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1. SUMMARY 
This report gives a detailed summary of research work completed under Air Force Research 
Laboratory (AFRL) grant 53925, over the time period (April 12, 2010 – April 10, 2012).    There 
are two main aspects of the work completed.    First was the collection and annotation of a large 
open source data base of speech passages from web sites such as You Tube.   300 passages were 
collected in each of three languages—English, Mandarin,   and Russian.     Approximately 30 
hours of speech were collected for each language.    Each passage has been carefully transcribed 
at the phrasal level by human listeners.    Each passage was originally transcribed and then 
checked and the transcription edited as needed by at least two additional native language 
listeners.    The English   and Mandarin were then forced aligned and labeled at the phonetic 
level using a combination of manual and automatic methods.     The Russian passages have not 
yet been marked at the phonetic level.    Another phase of the work was to explore several 
algorithmic methods for improving automatic speech recognition (ASR) for this intelligible but 
challenging data base.   Note that the body of the report has four main sections plus appendices 
which introduce, describe, and summarize a portion of the work.       

 

2. INTRODUCTION 
The primary sections of this report are 

1.  Database Development:     This section describes the database in some details, various 
issues involved, and the transcription/labeling process. 

2. Time Frequency Resolution Issues:    This section describes some of the work done to 
improve automatic speech recognition accuracy using   time-frequency resolution which 
varies as a function of frequency.    At low frequencies, frequency resolution is high and 
time resolution low.  At high frequencies, frequency resolution is low and time resolution 
is high. 

3. Non Linear Amplitude Scaling:     This section describes uses of a spectral nonlinearity, 
after log scaling, to improve noise robustness for ASR.   It is shown that certain types of 
“simple” nonlinearities can improve ASR accuracy for the condition of mismatched 
training and test data. 

4. New Approach to the Hidden Markov Model Decoding Paradigm:    An algorithm is 
developed which reformulates Hidden Markov Model decoding which simplified the 
decoding and allows neural networks to be directly used in the decoding process.   For 
the limited conditions tested, the accuracy is improved with this new approach. 

5. Appendix A:  As a result of this work, four conference presentations were given and 
one conference paper was published. The abstracts for the presentations and the 
conference paper are included.    

6. Appendix B.1: A detailed description of the database, such as the file types and 
directory structure is given. 
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7. Appendix B.2: The phonetic alignment procedure, used for labeling at the phone level, 
is described. 

8. Appendix B.3. A  user’s  guide for the forced alignment software is given. 
9. List of Symbols, Abbreviations and Acronyms: A list of acronyms used in this report. 

 
Note that the each section in the main body of the report also has its own introduction. 

 

3. METHODS, ASSUMPTIONS AND PROCEDURES 

3.1. Database Development 

3.1.1. Summary 
Over the past few decades, research in automatic speech recognition and automatic speaker 
recognition has been greatly facilitated by the sharing of large annotated speech databases such 
as those distributed by the Linguistic Data Consortium (LDC). Open sources, particularly web 
sites such as YouTube, contain vast and varied speech recordings in a variety of languages. 
However, these “open sources” for speech data are largely untapped as resources for speech 
research. In this paper, a project to collect, organize, and annotate a large group of this speech 
data is described. The data consists of approximately 30 hours of speech in each of three 
languages, English, Mandarin Chinese, and Russian. Each of 900 recordings has been 
orthographically transcribed at the sentence/phrase level by human listeners. Some of the issues 
related to working with this low quality, varied, noisy speech data in three languages are 
described.  

3.1.2. Introduction 
The need for large well-labeled databases for spoken language processing is well known. “There 
is no data like more data.” is a comment made by MIT speech researcher Victor Zue at a speech 
recognition workshop in the 1980s. Despite the large number and vast sizes of speech databases 
developed since the 1980s, the comment by Victor Zue still rings true [1].  

One of the first large databases developed for speech research was the TIMIT acoustic-phonetic 
continuous speech corpus. With joint efforts from Texas Instruments, SR International and MIT, 
TIMIT was published by the LDC in 1993. This database contains recordings of 630 speakers, 
each reading 10 sentences, in “studio” conditions. The data was then manually labeled with 
starting and ending points for each phone in each sentence. Even today, TIMIT is one of the 
most widely used speech corpora for phonetic level speech research. 

However, the 5,040 sentences in TIMIT (the SA sentences are often removed), with a typical 
sentence duration of 5 seconds, only provide about 7 hours of total speech, which is insufficient 
for many recognition tasks. Since TIMIT, many other speech databases have been collected, 
transcribed, catalogued, and distributed by the LDC. For example, the English Broadcast News 
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Transcripts (HUB4) [2] database was launched by the LDC in 1996 and now contains 
approximately 100 hours of broadcast news and has all speech manually transcribed at the 
phrasal level, using the Rich Transcription (RT-04S) Evaluation Data guidelines developed by 
the National Institute of Standard and Technology (NIST) in 2004 [3]. In recent years, LDC 
announced their plan for developing a new speech database. The DARPA GALE program [4] is 
a very large speech database project with the goal of collecting speech in multiple languages 
from global broadcast news. In 2009 the LDC [5] reported that 4,000 hours of Arabic broadcast 
has been collected and 2,400 hours were selected for transcribing. 

Currently, public video sharing websites such as YouTube are booming because sharing 
homemade videos has become very easy and more popular. About 65,000 videos have been 
uploaded daily since 2006, and this number continuously increases [6]. This seemingly “infinite” 
number of videos found on the web can provide a vast collection of speech data for speech 
research, and the topics and speaking styles corresponding to these collections are much more 
varied than those found in broadcast news. To tap into this large resource, an “open source multi-
language speech database” project was developed and is described in this report. 

3.1.3. Structure of the database 

The goals 
The database was developed with collections from three different languages: English, Mandarin 
Chinese, and Russian. The intent was to collect about 30 hours of speech in each language, 
consisting of 300 videos per language, with videos averaging about 7 minutes in duration. The 
intent was also to collect three videos from each of 100 speakers per language, with the three 
recordings from each speaker originally spoken on different days and under different recording 
conditions. Another goal was to have approximately an equal number of male and female 
speakers. As is discussed later, most but not all, of these guidelines were met. The only firm 
guidelines were that the audio portion of each video be of sufficient quality to be “reasonably” 
intelligible by a “typical” native speaker of the language, that there not be constant background 
noise (i.e., not have background music throughout the entire passage), and that no single passage 
be shorter than 1.5 minutes or longer than 16 minutes in duration. Since many videos were in 
fact longer than 16 minutes, a “stand-alone” primarily speech portion of the video was extracted 
(using Xilisoft Video converter ) for the database. 

Video download and post-preparation 
The first step in this development was to identify, download, and store audio/video clips from 
public video sharing websites. All videos were downloaded in the highest quality format that the 
sharing sites supported and then stored in a standard format. Table 1 shows the typical sites used 
for each language, the download tools used, and the original file formats. 

For those videos in a format other than MP4, further processing was done, so that all videos were 
saved as MP4 files. The step was done by Xilisoft video converter, too. A copy of each video in 
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its original format was also kept. Then all files were designated with a specific name based on 
the language, the gender of the speaker, the initials of the speaker, and the category of recording. 
The category of recording comprised “formal presentation” and “casual conversation” which 
refer to the conditions under which the recording was made. Table 2 shows some criteria for 
making a decision on which category a video clip belonged to, although the decisions were 
somewhat subjective.  

 
 
 

Language Typical Webs Download Tools Original Format 

English Youtube.com www.savevid.com MP4 

Chinese Youku.com www.flvcd.com FLV  

Russian Rutube.ru www.savevid.com MP4 

 
 
 
 
 
 

 Formal Presentation Casual Conversation 

Speech type Speech prepared in 
advance 

Casual talk, semi-
spontaneous 

Noise/Interruptions in 
recording environment  

Quiet and not much 
noise 

More noise and even 
distortion effects 

Slang/Disfluencies Very little Usually a lot 

Background music None Maybe a little 
 

 
A standard file name consists of 5 parts, chosen to make it easier to sort and organize the videos. 
Figure 1 illustrates a file name given to a Chinese language video sample, which is categorized 
as a “casual conversation,” spoken by a male speaker who has initials “WX.” The detailed 
description and possible options for each part as well as their abbreviations in file name are given 
in Table 3. 

 
 
 
 
 

Table 1. Typical video sharing websites and tools for downloading 

Table 2. Some criteria for separating “Formal Presentation” and “Casual 
Conversation” 

http://www.savevid.com/
http://www.flvcd.com/
http://www.savevid.com/
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 Description In filename 

Language English E 
 Mandarin Chinese C 
 Russian R 
Recording Category Formal Presentation FP 

 Casual Conversation CC 
Gender English/Chinese/Russian E/C/R 
 Male/Female M/F 
Speaker Name Initials Initials of first / last name  

 Order of appearance in database 01, 02, 03… 

Video Order  Indicates which video of each 
speaker 

01, 02, 03… 

 
 

3.1.4. Transcribing the database 
An important aspect of this database is that all speech files were manually transcribed by human 
listeners. The reason for this was quite simple: given the relatively low quality, the wide 
variations in recording conditions, the presence of background noises, and the multiple 
languages, it seemed very doubtful that any automatic speech recognizer would be able to 
establish reliable “ground truth.” By carefully listening to each sentence and reviewing by 
different listeners, the human transcriptions would provide the best orthographic transcriptions of 
this “ground truth.” Also, the accurately transcribed sentences provides the best starting point for 
an automatic forced alignment process to create time labels for words and phonemes, thus better 
supporting phonetic recognition research. Therefore, properly selecting the tool and building the 
specifications for the transcribing work was necessary.  

 

Figure 1. Illustration of naming conventions for video files 

Table 3. Filename notation and descriptions 

Language  Category Language & 
gender 

Speaker name 
initials + order 
of appearance 

 

Video order 
for every 
speaker  

C_CC_CMWX01_01.mp4 
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Transcribing tool  
Transcriber, developed as a tool for assisting in creating the speech corpora in [7], was designed 
for manual segmentation and transcription of long duration broadcast news recordings, including 
annotation of speech turns, topics and acoustic conditions. With its embedded user-friendly 
graphical user interface, Transcriber allows listeners to perform tedious and complex operations 
such as modifying the time boundary of each speech segment, adding noise notations or indicate 
switching between speakers in a convenient way. Also, the output of Transcriber accurately 
records the time durations between segments, which provide support for the following automatic 
forced alignment process for detailed word and phonetic transcription. All these features made 
Transcriber extremely well-suited for the transcription task.  

Other speech transcription tools considered are listed in Table 4. Although Transcriber does not 
have all the functions these other tools have, it does have the required features and there is no 
licensing fee; therefore, Transcriber 1.5.1 was used for this project.  

 
 

Tool Main Features 
XTrans Multi-speakers tasks 

(Developed by LDC) 

Transana Link the transcription place to 
video 

SoundIndex Directly transcribe in XML 
file 

WaveSurfer Waveform display/analysis 

 

Audio preparation 
Transcriber only reads WAV files as its audio input. Therefore audio-only WAV files were 
extracted from the video MP4 files using a software tool called AOA audio extractor. Factors 
contributing to overall speech quality and intelligibility include: the background noise and 
recording conditions when videos were made, the loss by website compression tools for 
uploading files from users, another round of compression by the video download tool, and the 
final audio extraction. In order that the only significant degradation be due to the first two 
factors, high quality settings were used for the last two steps. Tables 5 and 6 list the quality 
setting for downloads and the quality setting for audio extraction, respectively.  

 

 

 

Table 4. Other available transcription tools 



Approved for Public Release; Distribution Unlimited. 
 7 
 

 
 
 

Format MPEG-4  
Video Encoding MPEG-4 AVC1 

(H.264) 
 Resolution Original as on 

YouTube 
Audio Encoding AAC 
 Channels 2 
 Sampling rate  44100Hz 

 
 
 
 
 
 
 
 
 

 

Metadata and annotation 
The annotation and metadata for transcribing this database was based on the format used for the 
LDC project GALE [8]. Unlike studio quality recorded read speech, there is a large amount of 
variability in transcribing web-collected speech. Main factors which possibly diminish the 
transcribing quality included the background noise/music, slang, and inserted words in different 
languages, other than the primary language of the speaker. These additional factors were 
annotated to the extent feasible. 

When selecting videos, background music was considered permissible if it was not “too” high 
level and did not overlap with speech too often. Music, as well as other types of noise, was 
labeled in the transcription using the notation in Table 7. Noise labels differed depending on 
when the noise occurred relative to the speech. “Burst” noise/music occurred when there was no 
speech. “Overlap” noise/music occurs during speech. The most commonly used notation for 
noise was the “Others” notation, since, from listening, it was often quite difficult to accurately 
determine the source or type of the noise. Many speech signals also contained static noise which 
was present throughout the signal. This was labeled in a master file that describes each file. 

 

 

 

Format WAV  
Audio Encoding PCM 
 Channels 2 
 Sampling rate 22050 Hz 
 Bits/sample 16 

Table 6. Audio quality specifications 

Table 5. Video quality specifications 
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Additionally, special events like silence segments and language transitions are potentially as 
detrimental as noise or other interference. While transcribing, the listeners labeled a “pause” 
(Table 8) as a speech break (silence) between 0.5 and 1 second. Silences longer than 1 second 
were labeled differently. For some run-on sentences which commonly occur in casual 
conversation, great care was taken with the time labels because speech often does not end 
abruptly, but rather gradually fades.  

 
 
 
 
 
 
 
 
 
One common issue in spoken Mandarin Chinese is that people mix English words in Chinese 
sentences. (In contrast, Russian speakers often use English word variants.) Thus, labeling of 
languages transitions became necessary. Table 8 also shows the symbol for a language transition. 

The issues related to slang, truncated words, incomplete pronunciation and other informality in 
spoken language are clearly addressed by the GALE standard. These issues include: contractions 
or ambiguous words should be transcribed as closely as possible to how they actually sound; 
truncated words are to be ended with a dash “-”; the notation “(())” is to be used to represent an 
unintelligible words; and tilde “~” is to be used when each letter of an acronym is spoken 
individually 

Event Description/Example Symbol 
Pause Break btw/ .5 to 1 sec [p] 
Language Transition Word(s) spoken in 

different language  
Exp. 
[lang=English-]  
[-lang=English] 

Noise 
Notation 

Description/Example Symbol/burst Symbol/ov
erlap 

Music  [mu] [mu-][ -mu] 

Applause  [a] [a-][-a] 
Laughing  [l] [l-][-l] 
Human coughing, inhaling, [h] [h-] [-h] 
Nature wind, ocean... [n] [n-] [-n] 
Vehicle honks, car engine… [v] [v-][-v] 

Animal barking, birds… [an] [an-] [-an] 
Office telephone… [o] [o-] [-o] 
Machinery fan, construction... [m] [m-] [-m] 
Others  [ot] [ot-] [-ot] 

 

Table 7. Notations for noise and how it is annotated 

Table 8. Notations for important events and how they are annotated 
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3.1.5. Practical issues in transcribing 

Common issues  
The most difficult issue in the transcribing process of all three languages stemmed from the great 
range of qualities in the original video recordings. For example, some videos downloaded from 
YouTube had High-Definition quality, which has very high resolution for both audio and video. 
However, most videos were recorded with much lower quality for both video and audio. Some 
Chinese videos were recorded with defective equipment, resulting in distortion of the speech 
signal thus causing difficulties even for a human listener. 

English 
In English, speakers often fill pauses with fillers such as “um” or “hm,” briefly between words, 
or extensively to gain time for a next thought. Differences in pronunciation due to culture and 
accent promoted its own share of concerns; various accepted norms of speech (i.e. tomato), and 
the use of foreign language for brand names, proper nouns, descriptions, and verbs are used in 
conjunction with English speech. Furthermore, background noise or feedback from the medium 
used to record video was an additional factor. 

