
 

 
NAVAL 

POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

UNIVERSAL ZERO SPECULAR REFLECTION CURVES 
FOR METAMATERIALS 

 
by 

 
Choon Boon Ting 

 
September 2012 

 
 Thesis Advisor: David C. Jenn 
 Second Reader: Roberto Cristi 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2012 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  Universal Zero Specular Reflection Curves for 
MetaMaterials 

5. FUNDING NUMBERS 

6. AUTHOR(S)  Choon Boon Ting 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release, distribution is unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words)  
 

Materials are generally classified in terms of their constitutive parameters, the complex permittivity   and 
permeability  , in the frequency domain. These parameters are used to determine the response of materials to 

electromagnetic (EM) radiation. Materials found in nature have positive real parts for both   and   . In recent years, 

researchers have shown that a new class of materials called metamaterials (MTMs), characterized by inclusions of 
various shapes and materials that are small compared to wavelength, result in an effectively homogeneous medium 
with the unique properties of negative real   and   which cause EM waves traveling through the medium to exhibit 

unusual characteristics. 

 Zero specular reflection layers for four material types such as double positive (DPS), double negative 
(DNG), epsilon-negative (ENG) and mu-negative (MNG) materials are examined in this thesis. For each defined type 
of MTM, the transcendental equations are derived and solved numerically to generate curves for zero specular 
reflection. A MATLAB program was developed to generate universal curves for DPS, DNG, ENG, and MNG 
materials. The results were discussed and evaluated to determine wave behavior in each type of MTM as well as how 
they can be used as a matched-surface radar-absorbing material (RAM) for military application. The results were 
compared to published data. 
 
14. SUBJECT TERMS  
MetaMaterials, Negative Index, Universal Design Chart, Transcendental Equation, Complex 
Permittivity and Permeability, Constitutive Parameters 

15. NUMBER OF 
PAGES  

84 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

UNIVERSAL ZERO SPECULAR REFLECTION CURVES FOR 
METAMATERIALS 

 
 

Choon Boon Ting 
Civilian, Singapore Technologies Marine Ltd 

B.E. (Electronic Engineering), University of Hull, UK, 2007 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2012 

 
 
 

Author:  Choon Boon Ting 
 
 
 

Approved by:  Professor David C. Jenn 
Thesis Advisor 

 
 
 

Professor Roberto Cristi 
Second Reader 

 
 
 

Professor R. Clark Robertson 
Chair, Department of Electrical and Computer Engineering 
 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

Materials are generally classified in terms of their constitutive parameters, the complex 

permittivity    and permeability  , in the frequency domain. These parameters are used 

to determine the response of materials to electromagnetic (EM) radiation. Materials found 

in nature have positive real parts for both  and . In recent years, researchers have 

shown that a new class of materials called metamaterials (MTMs), characterized by 

inclusions of various shapes and materials that are small compared to wavelength, result 

in an effectively homogeneous medium with the unique properties of negative real and  

 which cause EM waves traveling through the medium to exhibit unusual 

characteristics. 

 Zero specular reflection layers for four material types such as double positive 

(DPS), double negative (DNG), epsilon-negative (ENG) and mu-negative (MNG) 

materials are examined in this thesis. For each defined type of MTM, the transcendental 

equations are derived and solved numerically to generate curves for zero specular 

reflection. A MATLAB program was developed to generate universal curves for DPS, 

DNG, ENG, and MNG materials. The results were discussed and evaluated to determine 

wave behavior in each type of MTM as well as how they can be used as a matched-

surface radar-absorbing material (RAM) for military application. The results were 

compared to published data. 

 

 


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EXECUTIVE SUMMARY 

In recent years, a new class of materials called metamaterials (MTMs) has been of 

increasing interest in research and development. The concept of such materials is to add 

inclusions of various shapes and composition that are small compared to wavelength, 

resulting in an effectively homogeneous medium with a desired relative permittivity 

r r rj      and permeability r r rj     . MTMs are artificial media and their design 

can achieve unique properties of either positive or negative permittivity r  or 

permeability r . With these unusual characteristics and properties, MTMs may achieve 

an effectively homogeneous uniform layer over a conductor to provide zero specular 

reflection over a wide range of frequencies. MTM has the potential for radar cross section 

(RCS) reduction, and its advantages over radar-absorbing material (RAM) include 

broader frequency ranges and aspect angles. In this thesis, we examine the characteristics 

of lossy MTMs and discuss how such material can be used as a RAM. 

MTM characteristics and properties are analyzed and discussed in relation to 

plane-wave propagation. Natural materials such as double positive (DPS) materials that 

have , 0r r     are referred to right-hand (RH) materials since the electric field vector, 

magnetic field vector, and the direction of power flow given by the Poynting vector is 

according to the RH rule. Double negative (DNG) materials that have , 0r r     are 

referred to as left-handed (LH) materials since the propagation vector  is in the 

opposite direction to . Single negative (SNG) materials can be of either type, and some 

materials change from LH to RH and back again as the frequency changes. The four 

types of MTM materials (DPS, DNG, epsilon-negative (ENG), and mu-negative (MNG)), 

of different permeability and permittivity combinations are demonstrated to be either LH 

or RH. One effect on a propagating wave is the reversal of Snell’s law at an interface 

between DPS and DNG materials.  

A new material diagram, referred to as  phase space, was introduced for 

classifying lossy MTMs and was used in this research. The parameters andA B  are 

r

  
ro(rjr)o

r

A-B



 xvi

defined by andr r r r r r r rA B                  . The sign of  defines the material 

handedness, RH or LH. The material is RH when  and LH when . However, 

the sign of  can be either positive or negative for both DPS and DNG but has to be 

negative for both ENG and MNG. 

The design for zero specular reflection using a homogeneous uniform 

dielectric/magnetic absorber is analysed and presented in accordance with transmission 

line theory, and universal design charts for zero specular reflection layers that reduce the 

normal incidence specular reflection to zero were generated. The transcendental equation 

was derived for the four types of MTM matching layers to produce zero specular 

reflection of a layer with conductor backing. Each solution gives a proper combination of 

the six design parameters involved: wavelength  , layer thickness t , real and imaginary 

components of the complex dielectric constant, and the magnetic permeability 

 , , , andr r r r        for zero reflection [2].  

The six design parameters were reduced to four by rescaling with the factor t   

to get new parameters:        , , , andr r r ra t b t x t y t              . The 

transcendental equations of the form        tan 2 1j x jy a jb x jy a jb    

were solved numerically using the MATLAB fsolve and solve  functions in order to 

generate universal curves. Curves are plotted in the x y  plane for various values of 

anda b  as shown in Figure 1 for a DPS material.  

tan   = 0.01 (red) 
tan    = 0.1 (Brown) 
tan    = 0.3 (Pink) 
tan   = 0.5 (Blue) 
tan   = 0.75 (Green) 
tan   = 0.8 (Cyan) 
tan   = 1 (light purple) 
tan   = 3 (purple) 
tan   = 10(dark green) 

Figure 1 : DPS combined universal curves  tan b a  . 

B

B  0   B  0

 A



 xvii

The DPS curves show similar results as compared to published data [2] except for 

small values of y . This is attributed to non-convergence of the numerical solution 

algorithms. The results verify that the DNG equation is the complex conjugate of the 

DPS equation. Therefore, one set of curves can be used for both DPS and DNG cases if 

the proper substitution of signs is made for , , anda b x y . The numerical algorithm 

indicated that there are no physical solutions to the ENG and MNG equations. It should 

be possible to verify this result by mathematical proof. 
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I. INTRODUCTION  

A. BACKGROUND 

In modern warfare, the military has been confronted with an increasingly complex 

electromagnetic (EM) environment. An important aspect of this is the platform (e.g., 

ship) radar signature or radar cross section (RCS). With advances in radar technology, the 

RCS of a target is a critical consideration—it is necessary to reduce RCS to increase 

survivability. With reduction in a ship’s signature, there is less chance of being detected 

by hostile radar and engaged by missiles.  

There are various ways to reduce the ship’s signature. Mainly this is achieved by 

shaping (e.g., adapt a certain slope angle on the ship hull and deckhouse design during 

construction) or by applying radar-absorbing material (RAM) to the scattering area 

onboard the ship. RAM absorbs radar energy and is used to reduce the echo returns to a 

hostile radar, as shown in Figure 1. In this figure,  represent, respectively, 

the incident, reflected, and transmitted electric-field components. 

 

Figure 1.   An illustration of how waves attenuate when RAM is applied (After [1]). 

Applied to a platform, this technology makes hostile radar less likely to detect a 

stealth ship, as the radar echo received from the targeted platform has been reduced. 

 pU

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Conventional RAM can be thick and heavy when used in the amount needed for adequate 

RCS reduction. Recently, newly engineered materials have shown promise in RCS 

reduction in the form of thin layers. According to [2], “It is theoretically possible to 

design a homogeneous uniform dielectric/magnetic electromagnetic wave absorber layer 

that will reduce the normal-incidence specular reflection from a perfectly reflective 

substrate to zero at a specified frequency (or wavelength).”  

For the purpose of classifying the EM behavior of materials, the complex 

constitutive parameters of permittivity  and permeability  are specified as 

    (1) 

and 

    (2) 

where 128.854 10 F/mo
   and 74 10 H mo     are free-space permittivity and 

permeability, respectively. The negative imaginary part is due to the chosen time 

convention . The new class of material is called metamaterial (MTM). The concept 

for such materials is to add inclusions of various shapes and composition that are small 

compared to a wavelength, resulting in an effectively homogeneous medium with the 

desired relative permittivity r  and permeability r . The inclusions change the electric 

and magnetic susceptibilities of the medium. MTM has the potential for RCS reduction 

and advantages over RAM that include broader frequency ranges and aspect angles. 

