
NPS-CS-12-005

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

TRANSPORT TRAFFIC ANALYSIS FOR ABUSIVE
INFRASTRUCTURE CHARACTERIZATION

by

Le Nolan
Robert Beverly
Geoffrey Xie

December 14, 2012

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

iii

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RDML Jan E. Tighe O. Douglas Moses
Interim President Acting Provost

The report entitled “Transport Traffic Analysis for Abusive Infrastructure
Characterization” was prepared for and funded by National Science Foundation.

Further distribution of all or part of this report is authorized.

This report was prepared by:

Le Nolan Robert Beverly
Department of Computer Science Department of Computer Science

Geoffrey Xie
Department of Computer Science

Reviewed by: Released by:

Peter Denning, Chairman Jeffrey D. Paduan
Chairman Vice President and
Department of Computer Science Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

iv

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY)2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

14–12–2012 Technical Report 2011-06-01—2012-06-31

Transport Traffic Analysis for Abusive Infrastructure Characterization OCI-1127506

Le Nolan, Robert Beverly, Geoffrey Xie

Naval Postgraduate School
Monterey, CA 93943 NPS-CS-12-005

National Science Foundation
Arlington, VA 22230

Approved for public release; distribution is unlimited

The views expressed in this report are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

We investigate a promising approach that identifies discriminating features of likely communications involving abusive hosts
from per-packet TCP header and timing information. These features identify congestion, flow-control, and other low-level
network and system characteristics indicative of an abusive network host. Our approach is IP address and content agnostic, and
therefore privacy-preserving to permit wider deployment than previously possible. Importantly, the modeled characteristics are
inherent to the poorly connected, under-provisioned, low-end, and overloaded hosts or links typical of abusive infrastructure
making them difficult for an adversary to manipulate. In contrast to existing network-centric approaches reliant on flow-level
records, fine-grained per-packet features yield superior performance with negligible processing impact. On real-world traces
from accessing ∼40,000 Alexa and ∼30,000 known-abusive web sites, we achieve a classification accuracy of ∼94% with a
3% false positive rate using only transport features.

Abusive Traffic, Traffic Analysis

Unclassified Unclassified Unclassified UU 43

Robert Beverly

(831) 656-2132

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Table of Contents

1 Introduction 3

2 Related Work 5

3 Methodology 7
3.1 Host Populations . 7

3.2 Data Collection . 8

3.3 Fetcher Validation . 9

3.4 Transport-Level Signal Analysis . 10

3.5 Prediction . 11

4 Transport Traffic Analysis 15
4.1 Netflow Limitations . 15

4.2 Discriminative Features . 19

4.3 Classification Performance Results 21

4.4 Congestion Sensitivity . 23

4.5 Overhead . 24

5 Discussion 27

6 Conclusions 29

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

Abstract

We investigate a promising approach that identifies discriminating features of
likely communications involving abusive hosts from per-packet TCP header and
timing information. These features identify congestion, flow-control, and other
low-level network and system characteristics indicative of an abusive network host.
Our approach is IP address and content agnostic, and therefore privacy-preserving
to permit wider deployment than previously possible. Importantly, the modeled
characteristics are inherent to the poorly connected, under-provisioned, low-end,
and overloaded hosts or links typical of abusive infrastructure making them difficult
for an adversary to manipulate. In contrast to existing network-centric approaches
reliant on flow-level records, fine-grained per-packet features yield superior per-
formance with negligible processing impact. On real-world traces from accessing
∼40,000 Alexa and ∼30,000 known-abusive web sites, we achieve a classification
accuracy of ∼94% with a 3% false positive rate using only transport features.

1

THIS PAGE INTENTIONALLY LEFT BLANK

2

CHAPTER 1:
Introduction

Abusive traffic abounds on the Internet, in the form of email, malware, vulnerability scanners,
worms, denial-of-service, drive-by-downloads, scam hosting, CAPTCHA solvers, and other,
yet-to-be imagined exploits. This unwanted traffic is enabled by a wide array of infrastruc-
ture including, but not limited to, complicit service providers, free web hosting providers, and
botnets. Contemporary techniques for obtaining and utilizing such infrastructure for abusive
purposes are increasingly sophisticated and economically driven.

A large body of prior work explores detecting abusive network behavior by e.g., monitoring
traffic content or communication patterns, while a variety of methods attempt to mitigate such
traffic by e.g., distributing signature databases, maintaining IP reputation, etc. Yet, despite years
of commercial and research efforts, abusive traffic continues to impart both direct and indirect
damage upon users, service providers, and the Internet.

Our research investigates a new passive traffic analysis approach to detecting abusive infrastruc-
ture that does not rely on content inspection, sender reputation, or communication patterns –
features that are brittle and readily evaded. Instead, our approach utilizes transport-layer traffic
analysis, a technique that has shown promise in the domain of fighting abusive email [6,18,24].

In contrast to previous efforts [16] that leverage aggregate traffic flow information such as that
embedded in Netflow [7] records, we discover that fine-grain properties of the transport-layer
packet stream, e.g., TCP retransmissions, packet reordering, arrival jitter, congestion and flow-
control behavior, etc., are a fundamental source of discriminative information that can reliably
identify abusive infrastructure.

Our key insight is two-fold. First, attackers have a basic requirement to source large amounts of
data, be it denial-of-service, scam-hosting, spam, or other malicious traffic. Second, the infras-
tructure used to support abusive campaigns must be economically viable and willing to support
the traffic. As such, attack infrastructure is often comprised of botnets or complicit service
providers – infrastructure with distinguishable connectivity (e.g., low and asymmetric band-
widths, congestion, etc) and host (e.g., older computers and operating systems, high utilization,
etc) characteritics. This basic weakness manifests in the resulting traffic stream, providing a
difficult-to-subvert discriminator as the features are related to protocols and mechanisms out-
side the control of the adversary. Crucially, this discriminative information is available at any
point along the traffic path, including not only the network ingress, but also at the receiver and
in the network core.

Because our novel method relies on previous ignored and logically orthogonal features of the
network traffic, it can be usefully combined with existing classification and detection mecha-
nisms to boost their performance or reduce load. For instance, the transport traffic technique

3

can be employed as an early reject before performing more costly deep packet inspection.

In addition to providing a new method to detect abusive traffic, our approach provides important
practical benefits. In particular, transport traffic analysis is content and IP reputation agnostic
– and is therefore privacy-preserving – permitting use in countries with strong privacy-laws, or
within the network core.

This paper explores the power of transport-layer traffic analysis to detect and characterize scam
hosting infrastructure, including botnets. Our primary contributions include:

1. A high-speed passive traffic analysis method to detect abusive infrastructure. The tech-
nique is privacy-preserving and thus may be run both at the network edge and within the
core.

2. Performance analysis of transport-layer traffic features as a detection mechanism against
large, real-world data sets. We demonstrate that it is possible to detect abusive end-points
with a classification accuracy of up to 94%, with only a 3% false positive rate, based on
the fine-grain transport features alone.

3. A detailed analysis of the robustness of our approach. We show that it remains effective in
spite of network load fluctuations due to daily network load fluctuations and the presence
of traffic intensive P2P applications.