Simplifying words and expressions through slang was very common; often times words that end 
in “-ing” are mispronounced and are transcribed as “-in.” For example “sleepin” for “sleeping.” 
And the use of “dope” and “hot” to express emotions or quality. The widespread use of internet 
acronyms such as “brb” and “lol” occurred occasionally in causal speech, implying the 
assimilation of today’s digital jargon in verbal communication. 

Mandarin Chinese 
Other than embedded English words, the transcription of Mandarin Chinese was done using 
standard Chinese characters for transcriptions. Unlike English, there are no slang or informal 
language (such as truncated words) related ambiguities in the transcriptions.  

However, the Chinese language has a large number of dialects with a resulting large influence on 
how people pronounce Mandarin [9]. Accents among Mandarin speakers differ significantly. For 

example, the speakers from the northeast region of China confuse “s-” [s] and “sh-” [ʂʻ], and 
also there was no clear boundary between the nasal consonants “-ng” [ŋ] and “-n” [n] for south 
China speakers. In the development of the database described in this paper, the listeners always 
transcribed according to actual pronunciation, even if matching with its neighbor characters did 
not make linguistic sense. 

Russian 
In daily life, some words of the Russian language have a different pronunciation than defined in 

the dictionary. For example, “тыща” ['tɨɕɕa] is often pronounced “тысяча” ['tɨsjtɕa], “щас” 
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[ɕɕas] as “сейчас” [ sej'tɕas], and “cёдня” ['sjdnja] as “сегодня” [se'gondnja]. Similar to 
Chinese and English transcriptions, all these ambiguous words were transcribed as pronounced. 

Russians use English words directly sometimes. If the English word is clear with the correct 
pronunciation, the words are enclosed with English language tags. However, in some cases 
English words are misused (“Americanisms”): in such cases words are transcribed as they sound 
in Russian. Also, the Russian language includes some words with a Ukrainian pronunciation. 
Such words were marked with double parentheses. 

3.1.6. Summary table of data collected 
The goal of 300 videos for each language had been achieved, and roughly 30 total hours of 
speech for each database has been collected and transcribed, as summarized in Table 9.  Over a 
period of about 9 months, which included about 3 weeks for data collection and approximately 8 
months for transcribing, overall, 11 students were involved in the database development. 

 

 

Language Speech Type Gender Total Number 
of Speakers 

Total Number 
of Recordings 

Total Time  

English Formal Male 88 124 14 hrs 
 Formal Female 21 26 2.6hrs 
 Casual Male 36 108 10.5 hrs 
  Casual Female 14 42 4 hrs 
  Total 159 300 31.1hrs 
Chinese Formal Male 59 136 11.1hrs 
 Formal Female 24 56 4.4 hrs 
 Casual Male 44 82 6.4 hrs 
  Casual Female 10 26 2 hrs 
  Total 137 300 23.9hrs 
Russian Formal Male 79 167 20.5hrs 
 Formal Female 26 42 4hrs 
 Casual Male 36 71 8.1hrs 
  Casual Female 17 20 2.2hrs 
  Total 158 300 34.8hrs 

 

3.1.7. Forced alignment for speech labeling 

The goal of this database collection project is to make the database useful for speech processing 
research. In order to fulfill that goal, the database must provide accurate word-level and phone-
level transcriptions, both with time marks. Although the speech data could be transcribed 

Table 9. Summary of Database  
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manually by a well-trained phonetician, the manual method is a laborious and time-consuming 
task, which makes it impractical for a large amount of data. An efficient way of achieving this is 
to apply automatically derived forced alignment for this more detailed labeling and then use 
humans to finalize the labeling. 

By using an ASR “tuned” for a single passage or group of passages, that is, given phonetic 
models and word models in terms of phonetic lattices, the audio can be accurately time aligned 
with word transcriptions. The recognizer can be configured to give a best time-aligned match 
between the audio and transcription, using all the probabilistic constraints imposed by the 
phonetic and word models. Furthermore, this recognizer can be made much more accurate by 
configuring it for each recording. For example, based on the human transcription of a recording, 
the vocabulary can be restricted to only the words in that recording, and the language model 
derived only from the word and word-pair frequencies in that passage. We are continuing work 
on several techniques for forced alignment on a subset of the English database and the outcome 
looks very promising. More details of the forced alignment are given in appendices B.2 and B.3. 
These techniques have been tuned for this particular task and database. 

3.1.8. Conclusion 
In this research project, a large database of English, Mandarin, and Russian was collected, 
formatted, organized, annotated, and given time-aligned orthographic transcriptions at the 
sentence/phrase level. Due to the variability, noisiness, and low speech quality, human listeners 
were employed for this transcription and annotation. Automatic speech recognition techniques 
have been developed and used to aid in the annotation process at a more fine-grained level. This 
database will be useful for both automatic speech recognition research and automatic speaker 
recognition research. The database is derived from open source public web sites; thus it is a 
sampling of an “infinite,” widely accessed repository of speech. 

3.2. Time Frequency Resolution Issues 

3.2.1. Introduction 
Speech information is generally assumed to be contained in a 2D time-frequency representation 
of speech spectra. This stems from a long history of using speech spectrograms, studies of the 
frequency analysis properties of the ear, etc. In the speech science field, the peaks in the 
spectrum corresponding to resonances of the vocal tract have long been considered to be most 
important features of the speech spectrum. However, in the field of ASR, the general approach is 
to extract features which represent the global spectral shape, and which mimic the amplitude and 
frequency selectivity of the human ear. The perceptual amplitude scale most typically used is 
logarithmic, and the perceptual frequency scale most typically used approximates a Bark or mel 
scale, often using a bilinear frequency transformation. In the ASR area, most typically, 
approximately 10-15 cepstral coefficients are computed from the log magnitude spectra. Cepstral 
coefficients are computed using a cosine transform of the log spectra, using a triangular filter 
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bank, with filters equally spaced on a bark-like scale. Since Hidden Markov Model (HMM) 
based ASR systems have been shown to benefit from including some cepstral trajectory 
information, the cepstral coefficients are often augmented with delta-cepstra and delta-delta 
cepstra terms, which approximate first and second order time derivatives of the cepstral 
coefficients. In fact, a de-facto standard front end for ASR systems is the use of 12 cepstral 
coefficients plus energy as base frame features, and then to augment each of these terms with 
delta and delta-delta terms. This results in a 39-dimensional feature vector.  Over the past several 
years, researchers have introduced additional methods for representing spectral trajectory 
information, including RASTA [12] and the modulation spectrum [10] [11] [14].    

3.2.2. Approach 
Both Mel-Frequency Cepstral Coefficient (MFCC) features with associated delta and delta-delta 
terms, and our own previous features based on a warped Discrete Cosine Transform (DCT) of 
the log Fast Fourier Transform (FFT) spectra followed by a Discrete Cosine Series (DCS) 
expansion over time for each DCT [15] effectively use the same temporal resolution for all 
frequencies. In order to incorporate higher time resolution at high frequencies, as is possible with 
the lower frequency resolution,  spectral/temporal features must first be computed by integrating 
over time (for each frequency) and then integrating the spectral/temporal features over 
frequency, or by using two-dimensional basis vectors over time and frequency. Figure 2 
illustrates the type of desired time resolution over a segment interval for low and high 
frequencies. Note that the more “peaky” high frequency curve represents higher time resolution 
at the center of the interval, as compared to the less “peaky” low frequency curve.  In the 
remainder of this paper, processing based on the two one-dimensional basis vector sets is 
referred to as DCTC1, whereas processing based on the two-dimensional basis vectors is referred 
to as DCTC2. 
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Figure 2.  Illustration of desired time resolution at low 
frequencies and high frequencies. 
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The approach presented here is as follows. The DCTC2 features, Feat(i,j), are defined as : 

         dfdtftftXfjiFeat
f t
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− =
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Where X(t,f) is a (sliding) section of the time/frequency space (a block), with normalized ranges 
of (0,1) for both time and frequency,  

      f

gfgifi
∂

∂π ))(cos()( =Θ                                            (2) 

are modified cosine basis vectors over frequency, taking into account the frequency resolution 
properties of hearing, and 

     t

hhfthhjftj
∂
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are two-dimensional basis vectors over time and frequency, with time resolution that depends on 
frequency. Note in equation 1 that the integration is over time first, and frequency second.     g(f) 
and h(f) are warping functions over frequency and time respectively. hh(t,f) is a two-dimensional 
version of h(f), or a family of h curves, with the degree of time warping depending on f. 
Typically g(f) is an approximation to the mel function, and h(f) is a function such as a Kaiser 
window, which results in more time resolution at the center of each block. Functionally, this 
method is equivalent to computing features based on two-dimensional basis vectors 

                                                    (4) 

          

 where f' is "perceptual" frequency, computed as f' =g(f); and t' is "perceptual" time within a 
segment, computed as t' =hh(t,f). The overall feature computation equation can be rewritten as: 

(5) 

 

In this equation Φ(t,f) incorporates both time and frequency warping. In the time dimension, the 
basis vectors are more sharply peaked at high frequencies than low frequencies, corresponding to 
the better time resolution at high frequencies.   In the frequency dimension, the basis vectors are 
more sharply peaked at low frequencies than high frequencies, corresponding to the better 
frequency resolution at low frequencies.    Figure  3 depicts  the (1,1),  (1,2),  (2,1),  and (2,2)  
basis vectors using mel warping for g (coefficient of .35) and Kaiser window (coefficient of 5) to 
control the time warping. These basis vectors have more “peakiness” at high frequency (over 
time) and low frequency (over frequency). 
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To graphically illustrate the way these 2D basis vectors represent a speech spectrogram, original 
spectra and spectra estimated from the two-dimensional features  Feat(i,j)  are shown in figures 4 
and 5. In Figure 4, the original spectrum (top panel) is obtained from 125 ms segments of 
sinusoids, spaced 500 Hz apart. The middle panel shows the rebuilt spectrum of the sinusoids 
using Discrete Cosine Transform Coefficient (DCTC)/ Discrete Cosine Series Coefficient 
(DCSC) features (13 DCTCs, 3 DCSCs, and uniform time resolution at all frequencies. As 
expected, the sinusoids are more smoothed in frequency at the high frequencies, but uniformly 
smoothed in time at both high and low frequencies. The bottom panel of figure 3 shows the 
rebuilt spectrogram using the 2D basis vectors. The frequency warping is based on the mel scale 
with a coefficient of .35. The time warping at low frequencies is based on a Kaiser window with 
beta of 5 at low frequencies, gradually increasing to a beta of approximately 15 at high 
frequencies (as in Figure 2). Note that the temporal transitions between sinusoids are much more 
rapid at high frequencies as compared to low frequencies. 

Figure 3.   Low ordered time/frequency basis vectors 
illustrating non-uniform time/frequency resolution 
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The three panels of Figure 5 illustrate the original spectrogram (top panel), spectrogram rebuilt 
with time resolution the same at all frequencies (middle panel), and spectrogram rebuilt using 2D 
basis vectors (bottom panel), for approximately 1 second of a speech signal. As in Figure 4, in 
the bottom panel, the more rapid temporal events are better preserved for high frequencies than 
low frequencies.       

3.2.3. Experimental evaluation 
Experiments were conducted to evaluate the proposed method using the TIMIT database. The 
SA sentences were removed from the database, resulting in 3696 sentences from 462 speakers 
for training and 1344 sentences from 168 speakers for test. Experiments were also conducted 
with the telephone version of TIMIT, i.e. NTIMIT. All analysis parameters were identical for the 
TIMIT and NTIMIT evaluations, except for frequency range. For TIMIT, the frequency range 
was selected to be 50 to 7000 Hz, whereas for NTIMIT the frequency range for analysis was set 
at 300 to 3400 Hz. 

The signal to noise ratio (SNR) was varied from no added noise (clean) to 0 dB, in steps of 10 
dB (totally 5 noise conditions). A reduced 39 phone set as used in [13] was mapped down from 
the original TIMIT 62 phone set and used in the experiments.   

 

Figure 4. Spectrograms of sinusoids-original (top), 
reconstructed with DCTC1 method (middle) and DCTC2 
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Left-to-right 3-state Hidden Markov models with no skip were used and a total of 48 (eventually 
reduced to 39 phones) context independent monophone HMMs were created from the training 
data using the HTK toolbox (Ver3.4). The bigram phone information extracted from the training 
data was used as the language model. For all experiments with DCTC/DCSC features, a block 
spacing of 10 ms (125 blocks per second) was used. In an attempt to extract most information 
from the speech features tested, a large number of mixtures were used (32) to model each state 
with a diagonal covariance matrix.    

The objective of the experiments was to compare phoneme recognition accuracy of control 
features (13 MFCCs with delta and acceleration terms, or 39 total terms),  with DCTC/DCSC 
features computed with time resolution independent of frequency , and with the two-dimensional 
basis vectors which result in time resolution dependent on frequency.  These three conditions are 
referred to as MFCC, DCTC1, and DCTC2 respectively. More details are given for each 
experimental condition.  

 

Experiment 1: Control (MFCC) 
The intent of this experiment was to establish a baseline for ASR phoneme accuracy using 
“conventional” features, and the identical HTK recognizer and database configuration as was 
used for the proposed features.  

Figure 5.  A segment of spectrograms for a speech signal 
(top), reconstructed with DCTC1 method (middle) and 

DCTC2 method (bottom). 
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The MFCC features were computed directly with the HTK supplied front end, using the typical 
parameter settings for MFCCs as well as delta and acceleration terms. That is, 12 MFCCs plus 
energy with delta and acceleration terms, or 39 total terms were obtained every 10 ms at a frame 
length of 25 ms, with pre-emphasis coefficient of 0.97. For each phoneme, 3-state HMMs with 
32 mixtures were used.  

Recognition accuracies obtained with the TIMIT and NTIMIT databases at various SNRs were 
depicted in Figure 6. The accuracy ranges from 69% (clean TIMIT) to 35% (NTIMIT at 0 dB 
SNR).    

 

 

 
 
Experiment 2: DCTC1—DCTC spectral analysis followed by DCS spectral trajectory 
analysis 
In this experiment, 13 DCTC coefficients were computed for each spectral frame, and each of 
these coefficients were represented with a 5 term Discrete Cosine Series (DCS) expansion over 
time (65 total features). The DCTC terms were computed with 10 ms frames, spaced 4 ms apart, 
with mel warping, using a coefficient of .45. The DCSC terms were computed using 50 frame 
overlapping blocks, with a 2 frame block spacing (that is, 200 ms blocks spaced 8 ms apart). The 
time warping function (“between” the low and high frequency curves in Figure 1) was a Kaiser 
window with beta value of 10. These parameters were adjusted empirically, to optimize for 
recognition accuracies.        

The same configuration of HTK as for Experiment 1 was used--that is, three state models with 
32 mixtures, and a bigram phonetic language model. Figure 6 shows that phoneme recognition 
accuracy for the TIMIT and NTIMIT databases at various SNRs, ranging from 72% (clean 
TIMIT) to 32% (NTIMIT at 0dB SNR). These results are approximately 3% higher, on average, 
than the results obtained with MFCC and delta features. 

Figure 6.  Phone accuracies with control 
MFCC features. 
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Experiment 3: DCTC2—features based on 2D spectral/temporal basis vectors 
The goal of this experiment was to determine ASR accuracy possible using the 2D basis vector 
approach described in this paper. The number of parameters used (65) and parameter settings 
were similar to those mentioned for experiment 2. The effective Kaiser window beta was 5 for 
low frequencies, and 15 for high frequencies (as they are for the curves depicted in Figure 2). 
Again sliding 200 ms blocks, advanced by 8 ms, were used to compute the block based features. 
The same HMM configuration was used as for experiments 1 and 2.    

 

 

 

Figure 8 shows that phoneme recognition accuracy for the TIMIT and NTIMIT databases at 
various SNRs, ranging from 72% (clean TIMIT) to 39% (NTIMIT at 0dB SNR).   These results 
are approximately 4% higher for TIMIT, on average, than the results obtained with MFCC and 
delta features, and also slightly better than for the DCTC1 features. 