MTMs are artificial media that can be designed to achieve the unique properties 

of negative real parts of permittivity r   and permeability r . Negative permittivity and 

permeability are not normally found in nature. Negative values can be achieved by using 

copper split-ring resonators (SRRs) and wires embedded in a fiberglass circuit board, as 

shown in Figure 2. Copper wires provide negative electric permittivity, while the SRR 

provides the increased magnetic response and negative permeability of the MTM. The 

MTM in Figure 2 consists of three planar concentric rings per unit cell facing in opposite 

directions (i.e., a thickness of three cells). The unit cell dimensions are usually much 

,,EHandk
  ,EH

 

 ,D B
 

128.854 10 F/mo
 

r
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smaller than the operating wavelength. The challenge is to fabricate MTMs for 

increasingly smaller wavelengths and wider bandwidth capabilities.  

 

Figure 2.   A negative-index MTM constructed using SRRs and wires embedded in fiberglass 
(From [3]). 

MTMs can be designed to have either  < 1 or  < 1 (single negative (SNG)), 

or both 1, 1r r     (double negative (DNG)). The most popular class of MTMs studied 

in recent years is DNG. In comparison to the positive permittivity and permeability 

achieved from double positive (DPS) materials, i.e., normal right-handed (RH) materials, 

the negative permittivity and permeability of DNG material causes the electromagnetic 

wave phase fronts to travel in the opposite direction to the power flow due to the negative 

index of refraction. For a lossless DNG material ( ), the index of refraction is 

     21 .r r r r r rn                    (3) 

DNG materials are also known as negative–index materials (NIM), or left-handed 

(LH) materials. With such unusual characteristics and properties, MTMs can be designed 

and engineered to achieve an effectively homogeneous uniform dielectric 

electromagnetic layer which provides zero specular reflection over a wide range of 

frequencies. Such unique MTM properties can be used in many different applications, 

such as novel antenna shapes and sizes, shielding, perfect lenses, and resonators.  

r0,r0 1, 1r r  

    21 .r r r r r rn            
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B. PREVIOUS WORK 

This research is part of an ongoing project that started with a thesis by Feng [4] on 

extracting the material constitutive parameters from scattering parameters (S-parameters). 

Doumenis [5] continued with the properties and applications of lossy MTMs. Musal and 

Smith [2] used a zero-specular-reflection analysis to generate universal curves for lossy 

dielectric and magnetic layers based on six independent system parameters: layer 

thickness t , wavelength  , . From [2], universal curves can be used to 

determine the type of material configuration and electromagnetic parameter values that 

can produce zero specular reflection. Further studies were conducted to use the universal 

design chart to analyze the EM wave scattering. “This graphic aid not only simplifies the 

design process, but also provides an overall view of the interrelated numerical values of 

material properties required to implement various specular electromagnetic absorber 

design concept.” [2] 

Several methods to determine the effective permittivity and permeability of 

MTMs were examined in [4]. Further studies were conducted using CST Microwave 

Studio software to obtain the simulated S-parameters of normal and MTM materials in 

both free space and rectangular waveguide environments. An algorithm was developed to 

extract the effective r  and r  from the S-parameters. 

Zero specular reflection layers using double negative materials were examined in 

[5]. The zero specular reflection equations were used to examine the symmetry between 

universal design charts for DPS and DNG materials. Further studies were conducted to 

determine the relationship of effective permittivity and permeability of normal materials 

to those of MTMs from measured or simulated scattering parameters. 

Lee and Park [6] derived a general propagation constant for the four types of lossy 

materials, mainly DPS, DNG, epsilon-negative (ENG), and mu-negative (MNG). Their 

research also demonstrated how the propagation constant is affected by the material 

constants and the loss terms of  and . A new graphical A–B space was introduced to 

distinguish lossy DPS, DNG, and SNG material types with their handedness, RH or LH. 

r

 
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According to Holloway [7], we find that metasurfaces (or metafilms) can be used 

in place of MTMs in many applications. Metafilm refers to thin metamaterial that is only 

one unit-cell thick. “Metasurfaces have the advantage of taking up less physical space 

than do full three-dimensional MTM structures.” [7] Further studies were conducted on 

metasurface characterization, various applications, and how metasurfaces are 

distinguished from conventional frequency-selective surfaces. The appeal of metafilms 

for RCS treatments is their thin, lightweight profile when applied to surfaces. 

 

C. THESIS OBJECTIVE 

The objective of this thesis is to investigate MTM RAM designs for low RCS 

applications. Sets of universal design curves for zero specular reflection MTMs, such as 

double negative and single negative are generated by solving a transcendental equation. 

Using each defined type of MTM, we derived and numerically solved the transcendental 

equations to generate curves for zero specular reflection. Each solution gives a proper 

combination of the six design parameters involved: wavelength, layer thickness, real and 

imaginary components of the complex dielectric constant, and the permeability for zero 

reflection [2]. The multiple results of individual types of MTM are merged to form a 

universal design chart. The results are discussed and evaluated to determine each type of 

MTM characteristic and how they can be used as a matched-surface RAM for military 

applications. 

 

D. ORGANIZATION OF THESIS  

In Chapter I, the application of RAM in modern warfare is introduced, along with 

how MTMs might be used to achieve zero specular reflection. The research objective and 

outline are also highlighted in this chapter. 

In Chapter II, the background theory of wave behavior in the various MTMs is 

described, with a discussion of the interaction of waves with various MTMs, the impact 

of positive and negative permittivity and permeability, and the classifications of MTM 

behavior. 
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An analysis of RAM, based on matched-wave impedance and zero specular 

reflection conditions, is contained in Chapter III. There is a discussion of the advantages 

and disadvantages of the two approaches. Zero specular reflection numerical equations 

are derived and used for each MTM to determine a combination of parameters for 

absorption, based on solving a transcendental equation.  

Numerical solution results and analysis of the matching layers for the four types 

of MTMs is contained in Chapter IV. There are four plots for each set of solutions that 

characterize the material and wave propagation. The multiple results from individual 

solutions are merged to form a universal design chart for zero reflection. 

This research is summarized in Chapter V, with conclusions and 

recommendations for future research. 
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II. METAMATERIAL 

In this chapter, background theory on the classification of MTMs and how waves 

propagate in the four types of MTMs are discussed. This discussion forms a foundation 

for better understanding of the mathematical equations employed, which relate to the 

universal curves in later chapters.  

 

A. INTRODUCTION 

The history of MTM dates back to 1967, when a Russian physicist named Victor 

Georgievich Veselago [8] showed that materials, apart from the usual case of positive 

permittivity   and permeability  , can also be negative for both quantities, yielding a 

negative refractive index. Veselago demonstrated the behavior of wave propagation in 

two substances of different  and  as being RH or LH. The experiment concluded that, 

in a LH substance, the phase velocity pU


 is opposite the energy flux given by the 

Poynting vector . Veselago named the new material “negative-index materials” or 

“left-handed materials,” since the vector triplet, electric field vector E


, magnetic field 

vector H


, and power flow k


 formed a LH set.  

Veselago also experimented with the refraction of a ray at a boundary between 

two media of different handedness. The experiment demonstrated that waves impinging 

on the boundary between a normal material and negative refractive index material are 

refracted in the reverse direction at the interface of the two materials. This is indicated at 

the bottom of Figure 3. 

Veselago’s analysis of the double-negative  and  was considered nothing 

more than an interesting idea for more than thirty years. In 1999, J. B. Pendry managed to 

show how materials could be created artificially with double-negative properties [9] [10]. 

In 2000, Pendry showed how negative refraction makes a perfect lens and proposed to 

use MTMs to make such a lens [9]. In the same year, D. R. Smith and a team of 

researchers demonstrated a composite medium that exhibited negative values of effective 

 

E


 
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 and  [11]. The success of their microwave experiment stimulated further research 

into new MTMs.  

 

Figure 3.   Refraction of an EM wave incident on a boundary between air and a DPS medium 
(top) and a DNG medium (bottom) (After [9]). 

 

B. PERMITTIVITY AND PERMEABILITY 

Any type of material can generally be classified in terms of its constitutive 

parameters  and . Classification of materials includes linear or nonlinear, 

homogeneous or inhomogeneous, and isotropic or anisotropic, to name a few. The 

Tellegen representation is able to cover all cases represented in the form of a matrix, with 

the electric and magnetic fields  related to electric and magnetic flux densities 

 by 

 

    (4) 

where the off-diagonal blocks are zero for the MTMs considered. 

 

 


xx xy xz

r yx yy yz

zx zy zz

  
   

  

 
 
 
 
 

.
x x x y x z

r y x y y y z

z x z y z z

  
   

  

 
 

  
 
 
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For example, the Cartesian system vectors and matrices in Eq. (4) have the forms  

, 
xx xy xz

r yx yy yz

zx zy zz

  
   

  

 
 

 
 
 

 and .
xx xy xz

r yx yy yz

zx zy zz

  
   

  

 
 

 
 
 

   (5) 

The elements found in the matrix  and , where , are the complex 

relative values. For lossless media, the imaginary terms are zero. For DPS materials, the 

real parts are positive. Conversely, for DNG materials, both real parts are negative. 

Finally, for a SNG material, one of the real parts is positive and one negative. These 

cases are summarized in Table 1. Note that in a lossy passive material, the imaginary 

terms are negative for all material types. Often, loss tangents are used to describe material 

losses. The dielectric loss tangent is  

      (6) 

and the magnetic loss tangent is  

 tan r

r









.     (7) 

Table 1.   Summary for lossless materials and handedness. 