The remainder of this paper is organized as follows. Section 2 reviews prior work, while §3
details our methodology and data collection. In §4, we demonstrate the real-world efficacy of
transport traffic analysis. We conclude in §6 with a summary of the larger implications of our
work as well as suggestions for future research.

4

CHAPTER 2:
Related Work

The increasing variety of scams and attacks generating abusive traffic is resulting in a commen-
surate amount of research in understanding and defending against such traffic. Several works
confirm that while there may be a larger number of nodes participating in the scam, much of
their functionality is simply obfuscating the true origin of the scam content. Anderson et al. first
demonstrated that a large number of nodes simply redirect or proxy traffic to a much smaller
set of hosts. Their SpamScatter [5] tool follows URLs within spam messages to their final land-
ing page where the page is rendered for image shingling. Based on image similarity metrics,
SpamScatter finds approximately 2,000 scams on 7,000 servers.

We capitalize on the SpamScatter method of extracting scam URLs from known spam on a
honeypot, but augment this set with known malware and phishing sites. More importantly, our
use of the URLs is to capture traffic during each stage of web fetching and redirection for the
purpose of identifying discriminating features.

In a similar spirit, Levchenko et al. find that the large number of nodes that funnel traffic to a
smaller set of nodes hosting content are in fact part of an even smaller set of scam campaigns and
organizations [20]. In particular, the weak point in the scam chain is monetizing clicks which
depends largely on foreign credit card processing. While this recent work reveals additional
important properties of scams, they focus on scams that involve selling products. Our traffic
based approach is more general, applicable to a variety of scams, malware, phishing, and other
types of abusive traffic including active attacks.

Other approaches rely entirely on unique properties of the URL itself, for instance detecting
that the URL was machine generated [21]. RBSeeker [16], on the other hand, differentiates
malicious sites as those that induce an abnormally large number of redirections, i.e., HTTP or
JavaScript. Unfortunately, we discover in §4.1 that redirections are common on legitimate web
sites, either as part of the Content Distribution Network (CDN) functionality, or to customize
content on per-device basis. For instance, web sites often recognize the user-agent of mobile
devices and perform legitimate redirection as a result. While whitelists can be employed to
avoid false-positives due to legitimate web sites, such lists are brittle and must be continually
maintained.

A closely related focus is finding “botnets.” Botnets are collections of compromised hosts op-
erating under common control and are particularly well-suited to provide a distributed comput-
ing platform for nefarious purposes. Existing botnet defenses have been unsuccessful largely
because the operators of botnets have a strong incentive to quickly adapt and evade defense
mechanisms. For instance, earlier approaches attempt to discover the centralized command and
control channel of botnets [12]. This traditional Achilles heel of botnets is no longer an effective
defense as modern botnets use distributed peer-to-peer control.

5

Other promising work unfortunately relies on brittle heuristics and unreliable identifiers. For
instance, Xie et al. provide a system [28] to identify and characterize botnets using an auto-
matic technique based on discerning spam URLs in email. In contrast, our approach is content
agnostic. Other research relies on IP addresses as identifiers [30]. Yet, botnet IP addresses are
highly dynamic, drawing upon a large pool of fresh addresses . Similarly, DNS is a poor iden-
tifier given the prevalence of botnet fast-flux [15] to rapidly change the DNS entries of scam
hosting infrastructure. In sum, IP and content-based techniques can, and will, be subverted by
motivated attackers.

Zhao et al. tackle the difficult problem of identifying bots that are used to signup for free web
mail from major providers as part of a scam campaign [30]. Because an individual account
may only send a few messages, from a well-known and trusted provider, they attempt to evade
detection. The BotGraph work attempts to detect such accounts by constructing large user-user
graphs and looking for tightly connected subgraph components.

Botminer an application created by Gu et al. captures communication structure from network
traffic [11] . Combined with IDS-like functionality at higher layers, they cluster hosts with sim-
ilar flows where the intuition is that bot hosts will have different communication patterns than
legitimate hosts. While our goal is similar to BotMiner, our approach is substantially different.
Rather than looking at the communication structure, we focus on properties of the traffic stream
(and we ignore source and destination IP addresses entirely). Further, we examine none of
the application-layer content. As alluded to previously, our technique could be combined with
BotMiner-like functionality where permitted by privacy constraints, or used in isolation when
required.

Finally, most closely related to the presented research, is the successful application of transport
traffic analysis to the spam reception problem. Rather than relying on IP reputation or content
inspection, statistical traffic signal characterization of the type we employ here can differentiate
between valid and spam messages on the Message Transfer Aget (MTA) with high accuracy
[6, 18, 24]. Whereas this technique has been applied to the reception of abusive messages, we
investigate the logical dual: whether traffic features can identify hosts serving abusive content.
As we will demonstrate, the technique generalizes well, but hones in on substantially different
features from those of spam identification.

6

CHAPTER 3:
Methodology

This section describes our experimental methodology, including our sample host populations,
transport traffic classification procedure, and collection of a real-world dataset on which to
evaluate our technique.

3.1 Host Populations
We gather four populations of legitimate and abusive hosts of various types. First, we manage
a spam honeypot where no valid accounts exist, thus, only messages known by definition to be
abusive arrive. Each message is processed to extract all embedded URLs. Spam messages fre-
quently contain URLs from legitimate web sites, e.g., they make use of hypertext references to
external images, style sheets, etc., residing on a legitimate company’s website in order to reduce
the spammer’s bandwidth costs or make the email appear more legitimate. We therefore filter
the URLs extracted from our honeypot against a blocklist before insertion into the database.

To obtain a wide variety of URLs for broad analysis, we include known malware domains from
two sources ([1], [2]) as well as known phishing sites collected by [3]. For legitimate URLs, we
use the Alexa [4] database. We make use of the top 20,000 most popular websites as ranked by
Alexa, as well as a random sampling of 20,000 sites from the complete Alexa one million list.
While we collect over 1.4M URLs from our honeypot, we reduce these to 9,678 fully unique
URLs by removing duplicates, duplicated domains, and whitelisted URLs.

Many of the same URLs are in the different external malware and phishing lists. The union
of the two malware lists and phishing list results in 20,013 unique URLs that we term our
“external” dataset. However, the relative unreliability of the honeypot and external abusive hosts
causes our fetcher, described next, to successfully download the content of only approximately
50-70% of URLs, as summarized in the yield column of Table 3.1. The final column in Table 3.1
shows the total number of fetches per population when including redirection chains.

Table 3.1: URL populations for data collection
Alexa Abusive

Top Random Honeypot External
Count 20K 20K 1.4M 20K
Unique 20K 20K 9.7K 20K
Yield 19.3K 19.1K 6.8K 9.4K
Total
Fetches

27.9K 25.3K 7.9K 12.5K

7

NPS

Honeypot

External:

malwaredomains

phishtank

Alexa

Spam URL Extraction

URL Filter

 DB

Agent
Collection

Agent
Collection

Agent
Collection

Agent
Collection

pcap

pcap

pcap

pcap

Sites

Figure 3.1: Data Collection: Multiple sources of abusive and legitimate URLs are probed by collection
agents (Table 3.2) with varied connectivity. Contemporaneously, collection agents capture packets.