 

Figure 7.  Phone accuracies with DCTC1 features 

 

Figure 8.  Phone accuracies with DCTC2 
features 
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3.2.4. Discussion 
The integrals mentioned in the algorithm are implemented as sums over selected time and 
frequency ranges. This “block” mode processing follows initial FFT spectral analysis. The 
nonlinear and frequency scales for the spectrum (equation 5) were obtained by interpolation. The 
combination of using very long block lengths (typically 50 frames), the interpolation, and the 
two-dimensional basis vectors, as opposed to using two sets of one dimensional basis vector does 
increase front end processing time by approximately an order of magnitude over MFCC and 
delta cepstra processing. More computationally efficient methods could be devised, if the 
features are shown to be beneficial. 

3.2.5. Conclusions 
A new method for computing spectral/temporal features for use in automatic speech recognition 
has been described. These features are computed so as to give time/frequency resolution that 
depends on position in time-frequency space. Although motivated by concepts from wavelet 
analysis, the algorithms described are developed in the acoustic feature domain, rather than the 
initial spectral analysis phase. Ideally, the initial spectral processing should also incorporate the 
non-uniform time/frequency resolution. Experimental results obtained to date are essentially 
equivalent to those obtained with features based on uniform time resolution. However, there 
remains considerable room for improvement using better matches to the time-frequency 
resolution characteristics of human hearing, and in using a more suitable spectral analyzer than 
FFT analysis.   

3.3. Non Linear Amplitude Scaling 

3.3.1. Introduction 
ASR works well under clean conditions. This usually entails using clean speech and matching 
acoustical environments for the training and test data. However, when the ASR system has to 
operate under more adverse conditions recognition rates decrease quite dramatically [16]. 

In contrast to ASR, humans are able to comprehend speech despite adverse conditions. This has 
been the motivation for many techniques in the field of ASR.  Some of these methods are derived 
from auditory models of human perception and other mammalian hearing systems.  Auditory 
models are very complex and have been developed through various experiments which range 
from invasive procedures done on animals to otoacoustic emissions (OAEs) to psychoacoustics 
[17]. These models have led to the development of techniques such as MFCCs, RelAtive 
SpecTrA (RASTA) features, and Perceptual Linear Prediction (PLP) coefficients [18]. Auditory 
models can be used for ASR, but this comes at the cost of complexity [19].  
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Auditory models commonly have a compressive nonlinear stage that represents the processing 
done by the basilar membrane found in the cochlea of the ear [20,21]. Chiu and Stern [22,23] 
demonstrated that this critical step in hearing can be exploited using more traditional ASR 
techniques, but bypassing most of the more computationally intensive steps in a more complete 
auditory model.  With their form of compressive nonlinearity they were able to improve the 
recognition rates for noisy speech using the CMU Sphinx-III system. Recognition rates were 
further improved by training the nonlinearity. 

In this paper, we compare different compressive nonlinearities by integrating them with an ASR 
system that uses Zahorian’s DCTC/DCSC acoustic features [15]. The compressive nonlinearities 
examined are derived from or similar to those in auditory models.  We show how these 
nonlinearities shape the spectrum of the speech signal and how they affect recognition rates 
especially for noisy conditions.  

3.3.2. Approach 
The main idea behind these compressive nonlinearities is to limit the range of spectral 
magnitudes in such a manner that speech characteristics are enhanced and noise is suppressed. 
This can be done in many ways. The physiologically motivated way is to implement the 
compressive nonlinearity into more traditional ASR processing. A simple way is to limit the 
range of spectral magnitudes using a threshold, or “floor” value for spectral magnitudes.  

To test the general idea of using compressive nonlinearities, noisy speech was made by adding 
white Gaussian noise at a desired signal to noise ratio (SNR).  The speech used in the examples, 
and the speech used for the experimental results, were taken from the TIMIT database. The 
sentence used for the examples depicted in the figures in this paper is from a female speakers 
saying "She had your dark suit in greasy wash water all year."   

Baseline Range Function 
The baseline range function (BRF) is linear (in terms of log magnitude) except for a threshold: 

                                                                                                                   (6) 

where the input  is the spectral magnitudes in dB and y is the spectral magnitude after 
compression. One way to define the threshold  is: 
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                                                   (7) 

 is the average of the maximum values of spectral magnitudes for all frames 
of speech in a single utterance (one sentence) and  is a user defined value specified in dB. 
Therefore, this function limits the range of spectral magnitudes with the lower limit only 
dependent on the average spectral peaks of all frames of the utterance it is operating on. The 
value  is thus the limit for the dynamic range in dB for each utterance. 

Figure 9 shows a spectrogram of an utterance of speech with no range limiting after the log 
compression, that is, the control condition. Figure 10 shows spectrogram with additive noise with 
a 10 dB SNR. Figures 11 shows a spectrogram of the 10dB SNR noisy speech, using the range 
limiting with t = 20 dB. 

 

Figure 9. Spectrogram of clean speech with no range limiting. 

 

Figure 10. Spectrogram with additive Gaussian noise (10 dB SNR) 
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Figure 11. Spectrogram after applying range limiting t = 20dB 

Compressive Nonlinearities 
One group of compressive nonlinearities investigated in this work was derived from auditory 
models (Table 10). They were chosen for their general shape and lack of parameters tied to a 
specific auditory model. This ensures that these compressive nonlinearities can simply be 
incorporated in an automatic speech recognition system. Some of these curves are plotted in 
Figure 12. Although they all have the same general shape, they all have different ranges and vary 
in how rapidly they transition from low to high. 

Table 10. Compressive Nonlinearities 

CN Equation 
1 [7] 

𝑦 =
. 05

1 + 𝑒−0.521𝑥+0.613  

2 [9] 𝑦 = 𝑠𝑔𝑛(𝑥) ∗ 2.75 ∗ log 10(1 + 970|𝑥|0.69) 

3 [9] 
𝑦 =

1
1 − 𝑠

∗ [
1

1 + 𝑒
−(𝑥−7.6)

12 (1 + 𝑒
−(𝑥−5)

5

− 𝑠] 

 
𝑠 =  

1

1 + 𝑒
7.6
12 (1 + 𝑒

5
5)

 

4 [5] 𝑦 = 𝑠𝑔𝑛(𝑥) ∗ min (8000 ∗ |𝑥|, 0.06 ∗ |𝑥|0.25) 

5 [2] 
𝑦 =

1
2
∗ �4 ∗ |𝑥| ∗ 𝑠𝑔𝑛(𝑥) 

6 [1] 
𝑦 = �1 + 10 ∗ 𝑡𝑎𝑛−1(65 ∗ 𝑥) , 𝑥 > 0

𝑒10∗65∗𝑥 , 𝑥 ≤ 0
 

7 [10] 𝑦 = |𝑥|.25 ∗ 𝑠𝑔𝑛(𝑥) 

8 [10] 𝑦 = |𝑥|.75 ∗ 𝑠𝑔𝑛(𝑥) 

9 [5] 𝑦 = 𝑠𝑔𝑛(𝑥) ∗ min (18000 ∗ |𝑥|, 7.8 ∗ 10−3 ∗ |𝑥|0.16) 
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Figure 12. Plots of CN2, CN5 and CN6 

As was done for the Baseline Range Function, the compressive nonlinearities are used after log 
compression. They were implemented as: 

                                                                  (8) 

where  represents the input which is the spectral magnitudes of a frame,  represents the 
compressive nonlinearity, and  is the output. Again,  is the reference point (defined 
separately for each utterance, as described above), which effectively determines the center point 
of the nonlinearities.     

Sigmoid Function 
Another approach to implement compressive nonlinearities is to use a parametrically defined 
function, with a form and parameters that can make the function effectively be a smoothed 
version of the BRF or any of the auditory model nonlinearities, by varying parameters in the 
function.   In this work, a sigmoid function with three parameters was chosen, as given in 
equation 9. In this equation, 100 is an overall gain term (and thus not really important),   
determines the steepness of the curve (and effectively the dynamic range), and  determines the 
center point of the range, with respect to a reference point in the speech. Both  and  can be 
empirically adjusted, using ASR performance as a metric; however, presumably best values of  
and  will correspond to curves similar to some of the auditory model based curves.   Based on 
this thinking, three curves are shown in Figure 5, with value of  = (-.025, -.05, -.075) and  = 
0 for this plot.  Figures 14 displays spectrograms of 10dB SNR speech after spectral compression 
with the sigmoid function with  = -0.05, and computed using a  value of 20dB. Figure 15 
depicts its effects on a frame of speech. The values for the frame of speech operated on with the 
sigmoid function were shifted up and scaled so they could be easily compared to the control.  
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                                                      (9) 

 

Figure 13. Sigmoid Function 

 

Figure 14. Spectrogram after applying Sigmoid Function (a = -0.05) 

 

Figure 15. Sigmoid functions of different value of a applied on a frame. 

 

3.3.3. Experimental Evaluations 
Experiments were conducted to evaluate the various magnitude limiting functions using the 
TIMIT database. The SA sentences were removed from the database, resulting in 3696 sentences 
from 462 speakers for training and 1344 sentences from 168 speakers for test. All analysis 
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parameters were identical for various range limiting functions except for the use of the function 
themselves. 

Left-to-right 3-state HMMs with no skip were used and a total of 48 (eventually reduced to 39 
phones) context independent monophones, combining several similar phones as was done in 
several other works with TIMIT (for example [13]). The HMMs used 16 Gaussian mixtures to 
model the phonemes. HMMs were created from the training data using the Hidden Markov 
Model Toolkit (HTK) version 3.4.  

The features used are DCTC/DCSC terms from [15]. A total of 39 terms were used, comprised of 
13 DCTC terms, each expanded by 3 DCSC terms.  

The objective of the experiments was to compare the functions using the phoneme recognition 
accuracy as a figure of merit for comparison. All accuracies are given as percentages. Testing 
was done for two general conditions—mismatched (clean training data, varying SNR for test 
data) and matched (varying SNR for both training and test data.) The controls for both cases are 
ASR systems with no additional compressive nonlinearity after log compression (Table 11). 
Table 12 gives results for three of the nonlinearities, after tuning to give best results for 
mismatched conditions at 10 dB SNR.   Results are given, however, for both the mismatched 
conditions and the matched conditions. Similarly, Table 13 gives results for three of the 
nonlinearities, but after tuning to give best results for the matched conditions (at 10dB SNR).  
Again, results, however, are given for both the matched and mismatched cases. The left most 
column indicates whether the results are matched or not (N is mismatched and Y is matched).    

The control results for the mismatched case show that ASR with no additional limiting of 
spectral magnitudes is extremely sensitive to noise. Even with a small amount of additive noise 
(30 dB SNR) there is a significant drop in accuracy and at 20 dB SNR, the accuracy is only about 
half that obtained for clean test data. The additional compressive nonlinearities for spectral 
amplitudes greatly reduce this drop.  However, when the training and test conditions match, even 
the best compressive nonlinearities are not quite as effective as using the log only.  

 

Table 11. Phoneme Recognition Accuracies for Control Cases 

Function 
SNR (dB) 

Clean 30 20 10 0 

Mismatched Control 68.3 54.7 35.0 18.8 6.4 

Matched Control 68.3 67.0 63.4 55.8 42.8 
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3.3.4. Discussion 
Nonlinear compression and/or range limiting the log magnitude of the speech spectrum can 
greatly increase the noise robustness of an ASR system. That is, compression reduces ASR 
accuracy for systems trained on clean speech and tested on noisy speech. However, this 
compression step does not appear to be beneficial if the ASR system has matched conditions 
with respect to noise.  The benefits of nonlinear compression of the log spectrum come at a cost 
of decreased accuracy for matched training and test conditions. If the nonlinearity is tuned for the 
matched condition, there is still some benefit for the mismatched condition, but not as much as if 
the nonlinearity is tuned for the mismatched condition.  

Table 12. Phoneme accuracies with nonlinearities optimized for mismatched 
conditions 

Match Function t (dB) 
SNR(dB) 

Clean 30 20 10 0 

N BRF 20 63.5 62.0 53.7 36 16.3 

N CN2 10 57.9 56.1 50.6 32.4 21.3 

N Sigmoid (a=-0.75) 20 61.8 59.4 51.2 34.8 18.6 

Y BRF 20 63.5 62.4 60.4 54.7 42.8 

Y CN2 10 57.9 57.2 55.4 52.0 42.7 

Y Sigmoid (a=-0.75) 20 61.8 60.5 58.0 52.2 42.0 

 

 

Table 13. Phoneme accuracies with nonlinearities optimized for matched conditions 

Match Function t (dB) 
SNR(dB) 

Clean 30 20 10 0 

Y BRF 40 68.3 66.9 63.3 56.1 42.6 

Y CN2 10 57.9 57.2 55.4 52 42.7 

Y Sigmoid (a=-0.75) 30 63.5 63.2 61.1 55.9 43.6 

N BRF 40 68.3 60.5 40.3 21.4 8.5 

N CN2 10 57.9 56.1 50.6 32.4 21.3 

N Sigmoid (a=-0.75) 30 63.5 61.5 47.3 28.4 14.4 
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3.3.5. Conclusion 
Some methods for limiting the range of spectral magnitudes were demonstrated and shown to 
improve the noise robustness of ASR systems for mismatched training and test data. It is unclear 
which function is best, but simply limiting the magnitudes (with a floor) is beneficial. However, 
this should be more thoroughly tested with more realistic noise types and a larger variety of 
conditions.  

3.4. New Approach to the Hidden Markov Model Decoding Paradigm 

3.4.1. Introduction 
In most current automatic speech recognition systems, the stochastic modeling structure known 
as a HMM is the primary tool used to create acoustic models for basic speech units [24].   
Features extracted from speech signals are processed and used to train a unique HMM for each 
phone or word in the recognizer’s dictionary.  Once trained, these models are used with test data 
to determine the likelihoods for each possible phone or word.  There are many different types of 
speech features which can be used to train an HMM, some of which are the MFCCs and the 
DCTCs [15].  For most state-of-the-art speech recognition systems, continuous HMMs are used 
and thus Gaussian mixtures are employed to approximate the probability density functions of the 
feature emissions [24].  There are many different HMM types, but they all cluster the speech data 
into hidden “states” [25].  These states represent a part of the phone or word which is emitting 
the observed features.  Thus, the probability of a feature emission is conditioned on the possible 
states at each time step.  The typical spoken word/phone recognition method is to decode each 
HMM by means of the Forward Algorithm, which is based (primarily) on feature emission 
probabilities and (secondarily) on state transition probabilities.  The HMM with the highest 
probability after decoding corresponds to the most likely phone or word. 

One potential weakness of the standard HMM method is that HMMs are not trained 
discriminatively.  That is, each HMM is trained only using data from one class, and is trained to 
best “match”   that class,  not taking into account the possibility that the HMM may not be very 
distinct from HMMs of other classes.   

In contrast to HMMs, Neural Networks (NNs) are trained discriminatively [26-27].  The basic 
architecture of a NN includes an input layer with a number of input nodes, followed by one or 
more hidden layers and an output layer.  Design parameters include the number of hidden layers, 
the number of hidden nodes, the type of node nonlinearities, and details of the training process.   
The most common use of a NN in ASR systems is to use it a preprocessor to create a more 
discriminate set of features [28-29].  A NN can also be used to estimate posterior probabilities, 
which are commonly employed in hybrid NN/HMM systems [28-30].  Although the combination 
of an NN with a HMM is not a new development, this paper introduces a new approach to the 
decoding paradigm with regards to the NN outputs. 
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A NN can be used to classify data into specific words/phones and states.  In this paper, a method 
for combining HMMs with NNs is presented with a new type of HMM decoding.   Simulation 
experiments, as well as evaluations with isolated word recognition experiments, show accuracy 
improvements with this new method.  With refinement, this method may provide a boost in 
performance for the more general case of continuous speech recognition.   

3.4.2. Theory 
To provide context and notation, a very brief review of the discrete HMM is presented in the 
next subsection.  It is important to note the difference between discrete and continuous HMMs.  
Both are represented by a number of discrete time steps; however the emissions of a continuous 
HMM are characterized by continuous probability densities rather than discrete observations 
with discrete probabilities as in the former model [24].  For the isolated word recognition 
experiments reported in this paper, continuous HMMs are used to model each word in the 
recognizer’s vocabulary.   