Type of material 
Real Part of 

Permittivity  and permeability  
Plane-wave propagation 

DPS  RH 

DNG  LH 

SNG 
ENG  Evanescent 

MNG  Evanescent 

  

 ij
ij ij i and j  x, y, or z

-A B

 

 r  0, r  0

 r  0, r  0

 r  0, r  0

 r  0, r  0
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Natural materials such as DPS materials are referred to as RH materials due to the 

vectors of the electric field, magnetic field, and power flow (given by Poynting vector 

) for a plane wave traveling in the positive  direction follow the RH rule. The 

Poynting vector is given by 

.     (8) 

The propagation vector  is in the same direction as and given by 

 
     (9) 

where o o ok    , , and  = free space wavelength. 

DNG materials are referred to LH materials since the propagation vector  is in 

the opposite direction of , forming a LH system with  and : 

ˆ ˆ .o r r ok kk kk n   


    (10) 

SNG materials can be of either type, and some materials change from LH to RH and back 

again as frequency changes. 

 

C. CLASSIFICATION OF MATERIALS 

The electromagnetic properties of a material are determined by its  and . The 

material diagram in  space for lossless MTMs can be classified into four types 

depending on the signs of  and  as shown in Figure 4 [6]. However, the resonant 

structures of MTM properties are always dispersive and lossy. Therefore, the 

classification of Figure 4 is not valid for lossy MTMs.  

 0 o ook

  2 f

  
r0,r0 A0



k  k̂ko r r

ˆ ˆ .o r r okkk kkn  


  2 f o


  A0  roroj

 

 -

 
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Figure 4.   Material diagram in  space for lossless MTMs (After [6]). 

The general propagation constant   for all four types of lossy MTMs (DPS, 

DNG, ENG, and MNG) was derived by Lee and Park [6]. After an investigation of how 

the propagation constant is affected by material constants and by the loss terms of  and 

, a new  phase space for classifying lossy MTMs was introduced and is used in 

this research. 

The propagation constant  for a material can be written explicitly as 

     (11) 

where  is the attenuation constant (Np/m), and  is the phase constant (rad/m). 

Furthermore, we can write 

r o r oj        o r r r rjk j j         ojk A jB     (12) 

where 

r r r rA             (13) 

and 

.r r r rB                 (14) 

-




This image cannot currently be displayed.




 
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The square root can either be positive or negative, so there is a  sign added in Eqs. (11) 

– (12). The solution that gives a positive attenuation is a real solution, due to 

conservation of energy. Therefore, the correct sign of  is paired with positive . 

Writing  in rectangular form, we can examine the special cases for attenuation

 and phase constant . They are summarized in Table 2. In Figure 5, the material 

types are shown in -A B space, where andA B  are defined in Eqs. (13) – (14).  

Table 2.   Summary of different type of MTM including lossy MTM. 

Type of 
MTM  Space Attenuation and 

Phase constant 
 

Space 

DPS   and  RH 

DNG 
  and  LH 

SNG 

ENG 
Electric losses:   and RH 

magnetic losses:   and  LH 

MNG 
Electric losses:   and LH 

magnetic losses:   and  RH 

 

Figure 5.   Material diagram in  space for lossy MTMs (From [6]). 



(r,r,r,andr)  t 



  
a

t






Rer

t






r

  
b
t






Imr

t






r

- A-B

r r  0   0    0

r r  0   0    0

  0   0    0

e   z   0    0

e   z   0    0

  0   0    0

A-B
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For lossless DPS with the condition , , and  and lossless 

DNG with condition , ,  and , the sign of  is used to 

determine the direction of wave propagation. It is important to note that DPS has positive 

, while DNG has negative . 

For lossy DPS , , and , this material is defined as a RH 

material, while DNG has , ,  and , which is defined as a LH 

material because  is always negative. 

For lossless ENG and MNG with , , and , waves 

cannot propagate in these materials because . These are evanescent waves that 

exhibit exponential decay with distance from the boundary where the wave was formed.  

 For lossy ENG, there are two types of losses: electrical and magnetic. For ENG 

with electrical losses under the condition ,  and

, the waves propagate exponentially within the propagation region since 

 and the sign for dielectric loss tangent is positive. Therefore, this material is 

defined as RH. For ENG with magnetic losses under the condition

,  and , the sign of  is negative 

( ), so this material is defined as LH and the sign of the dielectric loss tangent is 

negative.  With both type of losses, it is important to note that ENG material can be either 

RH or LH material. ENG has the characteristic of large attenuation since  is large.  

  Similar to lossy ENG, MNG has electric and magnetic losses. For MNG with 

magnetic losses with the condition , , this 

material is defined as RH. For MNG with electric losses with the condition

, , the sign of  is negative ( ), so this 

material is defined as LH.       
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D. SUMMARY 

In this chapter, an introduction to MTM and their   and  properties was 

presented. The classification of lossy materials in terms of the signs of  and  and in 

terms of the andA B  parameters was given. The general propagation constant equation 

for lossy MTMs (DPS, DNG, ENG, and MNG) and the material diagram in  space 

for lossy MTMs and their handedness were discussed. An important note is that the sign 

of  defines the material handedness, RH or LH. The material is RH when  and 

LH when . However, the sign of  can be either positive or negative for both DPS 

and DNG but must be negative for both ENG and MNG. 

In the next chapter, the reflection from a RAM layer of MTM is addressed. 

 

 

 

 

 



 

  A-B

directionz a
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tanh
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tanh
L d
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
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
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III. DESIGN FOR ZERO SPECULAR REFLECTION 

In this chapter, the design for zero specular reflection using a homogeneous, 

uniform dielectric/magnetic-wave absorber is presented in accordance with transmission-

line theory. The solutions to the equations are used to generate universal design charts for 

zero specular reflection layers that will reduce the normal incidence specular reflection. 

In addition, the equations for the DNG and SNG layers are programmed in MATLAB to 

generate individual curves on a universal chart.  

 

A. INTRODUCTION 

When EM waves impinge onto a RAM panel, there is some reflection and 

transmission at the outer face. The transmitted part is reflected at the back face. 

Therefore, the EM field within the absorber layer consists of the sum of forward and 

backward traveling waves, as shown previously in Figure 1 and presented in more detail 

in Figure 6.  

 

Figure 6.   (a) Specular-reflection layer with perfect electric conductor (PEC) backing and 
(b) equivalent transmission-line circuit (After [12]). 

The design parameters required to generate the universal curves are the six 

independent system parameters for the transmission-line model, shown in Figure 6. They 

are wavelength  , layer thickness t , and the real and imaginary components of the 
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complex dielectric constant and magnetic permeability . The six 

parameters can be combined to yield four new parameters by normalizing  and  by 

. The normalized parameters are 

    (15) 

    (16) 

    (17) 

.    (18) 

The curves in Figure 7 comprise a universal chart, with  plotted on the horizontal axis 

and  on the vertical axis of a two-dimensional, Cartesian coordinate system. The 

relationship between the equations and the six design parameters form the basis of this 

research.  

 

Figure 7.   Universal design chart for zero specular reflection with DPS material (From [2]). 
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The individual curves generated for the universal design chart fall into three 

distinctly different parameter regions (first presented by Musal [2]). The left curve region 

represents thin absorbers, less than -wavelength thick. Therefore, the dielectric 

constant value is  less than unity when the curve travels towards the extreme left. The 

topside curve region represents matched-characteristic impedance absorbers. The chart in 

Figure 7 shows curves for dielectric loss tangent values up to ten. A sequence of similar 

curves of higher-value dielectric loss tangents could fill the entire top region. The lower-

right curve region represents resonant -wavelength absorbers. 

  

B. EQUATIONS FOR ZERO SPECULAR REFLECTION 

A typical RAM layer on a backing material of PEC is shown in Figure 6. 

According to [2], we see that there are two design considerations for effective EM 

absorber operations that will reduce specular reflection from highly reflective surfaces. 

Two different conceptual approaches to reduce specular reflection are matched-

characteristic impedance and matched-wave impedance. The idea behind matched-

characteristic impedance is to make the material and free-space intrinsic impedance equal 

to each other. Under the condition of equal impedance, both the material dielectric 

constant and magnetic permeability are also equal. Therefore, there is no front-surface 

reflection from the layer. To further reduce the incident wave to an acceptable low 

amplitude, the layer thickness must provide internal attenuation along the round-trip path. 

The second concept, matched-wave impedance, is to make the wave impedance equal for 

the front surface of a reflector-backed reflector layer and free space. With such an 

application of equal wave impedance, there is no reflection. 

The imaginary parts  and  in Eq. (1) and Eq. (2) represent dielectric and 

magnetic losses. The propagation constant is given by Eq. (12). A passive medium must 

always have , because the plane-wave propagation in the positive directionz   is 

of the form . Therefore, the sign of the square root in Eq. (12) must be chosen so 

1 4

1 4

 
r r

   0

 zxjy
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that , and the same sign is applied to . The sign of  determines whether the 

material behavior is RH or LH. 

Using the transmission-line model in Figure 6, we have the reflection coefficient 

at the front face of the layer for normal incidence as 

     (19) 

where   

  
 

 
 

tanh
.

tanh
L d

in d
d L

Z Z t
Z Z

Z Z t








    (20) 

The backing material has impedance , and  represents the impedance of the 

coating layer 

          (21) 

where . Therefore,  

.   (22) 

According to [2], for the second concept (the matched-wave impedance method) 

we make wave impedance for the front surface of a reflector-backed layer and free space 

equal. With equal wave impedance, there is no reflection. The terms in the reflection 

coefficient Eq. (19) need to be normalized by  so that there is no reflection for a given 

, when  = 1 and the reflection coefficient  is zero. The reflection coefficient 

equation after normalization by  is 

.     (23) 

   0  

 tan 2 1.
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Thus, the condition for no reflection for a given  is when  = 1. 

