahedron cuts the vertical axis of 

the unit cell, the c-axis, in half, it is the        [      ] plane. 
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As one can see in figure 3a, the regular tetrahedron depicting where the atoms lie in the cubic ZB 

structure can be created by putting Ga atoms at every other corner of a cube and a N atom at the 

center of this cube. The unit cell for the ZB structure can be formed by stacking eight of these 

cubes to form a cube with an edge twice as long as the original cube and every other small cube 

contains an N atom at its center, as is shown in figure 3b.  

 

Figure 3.  (a) The cube used to construct the sp
3
 tetrahedron in a ZB cubic unit cell and (b) the cubic  

ZB unit cell. 

The Ga atoms lie at the eight corners of the cube and at each of the six faces; this unit cell is 

called a face centered cubic (fcc) unit cell. The basis vectors a1, a2, and a3 that are used to define 

the unit cell are the edges of the cube of length, a. The tip of the tetrahedron again lies at the 

origin, and its base is perpendicular to the       direction so it is parallel to a       plane. It in 

fact lies in the       plane, which is identical to the        W plane. Between the Ga atoms at 

the origin and the one lying directly above it along the       body diagonal of the unit cell at the 

opposite corner, there are two other tetrahedra whose bases are cpps that are parallel and 

identical to the       planes. Looking down the       direction the Ga atom at the tip of the 

tetrahedron formed in the smaller cube in the upper left-hand corner lies above the point B in 

figure 1c. The tip in the tetrahedron formed in the smaller cube opposite a face diagonal from the 

cube at the origin lies above the point C marked in figure 1c. One can make the same argument 

for the N atoms because they lie directly above Ga atoms so the stacking of the cpps in the ZB 

structure is said to be AαBβCγAα….  

As a general rule the cpp is the plane along which edge dislocations most easily move because 

atoms in these planes are the furthest apart from atoms in an identical plane above it, making it 

easier for them to glide over each other. Thus, they are called the primary slip plane, h. As 

shown in figure 4a, there are four non-parallel       planes—the      ,       ,        , and 

      —that are identical. The slip direction and length (the Burgers vector, b) is usually the 

shortest lattice vector in the slip plane, which for the fcc unit cell is a   

 
      

 
  type direction that 

lies in the slip plane, as shown in figure 4b. The line that separates the slipped portion of the 
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crystal and lies in the slip plane (the dislocation line, l) can be a        direction. If l is this type 

direction (and it usually is in ZB structures), then the dislocation is said to be a 60° dislocation 

because the angle between b and l is 60°. If l is parallel to a         type direction, then it is an 

edge dislocation because b is normal to l. It is the edge component of b that compensates for the 

lattice mismatch. The component of b ‖ l is the screw component. 

 

Figure 4.  (a) The four equivalent       type slip planes in the cubic ZB structure. (b) The   

 
     

 
  Burgers vector 

and the        dislocation line for the 60° dislocation line in the       plane of a cubic ZB structure. 

4. Classical Molecular Dynamics Simulations of Dislocations in GaN 

We have performed classical MD simulations to obtain dislocation velocities as a function of 

applied stress in order to calculate mobility functions for various slip systems.  In these 

simulations, shear is applied to a crystal system containing a single edge dislocation (i.e., 

reference 2).  In this work, we focus on three slip systems containing pure edge dislocations. 

All simulations were performed using the Large-Scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) computer code (3).  The interatomic potential is a bond order potential 

developed for GaN (4) using the Tersoff-Brenner formulation (5), which was fit using both 

experimental data and results from density functional theory (DFT).  It accurately reproduces a 

number of structural and material properties of Ga, N, and GaN, and the absence of long-range 

forces allows for relatively fast simulations.  All the simulations presented here are performed in 

the NVT ensemble at a temperature of 1300 K, with a timestep of 1 fs. 

We begin by generating a single crystal oriented such that the Burgers vector, b, of the 

subsequent dislocation will point in the x-direction, while the dislocation line, l, will align with 

the y-axis.  The initial single crystals of wurtzite GaN contain around 1.4 million atoms, with 

dimensions of approximately 250 × 250 × 250 Å.  A single dislocation is introduced by the 
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trench method (6), represented in figure 5.  As seen in figure 5a, where all atomic positions are 

projected onto the plane, two half planes of atoms along the z-direction are removed from the 

lower half of the crystal.  Due to the mismatch in the number of half-planes, periodic boundaries 

are only implemented in the x- and y-directions, while the z-surfaces are free.  Furthermore, 

atoms within 10 Å of the top and bottom free surfaces are constrained to move in the xy-plane as 

these are the atoms through which shear will be applied to the system after relaxation.  The 

system is equilibrated for 20 ps, resulting in the configuration seen in figure 5b.  The trench has 

closed, leaving a dislocation near the middle of the simulation cell, shown in expanded view in 

figure 5c. 

 

Figure 5.  Method of generating a dislocation in a single crystal: (a) two half planes are removed from the lower half 

and after equilibration, (b) a dislocation remains near the center of the system, a close-up of which is seen 

in (c). 

Once equilibrated, the system is deformed by applying shear in a stress controlled manner (7), as 

depicted in figure 6.  This is achieved by applying an additional force to those atoms that were 

constrained to move in the xy-plane during equilibration (the “top” and “bottom” regions in 

figure 6).  Atoms in the top region are given a force in the positive x-direction and those in the 

bottom in the negative x-direction.  The force on each Ga atom is scaled by a factor of 4.9778 

compared to the force on N atoms to account for their larger mass (mGa/mN = 4.9778), and to 

maintain the wurtzite crystal structure in the top and bottom regions.  Furthermore, considering 

that atoms were removed from the bottom region in order to generate the dislocation, the force 

on Ga (N) atoms in the bottom region is larger than the force on Ga (N) atoms in the top region.  

The forces are scaled such that the total force on all the atoms in each region is equivalent.  The 

applied stress is simply calculated as the total force on the top (or bottom) region divided by the 

xy-area of the simulation region. 
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Figure 6.  A depiction of the simulation technique to  

measure dislocation velocity as a function of  

applied stress. 