 
Architecture of Discrete HMM 

Discrete HMM are described using three types of probabilities, which are organized into 
matrices.  The first is the transitional probability matrix, which describes the likelihood of 
transitioning from each state of the HMM to each other possible state.  In the Ergodic HMM 
structure; it is possible to transition from the current state to any one of ‘N’ states, including 
same state transitions, at any time step [24].  In the Bakis structure, which is most often used to 
model speech, backward state transitions are not allowed [24].  The transitional probabilities are 
modeled using the “State Transition Probability Matrix,” which is traditionally denoted as the 
‘A’ matrix [25].  Within each state, the discrete HMM emits one of ‘M’ observables, according 
to some probability distribution.  These probabilities depend on the state and are described using 
the “State Emission Probability Matrix” or the ‘B’ matrix.  The final set of probabilities used to 
describe an HMM are the “Initial State Probabilities” typically summarized and denoted by the 
matrix ‘Π.’   

In speech recognition, a sequence of features (the emission sequence) is extracted from the input 
speech data and decoded by a previously trained HMM.  The task here is to determine the 
likelihood of the sequence with respect to each HMM.  This is done using the Forward 
Algorithm.  Sometimes, it is also useful to look at the most likely state sequence given an 
observation sequence in which case the Viterbi Algorithm can be employed [24].   

It is important to mention that the typical method of training is the Baum-Welch algorithm.  
However, because this paper mostly deals with the decoding of HMM the details of training are 
not discussed.  For a more in depth tutorial on HMM training and decoding issues, the reader 
may see [24].  Although these algorithms work reasonably well, they seek to maximize the joint 
probability of a given emission sequence and likely state sequences using the probability of an 
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emission given a state [25].  It seems that a more direct approach would be to maximize the same 
probability, but instead using the probabilities of state conditioned on emissions, provided such 
probabilities can be estimated, since the emission sequence is observable. 

A different perspective on the discrete HMM 
If the posterior probabilities describing the likelihood of being in each possible state given an 
emission can be found, they would appear to be useful for decoding.  For the discrete HMM case 
they can be stored in matrix form as the “State Conditional Probability Matrix,” which we denote 
as the ‘C’ matrix.  A method for decoding an HMM given these probabilities can be derived 
beginning with the chain rule of probability. Two assumptions are required.  The first is the first 
order Markov assumption, which is that the transition probabilities depend only on the previous 
state and not the states before that [25].  The second is the conditional independency of 
observable parameters which is that the probability of an emission is dependent only upon the 
current state of the model and not the previous states or emissions.  Both of these assumptions 
are also made during normal HMM decoding and the only change here is that they are applied to 
a different set of probabilities.  With qT representing a state and vt representing a discrete 
emission with time sub indices, for a T time step model, the derivation begins by applying the 
chain rule to the joint probability of a state sequence and emission sequence: 

 

                         (10) 

 

By applying the aforementioned assumptions, the equation can be rewritten as:  

 

                                               (11) 

 

The chain rule is applied repetitively, using the assumptions, and the equation becomes the 
simplified version: 

 

                                        (12) 

 

In typical HMM decoding, it is assumed that the model begins in state 1, thus the marginal 
probability ‘P(v1)’ will affect all possible paths equally.  This means that it will not factor in the 
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decision of the most probable state at this or any subsequent time step and therefore can be 
removed from the equation.   Another method of interpreting this probability is outlined in the 
following section.  Assuming that the probability P(v1) is unnecessary, equation 12 becomes: 

 

                                                  (13)  
 

A key difference between decoding based on equation 6 and the standard decoding method is the 
lack of transition probability terms.  Since the transition matrix and the conditional matrix 
represent the probability of being in a certain state, conditioned on different variables, and 
different assumptions, they should not be combined.  However, in practice when the Bakis 
structure is assumed, there must be some way to disallow “backward” state transitions.  To 
accomplish this, a binary matrix of ones and zeros, where zeros represent a forbidden state 
transition and ones an allowable, can be employed to prevent the algorithm from choosing an 
impossible path.  This matrix has no effect on the probability calculations other than to remove 
impossible paths through the HMM from consideration.  This type of transitional matrix, dubbed 
“State Path Disabling Matrix,” is denoted as ‘D.’ 

The decoding algorithm using the C and D matrices was named the ViterbiC algorithm.  There 
are two variations of this algorithm which are analogous to the forward algorithm and the Viterbi 
algorithm (model likelihood and probable path respectively).  Since the simulations were done 
using the path identification algorithm, that is the version which is described below.  It can be 
divided into four steps; however, the final two steps (‘Termination’ and ‘Path Backtracking’) are 
the same as in the standard Viterbi Algorithm and are not included: 

 

                                                                                            (14) 

 

 

                                                                (15) 

 

In the case of the Ergodic structure, the D matrix becomes a matrix of all ones and thus can be 
removed from the equations.  However, when certain state transitions are forbidden the D matrix 
must remain.  One concern was how to define the P(v1) component in equation (12) and whether 
it was necessary.  Further investigation into this problem led to the creation of a second 
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algorithm which uses a combination of the Viterbi and ViterbiC algorithms and was dubbed the 
“Hybrid Algorithm.”   

 

The hybrid algorithm 
Given that the emission, transition, prior and conditional probabilities are known (or can be 
estimated), a method which utilizes all the information when it determines the most probable 
path would appear to be most promising.  The Hybrid Algorithm was developed in an attempt to 
use the P(v1) term in equation (12).  At major difference between the ViterbiC algorithm and the 
Hybrid algorithm is that at each time step, the probability of the observed symbol P(vt) is 
calculated and factored into the total likelihood, but is state dependent.  To calculate this 
probability; the definition of conditional probability and Bayes theorem are applied, which 
results in: 

 

             (16) 

The most probable path is then calculated using a four step method, however only the first two 
steps are shown below.  The final steps ‘Termination’ and ‘Path Backtracking’ are performed in 
the same manner as for the Viterbi Algorithm: 
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Although the hybrid algorithm requires more computations than the ViterbiC, it does utilize all 
the information that is known about the HMM.  It is worth noting that the transitional properties 
of the ‘D’ matrix from the ViterbiC algorithm are captured in the state transition matrix ‘A’ and 
thus the inclusion of the ‘D’ matrix is unnecessary. 

3.4.3. Monte Carlo Simulation 

A Monte Carlo simulation was designed to compare the performances of the Hybrid, ViterbiC 
and the Viterbi algorithm (along with several other variations of the first two).  The purpose was 
to determine whether these new decoding methods were effective compared to the standard 
Viterbi decoding using random emissions created by a specified HMM.  The simulations were 
designed using the MATLAB HMM toolbox and performed for the Ergodic discrete HMM 
structure.   

For each iteration, the “true” transition and emission matrices were randomly generated (with the 
emission probabilities sampling a Gaussian distribution).  Each model was composed of 5 states 
and 50 observables.  Training data of 108 time steps was generated and the transition/emission 
matrices were re-estimated using the Baum-Welch algorithm.  The conditional probabilities were 
estimated by summing the number of times an observable appeared with a given state divided by 
the number of times that observable appeared in total for the training data.  Once the matrices 
were estimated, one hundred Markov chains were generated using the true transition/emission 
matrices.  Each chain was decoded using every algorithm (with its appropriate estimated 
matrices) with the intent of finding the most accurate state transition path.  The algorithm with 
the most accurate path for each Markov Chain received a “point.” At the end of one round (one 
hundred decoded Markov chains), the algorithm with the highest number of points received a 
“win.”  The method was repeated for fifty iterations and the number of “wins” was recorded.    

The experiment was performed three times and the noteworthy results are shown in Table 14.  
As a side note, several other versions of these algorithms were also evaluated; however none of 
these other algorithms performed as well as those for which results are given.  Each algorithm 
was scored individually and thus the maximum value possible for each score was fifty. 
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Table 14.  Monte Carlo Simulation Results—Number of “wins” 

Viterbi ViterbiC Hybrid 

0 11 30 

2 11 28 

0 15 29 

 

In these simulations, the Hybrid algorithm clearly performed the best, with the ViterbiC scoring 
a respectable second place.  Both algorithms performed significantly better than the standard 
Viterbi Algorithm.  The results from the simulations showed that, for the conditions tested, the 
new decoding algorithms result in more Markov chains decoded accurately than are obtained 
with the standard method.    

3.4.4. Experiments with Speech Data 

Since the results of the Monte Carlo simulations were promising, an experiment designed to test 
this method with Isolated Word Recognition (IWR) using speech data was devised.  The pilot 
database was simply one speaker and the digits 0-9.  For every word, 65 DCTC/DCS features 
were computed [15].  To compare the performances of the new decoding algorithms with the 
standard HMM method a Bakis structured, continuous HMM was trained using the Murphy 
HMM open source toolkit [31].  Each word was assigned five states and constrained to begin in 
state one.  The PDF of the emission densities were approximated using nine Gaussian mixtures 
as suggested in [24].  Using the Forward Algorithm, the HMM was able to classify 100% of the 
training data correctly and 98% of the testing.   

The key difference between the speech data and the previously-described simulations was the 
method of estimating the posterior probabilities for the conditional matrix.  In this experiment, a 
neural network was configured to classify the data by word and state.  Since the inputs to the NN 
were the features, the outputs of the NN could be viewed as a classification of word and state, 
given the feature values (emissions).  These outputs approximate the conditional probabilities 
which were used in the simulations. 

With a NN used to estimate the posterior probabilities, four decoding algorithms were used to 
classify the testing data.  The first was a forward ViterbiC algorithm which simply summed the 
possible paths at each node.  The second was a most probable path seeking ViterbiC algorithm 
which found the most likely path and used that as a representative for each word.  The word 
classification was then performed by comparing each word’s representative path probability and 
the most likely path was then the chosen word.  The third algorithm was a Hybrid forward 
algorithm and the fourth was a path seeking Hybrid algorithm. 
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The neural network architecture 
A key requirement for the decoding method introduced in this paper is that the posterior 
probabilities for the ‘C’ matrix be well estimated.  For the given training data, it was found that a 
NN with five hidden layers and fifty five hidden nodes per layer resulted in the most accurate 
classification of the training and testing data (99.6% and 78% respectively).  The nodal output 
function at each layer was the ‘tansig’ function.  The inputs to the NN were 65 DCTC/DCS 
features and the output was configured to be a fifty row matrix representing the five states of 
each of the ten words.  To train the NN, state boundaries were used to create a target matrix, 
which were defined as the most likely state transition paths for all the training data (found using 
the Viterbi algorithm and “normally” decoded HMMs).  

 

3.4.5. Results 
With regards to the pilot database, in order for the new decoding method to be considered 
successful, at least one algorithm should perform better than the standard HMM decoding on the 
testing data (recall this performance was 98%).  The results for this experiment are shown below 
in Table 15. 

Table 15.  Pilot Database IWR Results 

 Forward ViterbiC ViterbiC Path Forward Hybrid Hybrid Path 

Training Data: 100% 100% 100% 100% 

Testing Data: 99% 100% 98% 99% 

 

The results for the pilot database were very positive; showing that with reasonably accurate 
neural network performance, each of the decoding methods matched or beat the standard HMM 
forward algorithm method.  In particular, the ViterbiC path seeking algorithm was able to 
classify all of the data correctly.  

The next step was to make the task more difficult.  It was decided to keep the number of words 
in the database the same, but to increase the number of speakers to thirty speakers per word.  The 
data for this was taken from the OGI Isolet Database [32].  The dictionary consisted of the first 
ten letters of the alphabet (A-J) with thirty training and testing files per word.  One file from each 
of the thirty speakers in the database was used in training and another in testing.  Once again, 65 
DCTC/DCS features were computed and an HMM was trained which yielded a performance of 
83.3% on the training data and 72% on the testing data, forming a baseline.  The architecture of 
the NN was changed to just one hidden layer with 50 hidden nodes.  In addition to the new 
architecture, the outputs of the NN were transformed using a ‘softmax’ transfer function as 
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recommended in [28].  The NN was trained and resulted in a performance of 45.1% on the 
training data and 40% on the testing data.  The outputs were then used in the same four decoding 
algorithms and the results are shown in Table 16. 

Table 16.  Expanded Database IWR Results 

 Forward ViterbiC ViterbiC Path Forward Hybrid Hybrid Path 

Training Data: 86.7% 81% 87.3% 81% 

Testing Data: 76.3% 76.7% 71.3% 71.3% 

 

The results for the expanded database are promising.  The Hybrid Forward Algorithm beat the 
standard method of HMM decoding by 4.7% on the testing data.  The ViterbiC Forward 
Algorithm also beat the standard HMM decoding by 4.3%.  Both of these algorithms 
outperformed the standard method, despite the poor performance of the NN to classify both the 
training and the testing data.  

3.4.6. Conclusions 
The results from the expanded database IWR indicate a potential performance gain by decoding 
HMMs in this way.  If the accuracy of the NN is improved, it is expected that the results for the 
IWR will improve as well.  Ways to refine the NN are being investigated (such as using “don’t 
cares’ for NN targets to account for uncertainties in state boundaries) and will be implemented 
with the goal of increasing the recognition rates of these algorithms.  After these refinements are 
made, the new decoding methods will be applied to continuous speech and to acoustic modeling 
at the phone level. 

4. RESULTS AND DISCUSSIONS 
Each subsection of the main body of the report has results and discussion.    In terms of the 
database development,   300 video clips in each of English, Mandarin, and Russian have been 
collected and annotated at various resolution levels.    The forced alignment procedure has been 
shown to give accurate results for phonetic level labeling, using comparisons with subsets of data 
that were manually labeled at the phonetic level.   All of the algorithmic methods investigated 
show promise for improving ASR accuracy and/or robustness. 

5. CONCLUSIONS 
Each subsection of the main body of the report has its own conclusion.     
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Abstract 
Over the past few decades, research in automatic speech 
recognition and automatic speaker recognition has been 
greatly facilitated by the sharing of large annotated speech 
databases such as those distributed by the Linguistic Data 
Consortium (LDC). Open sources, particularly web sites such 
as YouTube, contain vast and varied speech recordings in a 
variety of languages. However, these “open sources” for 
speech data are largely untapped as resources for speech 
research. In this paper, a project to collect, organize, and 
annotate a large group of this speech data is described. The 
data consists of approximately 30 hours of speech in each of 
three languages, English, Mandarin Chinese, and Russian. 
Each of  900 recordings has been orthographically transcribed 
at the sentence/phrase level by human listeners. Some of the 
issues related to working with this low quality, varied, noisy 
speech data in three languages are described.  
 
Index Terms: open source speech database; forced alignment; 
transcribe; speech recognition 

1. Introduction 
The need for large well-labeled databases for spoken language 
processing is well known. “There is no data like more data.” is 
a comment made by MIT speech researcher Victor Zue at a 
speech recognition workshop in the 1980s. Despite the large 
number and vast sizes of speech databases developed since the 
1980s, the comment by Victor Zue still rings true [1].  

One of the first large databases developed for speech 
research was the TIMIT acoustic-phonetic continuous speech 
corpus. With joint efforts from Texas Instruments, SR 
International and MIT, TIMIT was published by the LDC in 
1993. This database contains recordings of 630 speakers, each 
reading 10 sentences, in “studio” conditions. The data was 
then manually labeled with starting and ending points for each 
phone in each sentence. Even today, TIMIT is one of the most 
widely used speech corpora for phonetic level speech research. 