3.2 Data Collection
Figure 3.1 illustrates our data collection process. We implement a custom URL content fetcher
and follower. To measure redirection, we follow HTTP “content moved” status codes, HTML
meta-refresh, frames, and non-obfuscated JavaScript [9]. The fetcher respects cookies and sup-
ports TLS when required, allowing us to successfully follow redirection chains where abusive
hosts attempt to employ these for protection. Our JavaScript redirection covers traditional calls
to window.location, location.href, location.replace, window.navigation
self.location, and top.location. Where JavaScript was intentionally obfuscated, we
do not follow any redirection. We discuss the prevalence of obfuscation in §3.3.

We follow all redirection chains to their end, wherever possible. For each HTTP object, we
record the ephemeral source TCP port, a timestamp, the size of the object retrieved, the parent
URL, and the current point along any redirection chain. Section 4.1 examines the types and
prevalence of redirection behavior we observe in detail.

From January 25 to 27, 2012, we deployed our fetcher on four distinct collection agents, running
FreeBSD and Linux TCP stacks, which we term “vantage points.” As detailed in Table 3.2, each
agent has different network connectivity and physical attachment points. Because we examine
detailed characteristics of the network traffic stream, including congestion and delay effects, it is
important to adequately represent a variety of potential operating environments. Our collection
agents therefore span three orders of bandwidth magnitude, different multiplexing, are located
on both east and west coasts of the United States, and connected via academic, commercial, and
residential ISPs. We examine the relative performance of each collection agent and quantify our
system’s sensitivity to legitimate sources of congestion in §4.4.

During collection, we capture all packets as pcap-formatted traces. Packets are coalesced into
bidirectional flows according to distinct tuples of: destination IP address, and ephemeral source

8

Table 3.2: Collection agents: a variety of vantage points and connectivity types that impact traffic
classification.

ID Connectivity Location
VP1 1.5Mbps Commercial CA, USA
VP2 University 1Gbps MA, USA
VP3 12/20Mbps Residential CA, USA
VP4 University 1Gbps MA, USA

TCP port. Note that this flow definition differs from that of e.g., Netflow [7] as our collection
agent’s IP addresses and the remote TCP port are fixed. As flows complete, either via an explicit
TCP termination or via a 300s timeout, we extract transport-layer features. By recording the
ephemeral port during the content fetch, we match flows to their respective content.

3.3 Fetcher Validation
While following each redirection chain, we find and record instances where exceptions occur.
Recording exceptions allows us to understand how often, and in what way, our fetcher fails to
pull content. The most common exceptions involve the initial TCP three-way handshake with
the host corresponding to the URL being fetched. These include timeouts, refused connections,
connection resets, and DNS failures. These types of error on the initial connection account for
90%, 94%, 93%, and 99% of the total exceptions, in the Alexa, Alexa random, honeypot, and
external datasets respectively.

Because most exceptions we encounter are the result of connection failure, Table 3.3 provides
columns for both all exceptions, as well as “non-connect:” exceptions caused by a fault other
than a failed connection. Examples of non-connect exceptions include bad HTTP status codes,
missing or blank redirection locations, malformed redirects, etc. Table 3.3 further divides the
frequency of exceptions among our URL populations for both the initial URL, as well as the
initial and all URLs along the redirection chain. We omit any fetches that result in an exception
from our analysis.

Surprisingly, we observe 750 exceptions among the Alexa top 20,000 sites. These include 357
timeouts, 327 DNS failures, 16 connection resets, 20 connections refused, and 11 route failures.
The remaining 20 include redirection errors. The random selection of 20,000 Alexa hosts re-
veals roughly double the exception error rate, an unsurprising result as we expect more popular
sites to be hosted on more reliable infrastructure. The exception rate among the honeypot and
external URL populations is much higher, as would be expected for abusive, unreliable infras-
tructure. Most importantly, the frequency of exceptions stemming from causes other than failed
connection is under 1% for all populations except the honeypot URLs where we see under 3%.
Thus, the majority of failures are decoupled from our fetching procedure.

To further validate our data collection system we perform manual, random sampling. We take
a sample of 250 URLs from each of the four datasets in Table 3.1 (1000 random samples in

9

Table 3.3: Fetch exceptions per population, divided by initial URL (Init) versus all URLs followed
(Init+Redir). The majority of exceptions are connection related.

Name All
(Init)

All
(Init+
Redir)

Non-
Con-
nect
(Init)

Non-
Connect
(Init+Redir)

Alexa 4% 3% 1% 1%
Alexa
Ran-
dom

8% 7% 1% 1%

Honeypot 31% 30% 3% 3%
External 53% 46% 1% 1%

total) and perform a side-by-side comparison between our fetching engine and a default Firefox
10.0 web browser with JavaScript enabled. We analyze URL and content of the final page in
the redirection chain of both the fetcher engine and web browser. In all cases, we accurately
capture instances of no redirection and redirection due to HTTP status codes or HTTP headers.

The most prevalent case of inconsistency is due to obfuscated JavaScript. Within the population
of honeypot and external URLs, we randomly sample 350 sites with JavaScript for manual
inspection. Of these, 20 (6%) contained obfuscated JavaScript using common techniques such
as hex values, splitting text with variables, etc. In general, however, the JavaScript in the abusive
sites was either clearly redirection or used for other functions.

3.4 Transport-Level Signal Analysis
The intuition behind our transport traffic analysis technique is simple. Operators of abusive
infrastructure and the perpetrators of various scams are faced with economic and policy con-
straints: they must find hosts that will support their abusive traffic at a cost that allows them to
be profitable, or otherwise achieve their objective. The resulting abusive infrastructure is there-
fore frequently either compromised hosts, for instance, rent-per-hour botnets [27], or complicit
service providers. In either case, these hosts are typically poorly connected, under-provisioned,
and overloaded (in terms of either communication or computation).

For example, botnet hosts can be home user’s computers that are unwittingly compromised,
i.e., residential machines without enterprise-level infrastructure. These botnet hosts are thus
resource constrained, both in terms of available computational power and bandwidth. More-
over, these residential Internet connections are typically links with asymmetric bandwidths,
e.g., aDSL and cable modems – links that impart distinct signatures in their traffic stream.

Similarly, complicit service providers willing to support abusive infrastructure are frequently
located in countries and companies with poor Internet connectivity, low bandwidth, limited
peering, etc.

10

Exacerbating cases of poor connectivity is the fact that botnets must send large volumes of
traffic, whether spam messages, dictionary attacks, vulnerability scans, scam website hosting, or
denial-of-service attack packets. As malicious traffic congests available capacity, local queues
form on the host operating system and residential gateway. In fact, the local buffer sizes on
residential cable and DSL modems is quite large [14]. Thus, it is reasonable to expect TCP
timeouts, retransmissions, resets, out-of-order packets, highly variable round trip time (RTT)
estimates, etc1. This traffic signature is distinguishable using statistical learning techniques.
Table 3.4 details the complete set of features we collect on a per-flow basis. Some of the features
are bidirectional, for instance packets and bytes, while others have only meaning relative to the
remote host, e.g., receiver window. The last three features, TTL value, IP “don’t fragment,”
and SYN/ACK size correspond to features typically used for passive host operating system
inference [29]. While we collect these values, we omit them from any analysis in this paper
as these are easily mutable and less fundamental than the other features which are difficult for
abusive hosts to subvert.