If the applied stress is high enough, the dislocation will begin to glide, as shown in figure 7.  In 

this figure, only atoms with other than four nearest neighbors are visualized.  The initial position 

of the dislocation line is shown near the center of the simulation region in figure 7a, and its 

subsequent position after 2 ns (figure 7b) is to the right of its initial position.  The pairs of atoms 

that appear at some distance from the dislocation are due to thermal fluctuations and do not 

represent defects in the single crystal. 

 

Figure 7.  Example of dislocation glide.  The visualization software is AtomEye (8). 
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Once the dislocation begins to glide, there is typically a rapid acceleration before the dislocation 

settles into an equilibrium velocity.  Once this state is reached the simulation can run indefinitely 

since periodic boundaries parallel to the glide plane allow the dislocation to pass entirely through 

the system and re-enter on the other side.  The x-position of the dislocation can be determined by 

identifying and averaging those atoms with a coordination number other than four.  The position 

of the dislocation as a function of time over a 1000 ps (1 ns) interval is fitted to a line in order to 

calculate the velocity, as shown in figure 8.  We also ensure that the dislocation remains coherent 

throughout the length of the simulation since at very high stress the dislocation core can become 

unstable and either spread or dissociate.  The velocity of the dislocation is simply equal to the 

slope of the fitted line. 

 

Figure 8.  Position of dislocation as a function of nominal time  

for three different values of applied stress. 

The three slip systems studied in this work are all pure edge, with a Burgers vector equal to the 

lattice parameter a = 3.160 Å for this potential at T = 1300 K.  Figure 9 shows the velocity as a 

function of applied stress on a logarithmic plot for the three slip systems identified.  We observe 

relatively low values of dislocation velocities corresponding to very high values of applied stress, 

at least compared to previous MD studies of metallic systems where velocities on the order of 

100 m/s are observed for stresses on the order of 100 MPa (2).  The behavior of the 

               and                 slip systems is similar, with the former having slightly more 

mobile dislocations.  The dislocations in the                 slip system are much less mobile, 

but above a critical stress of approximately 3 GPa the dislocation velocity increases rapidly.    
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Figure 9.  Log-log plot of dislocation velocity as a function of  

applied stress for the three slip systems identified in the legend. 

5. Non-coplanar Binary Dislocation Junctions in Hexagonal Close-packed 

Crystals 

Study of dislocation junction strengths in hcp crystals is important to understand and control the 

density of deleterious dislocations in wide band-gap wurtzite semiconductors.  This is due to the 

fact that junction formation is a key entanglement mechanism leading to high dislocation density, 

and hcp structures are the foundation of wurtzite semiconductors. Different junction 

configurations are studied using a DDD simulator, ParaDiS (9), with different elasticity and a 

variety of Burgers vector pairs to examine their effects on the junction strengths. Given the 

complexity of multiple available interacting slip systems, this work focuses on detecting any 

similarity and differences in junction strengths. 

5.1 Approach 

For each set of interacting dislocation slip systems, first an equilibrium binary junction is formed 

along the intersecting edge of two different slip planes from two intersecting straight dislocations 

with no net stress field. The dislocation is inserted onto the center of each plane—a straight 

dislocation making a 30° angle to the intersection edge (10). The Burgers vector pairs are 

selected such that it is energetically favorable to form a junction. All the vectors and planes are 

described in the code using the 3-index notation (11). Table 1 is a list of different sets of 

interacting slip systems investigated in this work, along with the corresponding 4-index Miller 

notations. The interactions are also schematically illustrated in figure 10.  Table 1 also includes 

the Burgers vectors, categorized as     type,  
 
       ,     type,       , or       type,  

 
        . 

The Burgers vector and line direction of each resultant junction are listed in table 2. 
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Table 1.  Slip planes and Burgers vectors. 

Slip plane Burgers vector 

 4-index 3-index 4-index 3-index type 

(a) 

 1000  








a

c
00   0121

3

1
 













0

2

3

2

1
 < a > 

 0110  
 013  

 
 0112

3

1
 













 0

2

3

2

1
 < a > 

(b) 

 2112   acc 3233    3112
3

1
 















a

c

2

3

2

1
 < a+c > 

 0110   013   0112
3

1
 













 0

2

3

2

1
 < a > 

(c) 

 2112   acc 3233    3112
3

1
 















a

c

2

3

2

1
 < a + c > 

 0110   013   1000  









a

c
00  < c > 

 

 

Figure 10.  Illustration showing the selected different interacting slip systems: The purple arrows 

represent the Burgers vectors for the dislocation on the         plane (also in purple).  

The red arrows represent the Burgers vectors for the dislocation on the        plane  

in case (a) and on the         plane in cases (b) and (c), respectively. 
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Table 2.  The Burgers vectors and directions of the resultant binary junctions. 

 Burgers vector Junction direction 

 4-index  3-index  4-index 3-index 

(a)  0211
3

1
   001   0112

3

1
 













 0

2

3

2

1
 

(b)  1000  








a

c
00  

 3112
3

1
 















a

c

2

3

2

1
 

(c)  0112
3

1
 













 0

2

3

2

1  

 

The junction strengths are then examined by loading each equilibrium junction with a 3×3 

applied stress tensor, σ, calculated as  

 1 2 3    1 2 3σ S S S   (1) 

where Si (i = 1~3) are the 33 orthogonal projection matrices for the two interacting dislocations 

(i = 1, 2) and the junction (i = 3), and σ1, σ2, and σ3 are their respective scalar resolved shear 

stresses in units of MPa. Here, Si are calculated from the Schmid tensors (12) 

 i i i i
i

i i i i

 
     
 

b n n b
s

b n n b
 (2) 

 : 1i iS s    (3) 

 : 0,i jS s i j   (4) 

such that a stress applied on one plane would not contribute any resolved stress on the other. In 

equation 2, bi are the Burgers vectors and ni are the unit normal vectors.  