However, the 5,040 sentences in TIMIT (the SA sentences 
are often removed), with a typical sentence duration of 5 
seconds, only provide about 7 hours of total speech, which is 
insufficient for many recognition tasks. Since TIMIT, many 
other speech databases have been collected, transcribed, 
catalogued, and distributed by the LDC. For example, the 
English Broadcast News Transcripts (HUB4) [2] database was 
launched by the LDC in 1996 and now contains approximately 
100 hours of broadcast news and has all speech manually 
transcribed at the phrasal level, using the Rich Transcription 
(RT-04S) Evaluation Data guidelines developed by the 
National Institute of Standard and Technology (NIST) in 2004 
[3]. In recent years, LDC announced their plan for developing 
a new speech database. The DARPA GALE program [4] is a 
very large speech database project with the goal of collecting 
speech in multiple languages from global broadcast news. In 

2009 the LDC [5] reported that 4,000 hours of Arabic 
broadcast has been collected and 2,400 hours were selected for 
transcribing. 

Currently, public video sharing websites such as YouTube 
are booming because sharing homemade videos has become 
very easy and more popular. About 65,000 videos have been 
uploaded daily since 2006, and this number continuously 
increases [6]. This seemingly “infinite” number of videos 
found on the web can provide a vast collection of speech data 
for speech research, and the topics and speaking styles 
corresponding to these collections are much more varied than 
those found in broadcast news. To tap into this large resource, 
an “open source multi-language speech database” project was 
developed and is described in this paper. 

2. Structure of the database 

2.1. The goals 
The database was developed with collections from three 
different languages: English, Mandarin Chinese, and Russian. 
The intent was to collect about 30 hours of speech in each 
language, consisting of 300 videos per language, with videos 
averaging about 7 minutes in duration. The intent was also to 
collect three videos from each of 100 speakers per language, 
with the three recordings from each speaker originally spoken 
on different days and under different recording conditions. 
Another goal was to have approximately an equal number of 
male and female speakers. As is discussed later, most but not 
all, of these guidelines were met. The only firm guidelines 
were that the audio portion of each video be of sufficient 
quality to be “reasonably” intelligible by a “typical” native 
speaker of the language, that there not be constant background 
noise (i.e., not have background music throughout the entire 
passage), and that no single passage be shorter than 1.5 
minutes or longer than 16 minutes in duration. Since many 
videos were in fact longer than 16 minutes, a “stand-alone” 
primarily speech portion of the video was extracted (using 
Xilisoft Video converter ) for the database. 

2.2. Video download and post-preparation 
The first step in this development was to identify, download, 
and store audio/video clips from public video sharing 
websites. All videos were downloaded in the highest quality 
format that the sharing sites supported and then stored in a 
standard format. Table 1 shows the typical sites used for each 
language, the download tools used, and the original file 
formats. 

For those videos in a format other than MP4, further 
processing was done, so that all videos were saved as MP4 
files. The step was done by Xilisoft video converter, too. A 
copy of each video in its original format was also kept. Then 
all files were designated with a specific name based on the 
language, the gender of the speaker, the initials of the speaker, 
and the category of recording. The category of recording  
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comprised “formal presentation” and “casual conversation” 
which refer to the conditions under which the recording was 
made. Table 2 shows some criteria for making a decision on 
which category a video clip belonged to, although the 
decisions were somewhat subjective.  

 
 
 

Language Typical Webs Download Tools Original Format 
English Youtube.com www.savevid.com MP4 
Chinese Youku.com www.flvcd.com FLV  
Russian Rutube.ru www.savevid.com MP4 

 
 
 
 

 Formal Presentation Casual Conversation 
Speech type Speech prepared in 

advance 
Casual talk, semi-
spontaneous 

   
Noise/Interruptions in 
recording environment  
 

Quiet and not much 
noise 

More noise and even 
distortion effects 

Slang/Disfluencies 
 

Very little Usually a lot 

Background music None Maybe a little 
 

A standard file name consists of 5 parts, chosen to make it 
easier to sort and organize the videos. Figure 1 illustrates a file 
name given to a Chinese language video sample, which is 
categorized as a “casual conversation,” spoken by a male 
speaker who has initials “WX.” The detailed description and 
possible options for each part as well as their abbreviations in 
file name are given in Table 3. 
 
 
 
 
 

 

 
 
 
 
 
 
 

 Description In filename 
Language English E 
 Mandarin Chinese C 
 Russian R 
Recording Category Formal Presentation FP 
 Casual Conversation CC 
Gender English/Chinese/Russian E/C/R 
 Male/Female M/F 
Speaker Name Initials Initials of first / last 

name 
 

 Order of appearance in 
database 

01, 02, 03… 

Video Order  Indicates which video of 
each speaker 

01, 02, 03… 

 

3. Transcribing the database 
An important aspect of this database is that all speech files 
were manually transcribed by human listeners. The reason for 
this was quite simple: given the relatively low quality, the 
wide variations in recording conditions, the presence of 

background noises, and the multiple languages, it seemed very 
doubtful that any automatic speech recognizer would be able 
to establish reliable “ground truth.” By carefully listening to 
each sentence and reviewing by different listeners, the human 
transcriptions would provide the best orthographic 
transcriptions of this “ground truth.” Also, the accurately 
transcribed sentences provides the best starting point for an 
automatic forced alignment process to create time labels for 
words and phonemes, thus better supporting phonetic 
recognition research. Therefore, properly selecting the tool and 
building the specifications for the transcribing work was 
necessary.  

3.1. Transcribing tool  
Transcriber, developed as a tool for assisting in creating the 
speech corpora in [7], was designed for manual segmentation 
and transcription of long duration broadcast news recordings, 
including annotation of speech turns, topics and acoustic 
conditions. With its embedded user-friendly graphical user 
interface, Transcriber allows listeners to perform tedious and 
complex operations such as modifying the time boundary of 
each speech segment, adding noise notations or indicate 
switching between speakers in a convenient way. Also, the 
output of Transcriber accurately records the time durations 
between segments, which provide support for the following 
automatic forced alignment process for detailed word and 
phonetic transcription. All these features made Transcriber 
extremely well-suited for the transcription task.  

Other speech transcription tools considered are listed in 
Table 4. Although Transcriber does not have all the functions 
these other tools have, it does have the required features and 
there is no licensing fee; therefore, Transcriber 1.5.1 was used 
for this project.  

 
 

Tool Main Features 
XTrans Multi-speakers tasks (Developed by LDC) 
Transana Link the transcription place to video 
SoundIndex Directly transcribe in XML file 
WaveSurfer Waveform display/analysis 

3.2. Audio preparation 
Transcriber only reads WAV files as its audio input. Therefore 
audio-only WAV files were extracted from the video MP4 
files using a software tool called AOA audio extractor. Factors 
contributing to overall speech quality and intelligibility 
include: the background noise and recording conditions when 
videos were made, the loss by website compression tools for 
uploading files from users, another round of compression by 
the video download tool, and the final audio extraction. In 
order that the only significant degradation be due to the first 
two factors, high quality settings were used for the last two 
steps. Tables 5 and 6 list the quality setting for downloads and 
the quality setting for audio extraction, respectively.  
 
 
 

Format MPEG-4  
Video Encoding MPEG-4 AVC1 

(H.264) 
 Resolution Original as on YouTube 
Audio Encoding AAC 
 Channels 2 
 Sampling rate  44100Hz 

C_CC_CMWX01_01.mp4 

Language  Category Language 
& gender 

Speaker 
name 
initials + 
order of 
appearance 
 

Video 
order for 
every 
speaker  

Table 1. Typical video sharing websites and tools for 
downloading. 

Table 4. Other available transcription tools 

Table 2. Some criteria for separating “Formal 
Presentation” and “Casual Conversation” 

Figure 1. Illustration of naming conventions for video 
files 

Table 3. Filename notation and descriptions 

Table 5. Video quality specifications 
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3.3. Metadata and annotation 
The annotation and metadata for transcribing this database was 
based on the format used for the LDC project GALE [8]. 
Unlike studio quality recorded read speech, there is a large 
amount of variability in transcribing web-collected speech. 
Main factors which possibly diminish the transcribing quality 
included the background noise/music, slang, and inserted 
words in different languages, other than the primary language 
of the speaker. These additional factors were annotated to the 
extent feasible. 

When selecting videos, background music was considered 
permissible if it was not “too” high level and did not overlap 
with speech too often. Music as well as other types of noise 
were labeled in the transcription using the notation in Table 7. 
Noise labels differed depending on when the noise occurred 
relative to the speech. “Burst” noise/music occurred when 
there was no speech. “Overlap” noise/music occurs during 
speech. The most commonly used notation for noise was the 
“Others” notation, since, from listening, it was often quite 
difficult to accurately determine the source or type of the 
noise. Many speech signals also contained static noise which 
was present throughout the signal. This was labeled in a 
master file that describes each file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Additionally, special events like silence segments and 
language transitions are potentially as detrimental as noise or 
other interference. While transcribing, the listeners labeled a 
“pause” (Table 8) as a speech break (silence) between 0.5 and 
1 second. Silences longer than 1 second were labeled 
differently. For some run-on sentences which commonly occur 
in casual conversation, great care was taken with the time 
labels because speech often does not end abruptly, but rather 
gradually fades.  

 

 

 

 

 

 

One common issue in spoken Mandarin Chinese is that 
people mix English words in Chinese sentences. (In constrast, 
Russian speakers often use English word variants.) Thus, 
labeling of languages transitions became necessary. Table 8 
also shows the symbol for a language transition. 

The issues related to slang, truncated words, incomplete 
pronunciation and other informality in spoken language are 
clearly addressed by the GALE standard. These issues include: 
contractions or ambiguous words should be transcribed as 
closely as possible to how they actually sound; truncated 
words are to be ended with a dash “-”; the notation “(())” is to 
be used to represent an unintelligible words; and tilde “~” is to 
be used when each letter of an acronym is spoken individually 

4. Practical issues in transcribing 

4.1. Common issues  
The most difficult issue in the transcribing process of all three 
languages stemmed from the great range of qualities in the 
original video recordings. For example, some videos 
downloaded from YouTube had High-Definition quality, 
which has very high resolution for both audio and video. 
However, most videos were recorded with much lower quality 
for both video and audio. Some Chinese videos were recorded 
with defective equipment, resulting in distortion of the speech 
signal thus causing difficulties even for a human listener. 

4.2. English 
In English, speakers often fill pauses with fillers such as “um” 
or “hm,” briefly between words, or extensively to gain time 
for a next thought. Differences in pronunciation due to culture 
and accent promoted its own share of concerns; various 
accepted norms of speech (i.e. tomato), and the use of foreign 
language for brand names, proper nouns, descriptions, and 
verbs are used in conjunction with English speech. 
Furthermore, background noise or feedback from the medium 
used to record video was an additional factor. 

Simplifying words and expressions through slang was very 
common; often times words that end in “-ing” are 
mispronounced and are transcribed as “-in.” For example 
“sleepin” for “sleeping.” And the use of “dope” and “hot” to 
express emotions or quality. The widespread use of internet 
acronyms such as “brb” and “lol” occurred occasionally in 
causal speech, implying the assimilation of today’s digital 
jargon in verbal communication. 

4.3. Mandarin Chinese 
Other than embedded English words, the transcription of 
Mandarin Chinese was done using standard Chinese characters 
for transcriptions. Unlike English, there are no slang or 
informal language (such as truncated words) related 
ambiguities in the transcriptions.  

However, the Chinese language has a large number of 
dialects with a resulting big influence on how people 
pronounce Mandarin [9]. Accents among Mandarin speakers 
differ significantly. For example, the speakers from the 
northeast region of China confuse “s-” [s] and “sh-” [ʂʻ], and 
also there was no clear boundary between the nasal consonants 
“-ng” [ŋ] and “-n” [n] for south China speakers. In the 
development of the database described in this paper, the 
listeners always transcribed according to actual pronunciation, 
even if matching with its neighbor characters did not make 
linguistic sense. 

Format WAV  
Audio Encoding PCM 
 Channels 2 
 Sampling rate 22050 Hz 
 Bits/sample 16 

 
Noise 
Notation 

Description/Example Symbol/burst Symbol/over
lap 

Music  [mu] [mu-][ -mu] 
Applause  [a] [a-][-a] 
Laughing  [l] [l-][-l] 
Human coughing, inhaling,  [h] [h-] [-h] 
Nature wind, ocean... [n] [n-] [-n] 
Vehicle honks, car engine… [v] [v-][-v] 
Animal barking, birds… [an] [an-] [-an]  
Office telephone… [o] [o-] [-o] 
Machinery fan, construction... [m] [m-] [-m] 
Others  [ot] [ot-] [-ot] 

 

 
Event Description/Example Symbol 

Pause Break btw/ .5 to 1 sec [p] 

Language 
Transition 

Word(s) spoken in different 
language  

Exp. 
[lang=English-]  
[-lang=English] 

 

Table 6. Audio quality specifications 

Table 7. Notations for noise and how it is 
annotated 

Table 8. Notations for important events and 
how it is annotated 
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4.1. Russian 
In daily life, some words of the Russian language have a 
different pronunciation than defined in the dictionary. For 
example, “тыща” ['tɨɕɕa] is often pronounced “тысяча” 
['tɨsjtɕa], “щас” [ɕɕas] as “сейчас” [ sej'tɕas], and “cёдня” 
['sjdnja] as “сегодня” [se'gondnja]. Similar to Chinese and 
English transcriptions, all these ambiguous words were 
transcribed as pronounced. 

Russians use English words directly sometimes. If the 
English word is clear with the correct pronunciation, the words 
are enclosed with English language tags. However, in some 
cases English words are misused (“Americanisms”): in such 
cases words are transcribed as they sound in Russian. Also, the 
Russian language includes some words with a Ukrainian 
pronunciation. Such words were marked with double 
parentheses. 

5. Summary table of data collected 
The goal of 300 videos for each language had been achieved, 
and roughly 30 total hours of speech for each database has 
been collected and transcribed, as summarized in Table 9.  In 
the past 9 months, which included about 3 weeks for data 
collection and approximately 8 months for transcribing, 
overall, 11 students were involved in the database 
development. 
 
 
 

Language Speech 
Type 

Gender Total Num. 
of 
speakers 

Total Num. of 
Recordings 

Total 
Time  

English Formal Male 88 124 14 hrs 
 Formal Female 21 26 2.6hrs 
 Casual Male 36 108 10.5 hrs 
  Casual Female 14 42 4 hrs 
  Total 159 300 31.1hrs 
Chinese Formal Male 59 136 11.1hrs 
 Formal Female 24 56 4.4 hrs 
 Casual Male 44 82 6.4 hrs 
  Casual Female 10 26 2 hrs 
  Total 137 300 23.9hrs 
Russian Formal Male 79 167 20.5hrs 
 Formal Female 26 42 4hrs 
 Casual Male 36 71 8.1hrs 
  Casual Female 17 20 2.2hrs 
  Total 158 300 34.8hrs 

 

6. Use of Forced Alignment for Speech 
Labeling 

The goal of this database collection project is to make the 
database useful for speech processing research. In order to 
fulfill that goal, the database must provide accurate word-level 
and phone-level transcriptions, both with time marks. 
Although the speech data could be transcribed manually by a 
well-trained phonetician, the manual method is a laborious and 
time-consuming task, which makes it impractical for a large 
amount of data. An efficient way of achieving this is to apply 
automatically derived forced alignment for this more detailed 
labeling and then use humans to finalize the labeling. 
 

By using an Automatic Speech Recognizer (ASR) “tuned” 
for a single passage or group of passages, that is, given 
phonetic models and word models in terms of phonetic 
lattices, the audio can be accurately time aligned with word 
transcriptions. The recognizer can be configured to give a best 
time-aligned match between the audio and transcription, using 
all the probabilistic constraints imposed by the phonetic and 

word models. Furthermore, this recognizer can be made much 
more accurate by configuring it for each recording. For 
example, based on the human transcription of a recording, the 
vocabulary can be restricted to only the words in that 
recording, and the language model derived only from the word 
and word-pair frequencies in that passage. We are currently 
experimenting with several techniques for forced alignment on 
a subset of the English database and the outcome looks very 
promising. These techniques are being tuned for this particular 
task and database. 