C. MATCHING LAYERS FOR PEC BACKING 

 From Eq. (20), the transcendental equation for matching layers on a PEC backing 

( ) that provides zero specular reflection is 

          (24) 

or  

      (25) 

resulting in 

         (26) 

where  is given by Eq. (22) and  by Eq. (12). Substituting in for  and , we get 

 
     tanh 1 0r r

o r r r r
r r

j
jk t j j

j

 
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 
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      
 

  (27) 

or 

.  (28) 

It is traditional to use loss tangent for dielectric loss, which is given by 

    .      (29) 

In terms of the four normalized parameters (Eqs. (15) – (18)), the transcendental equation 

becomes 
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Note that  and  can be positive or negative, but  and  must be positive or zero. 

The transcendental equation can be redefined further using two new complex 

variables 

      (31) 

and 

.     (32) 

Now Eq. (30) becomes 

 tanh 2
z

j zv
v

   tan 2 1.
z

j zv
v

     (33) 

  The curves on the universal chart (Figure 7) represent combinations of the four 

parameter groups that satisfy Eq. (33) for DPS material. The universal design chart has 

curves represented in red and blue lines. The values of  a  in Eq. (15) are blue, and 

constant values of Eq. (29) are represented by red lines. Therefore,  in Eqs. (17) 

and (18) can be found by reading the values from the universal design chart on the 

abscissa and ordinate scales, respectively. 

 For the left-side curve region along the single curve with material-layer dielectric 

loss tangent less than 0.3 and , the parameters are approximated by 

 2
Im 1r

t 


      (34) 

and 

 .     (35) 

Using the analytic relationship in Eq. (34), we  determine the required layer thickness in 

terms of wavelength and magnetic-permeability imaginary part. Equation (35) determines 

the relationship between the dielectric constant real parts and magnetic permeability. 

Equation (35) must be satisfied so as to achieve a reflection result close to zero. It is also 

important to note that the required thickness is embedded in this equation. 

fsolve solve andx y Fsolve

v  a  jb

z  x  jy

x and y

  
Im[r ]  3Re[r ]

Re    3Re[]



 21

 The topside curve region represents matched-characteristic impedance absorbers 

where    Im 1rt    ; the parameters are approximated by 

      (36) 

and 

      (37)  

where magnetic loss tangent is  

.    (38) 

Equations (36) and (37) are defined as matched-characteristic impendence absorbers 

since both equations are equivalent to a complex statement of real and imaginary part 

given that . Besides using theory to define the minimum thickness of the material, 

for practical purposes, the matched-characteristic impedance absorber is equivalent to 

zero-reflection absorber when     Im 1rt    . 

 The lower-right curve region contains resonant -wavelength absorbers and 

exhibits a complicated relationship between the four parameter groups, which contribute 

to a zero-reflection absorber. The lower-right curve consists of two subregions, where the 

left subregion consists of a contour between  to . With the 

thickness characteristic of  wavelength, the lower-right curve can be expressed as 

    1 24
Re 1 .r r

t  


         (39) 

According to [2], we see that Eq. (39) is most accurate near the  contour. The 

lower-bottom part of the subregion represents the relationship of    Im 1rt    , 

where the dielectric loss dominates. 

 

Re[r ]  Re[r ]

tan  tan

  x v e r s u s y

  

fsolve

1 4

tan  0 tan  0.8

 1 4

tan  0
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D. SUMMARY 

The concept of zero specular reflection was introduced and the governing 

equations presented in accordance with transmission line theory. Equations for zero 

specular reflection and matching layers for DPS materials with PEC backing were 

discussed. A new material diagram in  space was introduced. The advantage of the 

universal design chart is to show the design tradeoffs of a specific dielectric and magnetic 

materials and the required layer thickness. 

In the next chapter, a numerical solution of the transcendental equation is 

addressed. 

A-B
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IV. SOLUTION RESULTS AND ANALYSIS 

 In this chapter, the equations discussed in Chapter III are implemented on the four 

types of lossy MTMs, and their transcendental equations were solved in MATLAB to 

generate universal curves for various dielectric loss tangents. The solutions are compiled 

into a set of curves used for evaluation purposes with other MTMs. MATLAB codes are 

included in Appendix A to Appendix F for reference and discussion. 

 

A. SOLUTION APPROACH 

Equation (30) is the transcendental equation that must be satisfied by the 

parameters , , , anda b x y for zero specular reflection. It applies to any type of passive 

medium ( , 0)b y  . A DPS material has , 0a x  , while DNG has , 0a x . A SNG medium 

has either 0a   or 0x  . 

An analytical solution of Eq. (30) is not possible in general (only in some trivial 

cases). The equation must be solved numerically. The parameters anda b  (or 

equivalently and tana  ) are specified, and then the equation solved for andx y . Note 

that Eq. (30)  is a complex equation and could be separated into two real equations. Some 

numerical solution packages cannot handle complex variables, in which case two real 

equations must be solved. However, some software is not capable of solving multiple 

simultaneous equations. 

The MATLAB function fsolve  and solve  were used to obtain andx y . Fsolve  is 

a function in the optimization toolbox that solves a system of nonlinear equations using 

iterative techniques. The argument of fsolve  includes the function name for the equation 

to be solved. Initial start points must be provided. Upon return, an exitflag identifies the 

terminal condition of the solution ( 4 exitflag 4   ). There are many options that can be 

specified. A problem with the iterative solution is that the algorithm may get stuck at a 

local minimum. 
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The second MATLAB routine is solve , which handles algebraic equations and 

accepts symbolic expressions or strings. It can solve systems of equations and returns 

symbolic solutions. The symbolic solutions can be evaluated using eval . If symbolic 

solutions cannot be determined, then solve returns numeric solutions. 

The MATLAB program was designed for flexibility, allowing the user to enter 

the dielectric loss tangent, type of MTM, start and end points, and increment in a . The 

tolerance for convergence is also specified.  

In the next sections there are collections of nine dielectric loss tangent curves 

generated over a search range of a  values for each type of MTM. The loss tangent values 

are  0.01, 0.1, 0.3, 0.5, 0.75, 0.8, 1, 3, and 10, which are similar to [2] so that comparisons 

can be made. 

The remaining user-defined parameters, such as the  tolerance and search 

range for each curve, were set to remain constant for all cases. The  tolerance was 

fixed at 5010 , while the start of the search range for DPS was fixed at 

and for DNG was fixed at . 

Once the user has defined the parameters, the MATLAB fsolve  function is 

invoked. The returned data is used to generate four plots, as shown in Figure 8. The 

upper-left plot shows the locus of solutions in  for fixed values of anda b . 

The upper-right plot shows the complex solution returned from fsolve , which is related 

to andx y . The lower-left plot shows the attenuation  and phase constant . For the 

particular case shown in Figure 8 ( tan 0.3  ), we observe that   is positive and 

conclude that this is a RH medium. The lower-right plot shows the solutions in  

space. From Figure 5, since A  is negative and B  positive in this example, the medium is 

RH and DPS.  

tanh

tanh

  x   0.1and y   0.1 x  0 and y  0

x versus y

 

A-B
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Figure 8.   Sample plots generated from the MATLAB program for a DPS medium. 

 

B. MATCHING LAYERS FOR DPS MATERIAL 

 As cited in Chapter III, Section C, lossy DPS material has both positive real 

permittivity and permeability. After the four parameter groups were simplified by 

normalizing  by , the properties of lossy DPS material are such that  

are positive and  are also positive. However the values of  are zero when 

dealing with lossless DPS material. MATLAB’s  fsolve  function is used to solve  

Equation (30) for andx y  to generate the DPS curve on the upper left plot in Figure 9. In 

this DPS example, the dielectric loss tangent of 0.5 was selected. The curves for nine 

dielectric loss tangents (0.01, 0.1, 0.3, 0.5, 0.75, 0.8, 1, 3, and 10) were generated and 

combined into one plot as shown in Figure 10. 

anda x  t    x and a

  y and b y and b
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Figure 9.   MATLAB generated result on DPS material with tan  = 0.5. 

DPS Universal Curves Dielectric and color code

tan   = 0.01 (red) 

tan    = 0.1 (Brown) 

tan    = 0.3 (Pink) 

tan   = 0.5 (Blue) 

tan   = 0.75 (Green) 

tan   = 0.8 (Cyan) 

tan   = 1 (light purple) 

tan   = 3 (purple) 

tan   = 10(dark green) 

Figure 10.   DPS combined universal curves. 
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A comparison of Figures 7 and 10 shows several differences for small tan  . 

These differences are a result of convergence problems in fsolve  and are addressed in 

Section F of this chapter. 

For a DPS material, the normalized permeability parameter is given by z of  Eq. 

(29): 

 .z x jy       (40) 

In Figure 11 is shown a plot in the complex plane of the quantity z .  In polar form  

 z  z e jz       (41) 

where  

 1tan .z y x 
    

(42)
 

 

Figure 11.   Plots of the variables andz v  in the complex plane. 

In polar form, the complex permittivity parameter of Eq. (31) is  

 v  v e jv       (43) 

where  

v  tan1 b a .     (44) 

Therefore, the square root of the product of z and v  is 
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 22 vz jjzv z v e e         (45) 

      
  2z vjz v e    .      (46) 

 

From the argument of the tanh function in Eq. (33), 

 ( ) 2t j t j vz             (47) 

           2 jj v z e
         (48) 

           2 cos sinj v z j          (49) 

           2 sin cosv z j          (50) 

where  

  2v z     and 0 2  .     (51) 

Therefore, we conclude that a positive sign must be selected to achieve   positive. This 

selection of the positive sign gives a positive  , which is a RH medium. 