In the simulation, the coefficient σ3 in equation 1 is set to zero so that 
2211 SSσ   . This is to 

prevent the junction from bowing out and ensure a straight unzipping along the straight junction 

line. For each specified σ1/σ2 ratio, the junction is loaded repeatedly by the stress tensor, σ, with 

an incrementally increasing magnitude. For each stress increment, the junction is allowed to 

equilibrate for a total of 30,000 timesteps until the junction is completely dissolved and the 

initially locked dislocations become two separate glissile dislocations again. The critical stress 

pairs (σ1c, σ2c) obtained from all specified σ1/ σ2 ratios are then normalized by a scaling factor  

 
 

'
, , ln

1
i c i c

o

R

L r


 



  
   

   

 (5) 
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and the pairs of (σ’1c, σ’2c) constitute  a junction yield surface. In equation 5, the slip plane index 

is i (= 1, 2), L is the initial length of intersecting dislocations, µ is the shear modulus, ν is the 

Poisson’s ratio, and R and ro are the outer and inner cut-off radii for linear elasticity, 

respectively. In this work, the σ2 refers to the resolved stress on the         plane in all cases. 

The σ1 corresponds to the stress applied on the        plane for case (a) and the         plane 

for cases (b) and (c). The core radius, ro, is approximated as equivalent to the lattice spacing of 

the basal plane.  

5.2 Formation of Equilibrium Junctions 

The resultant properties of equilibrium junctions are summarized in table 3. They include the 

equilibrium length, Le (in the unit of a where a is the lattice spacing on the basal plane), the 

approximate total energy reduction, ∆E, and the arm orientations, ψ1' and ψ2', measured from the 

intersection edge to the arms. For all cases studied here, the ψ2' refers to the orientation on the 

        plane. However, the ψ1' refers to the       
 plane in case (a) but to the        

 plane in 

cases (b) and (c). When the junction starts to form, it continues growing until all forces at the 

triple nodes are balanced. As shown in case (c), the results indicate that it is most energetically 

favorable to form the                 junction with the interacting Burgers vectors of       

and    . In case (a), interactions from the Burgers vector pairs of the same type would result in 

identical junction arm orientations (i.e., ψ1' = ψ2'). On the contrary, in cases (b) and (c) the 

Burgers vector pairs of different types would lead to different arm orientations on different 

planes (i.e., ψ1' ≠  ψ2'). In fact, the junctions studied in this work are associated with the prismatic 

       
 plane intersecting with different planes—the        plane for case (a) and the        

 
plane for cases (b) and (c). Therefore, the equilibrium length and arm orientations in cases (b) 

and (c) are only sensitive to the choice of Burgers vector on the        
 plane. Our findings of 

different junction lengths corresponding to different slip systems are also consistent with an 

earlier report by Yoo et al. (13). 

Table 3.  Properties of the equilibrium junctions. 

Case Material Le ∆E (%) ψ1’/ψ2’  

(a) 
Be 23,323 50 60°/60° 

Mg 23,769 50 62°/62° 

(b) 
Be 21,698 45 54°/65° 

Mg 16,145 43 45°/64° 

(c) 
Be 31,311 83 88°/75° 

Mg 26,029 84 78°/60° 

5.3 Junction Unzipping and Yield Surfaces 

In principle, the junction unzipping is carried out via Frank-Read bow out by the resolved 

stresses (14–16). Therefore, the critical breaking stress has a linear relation with the elastic 

constants. As anticipated, the critical stress pairs, (σ1c, σ2c), for beryllium (Be) are one order of 

magnitude greater than those for magnesium (Mg) with all specified σ1/σ2 ratios. Figures 11–13 
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are the yield surface plots for all cases studied. The data points are comprised of the normalized 

stress pairs, (σ'1c, σ'2c).  

 

Figure 11.  The yield surfaces for case (a). σ1' and σ2' are the normalized 

resolved applied stresses on the        and the        
 

planes, respectively. The junction is oriented along         , 

equivalent to         in the 4-index notation. 

 

Figure 12.  The yield surfaces for case (b). σ1' and σ2' are the normalized  

resolved applied stresses on the        
 
and the        

 
planes,  

respectively. The junction is oriented along    –      ,  

equivalent to         in the 4-index. notation. 
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Figure 13.  The yield surfaces for case (c). σ1' and σ2' are the  

normalized resolved applied stresses on the        
 
 

nd the        
 
planes, respectively. The junction is  

oriented along    –      , equivalent to         in the  

4-index notation. 

The yield surfaces in all cases are symmetric, which is similar to those in fcc crystals (17–18). 

The symmetry can be attributed to the symmetric configuration of the initial equilibrium junction 

and the linear mobility used in the code. To validate the anticipated symmetry, we have run 

simulations for all the data points needed to compose the closed envelope. The yield surfaces are 

also elongated along a straight line, 12  m , that represents the major axis where m is the slope 

of that line.  The positive or negative sign of m depends on the choice of slip planes used to 

create the junction and the consequence that choice has on the orthogonal Schmidt tensor S. The 

uniformity upon scaling with equation 5 reaffirms the sensitivity to the elastic constants of the 

material as mentioned previously.  

As depicted in figures 11–13, the inclination of yield surfaces does not vary significantly among 

different junction configurations and slip systems. For the               
 junction in case (a), 

the size of yield surfaces are significantly smaller and the shapes resemble those in fcc crystals 

(17).  This can be attributed to all the Burgers vectors involved in this case are of the     type on 

the basal plane. This type of Burgers vector corresponds to the shortest translation vector on the 

sole close-packed slip plane for hcp crystals and resembles the       glide on the       slip 

planes for fcc crystals (–). Moreover, the junction in case (a) is also 60° oriented to its Burgers 

vector, which has the same orientation as those for fcc crystals.  