7. Conclusion 
In this research project, a large database of English, Mandarin, 
and Russian was collected, formatted, organized, annotated, 
and given time-aligned orthographic transcriptions at the 
sentence/phrase level. Due to the variability, noisiness, and 
low speech quality, human listeners were employed for this 
transcription and annotation. Automatic speech recognition 
techniques will be developed and used to aid in the annotation 
process at a more fine-grained level. This database will be 
useful for both automatic speech recognition research and 
automatic speaker recognition research. The database is 
derived from open source public web sites; thus it is a 
sampling of an “infinite,” widely accessed repository of 
speech. 
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A2. M. Karnjanadecha and S. A. Zahorian, “An Automatic Method for Determining 
Phonetic Boundaries for Continuous Speech Utterances in an Open Source Multi-
Language Audio/Video Database,” J. Acoust. Soc. America, Vol 130.4.2, p2524, 2011, 
paper presented at the 162nd Meeting of the Acoustical Society of America, San Diego. 

 

Nine hundred video clips (approximately 30 hours in each of English, Mandarin and Russian) 
have been collected from Internet sources such as youtube.com and rutube.ru. This multi-
language audio/video database has been orthographically transcribed by human listeners with 
time markers at the sentence level. However, the aim is to provide this database to the public 
with high accuracy time markers at the phonetic level, which will greatly increase the value of 
the database.  This paper describes an approach to achieving high accuracy automatic phonetic 
labeling based on a Hidden Markov Model speech recognizer. This automatic method was 
developed due to the great length of time and tediousness of performing this task using only 
human listeners. One major challenge for the automatic method was that the audio data consists 
of spontaneous speech with unconstrained topics and the speech was spoken under various 
acoustic conditions.  The approach begins with a well-trained acoustic model for each language. 
The acoustic model is then adapted to each passage and finally the phonetic labeling of the 
passage is determined.   Comparison of the automatically determined phone time markers with 
those obtained by human listeners, for a subset of the speech materials, shows the accuracy of the 
automatic method. 
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A3 S. A. Zahorian and B. Wong, “Spectral Amplitude Nonlinearities for Improved 
Noise Robustness of Spectral Features for use in Automatic Speech 
Recognition,” J. Acoust. Soc. America, Vol 130.4.2, p2524, 2011, paper presented at the 162nd 
Meeting of the Acoustical Society of America, San Diego. 

Auditory models for outer periphery processing include a sigmoid shaped nonlinearity that is 
even more compressed than standard logarithmic scaling at very low and very high amplitudes.  
In some studies done at Carnegie Mellon University, it has been shown that this compressive 
nonlinearity is the most important aspect of the Seneff auditory model in terms of improving 
accuracy of automatic speech recognition in the presence of noise. However, in this previous 
work, the nonlinearity was trained for each frequency band of the Mel frequency cepstrum 
coefficients thus making it impractical to incorporate in automatic speech recognition systems. In 
the current study, a compressive nonlinearity is parametrically represented and constructed 
without training, to allow various degrees of steepness and “rounding” of corners for low and 
high amplitudes. Using this nonlinearity, experimental results for various noise conditions, and 
with mismatches in noise between training and test data, were obtained for phone recognition 
using the TIMIT and NTIMIT databases. The implications of the results are that a fixed 
compressive nonlinearity can be used to improve automatic speech recognition robustness with 
respect to mismatches between training and test data.  

 

Words in abstract: 185 

 

Technical area: Speech Processing and Communication Systems 

 

(PACS)  Subject classification numbers(s): 43.712Ar, 43.72Ne 

 

No preference for lecture versus poster 

 

 

Abstract of paper presented at the fall 2011 meeting of the Acoustical Society of America 

 



Approved for Public Release; Distribution Unlimited. 
 45 

 

A4. S. A. Zahorian , J. Wu, and M. Karnjanadecha, “Non-Symmetric Time Resolution for 
Spectral Feature Trajectories,”   J. Acoust. Soc. America, Vol 130.4.2, p2444, 2011, paper 
presented at the 162nd Meeting of the Acoustical Society of America, San Diego. 

In a study presented at the fall 2010 meeting of the Acoustical Society of America (Zahorian et 
al., “Time/frequency resolution of acoustic features for automatic speech recognition”),  we 
demonstrated that spectral/temporal evolution features  which emphasize temporal aspects of 
acoustic features, with relatively low spectral resolution, are effective for phonetic recognition in 
continuous speech.   These features are computed using Discrete Cosine Transform Coefficients 
(DCTCs) for spectral information from 8 ms frames and Discrete Cosine Series Coefficients 
(DCSCs) for their temporal evolution, over overlapping intervals (blocks) longer than 200 ms.   
These features are presented as an alternative to mel-frequency cepstral coefficients (MFCC),  
and their delta terms,  for automatic speech recognition (ASR).  In the present work, it is shown 
that these features are even more effective for ASR, using a non-symmetric time window which 
is tilted toward the beginning of each block when computing DCSCs.  This non-symmetry can be 
implemented by combining two Gaussian windows with different standard deviations. This work 
also supports the hypothesis that the left context is somewhat more informative to phonetic 
identity than is the right context.   Experimental results for automatic phone recognition are 
given for various conditions using the TIMIT and NTIMIT databases.   
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APPENDIX B—DETAILED EXPLANATIONS OF RESEARCH ACTIVITIES 

B.1 Detailed description of database 
 

SUMMARY OF OPEN SOURCE MULTI-LANGUAGE AUDIO DATABASE 

Stephen A. Zahorian  and Montri Karnjanadecha 
June 21, 2012 

 
1. INTRODUCTION 

To help support Spoken Language Processing Applications, a large database of web-hosted 
speech data was collected and annotated.    More details can be found in [A-1].    Summarizing 
briefly,   this data consists of approximately 30 hours of single speaker speech in each of three 
languages (English, Mandarin,   and Russian).     300 recordings, averaging about 5 minutes in 
length, were collected for each language.     This document summarizes some of the details not 
given in [A-1],   such as directory structures and file types used for the database.  

 

2. INITIAL FILE TYPES 

1. Video—These files were downloaded from web sources, as YouTube , Youku, and 
RuTube,  and immediately converted to high  resolution MP4 format,  and saved in  this 
format. 

2. Audio -- These were saved originally as 22.05k samples per second, stereo, 16 bits per 
sample,  and saved as wav files (two’s complement integers—no  special coding).    As 
described below, these files were also later converted to 16k mono wav files.        

3. Transcriber files, orthographic  transcriptions  at the sentence  or phrase level.    All the 
words and noises in each sentence were transcribed by human listeners with the 
beginning and end of each sentence time marked.   These files are saved as transcriber 
files (.trs), but are actually xml format.   

3. FILES GENERATED AFTER PERFORMING FORCED ALIGNMENT 

1) Waveform files of each passage (in 16k mono) with its corresponding time-marked 
phonetic-level, word-level and sentence-level transcriptions (HTK format).   The 16k 
sample rate mono signals were created by averaging the L and R stereo channels and 
interpolating.    Native English and Mandarin speakers looked at (with Cool Edit Pro 
software) and listened to left and right channels and to determine if there are some of 
these recordings, or sections of these recordings, where the simple averaging was not a 
good technique.   It appears that for the vast majority of cases, the averaging was a good 
method, as both initial channels were the same or nearly the same.    The Mandarin 
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listeners did note that invariably the R channel had a little more amplitude than the L 
channel.  A spread sheet was created, summarizing   possible issues with differences 
between L and R channels for each recording.   Since the stereo versions have been 
saved, it would be possible to recreate mono versions in the future, if needed for any 
reason.   In general the quality difference between 16k and 22k sampling rates is 
negligible, given the overall low quality and bandwidth of the original recordings. 

2) Short waveform files (in 16k mono) segmented from each passages with their 
corresponding time-marked phonetic-level, word-level and sentence/phrase-level 
transcriptions (HTK format). 

3) For each passage, 3 short segments were chosen for manual labeling.   Thus, these 3 files 
have manually determined phonetic-level transcriptions (HTK format).   Additionally, 
these three files have the automatic phone labels.  

 

3. NOTES REGARDING LABELING/ TRANSCRIPTION FILES 

3.1. Sentence level: 

As mentioned above, sentence level transcriptions were obtained using human listeners and 
Transcriber software.    These were originally transcribed at Binghamton University by students, 
with some corrections done by a second student for each passage,   and checked again at AFRL.   
Another round of correcting/ editing occurred in the process of performing automatic forced 
alignment process.     Issues such as correcting misspellings and typos,   and creation of a custom 
word dictionary, were addressed, in order that the forced alignment could run without errors.  
During May and June of 2012, the forced alignment program was again run to correct any 
“glitches” in the trs files. 

3.2. Word level:    

Word level timing labels were created by the automatic forced alignment process (derived from 
the phone level transcription).   

3.3. Phone level:   

There are 2 sets of phone level labels: manual labels (obtained by manually labeling for a small 
portion of each video clip) and automatic labels (obtained by forced alignment software). Both 
types of labels are stored in different directories.  Basically the manual labeling process starts the 
same way as for automatic labeling. Once we obtain automatic labels for each passage, we 
randomly selected 3 short segments for manual labeling. The automatic labels obtained were 
used as initial labeling. This greatly speeded up the phone boundary adjustment.  An additional 
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step to complete the automatic labeling was to “merge” all phonetic level transcription files of 
short segment chunks to make one complete phone level transcription for each passage. 

3.4. Directory structure: 

For each language (English, Mandarin and Russian), 300 video clips were recorded. Each set of 
these clips are stored in a separate folder according to its language. Thus there are 3 main 
folders: \English for English clips, \Mandarin for Mandarin clips and \Russian for Russian clips.   
Each of these 3 main folders has a spread sheet, *.xls, which gives a brief summary of all the 
video clips for that language.    There is also a second spread sheet with brief notes about the 
comparison of  L  and R  channels for each recording. 

Under \English folder, there are 300 subfolders (one for each clip) plus and additional subfolder 
called “\dict.”  The \dict folder contains 2 pronunciation dictionaries: 

1. “cmudict07a_39.txt” is the standard CMU dictionary (CMU dict0.07a) which 
contains approximately 130k words. 

2. “extra_wrd_dict_39.txt” is the additional dictionary which contains all extra words 
found in the database. 

For each of the 300 “clip” folders, there are the following files and subfolders: 

 

File or 
Subfolder 

Description 

C_name.mp4 Video clip, about 5 minutes long, in MPEG-4 format. 

E_name_22k.wav The audio file (22.05KHz sample rate, stereo) extracted from the video clip. 

E_name.wav The 16K mono version of the E_name_22k.wav. This file is used for forced 
alignment. 

C_name.trs Orthographic transcription of the audio data in Transcriber’s XML file 
format. 

\man_lab Contains the 3 manual label files and 3 short waveform files (extracted from 
E_name.wav).  Each wave files is approximately 5 seconds long.  

\auto_lab Contains all files generated by forced alignment. 

\auto_lab\wav Contains all short audio chunks segmented from the 16k version of the audio 
passage (E_name.wav). The segmentation boundaries are obtained from the 
sentence/phrases boundaries found in the transcription file. These short 
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chunks were used, together with the word level label file in MLF format 
described in the HTK manual  [A-2], in the actual automatic labeling 
process.      

Note that all intelligible speech and all noise segments extracted from the 
entire segment are included.   The naming convention of the segmented files 
is described in the document “Phone Alignment Procedures.” 

\auto_lab\lab Contains 6 automatically determined labels for the waveform E_name.wav. 

• E_name_phn.lab        phone level label file (entire passage) 

• E_name_phn.mlf       phone level label file (every short segment) 

• E_name_sen.lab        sentence level label file (entire passage) 

• E_name_sen.mlf       sentence level label file (every short segment) 

• E_name_wrd.lab       word level label file (entire passage) 

• E_name_wrd.mlf       word level label file (every short segment) 

 

The following table shows the current status of the English database development. 
 

Activity 
Current status 

150 Casual 150 Formal 

Transcription file format verification 150 150 

Misspelling words correction 150 150 

Adding new words into dictionary 150 150 

Manual labeling at the phonetic level 150 150 

Automatic labeling at the phonetic and word levels 150 150 

 

4. MANDARIN 

The Mandarin database file formats, types of labeling, directory structure, etc.,   are essentially 
the same as for English, with these important differences: 

1. The Transcriber manual transcriptions were created and saved using Mandarin character 
notation.   These transcriptions were then automatically converted to PINYIN, and 
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subsequently manually corrected by human listeners.   Thus the sentence level 
transcriptions are both in Mandarin character format and PINYIN (separate files).   In 
PINYIN the tones are annotated as 0, 1, 2, 3, 4 for Neutral, High, Rising, Dipping, and 
Falling respectively.    All automatic forced alignment was done at the phone level.    The 
same general procedure for forced alignment was used as for English.   Again, three short 
sentences from each passage were manually transcribed at the “syllable” level,   as a 
ground truth for testing automatic methods.    Note that all syllable level transcription 
files were saved as PINYIN only. 

2. The dictionaries for Mandarin used in this work are different from those for English. 
Mandarin is a syllable-based language which has a limited number of syllables. The main 
dictionary for Mandarin was automatically generated to cover all possible syllables.  39 
English phones were mapped to the pronunciation of each syllable. Since we had no 
Mandarin database to train the Mandarin speech recognizer, the TIMIT database was 
used. For this reason, the phonetic mapping from English to Mandarin was required. 
Similarly as for the English database, the secondary dictionary was also required to 
handle the out of vocabulary words. In many cases, English words were pronounced 
along with Mandarin speech. The pronunciations of these words are taken from the CMU 
dictionary that was used for English database. Both dictionaries use the same format as 
the CMU dictionary and have Pinyin notations. 
 

4.1. Directory structure: 

Under \Mandarin folder, there are again 300 subfolders (one for each clip) and a subfolder called 
“\dict.”  The \dict folder contains 2 pronunciation dictionaries: 

1. “pinyin_dict_39.txt”  is the English-to-Mandarin phone mapped pronunciation  dictionary 
containing all possible Mandarin syllables (with tones). 

2. “extra_pinyin_dict_39.txt” is another dictionary that contains extra words/syllables that 
are not found in the first dictionary. These words/syllables are mostly English words.  

 

For each of the 300 folders, there are the following files and subfolders: 

File or Subfolder Description 

C_name.mp4 Video clip, about 5 minutes long, in MPEG-4 format. 

C_name_22k.wav The audio file (22.05kHz sample rate, stereo) extracted from the video 
clip. 
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C_name.wav The 16K mono version of the C_name_22k.wav. This file is used for 
forced alignment. 

C_name_mandarin.trs Orthographic transcription (using Mandarin characters) of the audio 
data in Transcriber’s XML file format. 

C_name.trs Pinyin version of C_name_mandarin.trs. This file is used in further 
processing because the tools that we used do not support Mandarin 
characters. 

\man_lab Contains the 3 manual label files and 3 short waveform files (extracted 
from C_name_16.wav).  Each wave file is approximately 5 seconds 
long.  

\auto_lab Contains all files generated by forced alignment. 

\auto_lab\wav Contains all short audio chunks segmented from the 16k version of the 
audio passage (C_name.wav). The segmentation boundaries are 
obtained from the sentence/phrases boundaries found in the 
transcription file. These short chunks were used, together with the word 
level label file in MLF format mentioned above, in the actual automatic 
labeling process.    

Note that all intelligible speech and all noise segments extracted from 
the entire segment are included.   The naming convention of the 
segmented files is described in the document “Phone Alignment 
Procedures.” 

\auto_lab\lab Contains 6 automatically determined labels for the waveform 
C_name.wav. 

• C_name_phn.lab        phone level label file (entire passage) 

• C_name_phn.mlf       phone level label file (every short segment) 

• C_name_sen.lab        sentence level label file (entire passage) 

• C_name_sen.mlf       sentence level label file (every short segment) 

• C_name_wrd.lab       word level label file (entire passage) 

• C_name_wrd.mlf       word level label file (every short segment) 
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The following table shows the current status of Mandarin database development. 
 