The lower right plot of Figure 9 was generated to show the solutions in A-B  

space of Lee and Park [6]. For a DPS material, the two parameters of andA B  are 

 
2

r r r r
t

A ax by   


         
 

         (52) 

and 

 
2

r r r r
t

B ay bx   


         
 

.       (53) 

From Figure 9, andA B are positive, which is a DPS RH material from Figure 5.  
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C. MATCHING LAYERS FOR DNG MATERIAL 

As cited in Chapter III, Section C, lossy DNG material has both negative real 

permittivity and permeability with non-zero imaginary parts. After the four parameter 

groups were simplified by normalizing by t  , the properties of lossy DNG material are 

such that anda x  are negative and andb y  are positive. For the DNG case, Eq. (30) 

becomes 

 
     tan 2 1.

t j

x jy
j x jy a jb

a jb






 
    

  
   (54) 

MATLAB’s  fsolve  function is used to solve Eq. (30) for tan 0.5   and 

generate the DNG curves in Figure 12. Similar to the DPS case, nine dielectric loss 

tangents were used to generate the combined curves shown in Figure 13. 

 

Figure 12.   MATLAB generated result for DNG material with tan  = 0.5. 
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DNG Universal Curves Dielectric and color code

 

tan   = 0.01 (red) 

tan    = 0.1 (Brown) 

tan    = 0.3 (Pink) 

tan   = 0.5 (Blue) 

tan   = 0.75 (Green) 

tan   = 0.8 (Cyan) 

tan   = 1 (light purple) 

tan   = 3 (purple) 

tan   = 10(dark green) 

Figure 13.   DNG combined universal curves. 

In terms of andv z  in Eqs. (31) and (32), Eq. (54) can be redefined as 

   *
* *

*
tanh 2

z
j z v

v


  
   

*
* *

*
tan 2 1.

z
j z v

v
     

 
 (55) 

Using the properties of complex numbers, we can write Eq. (55) as 

 
  
j

z

v

*

tan 2 z  v *





 1     (56) 

or 

  
 j

z

v

*

tan 2 vz *  1.     (57) 

Shown previously in Figure 11 is a plot in the complex plane of the quantity *z . In 

polar form  

 * zjz z e           (58) 

where z  is defined in Eq. (42). Similarly, 
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 * vjv v e           (59) 

where v  is defined in Eq. (44).  

The square root of the product of z* and  v*
 is 

 

 
  

z* v*  z v e j(z ) 2e j(v ) 2
   (60) 

or 

 * 2 .z vjzv z v e        (61) 

For the leading square root factor in Eq. (55), we note that 

 

  

z*

v*


z

v
e j(z ) 2e j(v ) 2

    
(62) 

and 

 

*
( ) 2 .z vjz z

e
v v

   
     

(63) 

For DNG material, the argument of the tanh  is 

  *
2t j t j vz            (64) 

  2 jj v z e
      (65) 

   2 cos sinj v z j         (66) 

where   is defined in Eq. (51). 

Therefore, we conclude that in order to achieve  positive, the negative sign of 

the square root must be selected. Thus, 
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   2 cos sin .j t v z j             (67) 

The lower left of Figure 12 consists of a plot of vs.  . It is seen that     0  and the 

phase constant     0 , signifying  that this is LH material.  

The lower right of Figure 12 contains a plot of the solutions in   A-B  space of Lee 

and Park [6]. The two parameters of andA B  for DNG are 

  
A 

t








2

r r  r r  ax  by     (68) 

and 

 
2

.r r r r
t

B ay bx   


          
 

   (69) 

Using the material classifications in Figure 5, we determine that this type of material LH, 

since 0B   always. 

By comparing the DPS and DNG simulation results, we observed there is a 

relationship between the two solutions, which results in a symmetry that is apparent in 

Figure 10 and Figure 13. The simulation results were further verified by comparing both 

DPS and DNG equations. The mathematical results show that the DPS case in Eq. (33) is 

the complex conjugate of the DNG case in Eq. (57). Therefore, we conclude that if z  is 

the solution to Eq. (33) for a given v , then for the DNG case, z*  is the solution to Eq. 

(55) for *v .  
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D. MATCHING LAYERS FOR ENG MATERIAL 

As cited in Chapter III, Section C, ENG material has 0r    and 0r  . With 

regard to the normalized parameters in Eqs. (15) – (18), the properties of lossy ENG 

material are such that  x  is negative and a, b and y  are positive. Equation (30) adapted 

for ENG becomes 

   tanh 2 1.
x jy

j x jy a jb
a jb


     

 
   (70) 

In terms of z  in Eq. (32) and the complex permittivity parameter v  in Eq. (31), 

Eq. (70) can be written as 

   *
*

tanh 2
z

j z v
v

     
 

  *
*

tan 2 1.
z

j z v
v

     
 

 (71) 

 

The square root of the product of z and  v * (both shown in the complex plane in Figure 

11) is 
 

  * 2 2v zj jz v z v e e  
 

   (72) 

   
jz v e

       (73) 

where  

2
z v  

   and .
4 4

 
        (74) 

For ENG material, the argument of the tanh  is 

   2 jj t j v z e  
        (75) 

                     2 cos sinj v z j          (76) 
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   2 cos sin .v z j          (77) 

Therefore, we conclude that in order to achieve   positive, the sign in the ENG case has 

to be positive. 

 The leading square root factor in Eq. (70) is a scaled complex impedance. In 

terms of the complex variables andz v  

Z R jX   
x jy

a jb




 
 

*
z

v



     (78) 

         jz
j e

v

        (79) 

          cos sin
z

j
v

           (80) 

where 

     0 .
2

       (81) 

For a passive medium 0R  , so the negative sign must be used. This choice results in a 

positive reactance  X , so this impedance is inductive. 

The two parameters andA B  for ENG are 

  
A

t








2

 r r  r r   ax  by    (82) 

and 

  
B 

t








2

 r r  r r   ay  bx .   (83) 

Using the material classifications in Figure 5, we see that this type of material can be RH 

or LH, depending on the sign of B .  
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E. MATCHING LAYERS FOR MNG MATERIAL 

As cited in Chapter III, Section C, MNG material has 0r    and 0r  . With 

regard to the normalized parameters in Eqs. (15) – (18), the properties of lossy MNG 

material are such that  a  is negative and , andb x y  are positive. Equation (30) adapted 

for MNG becomes 

 
     tan 1 .

t j

x jy
j x jy a jb

a jb


 
   

 
   (84) 

Using the complex permittivity and permeability parameters andz v , we can write Eq. 

(84) as 

  
*

*tanh 2
z

j z v
v

      
 

  
*

*tan 2 1
z

j z v
v

     
 

. (85) 

The square root of the product of v and  z * is 
 

  * 2 2v zj jv z z v e e  
 

   (86) 

   
.jz v e

       (87) 

For MNG material, the argument of the tanh is 

   2 22 ( ) v zj jj t j j v z e e          (88) 

         2 cos sinv z j         (89) 

where   is defined in Eq. (74). Therefore, we conclude that in order to achieve   

being positive, the selected sign in the MNG case has to be positive. Then the sign of   

depends on whether sin   is positive or negative. 

The leading impedance factor in Eq. (85) is 
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Z R jX 
*z

v


   jz

j e
v

     (90) 

                cos sin
z

j
v

          (91) 

where 

     0 .
2

       (92) 

To obtain a positive resistance the negative sign is selected. The reactance X  is negative, 

which is capacitive. 

The two parameters of Lee and Park are 

  
A

t








2

 r r  r r   ax  by    (93) 

and 

  
B 

t








2

 r r  r r  ay  bx .    (94) 

Using the material classifications in Figure 5, we see that this type of material can be RH 

or LH, depending on the sign of B .  

 

F. NUMERICAL SOLUTION FOR ENG AND MNG 

Numerical solutions for the ENG and MNG equations were programmed in 

MATLAB. The fsolve  function was called to obtain solutions andx y  for a range of 

anda b , subject to the constraints 0 and 0R   . Fsolve  was not able to obtain 

solutions to either the ENG or MNG equation. It returned only values that would result in 

a DNG or DPS material. For example, the ENG equation, for which we expect 0x  

when 0a , returned 0x . Similiarly, the MNG equation, which should have 0x  when 
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0a , returned values of 0x . Several programming variations were tried, all with the 

same results. 

The numerical algorithms indicate that there are no ENG or MNG materials that 

provide zero specular reflection, yet satisfy 0 and 0R   . There are reports in the 

literature that allude to this fact. Reference [13] found that it was necessary to pair a ENG 

layer with a MNG layer to obtain zero reflection. This result is not readily evident from 

the equations, although it should be possible to verify by mathematical proof. 

 

G. DISCUSSION OF SOLUTION METHODS 

The transcendental equations were programmed into MATLAB with flexibility 

for the user to define the search area of interest and the type of material and its 

parameters. In this section, the DPS results are compared with curves obtained from 

published data [2]. There are no previously published curves for the DNG, ENG and 

MNG cases. However, from the symmetry of the transcendental equations, some 

relationships to the DPS case can be inferred. The universal curves for the DPS and DNG 

cases were shown in Figures 10 and 13.  

We expect that for DPS parameters we would be able to achieve curves similar to 

those in [2]. During the process of generating the curves for some dielectric loss tangents, 

it was found that the form of the transcendental equation using “ tanh ” produces 

incomplete curves with gaps in-between. The results improved after changing the 

equation to the “ tan ” form. To ensure that numerical round off was not a problem, the 

number of digits used by MATLAB was set to 32 and 64. This setting had no observable 

effect on the results, but 64 digits were used for all solutions.  

A fsolve tolerance value of 5010  was specified. The search start values provided 

to fsolve  were adjusted depending on the range of a  for both x and y . The results show 

that some portions of the curves may be missing if improper initial points are given; for 

example, if solutions for 0.1 1a   are requested and a start point of 10 is given. Figure 

14 was generated for tan 0.01   using 1000 values of a  between 5 310 and 10  with an 
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initial search range of 0 and 0x y  . Figure 14 is inconsistent with the characteristics 

expected for the solution and indicate fsolve  is not converging to a solution. The exitflag 

value returned by fsolve  echoes this warning for many of the points returned. Another 

problem was the inability to obtain solutions that have very small values of y (i.e. at the 

bottom of the chart).  