The role of Burgers vectors is more complex in cases (b) and (c). Unlike case (a), the shape and 

size of yield surfaces would differ from those of fcc crystals when the interacting Burgers vector 
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pairs are of different types and magnitudes. The junction property can also change based on the 

interacting Burgers vector. When a     type Burgers vector is involved in the interaction, the 

resultant junction tends to have a larger yield surface than when an     type Burgers vector is 

used. The junction in case (c) is also a pure edge dislocation. By comparing case (b) with cases 

(a) and (c), the yield surface is more elongated for junctions having more edge part than those 

having more screw part. This finding is similar to Capolungo’s report for junctions in Mg (–) 

despite a small difference in his normalization factor from that used here.  

The size of the yield surfaces evidently depends on the elastic constants, especially the ratio of 

µ/(1 – ν). Although the difference in the order of magnitude for the critical unzipping stresses 

between Be and Mg can be largely eliminated via normalization, the differences are still 

dominated by the term containing Poisson’s ratio, (1 – ν). This results in larger yield surfaces for 

Be than for Mg in all cases. Overall, the yield surfaces in case (c) are much larger than those in 

cases (a) and (b) for both Be and Mg. This can be attributed to the large total energy reduction by 

junction formation (80%) for case (c), in comparison to at most 50% reduction for other cases. 

This relation is similar to Dupuy and Fivel’s finding (17) that a greater reduction in the total 

dislocation energy leads to a stronger junction. 

5.4 The Effect of Dislocation Length on Critical Unzipping Stresses 

We have also performed simulations to verify the accuracy of our results and the independence 

of yield surface to the initial dislocation lengths, even though previous studies on junctions in fcc 

crystals suggested similar properties (21, 22).  In principle, the magnitude of the critical resolved 

stresses is reduced accordingly with increasing dislocation length. Figure 14 displays the yield 

surface of the               
 junction in Be by varying L twice and ten times the original 

length of 40,000a, where L is the initial dislocation length, and after scaling by ln(L)/L. As 

shown in the figure, the shape of the yield surfaces, namely the junction strength, is independent 

of the dislocation length.  
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Figure 14.  The yield surfaces for the junction in Be in case (a) with varying initial dislocation 

lengths, L. The junction is oriented along    –      , equivalent to         in the  

4-index notation. 

5.5 Wurtzite GaN 

We have successfully studied different representative junction strengths in hcp crystals via DDD 

simulations using the ParaDiS code.  In this section, we summarize future directions and needs 

for extending and improving upon the present results. Because the current version of the code 

was originally designed for modeling perfect dislocations in bulk hcp crystals, several slip 

systems that are important to wurtzite but do not exist in hcp crystals are not included, such as 

the a-planes         , the r-plane        , and the         type Burgers vectors (23). In addition, 

partial dislocations can exist in wurtzite crystals (24, 25) and have been found frequently in III-V 

wurtzite semiconductors in experiments (e.g., reference 26). Furthermore, experimental findings 

have also indicated a possible dependence of dislocation velocity on the slip systems. 

Therefore, the linear mobility law and the weighting factors accounting for the variations of slip 

planes used in the simulations in this work may not sufficiently reflect the actual dislocation 

dynamics in nitride-derived wurtzite crystals. In addition, an offset in the lattice spacing may 

need to be taken into account to model wurtzite materials. The manner in which all these can be 

suitably represented in ParaDiS requires more careful investigation. In summary, continuing 
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efforts are necessary, like implementation of additional slip systems and their resultant possible 

cross slips, nonlinear mobility laws, structure-based core radii via MD simulations, and the 

lattice spacing adjustment reflecting the compound structure, etc. 

6. Quantum Mechanical Simulations of Dislocations in AlGaN 

The ternary semiconductor AlGaN in the hexagonal phase is not only an important material for 

substrates and transition layers, but it is also an important part of electronic devices like HEMTs.  

A nanolayer of AlGaN over GaN provides extra 2DEG charge density because of the 

piezoelectric effect of the AlGaN layer. The higher concentration of Al leads to a stronger 

piezoelectric effect and higher charge density, but the system is not stable above 28 at.% of Al. 

The structure of the ternary system AlxGa1–xN is still not well understood. There is a high energy 

penalty for Al atoms to be on a N site, but the distribution of Al atoms around the extended 

defects is an open question. 

The objective of this section is to understand the details of atomic distribution around threading 

edge and screw dislocations in ternary random semiconductors, and estimate the electrical 

activity of the states associated with atoms in the dislocation’s core. We model the structure of 

the ternary system with 25 at.% of Al using quantum mechanical methods and the ideas of 

evolutionary algorithm (27). 

We performed first principles simulations of edge and screw dislocations in the basal plane of 

AlGaN. In order to provide periodical boundary conditions, we needed to use a dislocation 

dipole. The crude model of the dislocations was created using MD with the same potentials as in 

section 4. The models of the dislocation dipoles in wurtzite GaN consisting of 296–340 atoms 

were optimized using DFT and projected augmented plane waves as implemented in the package 

Vienna Ab-Initio Simulation Package (VASP) (28). Total energy of the system (converged with 

an accuracy of 10
–6

 eV, a 500-eV cut-off energy, and two irreducible k-points) was used as a 

fitting function in genetic algorithm. We developed a shell script to model evolution of several 

generations of the system with the same job ID on Department of Defense (DoD) high-

performance computers. The first generation is produced by a random-number generator. Among 

the locally optimized structures, a certain number of the worst ones are rejected, and the 

remaining structures participate in creating the next generation through heredity, permutation, 

and mutation operations chosen with a specified weight. Selection probabilities for variation 

operators are derived from the rank of their fitness (i.e., their VASP calculated free energies). 

The permutation operator is essentially switching the identities of two or more atoms in a 

structure, while mutation is a random change of the cell vectors and/or atomic positions.  During 

a heredity operation, new structures are produced by matching slices (chosen in random 

directions and with random positions) of the parent structures.  
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As seen in figure 15, Al atoms prefer to be far from the dislocation core in both structures. There 

might be a straightforward physical explanation of this trend. The Al-N bond in wurtzite AlN is 

1.78 Å, while in wurtzite GaN it is 1.95 Å. Bonds in the dislocation core are slightly stretched 

compared with bulk GaN. The difference in the bond lengths causes an increase in energy for Al 

atoms when they are close to the dislocation core. This might define the segregation of Al atoms 

from the dislocation core. This indicates that the electronic structure of the dislocation core is the 

same as in wurtzite GaN (figure 15) and the screw and threading edge dislocations in AlGaN are 

electrically inactive. According to our projection of the optimized charge density for certain 

bands to particular atoms, the occupied N-derived state inside the screw dislocation lies just 

below the valence-band maximum and the empty Ga-derived state inside the screw dislocation 

lies above the conduction-band minimum. 