Activity 
Current status 

108 Casual 192 Formal 

Mandarin character to Pinyin conversion 108 192 

Pinyin correction 108 192 

Transcription file format verification 108 192 

Adding foreign words into dictionary 108 192 

Manual labeling at the syllable level 108 192 

Automatic labeling at the phonetic and syllable levels 108 192 

 

5. RUSSIAN 

We have only the video files, the 22.05k stereo audio,   and the “sentence level” transcriptions.   
These files are arranged in the same way as are the files for English and Mandarin,   except only 
the files for the video, stereo audio, and manual transcriptions are included. 

The following table shows the current status of the Russian database development. 
 

Activity 
Current status 

91 Casual 209 Formal 

Transcription file format verification 91 209 

Misspelling words correction 0 0 

Adding new words into dictionary 0 0 

Manual labeling at the phonetic level 0 0 

Automatic labeling at the phonetic and word levels 0 0 
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B.2 Phonetic Alignment Procedure 
Montri Karnjanadecha  and Stephen A.  Zahorian 

June 21, 2012 
 

1. INTRODUCTION 

 This document gives a detailed explanation of automatic phonetic alignment method for 
the open source multi-language audio database (OSMLA).   To make the OSMLA more useful, 
we have provided phonetic transcriptions for all speech files. Since manual labeling of speech 
data is time consuming and is not practical for this rather large database, an automatic method 
for automatic phonetic alignment has been developed and implemented. This document describes 
the method in detail.  

2. TOOLS, RESOURCES, AND FILE FORMATS 

2.1 Software tools and resources and typical uses 

- Transcriber – Used to manually transcribe all audio passages at the sentence level 

- Wavesurfer – Used to manually transcribe a small number of speech segments at the 
phonetic level (for English) and at the syllable level (for Mandarin). 

- Online software used to convert transcription files in Mandarin characters to pinyin 
characters: http://www.mandarinbook.net/chinesetools/chinese_to_pinyin.php#output  

- HTK tools – label file editing, dictionary management, HMM training and adaptation, 
HMM recognition, forced alignment 

- Tfrontm – feature extraction 

- Matlab – Matlab scripts were developed to automate all processes 

- TIMIT – speech database used for building initial phone models 

- Pronunciation dictionary (Lexicon) – CMU dictionary version 0.7a. This dictionary 
utilizes 39 English phones, and contains about 130k entries. It can be downloaded 
from: https://cmusphinx.svn.sourceforge.net/svnroot/cmusphinx/trunk/cmudict/ 

 

2.2 File formats 

- Waveform – Windows file format (*.wav), PCM, 16 bits, uncompressed, stereo 22.05k 
stereo or 16k mono channel.    (Note that 16k mono files were derived from 22.05k  
stereo by averaging stereo channels and interpolating.) 

http://www.mandarinbook.net/chinesetools/chinese_to_pinyin.php#output
https://cmusphinx.svn.sourceforge.net/svnroot/cmusphinx/trunk/cmudict/
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- Dictionary – Same standard as the CMU dictionary, no stress marks, allow entries with 
multiple pronunciations  

- Transcription or label files – Initial transcription file that comes with each audio 
passage is in Transcriber’s standard (XML format). During and after processing, all 
label files are in HTK format (plain label file or MLF (master label file) format). 

 

3. TRANSCRIPTION VERIFICATION AND ADDING NEW WORDS TO 
DICTIONARY 

 As described in our Interspeech 2011 paper, [B-1], the last step before the automatic 
labeling step was to manually transcribe each audio passage at the sentence level with sentence 
boundary markers. The Transcriber software was used for this purpose. The transcription which 
contains all words was carefully checked and double-checked, but still there were typos and 
errors. 

 Each transcription file (in XML format) is analyzed to extract noise events, words, 
special symbols, speaker ID, time markers and other useful information.  At this stage, a list of 
all unique words is of main concern. From the word list, we can check if each word has its 
pronunciation in the dictionary. There are 2 reasons which cause the pronunciation to be missing. 
The first reason is the word is misspelled and the second reason is that the word is out of 
vocabulary. For the out of vocabulary case, the word could be a foreign word, acronym, 
abbreviation, proper noun, jargon, etc. We added a new entry to the dictionary so that this 
particular word can be recognized. Table B-1 shows examples of words that are not in the CMU 
dictionary. 

Table B-1. Examples of words not in the CMU dictionary, but appearing in OSMLA 

 Word Pronunciation Description 

ACRO- AH K R AO                                             Unfinished or disfluency 

IPHONE'S    AY F OW N Z proper noun/ jargon? 

MATLAB M AE T L AE B proper noun 

[__ALBRIGHT] AO L B R AY T                                unclear word 

[~HTML]               EY CH T IY EH M EH L                       Acronym 

LANG_ES_ESPANA        EH S P AH N Y AH Foreign word 
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In practice, we did not augment the CMU dictionary with new entries, but we created a 
new dictionary for these out-of-vocabulary (OOV) words. The tools that we used can logically 
combine these 2 dictionaries at run time. 

To extract OOV words from each transcription, we analyze the transcription file using a 
Matlab script (“split_wav_complete.m”). The outputs of this step are: 

1) sequence of sentences/phrases with time markers 

2) sequence of words, short pauses, and noise events for each sentence/phrase 

3) number of speakers  

4) name of each speaker 

From each sequence of words we determined if each word in the sequence was in the 
dictionary. If an OOV word was found, we inspected the transcription file to see if the word was 
misspelled or not. All misspelled words were corrected. The remaining OOV words were added 
to our dictionary with their corresponding phonetic realization. To speed up this step and to make 
sure that a phonetic realization of each OOV word was correct, we reused the pronunciation from 
the CMU dictionary as much as we could. For example the word “iPhone” is pronounced as the 
word “PHONE” preceded by the “AY” sound. If part of any word had multiple pronunciations in 
the CMU dictionary, we also put all possible alternative pronunciations in the dictionary. 

For the case of a foreign word, we have to listen to the word from the clip and try as best 
as we can to give the phonetic transcription of the word using the “standard” 39 English phones.  

Acronyms, such as USB, DVD, CD, and CEO, occur very often in our recorded video 
clips. Such words were transcribed with the “~” prefix which makes them appear as: ~USB, 
~DVD, ~CD, and ~CEO. Please see [B-1] for details. For example, we can differentiate that the 
word CAD has to be pronounced as K AE D and the word ~CAD as S IY EY D IY. 

Unfortunately, HTK tools cannot work correctly with a dictionary entry having the “~” as 
the first character--thus we put a square bracket around every acronym to avoid this problem. For 
example, the word ~USB found in the transcription file is referred to as [~USB] in the 
dictionary. 

A foreign word such as ESPANA in Spanish is transcribed in the transcription file with a 
“language” tag. Such a tag is identified during the transcription file analysis. The “language” tag 
has a language identifier, which could be “FR” for France, “IT” for Italian, “ES” for Spanish, 
etc. Dictionary entries for each foreign word is preceded by “LANG_XX_,” where XX is the 
language identifier. For example the word ESPANA in Spanish will be found in the dictionary as 
“LANG_ES_ESPANA”.   
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Unclear words were transcribed inside double parentheses. For example, if we found 
((say)) in the transcription, it means that the human listener was not sure about the word he/she 
heard. All unsure words were preceded by “__” and were put inside a square bracket. For 
example the word ((Say)) will look like “[__SAY]” in the dictionary, with its pronunciation 
(phonetic realization) exactly the same as for the word “SAY.” 

 

4. AUTOMATIC LABELING USING FORCED ALIGNMENT 

4.1 Preliminary experiments 

 Several experiments were conducted to find the best technique for our task, which is 
aligning a database consisting of real-world speech.   This speech is understandable by human 
listeners, but quite low quality, due to both noise and distortion; it also un-rehearsed, and 
spontaneous, for the most part.  Most reported work for forced alignment is based on 
experiments with clean, high quality, read speech. Most of the available techniques cannot be 
directly used effectively with our database. As documented in [B-2], the best method for 
automatic phonetic alignment of our database is to use a HMM-based speech recognizer running 
in the forced-alignment mode.  The best way (of several methods tested) to train the HMM 
models is to start with TIMIT models, and adapt to each passage. Each time the model is 
adapted, the forced alignment is performed. Thus this is a passage-by-passage forced alignment. 

 

4.2 Steps 

i)  Train HMM models using TIMIT corpus 

ii) Preprocess the waveform and transcription files 

This step has 3 sub-steps: 

a) Parse the transcription 

b) Divide the waveform into short segment according to sentence/phrase 
markers 

c) Create word level transcription for each short segment in HTK’s MLF 
format 

iii) Generate phone level transcription from word level transcription using the HLed tool 
and the pronunciation dictionaries. 

iv) Adapt TIMIT models to each passage using the transcription in 4.2.3 
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v) Force align the phone level transcription using the adapted models. 

vi) Use the forced aligned transcription to adapt the HMM models 

vii) Repeat steps 4.2.5 and 4.2.6 for several times 

viii) Connect the phone level transcriptions of all short segments  

 

4.3 Training HMM models using TIMIT corpus 

The original TIMIT phone set consists of 61 phones. Since the CMU pronouncing 
dictionary that we use employs 39 phones, we collapse the TIMIT phone set to 39 phones + 
silence. The TIMIT HMM models were created and trained using the HTK tools. We used a 
Matlab script called HTKtool.m to automate all training processes. This script was initially 
developed by Hongbing Hu and was extensively used for our phonetic recognition experiments. 
Table B-2 summarizes some important parameter settings. 

 

Table B-2. Some important parameter settings 

Parameter Typical Values Remark 

# of states per HMM 4  

# of Gaussian mixtures per state 32  

# of HMM models 40 39 phones + silence 

# of iteration to run HInit 20  

# of iteration to run HRest 20  

# of iteration to run HERest 8  

Training data All TIMIT training set  

Feature set 78 DCTCs/DCSCs “Best” setup 

Tfrontm version 76.4  
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Table B-3 shows the list of 39 phones + silence. 

AA AE AH AO AW AY B CH 

D DH EH ER EY F G HH 

IH IY JH K L M N NG 

OW OY P R S SH T TH 

UH UW V W Y Z ZH SIL 

 

4.4 Preprocess the waveform and transcription files 

The Matlab script called “split_wav_complete.m” was written and used to automate this 
preprocessing step. It was designed to work correctly either with English or Mandarin (Pinyin) 
transcription. The script has the following interface: 

 

[error, num_speakers, num_foreign_words] =  

split_wav_complete(in_trs_file, wav_in_dir, wav_out_dir, lab_out_dir, new_fs, save_org_wav) 

 

Table B-4 summarizes the meaning and function of each input/output variable. 

Table B-4. Meaning and function of each variable 

Variable name Type Description 

in_trs_file input Name of the transcription file (a file with .trs extension)  

wav_in_dir input Directory name that stores the corresponding waveform file. 
Once the program has opened the transcription file, it will search 
for the corresponding waveform file in this folder. Note that the 
transcription file and its corresponding waveform file must have 
the same name (but different extension). 

wav_out_dir input Name of directory to store the resulting waveform files after 
segmentation. 

lab_out_dir input Name of directory to store the resulting label files after analyzing 
the transcription file. 
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new_fs input Desired sampling frequency. Originally all waveform files are in 
2-channel 22.05kHz sample rate. The waveform file under 
processing will be resampled to the new_fs and also converted to 
mono channel. 

save_org_wav input  Set to 1 if we want to store the resampled (and mono) version of 
the waveform 

error output This return value is non-zero if any error occurred 

num_speakers output Number of speakers presented in the passage. Some passages 
were spoken by multiple speakers. Currently, this return value is 
always ignored. 

Num_foreign_words output Number of foreign words presented in the passage. Currently not 
used. 

 

This program reads the transcription file and parses the text in the file. As discussed in a 
previous section, some results from parsing the transcription file are the sequences of words of 
each sentence/phrase and each sentence/phrase time markers.  The sentence/phrases time 
markers (in milliseconds) are used to segment the waveform file into several short chunks. It is 
advantageous to segment the long waveform (~5 minutes) into short segments because 1) we can 
ignore any unwanted audio segment and 2) this would be more accurate to automatically align a 
short segment than a very long one.  

The following is a snapshot of the content of a transcription file. This example illustrates 
how we parse the transcription and make use of the obtained information. 

<Sync time="30.112"/> 
Umm  
<Event desc="p" type="noise" extent="instantaneous"/> 
 but I'm going to start off with my favorite. So. 
<Sync time="33.229"/> 
 

The “Sync time” tags indicate start and end times of this audio segment. The information 
obtained after parsing this snapshot are: 

ix) start time = 30.112 seconds 

x) end time = 33.229 seconds 

xi) Text: “Umm [P] but I’m going to start off with my favorite. So.” 
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Note that the symbol “[P]” in the word sequence denotes the “short pause” event.  

 The start time and end time are used to segment the original audio passage (into a short 
chunk) at the right location. 

In summary, the program parses the transcription file, loads the corresponding waveform 
file, down-samples the waveform file, segments the waveform file into several short chunks, and 
generates the word level transcription file for each short chunk. 

Approximately 100 short waveform files are segmented from each audio passage. Each of 
the waveform files has its corresponding word level transcription, as obtained from manual 
transcriptions. To reduce the number of files, we store all word level transcriptions in an MLF 
file. The MLF file, used by HTK, is a formatted text file which can hold multiple label files. 
Please see the HTK manual [B-3] for more details. 

In the beginning every word in the word level transcription has the begin time and end 
time equal to 0. After automatic alignment, each word will get its “predicted” begin and end 
times.  However the begin time of the first word will always starts from 0, which means the time 
indices are relative to its short audio segment. To obtain the “right” time labeling for the entire 
audio passage, we have to connect or stitch all the transcriptions back together in the right order.  
Thus when we segment the audio passage, we keep track of the order of each audio segment by 
augmenting a 3-digit running number into its file name. For example for the passage 
“E_CC_EFAD01_01” has its transcription file “E_CC_EFAD01_01.trs” and its waveform files 
“E_CC_EFAD01_01.wav.”  After this preprocessing step the resulting waveform files are: 

E_CC_EFAD01_01_001_000000_000379_SIL.wav 
E_CC_EFAD01_01_002_p_000379_013151_CLEAN1.wav 
E_CC_EFAD01_01_003_013151_013534_SIL.wav 
E_CC_EFAD01_01_004_p_p_ot_013534_023296_DIRTY.wav 
E_CC_EFAD01_01_005_023296_023470_SIL.wav 
E_CC_EFAD01_01_006_023470_029669_CLEAN0.wav 
E_CC_EFAD01_01_007_029669_030112_SIL.wav 
E_CC_EFAD01_01_008_p_030112_033229_CLEAN1.wav 
E_CC_EFAD01_01_009_033229_033849_SIL.wav 
. 
. 
. 
 
The first 14 characters representing the source file name are the same for all files. 

Detailed explanations of the file name convention for source files can be found in [1].  The 
remaining characters in the file name also convey information. This is explained in the following 
example. 
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e.g. 

E_CC_EFAD01_01_004_p_p_ot_013534_023296_DIRTY.wav 
 

E_CC_EFAD01_01   -- Passage name 

_004                         -- a running number starting from 001 to an ending number 

_p_p_ot                   -- list of noise events found in this short segment, vary from segment 
to segment, can be empty 

_013534_023296  -- start time and stop time in ms. It indicates where in the waveform 
file that this segment is located. 

_DIRTY                     -- category of segment. This could be “SIL” , “NOISE”, “DIRTY”, 
“CLEAN0”, and “CLEAN1”. 

 

Table B-5. Detail description of each segment category 

Category Description 

SIL Segment contains only silence (short pause) 

NOISE Segment contains only a noise or a sequence of noises (no speech) 

CLEAN0 Segment contains only clean speech, no short pause, no instantaneous noise 
events or background noise. 

CLEAN1 Segment contains only clean speech and short pauses 

DIRTY Segment contains speech and noises (noisy speech).  