We therefore do not attempt to make use of reputation measures such as IP addresses, or perform
inference over IP addresses. Further, our technique does not require deep-packet inspection, a
costly measure that can be unreliable. Instead, using a transport-level approach imparts several
important benefits:

1. By analyzing the transport traffic stream, our technique is privacy-preserving and there-
fore may be run in the network core rather than at the edge. Privacy-preservation is crucial
to many environments, e.g., satellite networks, and in many political settings, e.g., current
European privacy laws.

2. The ability to run in the network core has the potential to stanch malicious traffic before
it saturates access links.

3. A fast discriminator for in-core use, or a distinct signal for boosting edge classification
performance.

4. By exploiting the root-cause of the attacks, the traffic itself, operators of abusive infras-
tructure must either acquire more nodes or send traffic more slowly; either of which
imposes cost.

3.5 Prediction
Our extracted transport traffic features are used as the input to traditional supervised, train-then-
test, learning algorithms. We describe the various methods to form predictions over the traffic
features here.

Classification and Feature Selection
The result of our feature extraction process is a per-flow (fi) feature vector xi containing each of
the values described in Table 3.4. We use a variety of well-known supervised statistical learning
algorithms, including Naïve Bayes, Decision Trees, and Support Vector Machines (SVM), as

1See [25] for a description of RSTs, FINs, congestion windows and other details of the TCP specification.

11

Table 3.4: Transport Traffic Features
Feature BiDir Description
Pkts Y Packets
Bytes Y Bytes
Rxmits Y Retransmissions
RSTs Y Packets with RST bit set
FINs Y Packets with FIN bit set
RwndInit N Initial receiver window
RwndMin N Minimum receiver window
RwndAvg N Average receiver window
Rwnd0 N Times zero window advertised
MaxIdle N Max idle time between pkts
3WHS N Initial round trip time estimate
Dur N Total flow duration
RTTVar N Variance of per-segment RTT
JitterVar N Variance of inter-packet delay
TTL N IP Time-to-live (fingerprint)
DF N IP Don’t fragment (fingerprint)
SAsize N TCP SYN/ACK pkt size, w/opts

implemented in third-party software [8]. The details of each of these algorithms is outside the
scope of this work; we employ them as tools and to evaluate their relative performance.

Specific to our testing, the SVM uses the C support vector classification algorithm, where C = 1
is the error minimization cost factor, with a radial basis kernel where γ = 1/N for N training
samples. The Naïve Bayes algorithm uses the m-estimate instead of relative frequency when
computing the class priors. Finally, the decision tree uses the information gain ratio to determine
tree splits.

Importantly, we employ 10-fold cross-validation in all experiments herein. The randomized
flow features are partitioned into ten sets. Nine of the ten sets serve as training to build the
learned model, while testing is performed on the held out fold for validation. Each fold com-
bination is averaged to provide a final performance number. In this way, we ensure that our
results generalize without respect to a particular training and testing split or the composition of
a particular training set.

Often, we wish to understand which feature is providing the most discriminative power, i.e.,
what properties of the traffic stream are predictive. Some learning algorithms, such as decision
trees, naturally provide the best features as part of their output. Others, such as SVMs, require
feature selection methods. In this paper, we make use of a variant of the Relief algorithm [19]
for feature selection that is included in our third-party software [8].

12

Performance Metrics
We use standard classification performance metrics. We canonically call an abusive host “posi-
tive” and a legitimate host “negative” to indicate disposition. Correct predictions result in either
a true positive (t p) or true negative (tn). An abusive host that is mislabeled as legitimate pro-
duces a false negative (f n), while a legitimate host misclassified as abusive produces a false
positive (f p). Note that false positives are particularly onerous as there is a high cost to block-
ing or filtering legitimate sites. As performance metrics, we consider accuracy (Acc), precision
(Pre), recall (Rec), false positive rate (FPR), and F-score:

Acc =
t p+ tn

t p+ f p+ tn+ f n
(3.1)

Pre =
t p

t p+ f p
(3.2)

Rec =
t p

t p+ f n
(3.3)

FPR =
f p

f p+ tn
(3.4)

F − score = 2
(

precision∗ recall
precision+ recall

)
(3.5)

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

CHAPTER 4:
Transport Traffic Analysis

In this section, we first discuss the relation of our approach to common Netflow records in
general, and schemes that rely on redirection behavior evident in Netflow in particular. We
examine the types and frequency of redirection we discover on our datasets, as well as different
feature distributions. Next, we apply our classification scheme to HTTP traffic gathered from
known good and abusive hosts across four different vantage points. In addition to the classifier
performance, we discuss the the most discriminative features, and the sensitivity of our model
to legitimate sources of congestion.

4.1 Netflow Limitations
Significant prior work has explored various aspects of network-level information to infer various
nefarious activity. We stress here that our approach is distinct from current practice: rather
than examining the distribution of abusive IP addresses [13], network BGP prefixes [26], IRC
channel [12] or peer-to-peer botnet signatures [11], DNS behavior [15], or web page image
shingling [5], our approach is content, name, and IP address agnostic.

Most closely related to our effort is work that uses Netflow [7] information to infer suspicious
behavior. Netflow records are created per unique flow tuple consisting of: source and destina-
tion IP address, protocol, and source and destination transport port. Each flow record contains
coarse-grained information such as total number of bytes, packets, and flow duration. Thus,
Netflow contains only a small subset of the features in Table 3.4.

One example of using Netflow records for abusive botnet host detection comes from “redirection
bot seeker,” [16] or RBseeker1. In RBseeker, Netflow records are used to identify infrastructure
bots that use redirection to obfuscate and hide the true source of abusive content.

Per-device Redirection is Common
However, an initial investigation of the Alexa top 20,000 sites suggests that redirection is be-
coming common. One root cause of legitimate redirection is websites that use redirection as
a mechanism to tailor content to the end-user’s browser and device. For example, a user on a
mobile device accessing the website of a new paper will commonly be redirected to a mobile
version of the content suitable to the device’s screen, network speed, etc.

To understand redirection due to the end-user’s device, we modify our HTTP poller to present 12
different “User-agent” strings to each of the Alexa web servers. As part of the exchanged HTTP
headers, the “User-agent” identifies the software and hardware of the requesting browser [9].

1Other schemes employ Netflow; our intent is to identify instances where fine-grained packet features are
superior to Netflow analysis.

15

20 21 22 23 24

Unique HTTP Results from Different User-Agents

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
D

F
o
f

A
le

x
a
 1

0
k

Alexa (by URL)
Alexa (by Bytes)

Figure 4.1: Redirection by per-device customization.