   
(a)           (b) 

Figure 15.  Distribution of Al atoms in (a) screw and (b) edge dislocations in Al0.25Ga0.75N after 10 generations of an 

evolution with 8 members in each generation.  Total charge distribution at isovalue of 0.2 is also shown 

in the picture. Shadowed region corresponds to Brillouin zone of the supercell. 

7. Crystallographic Theory of Dislocations in GaN 

7.1 Derivation of Most Probable Slip Systems 

The epitaxial growth of a lattice mismatched film begins as an elastically strained 

pseudomorphic film, and dislocations abruptly form once the thickness exceeds a critical value 

(29). The dislocations usually nucleate at the surface and slip towards the film/substrate interface 

where they plastically accommodate the mismatch strain (29, 30). They can also nucleate 

internally, but it is unlikely because the activation energy to create one is large (1, 31). As is 

shown in figure 16a (30), for growth on the       ZB plane one leg of a dislocation loop glides 

in the         plane with    

 
       , composed of a 60° dislocation with, l ‖        ; the other leg 

is a screw dislocation with l ‖        . 
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Figure 16.  (a) Schematic of a dislocation loop and its associated Burgers vectors, dislocation 

lines, and partial dislocations for the ZB structure for hetero-epitaxial growth on the 

      plane.  (b) The sp
3
 tetrahedron for the ZB structure with the apex at the origin 

and the base of the inverted pyramid being parallel to the       plane.  (c) Atomic 

packing of the close packed         ZB plane and the  
 
        Burgers vector with its 

associated 60° dislocation line and associated PDs.  (d) Atomic packing of the close 

packed       ZB plane, the  
 
       Burgers vector, with its associated 60° dislocation 

line and associated PDs.   

When the line reaches the interface, l becomes parallel to it and the        direction.  The Burgers 

vector can decompose into 90° and 30° partial dislocations separated by a faulted region. (Note 

that the       growth plane is not normal to the paper; rather it makes an angle of 70.5° with it 

so that the         slip plane is parallel to the plane of the paper in figure 1.)  The sp
3
 tetrahedron 

with the apex at the origin, the base of the inverted pyramid parallel to the       plane, and the 

shaded side parallel to the         slip plane is shown in figure 16b. The partial dislocations (PDs) 

in the         slip plane are described in figure 16c with the 90° partial     

 
       , and the 30° 

partial     

 
        . The corresponding vectors for the       basal plane displayed in figure 16d 

are    

 
      , l (60º) ‖       ,     

 
      , and     

 
       . 

It is equally probable that slip will also occur on the         or         planes because they are 

identical planes so the shear stress necessary to initiate dislocation flow is the same, but also 

because the shear stress on these planes generated by the plane strain created by the mismatch 
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also is the same. For plane strain, the maximum shear stress, τ, occurs on a plane that makes an 

angle of 45° and it is equal to σ/2, where σ is the longitudinal plane stress, and it is acting in the 

direction parallel to the intersection of the plane containing the plane normal and the normal to 

the slip plane. The       slip plane and the other two primary slip planes make an angle of 70.6° 

with the growth plane, which is quite far from the ideal value of 45° so the shear stress on this 

plane is significantly less than the maximum. In addition, the direction of the shear stress in this 

plane is the          direction, which makes an angle of 60° with the slip direction as defined by 

the direction of a Burgers vector. It is therefore possible that slip could occur on planes other 

than the primary slip planes in a direction other than the primary slip direction even though it 

would take more stress to move the atoms because the actual shear stress is much larger on that 

plane—a plane that makes an angle near 45° with the growth plane and the direction of slip is 

closer to the direction of the shear stress. These slip systems are called secondary slip systems, 

which for the most part are not activated in semiconductors with the ZB structure. 

For the same tetrahedron referred to the W crystal basis vectors, the vectors in the        basal 

plane are    

 
        , l(60°) ‖        ,     

 
       , and     

 
       .  Using the 3-indices 

notation, the same vectors become        , l(60°) ‖       ,     

 
     , and     

 
       

(32). However, there are no primary slip planes that are active because there is no shear stress in 

the growth plane, as well as the planes that make an angle of 90° with it. This latter statement 

eliminates any prismatic plane such as the          or         planes, which are also relatively 

close packed. The question then is, what is the slip system for hetero-structure W films grown on 

the        plane? 

Slip must occur on a pyramidal plane, and new types of dislocations have to be described.  The 

dislocation with the shortest Burgers vector that lies in a pyramidal plane is,       
 

 
               , and it is called a mixed dislocation.  As shown in figure 17, it can lie in the 

low index        ,        , and          planes (33, 34).  This can also be confirmed by the fact 

that      , where h is the glide plane represented by three indices created by dropping the i 

index from the {hkil} representation.  We also briefly consider the next shortest pyramidal 

Burgers vector,         

 
              , and the associated        ,         and          

slip planes.  
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Figure 17.  Schematic of the (a)        , (b)        , and (c)          W planes and the  
 
         dislocation and 

associated dislocation line lying in the interfacial        plane. 

Slip on these planes is analyzed by determining the angle they make with the        plane, their 

interplanar spacing, the associated dislocation line, the edge component of the dislocation and 

the component that lies in the growth plane, and the probable PDs.  Then stick models of the 

bonding structures of planes normal to the glide plane are constructed to examine the cross 

section of the glide plane and planes parallel to it. 