 

Embedding some information into a file name is useful and convenient for some steps. 
For example at some stage of our experiments, only clean speech was used for HMM 
training/adaptation. Thus we only selected files whose names ended with “CLEAN?” for 
processing. However it is not very useful in the end and it makes this looks too complex, 
potentially even confusing. Extra information should be removed before distributing through the 
LDC. 

The following is the first few lines of the MLF file generated in this step. 

#!MLF!# 
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"*/E_CC_EFAD01_01_001_000000_000379_SIL.lab" 
0 0 [P] 
. 
"*/E_CC_EFAD01_01_002_p_000379_013151_CLEAN1.lab" 
0 0 HELLO 
0 0 LOVELIES 
0 0 [SP.] 
0 0 WELCOME 
0 0 BACK 
0 0 SO 
0 0 I'M 
0 0 GOING 
0 0 TO 
0 0 BE 

 

Note again that, the time indices of every word in the transcription are initially zeros.  
These indices will get their values after the automatic alignment process has been completed. 

 

4.5 Generate phone level transcription from word level transcription  

Since the HMM models that are used for forced alignment of the audio data are phone 
models, the word level transcriptions are not directly usable. A pronunciation dictionary can be 
used to convert a word sequence into a phone sequence. The HTK’s HLed tool is used to convert 
a word level label file into a phone level label file.  Note that some words may have multiple 
pronunciations, but we ignored alternate pronunciations in work to date (June , 2012).  At this 
stage we just used the first pronunciation found in the dictionary. 

 

4.6 Adapt TIMIT models to each passage using the transcription 

All 40 TIMIT phone models are adapted to each passage using the HTK’s HERest tool. 
Inputs needed for this step are: 

1) Feature files extracted (the same way as did for TIMIT data when training the TIMIT 
model) from each waveform file. 

2) TIMIT phone models 

3) Phone level transcription for each feature file. 

4) List of all names of phone models (referred to as “hmmlist” in HTK manual) 
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Note that any waveform of shorter than 0.5 seconds is not included in the adaptation data 
because it has too few frames of data and usually causes a problem with HMM 
adaptation/evaluation. 

 

4.7 Forced alignment 

 In this step, the adapted models are used to align the waveform with phonetic labels and 
time markers. The HTK’s HVite tool is used for this purpose. The HVite tool is configured to 
run in the forced alignment mode, which requires that the transcription must be provided to the 
tool. Word level transcriptions and a pronouncing dictionary are provided to the HVite tool at 
this step. The HVite tool can choose the most likely pronunciation for words with multiple 
pronunciations. The results from this step are the phone level transcriptions with time markers 
for every short audio segment. 

The same set of the adaptation data is used for forced alignment. 

 

4.8 Improving alignment accuracy using an iterative process 

The phone level transcriptions obtained with forced alignment are used to adapt the 
TIMIT model again to improve the alignment accuracy. This process can be repeated several 
times.  

 

4.9 Connect the phone level transcriptions of all short segments 

This step tries connects each phone level transcription for short audio segments together 
to make a single completed transcription for the entire audio passage. Some short segments such 
as those with background noise only are not used for HMM adaptation and have no automatic 
alignment transcription. However the time labeling information of such segments can be 
obtained easily from the time indices encoded in its file name. 

As noted in section 4.6 and 4.7, very short waveforms are not used in adaptation and 
forced alignment. Thus there is no time information for such waveforms. To complete the label 
connection, we need to manually align these missing files.  Although there are quite a large 
number of incomplete files, most of them can be fixed automatically. For example a file with 
single label (such as a pause, a noise event) can be automatically labeled by just using its start 
time and stop time available from its file name.  

5 Garbage Model 
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Noises such as human noise, laugh, music, animal noise, nature noise, vehicle noise, 
machine noise, office noise, and other noise are modeled as “garbage.” The garbage model is 
initially cloned from TIMIT’s silence model. It is later adapted to noises. All sorts of noised are 
collapsed to a single garbage model. The pronunciation dictionary is modified to included 
pronunciations of all noises with a map to the garbage model. 
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B.3 Forced Alignment Software User’s Guide 
Montri Karnjanadecha  and Stephen A.  Zahorian 

June 21, 2012 
 

1. INTRODUCTION 

An HMM-based forced alignment system was used to automatically determine the 
boundaries of speech signals at the phonetic level for English speech and at the syllable level for 
Mandarin speech. The HMM was implemented with the HTK tools version 3.1. Several Matlab 
scripts were written to automate all steps.  All scripts were developed on Matlab R2010a and 
used on Matlab R2010a and Matlab R2011a.   

During the process of building acoustic models for forced alignment (which is the same as 
for speech recognition), several HTK tools were executed. For example the HLed tool was used 
for editing label files and the HERest tool was used for HMM training and adaptation.  The basic 
approach to this is to invoke HTK tools, which come in the form of *.exe files, under the dos-
like “command prompt.” Note that in most cases, running a HTK tool requires several command 
line arguments. This is very inconvenient, especially when each tool must be run with different 
options. 

Matlab has a very useful function called “system.” This function allows us to call any 
executable file or any shell command from inside Matlab’s environment. We can write a Matlab 
script to serve as a wrapper function which calls one or more HTK tools. This method has greatly 
improved the flexibility and simplicity for calling HTK tools. As a result, many Matlab functions 
were developed to support the forced alignment process. Forced alignment can be performed in a 
batch mode with various options without having to type in a command line. 

Although use of Matlab scripts allow us to perform forced alignment by executing only one 
Matlab script, one of the major problems is that any user who is not familiar with the HTK tool 
and the forced alignment process will still have difficulties when using these Matlab scripts, in 
isolation.   For example, to compute speech features, we must have 1) list of waveform files, 2) 
setup file for TFRONT.m (our in-house feature computation program) or for Hcopy.exe (HTK’s 
feature computation tool), and 3) list of resulting feature files with a target directory. Preparing 
all this data can be troublesome.  Another very difficult example would be to perform HMM 
model adaptation. To adapt HMM models we need source models, several setup files for 
HERest.exe tool, input feature files and other supporting files. It would not be possible for most 
general users to directly use the Matlab scripts for this rather complex task.  

The software described in this document combines these scripts with a user-friendly GUI, 
making the overall process much easier to perform.   Note that we hired undergraduate student 
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assistants who had limited knowledge on speech processing and using HTK tools. Providing 
them with an easy-to-use program has greatly speeded up the detailed labeling process. 

FA_7.m is a Matlab program that integrates all Matlab scripts required to complete the 
forced alignment task.  Note that FA stands for Forced Alignment.   It utilizes a graphic user 
interface (GUI) which is very easy to use. Anyone can use the program without having to 
understand the details of its internal processes. Figure C-1 shows a screen shot of this program. 
The buttons on the left half of the figure are used to execute functions. The edit boxes on the 
right half of the figures show some control variables whose values can be changed by the user at 
any time; these values can also be changed by modifying a setup file. 

This document explains how to use the FA_7.m program. It also briefly describes the 
program’s internal functions which could be useful for anyone who wants to modify the 
program. 

 

 

 

Figure C-1. A screen shot of the forced alignment program 
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2. FUNCTIONALITY 

The main function of this program is to automatically align speech signals at the phonetic, 
word or syllable level. The program is designed to work on either English or Mandarin speech. 
Note that the orthographic transcription for the Mandarin speech   must be in Pinyin notation.  
HMM models of 39 English phones were trained using TIMIT data. They later were adapted to 
each passage. The alignment is achieved by running the HMM recognizer in the forced 
alignment mode. In addition this program can be used to speedup the manual labeling process by 
providing initial phonetic boundaries.  

 

 

3. SETTING UP 

This program calls several HTK tools, each of which is an executable file. By default the 
HTK tools are stored under htk\bin.win32\ folder. The system path must include this folder so 
that the HTK tools can be invoked from any location. 

Many short Matlab scripts were developed and used to run this forced alignment program. 
They are stored in the folder called Matlab_common\.  It is suggested to include this folder in the 
Matlab path so that we can have only one copy of these codes and any script under this folder 
can be executed in Matlab without having to change the current directory to match each folder. 

If Tfrontm is used for feature computation, either Tfrontm.m or TFrontm.exe (an execution 
version of TFrontm.m) will be required.  If Tfrontm.m is used, Matlab’s path must point to all 
associated *.m files.  

 

4. USING THE PROGRAM 

After all setup variables have been set, using this program consists of just pushing each 
button in the correct order. This section explains functionality of each button from top to bottom. 
The explanation is organized in Table C-1. 
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Table C-1: Function of each button 

Button Function 

Load TRS This will open a file dialog. The user has to select 1 or more *.trs files. 
*.trs is a transcription file obtained with the Transcriber program. Each 
audio passage (in waveform file *.wav) has a corresponding 
transcription file. The transcription file was created manually. It 
contains the orthographic transcription of the speech in the audio 
passage, with sentence boundaries. The code was written such that 
multiple TRS files can be selected at once. This allows us to perform 
forced alignment on multiple files with a single run. 

Split WAV An audio passage can be 3-6 minutes long. Thus it would be better to 
segment each audio passage into shorter segments. Using sentence 
boundary information from the transcription file, we can split the 
original waveform file into several short waveform files. Each short file 
has its corresponding transcription file. When this function is executed, 
the loaded TRS file is analyzed and the waveform is split. If there is 
any error in the TRS file the program will terminate. The Matlab script 
“split_wav_complete.m” is used to perform this function.  

Check 
Dictionary 

This function is used to check if every word in the passage is in the 
pronunciation dictionary. If the pronunciation of a word is missing 
from the dictionary, the program will stop and the user must add the 
pronunciation of the word into the dictionary. 

Compute 
Features 

This function takes short waveform files from the previous step as input 
and computes features. It supports TFRONTM feature calculations and 
HTK’s HCopy tools. 

Adapt 
TIMIT and 
Align 

This is the most complex operation. It reads TIMIT models (HMM’s 
that have been trained with TIMIT data), then performs model 
adaptation and forced alignment. The adaptation and forced alignment 
is repeated several times to improve alignment accuracy. This step 
employs several HTK tools and there are several Matlab scripts that 
support this function. 

Merge 
Labels 

This step merges all transcription file obtained from the forced 
alignment step to create a single transcription file. The output 
transcription file is stored in HTK format. This is the final step of 
forced alignment. 
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Select 3 
Sentences 
for 
Labeling 

For each passage, we manually labeled 3 sentences. These manually 
aligned labels can be used as “ground truth” information for algorithm 
development. When this button is pressed, the program will 
systematically select 3 sentences.  

Edit 
Selected 
Labels 

This button is used to invoke WaveSurfer program to manually label 
the 3 selected sentences. 

Do Batch If this button is pressed, any above button that has the Batch box 
checked will be executed in order from top to bottom. This allows us to 
run every step with a single click. 

 

 

5. CONFIGURATION VARIABLES 

There are a number of configuration variables that control the behavior of the forced 
alignment program. Table C-2 summarizes the meaning of each variable. The value of each 
variable can be changed by modifying the FA_7_setup.m script. Note that these variables can be 
changed during runtime so that the change can take effect immediately. 

 

Table C-2. Meaning of each configuration variables 

Variable Meaning/Function 

src_trs_dir Directory where the transcription files (*.trs) are stored. 

src_wav_dir Directory where the waveform files (*.wav) are stored. 

dest_root_dir Root directory to store all output files. Each subdirectory under 
this directory has the same name as the speaker’s name. 

wav_fs Sampling frequency of output waveform. The original 
waveform is in 22kHz sampling rate. Usually this variable is set 
to 16000. 

CMU_dict Main dictionary file. For English, this should be CMUdict 0.07a 
without stress marks. For Mandarin, this should be a word 
(syllable) dictionary which is automatically generated by 
implementing Mandarin pronunciation with the English 39 
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phone set. 

Extra_dict Additional dictionary file. Same format as CMU_dict. User is 
supposed to add new words to this dictionary instead of to the 
main dictionary.  This dictionary will get sorted every time 
when the automatic alignment is executed. 

error_log_file Log file to store error messages 

cp_feat_file Configuration file used for feature extraction, usually set to 
“cp_feat78.ini” for TFRONTM or “hcopy.conf” for HTK’s 
HCopy 

tfront_dat Tfront.dat file for TFRONTM. Not used for HCopy. 

front_end TFRONTM.EXE, TFRONTM.M or HCOPY  

min_wav_length Minimum length of waveform in seconds which the program 
considers. Waveform files of shorter than this length will be 
ignored. 

src_hmm_dir Source directory that stores all TIMIT HMM models. 

work_dir Working directory, to store all temporary files; can be removed 
after finished. 

networks_dir Directory to store phone network or syllable network. This is 
needed for HTK’s HVite tool. For the current version of the 
program, this directory is used to store some temporary files. 

adapt_TIMIT_itr_1 Number of iterations to adapt the TIMIT model (first pass). This 
is the number of iterations to run embedded re-estimation 
(HERest). Should be set to 4 at least. 

adapt_TIMIT_itr_2 Number of iterations to adapt the TIMIT model (second pass). 
This is the number of iterations to run embedded reestimation 
(HERest). Should be set to 4 at least. 

#HMM_states Number of states in each HMM model. This number is the 
number of states in TIMIT models and adapted models. It works 
best with 4 states per HMM. 

alignment_itr Number of iteration to repeat the entire forced alignment 
process. More iterations yield higher accuracy but too many 
iterations are not very helpful. 2 iterations will be ok, 4 will be 
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better. 

#Garbage_mixture Number of mixtures used in building a garbage model. All noise 
events are pooled together and modeled as garbage.   

Param_Kind Type of features. When HTK reads a feature file, it must know 
the feature type so that is can handle the contents properly. If 
TfrontM is used to compute feature, this variable must be set to 
USER. If we used HTK features such as MFCC, LPCC, etc, this 
variable should be set accordingly. 

#Features Number of features used for building TIMIT models. This same 
number has to match with cp_feat_file (cp_feat_78.ini) or 
HCopy.conf. The same number and the same feature calculation 
method must be used to compute feature for TIMIT models 
training, and HMM adaptation for forced alignment. 

Speech Selection Use only clean speech or clean+noisy speech for model 
adaptation and alignment. The former setting can be used if we 
want to select only clean speech for adaptation and alignment. 
This may fail on some noisy passages.  The later setting will 
always work. It take all available data (except for too short 
segment) to perform model adaptation and forced alignment. 

Manual Label 
Selection 

To perform forced alignment at phonetic level for English, 
choose “Phone.”  Select “Word” to align at the word or syllable 
level (for Mandarin). Internally, this program aligns at the 
phonetic level. However, the user can specify the final output. 

man_lab_dir Directory to store manual labels. If we click the “Select 3 
Sentences for Labeling” the selected label files and their 
corresponding waveform files will be copied from the 
“work_dir” to this directory. User can easily access to this 
folder. When the “Edit Selected Labels” button is clicked, the 
WaveSurfer program will be invoked and all files in this folder 
will be open. 
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6. CODE LOCATION 

All necessary codes for this software can be found from ZahorianResearch\Montri\Code. 
The codes are stored in 3 folders: Forced_Align_GUI_7\,  Matlab_common\, and TFRONTM\. 

The main program, “FA_7.m,” and other supporting files are stored under 
Forced_Align_GUI_7\ folder. FA_7.fig is the GUI portion of the main program. This file can be 
opened and edited using the Matlab’s GUIDE tool. 

Other Matlab scripts are stored in Matlab_common\ folder. These scripts are called by the main 
program. Matlab path must also point to this folder. 
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List of symbols, abbreviations and acronyms 
 

AFRL  Air Force Research Laboratory 

ASR  Automatic Speech Recognition 

DCT  Discrete Cosine Transform 

DCTC  Discrete Cosine Transform Coefficient 

DCS  Discrete Cosine Series 

DCSC  Discrete Cosine Series Coefficient 

FFT  Fast Fourier Transform 

HMM  Hidden Markov Model 

HTK  Hidden Markov Model Toolkit 

LDC  Linguistic Data Consortium 

MFCC  Mel-Frequency Cepstral Coefficient 

NN  Neural Network 

OGI  Oregon Graduate Institute 
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