We test User-agent strings representing all major browsers, operating systems, and a variety of
mobile devices.

For each site, we count the total number of unique results returned in terms of redirection URLs
and bytes returned, i.e., we measure the size of the returned set. Note, we are not measuring
if there is any redirection, but rather if the final landing page is different for different devices.
Thus, if the server’s behavior is consistent (e.g., always redirecting) irrespective of the User-
agent, the set size is one. In contrast, a site that redirects users when they report to be e.g., using
a mobile device will increase the set size.

Figure 4.1 demonstrates that approximately 20% of the Alexa sites employ at least one User-
agent specific redirection. Similarly, more than 40% of the sites return different byte counts
depending on the advertised browser.

General Redirection is Common
User-agent based redirection is just one source of legitimate redirection. Next, we wish to
understand the types and prevalence of various redirection we encounter when visiting both
legitimate and known abusive web sites in Table 3.1. Note, in this analysis, our fetcher presents
only a single HTTP User-agent string to each web server.

Figure 4.2 shows the fraction of sites that perform any type of redirection for our various
datasets, as a function of vantage point. As expected, there is little difference in behavior
attributable to vantage point, with the exception of malware and honeypot sites where site avail-

16

Alexa 20k Alexa (Rand 20k) Malware/Phish Honeypot
0

10

20

30

40

50

P
e
rc

e
n
t

o
f

T
o
ta

l
In

it
ia

l
U

R
Ls

VP1
VP2
VP3
VP4

Figure 4.2: Frequency of redirection among web site populations, as observed from four vantage
points.

ability can vary instantaneously.

Surprisingly, the Alexa top 20K sites perform the most redirection, while the malware and
honeypot sites only redirect approximately 20% of the time. Thus, even if redirection were
a sufficient means by which to detect abusive infrastructure, abusive sites have compensated
and use different obfuscation techniques, e.g., proxying and DNS redirection. Note that the
Alexa database includes domains rather than specific web sites. For this analysis, we prepend
“www” to each domain before probing. Without such prepending, we observe significantly
higher redirection rates, approximately 70% for Alexa. Thus, a third source of redirection is
the common practice of users to enter the abbreviated, domain-only form of a URL, only to be
redirected to a “www” URL.

Irrespective of legitimate or abusive, when a site redirects, it overwhelmingly does so via HTTP
3xx status codes [9]. As shown in Figure 4.3, approximately 87% of the redirecting Alexa sites
uses status codes, as compared to 73% of malware and 88% of honeypot sites. Thus, the top
20,000 Alexa sites have a similar redirection character as a random selection of 20,000 Alexa
sites.

A negligible fraction of sites uses HTTP header redirection; the malware and phishing sites are
the most prominent source of such redirects, accounting for approximately 0.2%. The primary
differentiator with respect to redirection are those sites employing meta refresh and javascript
redirection. Meta refresh is a tag that is part of the HTML web page content rather than the

17

3XX HTTP META JavaScript
0

20

40

60

80

100

P
e
rc

e
n
t

o
f

T
o
ta

l

Alexa 20k
Alexa (Rand 20k)
Malware/Phish
Honeypot

Figure 4.3: Redirection technique employed when a web site redirects.

HTTP protocol, while javascript is a scripting language supported by many browsers. The
malware and phishing sites are more than twice as likely to use meta refresh and javascript as
compared to legitimate Alexa sites.

Netflow is too coarse-grained
The three primary features in e.g., [16] and other redirection detection schemes are: i) flow
duration; ii) inter-flow duration; and iii) flow size. The intuition is that redirection creates small
and fast flows (e.g., a small redirection page or status code in the HTTP header), that are closely
spaced in time (as the redirection is automated, rather than human driven).

These three features are readily available from Netflow records and RBseeker uses them in
addition to other features, e.g., the DNS, to detect redirecting bots. To better understand the
efficacy of Netflow in this role, we examine the distribution of these features in among abusive
and legitimate sites based on our collected data.

From the packet captures resulting from following URLs and fetching content from the sources
detailed in Table 3.1, we generate Netflow records. We then examine the time duration and total
bytes of the first flow for any given URL fetched. When a site has one or more redirections, we
measure the inter-flow duration, or time between successive flows corresponding to an origin
URL.

Figure 4.4 plots the cumulative fraction of each of these Netflow features as observed in our
three datasets: the Alexa hosts, external abusive hosts, and our honeypot-gathered scam hosts.

18

0 2 4 6 8 10
Flow Duration (s)

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

Alexa
Abusive
Scam Hosts

(a) Duration

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Interflow Duration (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Alexa
Abusive
Scam Hosts

(b) Interflow Duration

0 20000 40000 60000 80000 100000
Flow Size (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Alexa
Abusive
Scam Hosts

(c) Bytes

Figure 4.4: Distribution of features available from Netflow evident in our datasets.

We see that the total time duration (4.4(a)) and interflow durations (4.4(b)) are largely indistin-
guishable between the legitimate and abusive sites. While the total number of bytes of Alexa
hosts is generally larger and has a longer tail (4.4(c)), the results are again quite similar.

Redirection is only one potential means that abusive infrastructure utilizes to remain hidden and
protected; proxies are a second. In addition to the relative lack of differentiation afforded by
redirection, such techniques cannot detect proxies.

Thus, our fundamental contention is that fine-grained transport traffic data offers specific bene-
fits over the current practice of using Netflow records to detect abusive behavior, without com-
promising privacy or processing performance. We validate this assertion next.

4.2 Discriminative Features
Next, we perform basic data exploration to understand which features are likely to be discrim-
inative, as well as to substantiate or disprove our intuitions over abusive host traffic. We also
wish to understand the utility of each different traffic feature in relation to the point along any
redirection chain. We therefore divide our redirection chain analysis into: “initial,” “intermedi-
ate,” and “terminal,” corresponding to the first URL, the set of any intermediate URLs due to
redirection, and the final landing page due to any redirection.

Timing, including initial RTT as inferred from the TCP three way handshake, as well as the
RTT variance, inter-arrival time variance (jitter), and maximum idle time over the sequence of
packets is one powerful aspect of our approach not available in coarse-grained Netflow. We first
examine the distribution of initial RTTs among the different website populations in Figure 4.5.

Somewhat surprisingly, we see little initial RTT difference between legitimate and abusive web-
sites. To better understand this initial RTT phenomenon relative to our United States van-
tage points, we perform a basic continent geolocation of hosts in each population using Max-
Mind [22]. Table 4.1 shows two interesting facts: first, continental host distribution varies little
among abusive and legitimate sites, suggesting that location or RTT-based techniques cannot
suffice to identify abusive hosts. Second, North America dominates across all populations, with

19

0.00 0.05 0.10 0.15 0.20 0.25
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n
 o

f
Fl

o
w

s

Initial

3WHS (Initial)

Alexa
Malware/Phish
Honeypot

0.00 0.05 0.10 0.15 0.20 0.25
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n
 o

f
Fl

o
w

s

Intermediate

3WHS (Intermediate)

Alexa
Malware/Phish
Honeypot

0.00 0.05 0.10 0.15 0.20 0.25
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n
 o

f
Fl

o
w

s

Terminal

3WHS (Terminal)

Alexa
Malware/Phish
Honeypot

Figure 4.5: Distribution of initial RTT from TCP three way handshake among different website
populations.