 

Figure 14.   fsolve  solutions for a DPS material with tan  = 0.01, search start points of 
4 110 and 10x y  . 

Figure 15 is the same case as in Figure 14 but uses different initial search points 

and more curve points to obtain greater detail. The result shows that there are hook-like 

features in the curve in the top left plot.  

A modified version of the program, shown in Appendix G, re-solves the equation 

for a range of a  using initial estimates that are selected based on the region of the chart. 

A set of solutions for tan 0.3   is shown in Figure 16. The parameters are set 

according to Table 3, and the colors represent different initial andx y values as shown in 

Table 4. The result shows that there is a completely new curve as compared to published 

data [2]. We concluded that this fictitious curve is a numerical artifact of fsolve . 
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Figure 15.   fsolve  solutions for a DPS material with tan  = 0.01, search start points of 
0.35 0.9510 and 10x y  . 

Table 3.   Parameters for the modified MATLAB program for variable initial points. 

 Parameters Settings 

Type of material DPS 

Dielectric loss tangent 0.3 

Start and end search of 
 A  values 

Start search = -2  210  

End search = 1  110  

Search value points 1000 points 

Start of search range   x  0.1and y  0.01  

 fsolve  tolerance 410  

 



 40

 

Figure 16.   A curve generated for DPS material by solving the equation three times each with 
different initial start points.  

Table 4.   Color code for the results in Figure 16. 

 Parameters Array of estimates 

Start of search range   x  0.5 and y  0.01 x  0.75 and y  0.01   x  1and y  0.01 

Color Code black red green 

In reference [2], there is no mention of the algorithm used to solve the equations 

and generate the curves. In order to validate the data, solutions were generated for several 

cases using another MATLAB function named solve . The MATLAB code was 

programmed as shown in Appendix H. The transcendental equation and all of parameters 

must be converted to a string. The program has a setting for the number of digits 

converted to a string by using the function “num2str”, which converts numbers to 

strings. In Figure 17 the settings for num2str are blue for ten and red for twenty-four. The 

results were generally better with more digits, however, for large numbers like sixty-four, 

the program could not find a solution for the requested tolerance. 
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A frequent problem with  solve  is that the program encountered “no solution 

found” and MATLAB had a core fault. Some memory would be corrupted, which 

required restarting MATLAB.  

  

Figure 17.   Curves generated using the  solve  function; tan 0.5  (left) and tan 0.8 
(right). 

By comparing  fsolve  and  solve  function results, we observed that both functions 

generate similar curves, for example, as shown in Figure 18. The advantage of  fsolve  is 

the ability to generate the curves using iterative technique to solve the nonlinear 

equations, which proves to generate the better resolution curves. The time taken for 

 fsolve  function to generate the curves is much shorter than  solve ;  fsolve  uses less than 

a min to generate 1000 points while  solve  function uses about 20 mins to generate 500 

points.   

 

Figure 18.   Simulation result generated using  fsolve  (left) and  solve  (right) function. 



 42

H. SUMMARY 

In this chapter, the specific equations for each of the four types of metamaterial 

were presented. The numerical solution programs and output plots with the results were 

shown. The parameters used to generate the results were also discussed in relation to the

  A-B  space for lossy materials defined in [2]. The program was able to solve the 

numerical equations and generate the plots of the universal design curves for DPS and 

DNG materials for most areas of the chart.    

However, the MATLAB functions fsolve  and solve  apparently had some 

problems with the iterative solution in that the algorithm may get stuck at a local 

minimum. The numerical algorithms indicated that physical solutions to the ENG and 

MNG equations do not exist. 

 



 43

V. CONCLUSION  

A. SUMMARY AND CONCLUSION 

The platform radar signature or radar cross section is one of the critical 

considerations in modern warfare and often  RAM is applied to reduce RCS to increase 

survivability. To overcome the disadvantages of RAM such as heavy weight, bulkiness, 

high cost, etc, the unique properties of MTM were investigated to achieve near zero 

specular reflection for low RCS applications.  

An introduction of MTM theory and characteristics were discussed. The general 

propagation constant and the material diagram in  space for lossy MTMs and the 

relationship to their handedness were discussed. An important note is that the sign of  

defines the material handedness, RH or LH. The material is RH when  and LH 

when . However, the sign of  can be either positive or negative for both DPS and 

DNG but has to be negative for both ENG and MNG.  

The transcendental equations related to zero specular reflection were derived 

based on transmission line theory. The transcendental equation was specialized for the 

four types of MTM matching layers to produce zero specular reflection of a layer with  

PEC backing. The transcendental equations were solved numerically using the MATLAB 

  fsolve and solve  functions in order to generate universal curves. The DPS curves show 

similar results as compared to published data [2] except for small value of y . This is 

attributed to non-convergence of the numerical solution algorithms. The results verify 

that the DNG equation is the complex conjugate of the DPS equation. Therefore, one set 

of curves can be used for both DPS and DNG cases if the proper substitution of signs is 

made for , , anda b x y . The numerical algorithm indicated that there are no physical 

solutions to the ENG and MNG equations. It should be possible to verify this result by 

mathematical proof.  

The generated curves for different MTMs can be used to design a matched-

surface RAM for military applications. The curves show that only two types of materials 

(DPS and DNG) can provide zero specular reflection. Even though the EM propagation 

A-B

B

  B  0

  B  0 A
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characteristics change in the various MTMs, the important end result is that zero specular 

reflection can be achieved. In principle, such materials allow an object to cloak itself to 

create “invisibility” to a radar.  

 

B. FUTURE WORK 

In this thesis, two MATLAB functions, fsolve and solve  were employed to 

generate curves for four types of MTMs. As discussed, there are some discrepancies in 

the results between the generated curves and published data [2]. Therefore, future 

research should delve into the source of the error and search for potential remedies. Other 

software packages such as MATHEMATICA and MATHCAD have equation solvers. 

MATHCAD was used to generate the curves in Figure 7 without any noticeable 

convergence problems. It would be beneficial to use the MATHCAD routine to solve the 

DNG, ENG and MNG cases for comparison. The results obtained could be used to 

conduct simulations in Microwave Studio (MWS) in order to determine reflection and 

transmission properties of any given model. 

Another direction of research is to re-examine the transcendental equations for 

ENG and MNG and verify that there is no solution for the given constraints. Furthermore, 

the equations can be modified to account for non-normal incidence angle and other 

backing materials. 

From [13] and [14], the plane wave interaction with a pair of ENG-MNG slabs 

would, under certain conditions, lead to some unusual features such as resonance, zero 

reflection, complete tunneling and transparency. The reflection and transmission results 

show that the flow of the Poynting vector within the structures, under zero-reflection 

conditions was satisfied. Therefore, even though individual SNG surfaces cannot provide 

zero specular reflection, a combined layer of ENG and MNG can. 

Finally, the regions on the chart need to be connected to realizable MTMs. For 

example, given a frequency band and thickness of interest  t  , what areas of the chart 

could SRRs be used as inclusions? 
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APPENDIX 

A. MATLAB CODE FOR UNIVERSAL DESIGN CHART USING FSOLVE 
FUNCTION 

% solve transcendental equation for matched RAM layer over PEC backing 
% generate a curve on the universal chart for DPS, DNG, SNG (ENG or MNG) case 
% using explicit signs in z for DPS/ DNG/ SNG blocks 
  
clear          % remove items from workspace, freeing up system memory 
clc                   % clears all input and output from the Command Window display 
  
digits(64); 
tandel=0.3;    % dielectric loss tangent - user to define 
A=logspace(-5,3,1000);  % a values for search eg. using 1000 points between 10^-3 to 
10^1 
B=A*tandel; % b values for search  
  
N=length(A); 
  
Tol=1e-50;  % fsolve tolerance 
  
% cases are DPS,DNG,MNG,ENG  -- separate figures for each case 
SOL='ENG';  % solve for PEC backing - user to define case type 
  
% start of search range for each curve 
if SOL=='DPS', x_est=-0.1; y_est=-0.1; end 
if SOL=='DNG', x_est=0; y_est=0; end 
if SOL=='MNG', x_est=0; y_est=0; end 
if SOL=='ENG', x_est=0; y_est=0; end 
msg=['Computing in progress ...'];              
hwait=waitbar(0,msg); 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%DPS%%%%%%DPS%%%%%%DPS%%%%%%DPS%%%%%%DPS%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% solution for DPS case 
if SOL=='DPS' 
    for n=1:N 
        waitbar(n/N,hwait); 
         
% both a and b are POSITIVE in transcendental equation 
        a=A(n); 
        b=B(n); 
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        [z fval]=fsolve(@(X) transcend_DPS_PEC_pos(X,a,b), [x_est; y_est],... 
        optimset('TolFun',Tol,'Display','off'));     
        % TolFun = Termination tolerance on x, 
                  % positive scalar with default value 1e-6 
                   % 'off' displays no output 
  
% save values for check 
        x(n)=z(1);                   % x = Z1 
        y(n)=-z(2);                  % y = Z2 
        W(n)=x(n)-j*y(n);      % w(n)= x - jy(n) 
        zz(n)=z(1)+j*z(2);     % z = z1 + jz2 
        Z(n)=sqrt(zz(n)/(a-j*b)); % z(n) = sqrt((z(1)+jz(2))/(a-jb)) 
        G=sqrt((a-j*b)*zz(n)); % G = sqrt((a-jb)(z1+jz2) 
  
% choose solution with positive alpha 
        Gam(n)=G*j; 
        if real(Gam(n))<0, Gam(n)=-Gam(n); end   % alpha > 0 always 
  