To determine how close h approaches this optimum value of making a 45° angle with the 

       growth plane, the angle (θ) it makes with the basal plane can be determined using the 

three indices notation from, 
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2

hG
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 (6) 

where G is the metric tensor for the hexagonal crystal structure, and γ is the c/a ratio.   

To a first order τ is inversely proportional to the distance between the planes.  This distance is 

the distance between planes with the same Miller indices, d, which is found from 

 

 
2

2 24
3 2

1

2 2

1

H

l
h hk k

d a



  

 hG h  (7) 

Because there are four atoms associated with the lattice points of the simple hexagonal W unit 

cell, some planes will have planes with different Miller indices that are parallel to them.  For 

example, the        planes containing only cations are separated by c/2, but one plane 

containing only anions that is parallel to the        plane lies (½ – u)c below it and another is 

uc above it.  To a very good approximation, u = ⅜ because γ
2
 ≈ 

8
/3 – the ideal value where all of 
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the atoms are treated as hard spheres.  This value of u is used throughout the report.  For some 

prismatic planes, having four atoms associated with a lattice site is not a problem because the 

         plane contains all four of them as is illustrated in figure 18. Thus, as seen in figure 18a, 

stating that the          planes are separated by a distance a/2 completely describes all of the 

atomic sites.   

 

Figure 18.  (a) Top       planar view and ABA … stacking of the         

ZB planes and the equivalent          W planes.  (Cations in , ½  

or ⅓ above , and ⅔ above  the plane; anions ⅜ or ¼ above ,  

⅞ or ½ above , and ¾ above .)  (b) Side          planar view of  

the W structure showing the AαBβAα... stacking of the        planes,  

and (c) side equivalent        planar view of the ZB structure showing the 

AαBβCγAα... stacking of the       planes.  (Cations  and anions  in, 

cations  or , and anions  or  ½ in front of, and cations  or  

 and anions  or  ½ behind the plane.)  

However, this is not the case when one states that the         W planes are separated by a 

distance       because there is also a plane containing atoms       below it and another one 

      above it as is illustrated in figure 19a.  Thus, to make certain that all of the atoms are 

accounted for, it is helpful to use stick figures along with the calculations. 
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Figure 19.  (a) Top        planar view and ABCDA … stacking of the          

W planes. (b) Side         planar view of the W structure showing the  

AαBβAα... stacking of the        planes.  (c) Top       planar view and  

ABCDEF … stacking of the         ZB planes.  (d) Side         planar view  

of the ZB structure showing the AαBβCγAα... stacking of the       planes.   

(Cation  and anion  in, cation  and anion  
1
/6 behind, cation  and  

anion  ⅓ behind, cation  and anion  ½ behind, cation  and anion  

 ⅔ behind, and cation  and anion  
5
/6 behind the plane.)    

The dislocation line, l, of b when it reaches the interface is parallel to the intersection of the glide 

and basal planes so that for basal growth plane in the W crystal, 

  001 0kh     hl  (8) 

The only component of b that contributes to the mismatch is the edge component lying in the 

growth plane, bcosΦ, where Φ is the angle between b and bG, the direction normal to the 

dislocation line and lying in the growth plane. Φ will be the same angle as θ if b is an edge 

dislocation, and therefore normal to l.  bG is given by, 

      G 2 2
001   0k hh k      b Gl  (9) 
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and bcosΦ is determined by the equation, 

 
   

   

 

 
1 11

2 22

G G

G G G G

cosb   

1
2bGb bGb bGb

bGb b Gb b Gb
 (10) 

For growth on the        plane, equation 10 becomes, 

 
 

 
1

22 2

3
cos

2

Ha hu kv
b

h hk k

 
  

 
   

 (11) 

where u, v and w are the indices for b. 

The Burgers vector can also decompose into partial dislocations, dislocations for which the 

Burgers vector is not a lattice vector.  A necessary condition for decomposition into partials is 

that (b1
2
 + b2

2
)/ b

2
 = R < 1, where b1 and b2 are the lengths of the partial dislocations, and b is the 

length of the burgers vector of the dislocation, because the energy is proportional to b
2
.  The 

length of the Burgers vector can be calculated using the formula, 

  2 2 2 2 2 2
Hb u uv v w a    bGb  (12) 

If partials are formed, they repel each other and in so doing create a stacking fault between them 

with an energy per unit length, Eγ, that determines the separation distance.  Unlike metals where 

the Burgers vector can be cut into arbitrary lengths to create two PDs (35, 36), PDs in covalently 

bound semiconductors are usually fixed by the separation between two atomic sites for the same 

type of atom. 

The top view in figure 18a represents both the W and ZB structures, the side view in figure 18b 

is the          planar view of the W structure, and the equivalent        ZB planar view (32) is 

shown in figure 18c.  This planar view was chosen because the          plane is normal to the 

        plane making it useful for examining cross sections of the         and         planes.  

Note that both the          W and        ZB structures have ABA … stacking.  The planar view 

that is useful for examining the cross section of the planes parallel to the         plane is the 

        W planar view in figure 19b and the corresponding         ZB planar view in figure 19d.  

The top views for the structures are shown in figure 19a and 19c, where it is shown that planes 

parallel to the planar view have ABCDA … stacking in W and ABCDEFA … stacking in ZB.  

The planar view that is normal to the          plane is the         planar view, but little value is 

gained from constructing it because the  
 
         Burgers vector makes a relatively large angle 

with it, 63.1° when γ
2
 = 

8
/3. 

Choosing the specific W Burgers vector,    

 
               , which is equivalent to the 

 

 
         ZB vector, or    

 
               , as well as the stick figures in figures 18 and 19, 

where the dislocations are represented by thick arrows in the top view, one can assemble table 4.