Table 4.1: Continental distribution of host populations
Alexa Abusive

Top Random Honeypot External
NA 50.9 50.6 51.0 51.6
EU 29.5 34.2 35.4 31.1
AS 17.0 12.5 12.1 7.3
SA 1.6 1.6 0.3 7.3

0.00 0.01 0.02 0.03 0.04 0.05
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n
 o

f
Fl

o
w

s

Initial

RTT Variance (Initial)

Alexa
Malware/Phish
Honeypot

0.00 0.01 0.02 0.03 0.04 0.05
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n
 o

f
Fl

o
w

s

Intermediate

RTT Variance (Intermediate)

Alexa
Malware/Phish
Honeypot

0.00 0.01 0.02 0.03 0.04 0.05
Seconds

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 F

ra
ct

io
n
 o

f
Fl

o
w

s

Terminal

RTT Variance (Terminal)

Alexa
Malware/Phish
Honeypot

Figure 4.6: Distribution of RTT variance among different website populations.

between 50-52% of the hosts.

We therefore next turn to the variance of RTT samples, as inferred by our technique. Figure 4.6
shows that RTT variance is a strong indicator for abusive hosts of scam infrastructure as dis-
covered by our honeypot, especially for the initial and terminal URL. Whereas the variance is
consistent across the legitimate redirection chain, we observe different characteristics for abu-
sive hosts.

As a final example, we discover that the receiver window is a strong differentiator of abusive
versus legitimate hosts. Recall that the TCP receiver window provides flow-control (which is
different than congestion-control): a host that is unable to read from its local socket buffer
quickly enough can slow the remote source to prevent overrun.

20

0 50000 100000 150000 200000
Bytes

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n
 o

f
Fl

o
w

s

Initial

Avg Receiver Window (Initial)

Alexa
Malware/Phish
Honeypot

0 50000 100000 150000 200000
Bytes

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n
 o

f
Fl

o
w

s

Intermediate

Avg Receiver Window (Intermediate)

Alexa
Malware/Phish
Honeypot

0 50000 100000 150000 200000
Bytes

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n
 o

f
Fl

o
w

s

Terminal

Avg Receiver Window (Terminal)

Alexa
Malware/Phish
Honeypot

Figure 4.7: Distributions of average TCP receiver window size among different website populations.

We collect the initial receiver window value, its average, maximum, and the number of times
it goes to zero. All values are scaled appropriately given TCP window-scale options [17]. Fig-
ure 4.7 shows the distribution of average receiver window sizes among the different populations
for different stages of the redirection chains.

Perhaps counter-intuitively, the receiver window sizes are smaller for the legitimate Alexa web
sites. A detailed exploration of this phenomenon reveals that it is due mainly in part of the
advanced receiver window auto-tuning features present in modern server operating systems.
Because legitimate servers are often quite busy, and are sending much more traffic than they are
receiving, the operating system elects to allocate minimal buffer space to the socket to conserve
resources. Further, the values that regulate receiver buffer sizes are a function of available
network subsystem memory. Specifically, Linux exposes these parameters via tunable sysctls:
tcp_moderate_rcvbuf (since Linux 2.4.17 and 2.6.7) and tcp_rmem (since Linux 2.4).
Other operating systems perform similar optimizations.

Thus, the receiver window is a powerful method by which to identify busy, well-provisioned
servers. The other receiver window features, including minimum and maximum also serve
to identify properties of the end-system and the load it is under. For example, old operating
systems – common among compromised residential hosts – do not perform any window scaling,
and therefore are immediately identifiable by this feature alone.

4.3 Classification Performance Results
Given the encouraging results from the aforementioned discriminative features, we run the three
binary classification, supervised learning algorithms across different combinations of legitimate
and abusive hosts in our population (Table 3.1), for traffic as observed at our four different
vantage points (Table 3.2).

In assessing classification performance, all of the metrics in §3.5 are important to consider. For
instance, accuracy is misleading if the underlying class prior is heavily skewed, e.g., if there
are many more legitimate than abusive hosts being classified. Precision therefore measures, for
hosts predicted as abusive, the fraction that are truly abusive, as determined by the population

21

Table 4.2: Transport traffic classification performance
Acc Pre Rec FPR

Alexa vs. External 0.87 0.77 0.68 0.09
Alexa vs. Honeypot 0.94 0.84 0.81 0.03
Alexa Rnd vs. External 0.80 0.73 0.62 0.11
Alexa Rnd vs. Honeypot 0.94 0.85 0.80 0.03

Table 4.3: Transport traffic F-scores (harmonic mean of precision and recall) using decision trees
across vantage points and combinations of legitimate and abusive sites

VP1 VP2 VP3 VP4
Alexa vs. External 0.72 0.71 0.73 0.72
Alexa vs. Honeypot 0.83 0.81 0.82 0.83
Alexa Rnd vs. External 0.65 0.67 0.67 0.67
Alexa Rnd vs. Honeypot 0.81 0.81 0.81 0.83

from which they originated. Recall measures the influence of misclassified hosts, i.e., is a metric
of the classifier’s ability to detect abusive hosts. Specificity, or true negative rate, determines
how well the classifier is differentiating between false positives and true negatives.

Our testing reveals that the decision tree learner performs better than either the Naïve Bayes or
SVM. We therefore present only results from the decision tree in the remainder of the results.
Table 4.2 shows our performance results for different combinations of legitimate and abusive
sites using decision trees for VP4. Our first observation is that the transport features can dif-
ferentiate the set of abusive hosts gathered from the honeypot better than the external malware
and phishing sites. Whereas we achieve a 94% accuracy classifying abusive traffic from the
honeypot sites, the external sites give an 87% accuracy.

Second, the Alexa top 20,000 represents well-provisioned hosts and sites supporting large vol-
umes of traffic and commercial customers. As such, compared to a random sampling of 20,000
Alexa hosts, the top 20,000 provide a better basis for classifying legitimate hosts.

Next, we examine the classification F-scores for each of our four vantage points. Because there
is a natural tension between achieving high precision and high recall, the commonly used F-
score metric takes the harmonic mean of precision and recall. Table 4.3 shows that the F-scores
are consistently better for the honeypot sites, across all vantage points. Further, performance
for all datasets remains consistent across vantage points, implying that the technique works well
for a variety of different connection types and physical locations.

Thus, against traffic from the abusive hosts supporting websites as discovered in our honeypot,
we reliably achieve greater than 90% accuracy with less than a 4% false positive rate. These
results suggest that transport traffic analysis can greatly aid existing schemes by providing a
method that is largely orthogonal, hence boosting performance. Further, as previously dis-
cussed, transport traffic features are difficult for adversaries to subvert. We leave analysis of the

22

combination of transport classification and existing schemes to future work.