% A and B parameters  
        AA(n)=x(n)*a-y(n)*b; 
        BB(n)=y(n)*a+b*x(n); 
    end 
close(hwait); 
figure(11) 
clf 
 
subplot(221) 
loglog(x,y,'xk') 
xlabel('x = t / \lambda * \mu_r_e_a_l') 
ylabel('y = t / \lambda * \mu_i_m_a_g') 
title([num2str(SOL),', tan\delta=',num2str(tandel)]) 
 
subplot(222) 
plot(real(zz),imag(zz),'ko') 
title([num2str(SOL),' solution, z = z_1 + jz_2, z_1 = x, z_2 = -jy']) 
xlabel('real part, z_1 or x') 
ylabel('imaginary part, z_2 or -y') 
     
subplot(223) 
plot(real(Gam),imag(Gam),'ko') 
title([num2str(SOL),' propagation constant \gamma = \alpha + j\beta']) 
xlabel('\alpha, Np / m') 
ylabel('\beta, rad / m') 
subplot(224) 
plot(BB,AA,'k+') 
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title('A-B classification space') 
ylabel('(t / \lambda) A') 
xlabel('(t / \lambda) B') 
Lmax=floor(max([max(abs(AA)),max(abs(BB))]))+1; 
 
end     % end of DPS block 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%DNG%%%%%%DNG%%%%%%DNG%%%%%%DNG%%%%%%DNG%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% solution for DNG case 
if SOL=='DNG' 
    for n=1:N 
        waitbar(n/N,hwait); 
        a=A(n); 
        b=B(n); 
        [z fval]=fsolve(@(X) transcend_DNG_PEC_neg(X,a,b), [x_est; y_est],... 
            optimset('TolFun',Tol,'Display','off')); 
         
% save values for check 
        x(n)=-z(1);             % x = -Z1 
        y(n)=-z(2);                  % y = -Z2 
        W(n)=-x(n)-j*y(n);         % both x and y are negative % w(n)= -x - jy(n) 
        zz(n)=-z(1)-j*z(2);       % solution to equation % z = -z1 - jz2 
        Z(n)=sqrt(zz(n)/(-a-j*b)); % z(n) = sqrt((-z(1)-jz(2))/(-a-jb)) 
        if real(Z(n))<0, Z(n)=-Z(n); end 
        G=sqrt(zz(n)*(-a-j*b));  % G = sqrt((-a-jb)(z1+jz2) 
         
% choose solution with positive alpha 
        Gam(n)=G*j; 
        if real(Gam(n))<0, Gam(n)=-Gam(n); end    % alpha > 0 always 
         
% A and B parameters  
        AA(n)=x(n)*a-y(n)*b;        % for new solution x<0 for DNG 
        BB(n)=-y(n)*a-b*x(n); 
    end 
     
close(hwait); 
figure(12) 
clf 
 
subplot(221) 
loglog(x,y,'xk') 
xlabel('x = t / \lambda * \mu_r_e_a_l') 
ylabel('y = t / \lambda * \mu_i_m_a_g') 
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title([num2str(SOL),', tan\delta=',num2str(tandel)]) 
subplot(222) 
plot(real(zz),imag(zz),'ko') 
title([num2str(SOL),' solution, z = -z_1 - jz_2, z_1 = -x, z_2 = -jy']) 
xlabel('real part, z_1 or x') 
ylabel('imaginary part, z_2 or -y') 
     
subplot(223) 
plot(real(Gam),imag(Gam),'ko') 
title([num2str(SOL),' propagation constant \gamma = \alpha + j\beta']) 
xlabel('\alpha, Np / m') 
ylabel('\beta, rad / m') 
     
subplot(224) 
plot(BB,AA,'k+') 
title('A-B classification space') 
ylabel('(t / \lambda) A') 
xlabel('(t / \lambda) B') 
Lmax=floor(max([max(abs(AA)),max(abs(BB))]))+1; 
 
end     % end of DNG block 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%MNG%%%%%%MNG%%%%%%MNG%%%%%%MNG%%%%%%MNG%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% solution for MNG case 
if SOL=='MNG' 
    for n=1:N 
        waitbar(n/N,hwait); 
         
% a and b are the negative of these values in the transcendental equation 
        a=A(n); 
        b=B(n); 
        [z fval]=fsolve(@(X) transcend_MNG_PEC_neg(X,a,b), [x_est; y_est],... 
            optimset('TolFun',Tol,'Display','off')); 
         
% save values for check 
        x(n)=-z(1);              % x = -Z1 
        y(n)=-z(2);              % y = -Z2 
        W(n)=-x(n)-j*y(n);       % both x and y are negative % w(n)= -x - jy(n) 
        zz(n)=-z(1)-j*z(2);      % solution to equation % z = -z1 - jz2 
        Z(n)=sqrt(zz(n)/(a-j*b)); % z(n) = sqrt((-z(1)-jz(2))/(-a-jb)) 
        if real(Z(n))<0, Z(n)=-Z(n); end 
        G=sqrt(zz(n)*(a-j*b));  % G = sqrt((-a-jb)(-z1-jz2) 
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% choose solution with positive alpha 
        Gam(n)=G*j; 
        if real(Gam(n))<0, Gam(n)=-Gam(n); end    % alpha > 0 always 
         
% A and B parameters  
        AA(n)=-x(n)*a-y(n)*b;   % for new solution x<0 for MNG 
        BB(n)=y(n)*a-b*x(n); 
    end 
close(hwait); 
 
    figure(13) 
    clf 
    subplot(221) 
    loglog(x,y,'xk') 
    xlabel('x=t/\lambda*\mu_r_e_a_l') 
    ylabel('y=t/\lambda*\mu_i_m_a_g') 
    title([num2str(SOL),', tan\delta=',num2str(tandel)]) 
 
    subplot(222) 
    plot(real(zz),imag(zz),'ko') 
    title([num2str(SOL),' solution, z=z_1+jz_2, z_1=-x, z_2=-jy']) 
    xlabel('real part, z_1 or -x') 
    ylabel('imaginary part, z_2 or -y') 
     
    subplot(223) 
    plot(real(Gam),imag(Gam),'ko') 
    title([num2str(SOL),' propagation constant \gamma=\alpha+j\beta']) 
    xlabel('\alpha, Np/m') 
    ylabel('\beta, rad/m') 
     
    subplot(224) 
    plot(BB,AA,'k+') 
    title('A-B classification space') 
    ylabel('(t/\lambda) A') 
    xlabel('(t/\lambda) B') 
    Lmax=floor(max([max(abs(AA)),max(abs(BB))]))+1; 
 
end % end of MNG block 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%ENG%%%%%%ENG%%%%%%ENG%%%%%%ENG%%%%%%ENG%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% solution for ENG case 
if SOL=='ENG' 
    for n=1:N 
        waitbar(n/N,hwait); 
 
% a and b are the negative of these values in the transcendental equation 
        a=A(n); 
        b=B(n); 
        [z fval]=fsolve(@(X) transcend_ENG_PEC_neg(X,a,b), [x_est; y_est],... 
            optimset('TolFun',Tol,'Display','off')); 
         
% save values for check 
        x(n)=z(1);               % x = Z1        
        y(n)=z(2);               % y = Z2 
        W(n)=x(n)-j*y(n);        % x is positive 
        zz(n)=z(1)+j*z(2);       % solution to equation 
        Z(n)=sqrt(zz(n)/(-a-j*b)); 
        if real(Z(n))<0, Z(n)=-Z(n); end 
        G=sqrt(zz(n)*(-a-j*b)); 
         
% choose solution with positive alpha 
        Gam(n)=G*j; 
        if real(Gam(n))<0, Gam(n)=-Gam(n); end    % alpha > 0 always 
         
% A and B parameters  
        AA(n)=-x(n)*a-y(n)*b;  % for new solution x<0 for ENG 
        BB(n)=-y(n)*a+b*x(n); 
         
    end 
    close(hwait); 
    figure(14) 
    clf 
     
    subplot(221) 
    loglog(x,y,'xk') 
    xlabel('x=t/\lambda*\mu_r_e_a_l') 
    ylabel('y=t/\lambda*\mu_i_m_a_g') 
    title([num2str(SOL),', tan\delta=',num2str(tandel)]) 
 
    subplot(222) 
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    plot(real(zz),imag(zz),'ko') 
    title([num2str(SOL),' solution, z=z_1+jz_2, z_1=x, z_2=-jy']) 
    xlabel('real part, z_1 or -x') 
    ylabel('imaginary part, z_2 or -y') 
     
    subplot(223) 
    plot(real(Gam),imag(Gam),'ko') 
    title([num2str(SOL),' propagation constant \gamma=\alpha+j\beta']) 
    xlabel('\alpha, Np/m') 
    ylabel('\beta, rad/m') 
     
    subplot(224) 
    plot(BB,AA,'k+') 
    title('A-B classification space') 
    ylabel('(t/\lambda) A') 
    xlabel('(t/\lambda) B') 
    Lmax=floor(max([max(abs(AA)),max(abs(BB))]))+1; 
    %axis([-Lmax,Lmax,-Lmax,Lmax]),grid 
end     % end of ENG block 
  
K=[A.' B.' Z.' zz.' Gam.'];   % save data for debugging 
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B. MATLAB CODE FOR DPS PERFECT ELECTRIC CONDUCTOR 

function F=transcend_DPS_PEC_pos(X,a,b) 
% a and b are POSITIVE (DPS) 
% create complex value from real and imaginary parts 
z=X(1,:)+j*X(2,:); 
  
% choose sign of impedance with positive resistance 
Z=sqrt(z/(a-j*b));  
if real(Z)<0, Z=-Z; end 
  
% choose solution with positive alpha 
G=sqrt((a-j*b)*z);     
if real(G*j)<0, G=-G; end  
f=j*Z*tan(2*pi*G)-1; 
  
% separate real and imaginary parts 
F=[real(f); imag(f)];  
 