 

 

2
6
 

Table 4.  A description of the  
 
         or          dislocations and PDs, and the associated slip planes along with their d-spacing and the angle they make with the 

       growth plane.  Where applicable, top is W representation with ZB equivalent below. 
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Although the         planes have the largest d-spacing, they do not have the largest planar 

density because there are a number of planes containing atoms that are parallel to and lie 

between them. Assuming that the Ga atom in the lower left hand corner in figure 18b lies at the 

origin, it can be seen that only the Ga atoms at      ,      , and       lie in the plane.  The Ga 

atoms at   

 
  
 
  
 
  and    

 
  
 
  
 
  lie in a plane that is a fraction of the d-spacing, f, above the plane of 

interest, where 

 f i i
d


    

u n
u h , (13) 

u is the atomic position of an atom in the plane above the plane of interest, n is the unit plane 

normal, and i is the number of planes out from the origin that is represented by the trace formed 

by the intersection of h with the planar view.  For the         plane in figures 17a and 18b, i = 1, 

and for the         plane in figures 17b and 19b i = 2.  From equation 12, it can be shown that 

the Ga atoms at   

 
  
 
  
 
  and    

 
  
 
  
 
  lie 

d
/6 below the (01 1) plane (f = –

1
/6).  It can also be shown 

that the N atoms at    

 
  
 
  
 
  and    

 
  
 
  
 
  lie in a parallel plane 

5d
/24 above the         plane, and the 

N atoms at       
 
  and       

 
  lie in a plane 

3d
/8 above it.  Thus, instead of a single         plane 

containing both Ga and N atoms, there is a pair of planes 
d
/6 apart containing only Ga atoms, and 

another pair of planes 
d
/6 apart containing only N atoms 

d
/3 above the other pair. 

Because there are a number of parallel planes containing atoms that lie between the         

planes, the atomic planar density, ρp, given by, 

 a
b

p

d

n


   (14) 

where     

  
  

  , is the bulk atomic density, and np is the number of parallel planes containing 

atoms between the planes of interest.  For the ideal case ρp = 0.541/aH
2
 for the         plane 

compared with 1.155/aH
2
, 1.414/aH

2
, and 1.225/aH

2
 for the       ,         and         planes, 

respectively. 

In addition to having a smaller ρp than one would expect when only considering the d-spacing, 

the          Burgers vector in the         plane is not a perfect edge dislocation, as it makes an 

angle of 74.9° with l in the ideal case.  This further reduces the probability that the active 

pyramidal slip system is the  
 
                slip system. Using equation 11, one calculates that 

the edge component of the Burgers vector lying in the basal plane is bcosΦ = ½√3a. Another 

negative is that the PDs do not lie in the slip plane.  This can be seen in figures 18c and 20b 

showing the view of the         plane and the atoms in the plane lying above and below it.  It 

can also be confirmed mathematically by the fact that the plane they both lie in, as determined by 

their cross product, is the               plane. 
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Figure 20.  View of the Ga atoms lying in , immediately above , and immediately below ,  

and the N atoms lying immediately above  and immediately below  the (a)          

W plane, or (b)        ZB plane. 

Even though the         plane makes an angle close to 45° with the        plane where the 

maximum shear stress is applied, the greater length of the Burgers vector, the fact that it is not a 

pure edge dislocation and its effective d-spacing is very small make it unlikely that the 
 

 
                pyramidal slip system is the active slip system.  For the ideal case, Φ = 67.2° and 

ρp = 0.420/a
2
.  The reason again that it is so low is that there are three planes parallel to the 

        plane that contain atoms that lie between adjacent         planes.  As can be seen in 

figure 18b, there are two pairs of planes containing either all Ga or all N atoms instead of a 

single         plane containing both types. 

For the         plane shown in figure 17b and its cross section depicted in figure 19b, the planar 

density is larger than it is for the         plane, even though its d-spacing is smaller because only 

one plane containing atoms, as opposed to three, lie between the         planes.  It can be shown 

that ρp = 0.603/aH
2
 for the ideal case.  Taking the Ga atom in the lower left hand corner of  

figure 19b to be the origin, the         plane closest to it passes through the Ga atoms at  

[–⅓ ⅓ ½] and      ; the trace in figure 19b containing Ga atoms at      , [⅔ ⅓ ½], and       

is the second plane out. The single plane containing only N atoms passes through the N atom at 

      
 
 , and is 

d
/4 below the         plane. 

In addition to being the densest plane containing the  
 
        dislocation, b is a pure edge 

dislocation, as can be seen in figure 16b, as well as by the fact that b·Gl = 0. As a result, the edge 

component of the Burgers vector lying in the basal plane is bcosΦ = aH, which is larger than it 

was for the         plane.  However, an even stronger argument that the dominant pyramidal slip 

system for growth on the        plane is the  
 
               slip system is that the likely 
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partials,     

 
           

 
  
 
   

 
  and     

 
           

 
  
 
   

 
 , lie in the slip plane.  This is seen 

in the stick figure of the         plane in figure 20a showing the structure of the         plane 

and the planes above and below it, and is confirmed by the fact that bi·h = 0.  The equivalent 

Burgers vectors in the ZB structure shown in figure 20b are [⅔ ⅓–½]W → 
1
/6[114]ZB and [⅓ ⅔–

½]W → [–½ 0 –½]ZB. Interestingly, b2 in the ZB structure is a complete dislocation, not a partial, 

but b1 is not even a partial as it does not connect atomic sites of similar atoms.  This is shown in 

figure 20b.  The reason b2 is a partial dislocation in the W structure is that the atom at [–⅓ –⅔ ½] 

in the sp
3
 tetrahedron in figure 16b is not at a lattice point, whereas the atom at the equivalent [½ 

0 ½] atomic site in the ZB structure is.   

The reason that the 
1
/6[   ]ZB ZB vector equivalent to the [⅔ ⅓–½]W W partial does not connect 

two atomic sites in the ZB structure is that the third layer in the planar stacking sequence is 

different in the two structures.  However, if the plane with A stacking in the W structure slipped 

to a C stacking position by a [–⅓ ⅓ 0] slip, the [⅔ ⅓–½]W would become [⅓ ⅔–½]W, which is 

identical to b2.  This is illustrated in figures 19b and 19d, where the PD, b1, becomes b1
*
. 