4.4 Congestion Sensitivity
A natural concern with our approach is that the traffic features we extract are often indicative
of congestion, suggesting that legitimate hosts experiencing congestion might be misclassified
as abusive. To better understand the sensitivity of our technique, we analyze the traffic of
legitimate hosts that are congested with real-world BitTorrent traffic. BitTorrent is attractive as
it allows continuous testing to explore time-of-day effects, is bursty, and exchanges traffic with
many peers simultaneously.

We setup the experiment detailed in Figure 4.8. Our three vantage points are each configured
with an instance of the Apache HTTP daemon and a BitTorrent client. Note, in contrast to
our previous use of vantage points (VP1-3) to collect traffic, we now use these same hosts as
candidate “legitimate” web hosts.

Torrent
Peer

monitor
torrent

HTTP Fetcher

VP1

VP3

Dedicated T1

b) probe abusive

a) probe VP1

Residential Cable

Traffic
AnalysisTorrent

Peer

Apache

Apache

Apache

Torrent
Peer

fetcher /
controller

Gigabit

Gigabit

VP2

BitTorrent

httpd

BitTorrent

BitTorrent

Known Abusive Host

Figure 4.8: Test and Setup

The BitTorrent client seeds many public, legal Torrents. Recall that each of the vantage points
reside on networks with varying access connectivity, so that we may test different real-world
congestion scenarios.

A centralized controller performs two functions. First, it continuously monitors the aggregate
upload rate of each of the vantage points, as this rate varies depending upon Torrent load.
Second, it fetches HTTP content from both the vantage point servers as well as a list of known
abusive hosts. We analyze the traffic features of the two classes: legitimate but congested flows,
versus abusive flows resulting from collection.

23

50 70 90 110 130 150 170 190 210
Background Upload Speed (KB)

0.75

0.80

0.85

0.90

0.95

1.00

1.05
A

cc
u
ra

cy

Bayes
Tree
SVM

(a) VP1 (T1)

50 100 150 200 250 300 350 400 450 500
Background Upload Speed (KB)

0.75

0.80

0.85

0.90

0.95

1.00

1.05

A
cc

u
ra

cy

Bayes
Tree
SVM

(b) VP2 (Gigabit)

50 100 150 200 250 300 350 400 450
Background Upload Speed (KB)

0.75

0.80

0.85

0.90

0.95

1.00

1.05

A
cc

u
ra

cy

Bayes
Tree
SVM

(c) VP3 (Cable)

Figure 4.9: Transport traffic analysis performance as a function of background congestion and link
connectivity.

Figure 4.9 depicts the transport traffic analysis performance, measured by F-score, as a function
of background congestion and link connectivity. Note that the physical link characteristics of
VP1 and VP3, a dedicated T1 and residential cable respectively, place an upper-bound on our
background Torrent upload rate. We were unable to saturate VP2, which has a Gigabit link.

Perhaps counter-intuitively, our classification performance remains high in the face of back-
ground traffic. More surprisingly, the performance appears to be insensitive to the level of
background traffic. Across all background traffic levels, we continue to see that the receiver
window features are most discriminatory as these are insensitive to background cross-traffic.
However, we find that other discriminative features involved in the classification change as a
function of the background traffic – emphasizing the power of the statistical learner: as one
feature yields less power, others provide more information. For instance, as background traf-
fic increases, the maximum idle time, jitter, and RTT variance become more important in the
classification decision.

Finally, we examine the effect of the fetched object size and time-of-day. While we might expect
worse classification performance when larger objects are fetched in the presence of background
traffic, as doing so might exacerbate the congestion, we find that the classification performance
does not depend on the object size. Similarly, overall network traffic is well-known to vary
as a function of time-of-day. Again, we see the set of features change as a function of time-
of-day. For example, the total number of retransmissions is much more powerful during the
evening, off-peak hours as compared to peak hours. However, we do not observe the classifica-
tion performance varying as a function of the hour of the day the flows are collected, as shown
in Figure 4.10.

4.5 Overhead
Finally, we examine the performance impact of our transport traffic collection agent, as com-
pared to industry-standard Netflow. To mimic the overhead of Netflow, we employ two open-
source tools: flowtools as a Netflow collection agent [10], and softflowd [23] to read a pcap
capture file, create flows, and export them to the flowtool collector.

24

0 3 6 9 12 15 18 21 24
Time of Day (Local)

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu

ra
cy

Bayes
Tree
SVM

Figure 4.10: Transport traffic analysis performance as a function of time-of-day

We use the same real-world pcap capture file for testing both Netflow and our collection agent.
The file contains approximately 2M packets, gathered over 10 hours, with an average flow 55
bytes transforming in 3.3 seconds. For each tool, we use the UNIX time utility to measure
total time elapsed and estimate computational overhead.

Our transport traffic analysis capture requires 1.83s, while softflowd takes 1.13s. The flowtools
capture program uses negligible resources, taking only 0.06s of system time. Thus, we approx-
imate total time for Netflow as the sum: 1.19s. Extrapolating these numbers, our un-optimized
collection agent can process more than 1M packets per second. With further optimization, and
dedicated hardware support, we believe much higher packet rates are possible.

Thus, although per-packet captures are considered infeasible due to the large storage overhead,
the extra computational cost of maintaining the additional fine-grained features we leverage in
this work is minimal.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

CHAPTER 5:
Discussion

The transport traffic features we explore are low-level: some are inherent to the environment,
e.g., cross-traffic, packet reordering, timing, etc, whereas other are specific to the end-system,
e.g., receiver window behavior, congestion etc. These features are therefore impossible or diffi-
cult to modify without detection.

An abusive host might attempt to measure its available uplink bandwidth in order to rate limit
its traffic. However, the dynamic properties of the network, and high-levels of statistical mul-
tiplexing on commodity connections imply that such efforts will be unreliable. Other aspects,
such as the receiver window behavior require operating system and kernel modifications that
are hard to effect. “Low-and-slow” type of stealth strategies [16] may be effective in evading
our transport traffic technique, but impart a signficant cost on abusive infrastructure as it must
be more widely distributed to achieve reasonable aggregate rates.

A natural question is whether the proposed method can detect not just abusive infrastructure,
but bots and botnets specifically. Across our malicious host populations, we perform reverse
DNS (PTR record) lookups. For each, we use a set of heuristics to determine whether the DNS
name corresponds to a residential connection or not. We use an existing tool containing a list of
keyword heuristics, e.g., “cable,” “dsl,” etc.

Surprisingly, only 2% of the unique IPs are inferred as residential based on the DNS name
heuristics. Another approximately 37% have no DNS PTR record. The remaining 61% are
inferred as non-residential. We then use our classifiers to attempt to differentiate between resi-
dential and non-residential abusive hosts. While we achieve very high accuracy, approximately
97% using decision trees and Naïve Bayes, this level of accuracy is due only to the large imbal-
ance in data complexion. The F-score is poor, at only 9%. We leave the investigation of finding
bots among the abusive hosts for future work.