C. MATLAB CODE FOR DNG PERFECT ELECTRIC CONDUCTOR 

function F=transcend_DNG_PEC_neg(X,a,b) 
% a and b are NEGATIVE (DNG) 
% create complex value from real and imaginary parts 
z=-X(1,:)-j*X(2,:); 
  
% choose sign of impedance with negative resistance 
Z=sqrt(z/(-a-j*b));  
if real(Z)<0, Z=-Z; end 
  
% choose solution with negative alpha 
G=sqrt(z*(-a-j*b));        % explicit Gam not needed 
if real(G*j)<0, G=-G; end  
f=j*Z*tan(2*pi*G)-1;  
  
% separate real and imaginary parts 
F=[real(f); imag(f)];  
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D. MATLAB CODE FOR MNG (SNG) PERFECT ELECTRIC CONDUCTOR  

function F=transcend_MNG_PEC_neg(X,a,b) 
% create complex value from real and imaginary parts 
z=-X(1,:)-j*X(2,:); 
 
% choose sign of impedance with negative resistance 
Z=sqrt(z/(a-j*b));  
if real(Z)<0, Z=-Z; end 
 
% choose solution with negative alpha 
G=sqrt(z*(a-j*b));        % explicit Gam not needed 
if real(G*j)<0, G=-G; end  
f=Z*tanh(j*2*pi*G)-1;  
 
% separate real and imaginary parts 
F=[real(f); imag(f)];  
 

E. MATLAB CODE FOR ENG (SNG) PERFECT ELECTRIC CONDUCTOR  

function F=transcend_ENG_PEC_neg(X,a,b) 
% create complex value from real and imaginary parts 
z=X(1,:)-j*X(2,:); 
 
% choose sign of impedance with positive resistance 
Z=sqrt(z/(-a-j*b));  
if real(Z)<0, Z=-Z; end 
 
% choose solution with positive alpha 
G=sqrt(z*(-a-j*b));        % explicit Gam not needed 
if real(G*j)<0, G=-G; end  
f=Z*tanh(j*2*pi*G)-1;  
 
% separate real and imaginary parts 
F=[real(f); imag(f)];  
 

F. MATLAB CODE FOR CHECKING SOLUTION POINTS 

% to key in z, a, b check equation solution points 
z=9.999999999999998 - 3.000000000000000i;  
a=10; 
b=3; 
G=sqrt(z*(a-j*b)) 
gam=G*j 
sqrt(z/(a-j*b))*j*tan(2*pi*G)-1 
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G. MATLAB CODE TO CHECK ON DPS LOOPS  

% solve transcendental equation for matched RAM layer over PEC backing 
% generate a curve on the universal chart 
% also numerator and denominator plots of equation solutions to 
% investigate "loops" 
  
clear 
clc 
digits(64); 
tandel=.3; 
  
A=logspace(-2,-0,1000);   % a values for search 
B=A*tandel;      % b values for search  
N=length(A); 
Tol=1e-50; 
  
SOL='DPS';   % start of search range for each curve 
msg=['Computing in progress...'];              
hwait=waitbar(0,msg); 
  
%%%%DPS%%%%%%DPS%%%%%%DPS%%%%%%DPS%%%%%%DPS%%%% 
 
xest=[0.5 0.75 1]; 
xest=[.1 .1 .1]; 
yest=[.01 .01 .01]; 
Nest=length(xest); 
for i=1:Nest 
    for n=1:N 
        waitbar((N*(i-1)+n)/N/Nest,hwait); 
        a=A(n); 
        b=B(n); 
        vee(n)=a-j*b; 
        x_est=xest(i); y_est=yest(i);  
        [z fval]=fsolve(@(X) transcend_DPS_PEC_neg(X,a,b), [x_est; y_est],... 
            optimset('TolFun',Tol,'Display','off')); 
% save values for check 
        x(n)=z(1); 
        y(n)=z(2);   
        if y(n)<0, y(n)=NaN; end 
        zee(n)=x(n)-j*y(n);  
        zz(n)=z(1)+j*z(2); 
        Z(n)=sqrt(zee(n)/vee(n)); 
        if real(Z(n))<0, Z(n)=-Z(n); end 
        G=sqrt((a-j*b)*zee(n));  
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% choose solution with positive alpha 
        Gam(n)=G*j; 
        if real(Gam(n))<0, Gam(n)=-Gam(n); end    % alpha > 0 always 
% calculate numerator and denominator 
        AA=real(sqrt(zee(n))); BB=imag(sqrt(zee(n))); 
        CC=2*pi*sqrt(vee(n)); 
        Num(n)=tan(CC*AA)+tan(j*CC*BB); 
        Den(n)=1-tan(CC*AA)*tan(j*CC*BB); 
        Fac(n)=2*pi/CC*(j*AA-BB);       
    end 
    Sol=Fac.*Num./Den-1; 
    figure(1) 
    if i==1, clf; end 
    if i==1, s='xk'; end 
    if i==2, s='xr'; end 
    if i==3, s='xg'; end 
    if i==4, s='xb'; end 
    loglog(x,y,s) 
    xlabel('x=t/\lambda*\mu_r_e_a_l') 
    ylabel('y=t/\lambda*\mu_i_m_a_g') 
    title([num2str(SOL),', tan\delta=',num2str(tandel)]) 
    %axis([1e-4,10,1e-2,10]) 
    hold on 
    figure(2) 
    if i==1, clf; end 
    plot(real(zz),imag(zz),s) 
    title([num2str(SOL),' solution, z=z_1+jz_2, z_1=x, z_2=-y']) 
    xlabel('real part, z_1 or x') 
    ylabel('imaginary part, z_2 or -y') 
    hold on 
    figure(3) 
    if i==1, clf; end 
    plot(real(Gam),imag(Gam),s) 
    title([num2str(SOL),' propagation constant \gamma=\alpha+j\beta']) 
    xlabel('\alpha, Np/m') 
    ylabel('\beta, rad/m') 
    hold on 
    figure(4) 
    if i==1, clf; end 
    subplot(221) 
    plot(real(Num),imag(Num),s) 
    title([num2str(SOL),' numerator']) 
    xlabel('real') 
    ylabel('imag') 
    hold on 
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    subplot(222) 
    plot(real(Den),imag(Den),s) 
    title([num2str(SOL),' denominator']) 
    xlabel('real') 
    ylabel('imag') 
    hold on 
    subplot(223) 
    plot(real(Fac),imag(Fac),s) 
    title([num2str(SOL),' factor']) 
    xlabel('real') 
    ylabel('imag') 
    hold on 
    subplot(224) 
    plot(real(Sol),imag(Sol),s) 
    title([num2str(SOL),' total']) 
    xlabel('real') 
    ylabel('imag') 
    hold on 
    figure(5) 
    if i==1, clf; end 
    subplot(221) 
    polar(abs(Num),angle(Num),s) 
    title([num2str(SOL),' numerator']) 
    hold on 
    subplot(222) 
    polar(abs(Den),angle(Den),s) 
    title([num2str(SOL),' denominator']) 
    hold on 
    subplot(223) 
    polar(abs(Fac),angle(Fac),s) 
    title([num2str(SOL),' factor']) 
    hold on 
    subplot(224) 
    polar(abs(Sol),angle(Sol),s) 
    title([num2str(SOL),' total']) 
    hold on 
end    % next start point 
  close(hwait); 
K=[A.' B.' Z.' zz.' Gam.'];   % save data for debugging 
format long 
clc 
disp('   a=t/w*Re(epsr) b=t/w*Re(epsr) Impedance, Z 
 x=t/w*Re(mur)       -y=t/w*Im(mur) alpha=Re(gam) 
 beta=Im(gam)') 
disp(K) 
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H. MATLAB CODE FOR UNIVERSAL DESIGN CHART USING SOLVE 
FUNCTION 

% use solve for the transcendental equation for DPS 
% revised to handle multiple solutions back from solve 
clear 
clc 
format long 
Ndgs=10; 
disp(['number of digits set at ',num2str(Ndgs)]) 
digits(Ndgs); 
tandel=.5; 
A=logspace(-3,1,500); 
N=length(A); 
B=A*tandel;     % b values for search  
 
%%%%DPS%%%%%%DPS%%%%%%DPS%%%%%%DPS%%%%%%DPS%%%% 
figure(1) 
clf 
for n=1:N 
   a=A(n); 
   b=B(n); 
   disp([num2str(n),' of ',num2str(N),', a=',num2str(a)]) 
   vee(n)=a-j*b; 
   Vee=vee(n); 
   if imag(Vee)<0, Vi=['-sqrt(-1)*',num2str(abs(imag(Vee)),Ndgs)]; end 
   if imag(Vee)>=0, Vi=['+sqrt(-1)*',num2str(abs(imag(Vee)),Ndgs)]; end 
   Sv=[num2str(real(Vee),Ndgs),Vi]; 
   Eqn=['sqrt(zzz/(',Sv,'))*sqrt(-1)*tan(2*pi*sqrt((',Sv,')*zzz))-1=0']; 
   Temp=eval(solve(Eqn,'zzz')); 
   solns=size(Temp); 
   if solns(1)==1;   % one solution returned 
        Zee(n)=Temp; 
   end 
   if solns(1)>1     % two solutions returned 
        if imag(Temp(1))<=0, Zee(n)=Temp(1,1); end 
        if imag(Temp(2))<=0, Zee(n)=Temp(2,1); end 
   end 
   X(n)=real(Zee(n)); Y(n)=-imag(Zee(n)); 
   loglog(X(n),Y(n),'xr') 
   hold on 
end 
xlabel('x=t/\lambda\mu_r_e_a_l') 
ylabel('y=t/\lambda\mu_i_m_a_g') 
title(['DPS: tan\delta=',num2str(tandel)]) 
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