Combining this Shockley partial with the pyramidal dislocation, 

 
W ZB

1 1 2 4 1 2 1 1 1
1 11     0     1 2     2   0  

3 3 3 3 3 3 2 2 2

       
                   

       
 (15) 

This is illustrated in figures 19c, 19d, and 20b.  Thus, the        pyramidal dislocation not only 

can readily decompose into two partial dislocations on the         plane, it can, with the 

additional Shockley partial, decompose into shorter dislocations in the ZB structure.  This would 

stabilize the ZB phase if the reduction in the energy of forming this phase to create shorter 

dislocations without creating stacking faults is greater than the increase in the energy of 

formation of this phase.  These PDs are Frank partials, which are formed during growth when, 

e.g., a segment of an Aα double layer is replaced by a Cγ segment or a αB segment is replaced 

by a γC double layer (24). Unlike glissile Shockley dislocations such as those formed by the 

decomposition of a 60° basal plane dislocation in which the bi make an angle of 30° or 90° with 

l, these PDs are sessile and they make angles of arcos[±1/(4 + 3γ
2
)
½
] with l. 

7.2 Discussion 

The transmission electron microscopy (TEM) work of Srinivasan et al. (33)
 
on InGaN grown on 

       GaN, and by Floro et al. (34) who grew AlGaN on GaN strongly show that       

mismatch dislocations are formed in the film and are not just extensions of dislocations in the 

substrate.  This suggests that the important factor is the magnitude of the strain independent of 

whether the film is in compression or tension.  Further, the latter show that the dislocation lines 

are parallel to the         directions, and in a GaN film grown on patterned sapphire, they 

observe dislocations lying in a slip plane making an angle of 59° with the basal plane, which is 

very close to the 58° computed for the         plane. 
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There is also strong evidence that the energy of formation for these pyramidal dislocations is 

high given their long Burgers vector and relatively small interplanar spacing, and that they form 

only when the slip systems containing the basal and prismatic slip planes are inactive.  Liu et al. 

(37) attributed the relatively small reduction in the amount of plastic strain in the growth of 

InGaN on GaN to the difficulty in forming these dislocations.  Also the number of pyramidal 

dislocations is greatly reduced when growth planes other than the        plane are exposed for 

growth either by etching the GaN substrate to form etch pits (38) or by creating mesas (39).  This 

is attributed to basal plane dislocations with smaller critical resolved shear stresses being created 

instead to relieve the plastic strain now that there are shear stresses on the basal plane.   

Given that the plane strain produced by the lattice mismatch during growth on the        plane 

does not create a shear stress on the basal or prismatic planes, the operational slip plane must be 

a pyramidal plane.  The most probable pyramidal slip system is the  
 
                slip system. 

The         planes are the most dense pyramidal type plane, there are six different planes so that 

strain in all directions can be accommodated, and the         plane makes an angle of ~58° with 

the        plane, which is relatively close to the plane with the maximum shear stress, which is 

45°.  The Burgers vector is the shortest pyramidal Burgers vector, it is a pure edge dislocation, it 

can decompose into  
 
         and  

 
         Frank PDs that lie in the         slip plane, and when 

a  
 
        partial dislocation is added to it, it can decompose into two identical  

 
         PDs that 

correspond to  
 
        complete dislocations in the ZB structure, which could stabilize this cubic 

phase. 

8. Conclusions 

The most important results of this work are the following: 

1. Quantum mechanical simulations of threading edge and screw dislocations in AlGaN 

indicate that Al atoms do not segregate to the dislocation core and atoms in the dislocation 

core do not produce any defect levels in the bandgap.  

2. We performed first time classical MD calculations of dislocation velocity as a function of 

applied stress for the three slip systems in GaN.  

3. The DDD simulator ParaDiS was adapted for calculations of wurtzite semiconductors. Its 

functionality was demonstrated for hexagonal metals. 

4. Based on crystallographic theory we found that given that the plane strain produced by the 

lattice mismatch during growth on the        plane does not create a shear stress on the 

basal or prismatic planes, the operational slip plane must be a pyramidal plane.  The most 

probable pyramidal slip system is the  
 
                slip system. The         planes are 

the most dense pyramidal type plane, there are six different planes so that strain in all 
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directions can be accommodated, and the         plane makes an angle of ~58° with the 

       plane, which is relatively close to the plane with the maximum shear stress, which 

is 45°.   
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10. Transitions 

Results of the report will be used in Sensors and Electron Devices Directorate (SEDD) efforts to 

grow AlGaN on AlN. The Army Research Office (ARO) has a Small Business Technology 

Transfer Program (STTR) to experimentally look at how one can grow AlGaN on either GaN or 

AlN substrates and confine the dislocations to near the interface so that the material near the 

surface has fewer dislocations to interfere with the lateral devices built on it. K. A. Jones 

organizes a workshop on January 31, 2013 to discuss the STTR work and most important results 

of the DRI report. Results of the report will be also used in a pending approval I3M project on 

dislocation dynamics in GaN, Be, and Mg (principal investigator [PI] P. W. Chung). 
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List of Symbols, Abbreviations, and Acronyms 

2DEG two-dimensional electron gas  

Al aluminum  

AlGaN aluminum gallium nitride  

AlN aluminum nitride  

Be beryllium  

cpp  close packed plane  

DDD discrete dislocation dynamics  

DFT density functional theory  

DoD Department of Defense  

fcc  face centered cubic  

Ga gallium  

GaAs gallium arsenide  

GaN gallium nitride  

Ge germanium  

hcp  hexagonal close packed  

HEMTs high electron mobility transistors  

HPICs high power integrated circuits  

ICs integrated circuits  

InGaN indium gallium nitride  

LAMMPS  Large-Scale Atomic/Molecular Massively Parallel Simulator  

MD molecular dynamics  

Mg magnesium  

N nitrogen 

PD partial dislocation 
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RF radio frequency  

Si silicon  

SiC silicon carbide 

SiGe silicon germanium 

TEM transmission electron microscopy 

UV ultraviolet  

VASP Vienna Ab-Initio Simulation Package  

W wurtzite  

ZB zincblende  
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