Finally, while this paper does not focus on network congestion, we recognize that the host
processing load may have a significant impact on several transport traffic characteristics such
as the initial RTT and RTT variance. Intuitively, most Alexa web sites would experience higher
levels of server load than malicious ones because of their much larger customer bases. This may
explain why the abusive hosts exhibit better initial RTTs at the beginning and middle stages of
the redirection chain, as illustrated in Figure 4.5. We plan to perform further experiments to
better understand this phenomenon.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

CHAPTER 6:
Conclusions

This paper explores a new passive traffic analysis approach to detecting abusive infrastructure
that does not rely on content inspection, sender reputation, or communication papers. Rather,
we show a promising approach based on fine-grained transport traffic features, as opposed to
existing Netflow analysis methods.

Our results demonstrate that per-packet TCP header and timing information alone can detect
characteristics of abusive traffic, and hence suggests at a variety of means to detect and block
abusive infrastructure. This IP address and content agnostic approach can be more widely
deployed than previously possible, for instance in networks or countries with strict privacy
constraints.

In future work, we plan to understand the power of combining methods, for instance using trans-
port features as part of a multi-stage hypothesis test. We note that many of the flows we examine
are short-lived, consisting of few packets and few total RTTs. We wish to explore strategic use
of the TCP maximum segment size variable, along with other low-level TCP mechanisms, to
gather more packets across longer time scales in order to improve our classification perfor-
mance. Finally, we hope to apply the transport traffic analysis method to detecting automated
attacks against legitimate web sites, including CAPTCHA solvers, vulnerability scans, etc.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

REFERENCES

[1] Malware Domain Black Hole DNS Sinkhole, 2012. http://www.
malwaredomains.com/.

[2] Malware domain list, 2012. http://www.malwaredomainlist.com/.

[3] Phish tank, 2012. http://www.phishtank.com/.

[4] Alexa. Top 1,000,000 sites, 2012. http://www.alexa.com/topsites.

[5] David S. Anderson, Chris Fleizach, Stefan Savage, and Geoffrey M. Voelker. Spamscat-
ter: characterizing internet scam hosting infrastructure. In Proceedings of 16th USENIX
Security Symposium, pages 10:1–10:14, 2007.

[6] Robert Beverly and Karen Sollins. Exploiting transport-level characteristics of spam. In
Proceedings of the Fifth Conference on Email and Anti-Spam (CEAS), August 2008.

[7] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informational),
October 2004.

[8] Janez Demšar, Blaž Zupan, Gregor Leban, and Tomaz Curk. Orange: From experimen-
tal machine learning to interactive data mining. In Knowledge Discovery in Databases:
PKDD 2004, volume 3202, pages 537–539. 2004.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June 1999.

[10] Mark Fullmer and Steve Romig. The OSU Flow-tools Package and Cisco NetFLow Logs.
In Proceedings of the 14th USENIX Large Installation Systems Administration Conference
(LISA), December 2000.

[11] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. Botminer: Clustering analysis
of network traffic for protocol- and structure-independent botnet detection. In USENIX
Security Symposium, pages 139–154, 2008.

[12] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer: Detecting botnet command and
control channels in network traffic. In Proceedings of the 15th Annual Network and Dis-
tributed System Security Symposium (NDSS’08), February 2008.

[13] Shuang Hao, Nadeem Ahmed Syed, Nick Feamster, Alexander G. Gray, and Sven Krasser.
Detecting spammers with snare: spatio-temporal network-level automatic reputation en-
gine. In Proceedings of the 18th conference on USENIX security symposium, 2009.

31

[14] Seppo Hätönen, Aki Nyrhinen, Lars Eggert, Stephen Strowes, Pasi Sarolahti, and Markku
Kojo. An experimental study of home gateway characteristics. In Proceedings of the 10th
annual conference on Internet measurement, IMC ’10, pages 260–266, 2010.

[15] Xin Hu, M. Knysz, and K.G. Shin. Measurement and analysis of global ip-usage patterns
of fast-flux botnets. In INFOCOM, 2011 Proceedings IEEE, pages 2633 –2641, April
2011.

[16] Xin Hu, Matt Knysz, and Kang G. Shin. Rb-seeker: Auto-detection of redirection bot-
nets. In Proceedings of 16th Annual Network and Distributed System Security Symposium,
2009.

[17] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance. RFC
1323 (Proposed Standard), May 1992.

[18] Georgios Kakavelakis, Robert Beverly, and Joel Young. Auto-learning of SMTP TCP
Transport-Layer Features for Spam and Abusive Message Detection. In Proceedings of the
25th USENIX Large Installation Systems Administration Conference (LISA), December
2011.

[19] Kenji Kira and Larry A. Rendell. A practical approach to feature selection. In Proceedings
of the ninth international workshop on Machine learning, ML92, 1992.

[20] Kirill Levchenko, Andreas Pitsillidis, Neha Chachra, Brandon Enright, Márk Félegyházi,
Chris Grier, Tristan Halvorson, Chris Kanich, Christian Kreibich, He Liu, Damon McCoy,
Nicholas Weaver, Vern Paxson, Geoffrey M. Voelker, and Stefan Savage. Click trajec-
tories: End-to-end analysis of the spam value chain. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy, SP ’11, pages 431–446, 2011.

[21] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying suspi-
cious urls: an application of large-scale online learning. In ICML, 2009.

[22] Maxmind. Maxmind ip geolocation, 2012. http://www.maxmind.com.

[23] Damien Miller. Softflowd: A software netflow probe, 2012. http://www.mindrot.
org/projects/softflowd/.

[24] Tu Ouyang, Soumya Ray, Michael Rabinovich, and Mark Allman. Can network charac-
teristics detect spam effectively in a stand-alone enterprise? In Proceedings of the 12th
Conference on Passive and Active Network Measurement, March 2011.

[25] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981. Updated
by RFC 3168.

[26] Anirudh Ramachandran and Nick Feamster. Understanding the network-level behavior of
spammers. In Proceedings of ACM SIGCOMM, September 2006.

32

[27] Mathew Schwartz. Pssst...Want to Rent a Botnet?, 2010. http://www.
darkreading.com/security/vulnerabilities/225200525.

[28] Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigrahy, Geoff Hulten, and Ivan Osipkov.
Spamming botnets: signatures and characteristics. SIGCOMM Comput. Commun. Rev.,
38(4):171–182, 2008.

[29] Michal Zalewski. Passive OS fingerprinting tool, 2003.
http://lcamtuf.coredump.cx/p0f.shtml.

[30] Yao Zhao, Yinglian Xie, Fang Yu, Qifa Ke, Yuan Yu, Yan Chen, and Eliot Gillum. Bot-
graph: large scale spamming botnet detection. In NSDI’09: Proceedings of the 6th
USENIX symposium on Networked systems design and implementation, pages 321–334,
2009.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

35

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Research Sponsored Programs Office, Code 41

Naval Postgraduate School
Monterey, CA 93943

4. National Science Foundation
Arlington, VA 22230

	Introduction
	Related Work
	Methodology
	Host Populations
	Data Collection
	Fetcher Validation
	Transport-Level Signal Analysis
	Prediction

	Transport Traffic Analysis
	Netflow Limitations
	Discriminative Features
	Classification Performance Results
	Congestion Sensitivity
	Overhead

	Discussion
	Conclusions

