
Engineering Secure Systems

JANUARY/FEBRUARY 2011 1540-7993/11/$26.00 © 2011 IEEE COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES 31

Lessons Learned from Building
a High-Assurance Crypto Gateway

The construction of a complex secure system composed

from both secure and insecure components presents

a variety of challenges to the designer. The example

system described here highlights some lessons learned

from first-hand experience in attempting such a task.

Clark
Weissman

Independent
Consultant

TimoThy
e. levin

Naval
Postgraduate
School

I n surveying a dozen developing security prod-
ucts in the mid-2000s, it appeared that they all
satisfied the basic security requirement for han-
dling national security information (National

Security Telecommunications and Information Sys-
tems Security Committee [NSTISSC] Policy 11),
which is that they had been “evaluated and validated”
in accordance with National Information Assurance
Partnership (NIAP; www.niap-ccevs.org/cc-scheme)
or other security criteria. However, we found that ad-
ditional untrusted code was needed to integrate these
products with their deployment environments, result-
ing in uncertified end systems in each case. This broad
deficiency presented a challenge: to build a complete
system that met the highest requirements of both Poli-
cy 11 and the NIAP scheme. In our combined 75 years
of experience in the security R&D community, we’ve
witnessed almost every new approach to building se-
cure systems that has seen the light of day. The most
meritorious were cumulative efforts that extended the
science of computer security, ultimately providing a
broad menu of technologies with which to address the
challenge. Thus armed, a new project emerged with
considerable enthusiasm and optimism, forming the
background for the several lessons we describe here.

The goal of the Encryption-box Security System
(eSS) project was to produce a trusted hardware
foundation (see the “Trusted Components” sidebar)
that could be applied to any IP-based network of
host computers.1 In an eSS, the hosts are called
arbitrary application processors (AAPs). An eSS adds
a trusted network security controller (NSC) that

defines a security policy over
network communications, and
trusted encryption gateways (see G
in Figure 1) that control network
access by each AAP and NSC and encrypt the related
session traffic. The NSC policy establishes each
AAP’s security level and determines which pairs of
AAPs are allowed to communicate, consistent with
the security levels. The NSC provides the encryption
gateways of each such pair with a unique session key.
The design of the encryption gateways is simplified
by treating AAPs and NSCs equivalently, as hosts.
In fact, the key management and encryption actions
of the gateways don’t require any special input from
the hosts. An encryption gateway simply renders all
outgoing cleartext (red) messages into encrypted
(black) network messages and renders all incoming
(black) messages into cleartext (red) messages, based
on the session keys. The NSC, AAPs, and encryption
gateways can also detect security faults and generate
messages for an audit server, if one is present. The eSS
design supports the inclusion of a third-party audit
server, which is simply another AAP.

The rest of this article uses the lessons learned in
building eSS to shed light on several high-trust secu-
rity engineering challenges found in the past 50 years,
presented here in terms of secure architecture, secure
implementation, and trustworthy development issues.

Secure Architecture
Most modern large-scale systems employ a complex
organization of distributed components, described

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Lessons Learned from Building a High-Assurance Crypto Gateway

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Engineering Secure Systems

32 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

variously as a network of networks, a system of sys-
tems, and so on. Each stand-alone node can also be
comprised of individual functional components such
as modules, layers, and programs. Key concepts for se-
curity analysis of complex distributed systems include
the security perimeter, the allocation of policies to
specific components, and the security policy domain.
Each trusted computing base (TCB) has a security
perimeter; one or more TCBs (or subnetworks) with
common policies can comprise a security policy do-
main. A policy domain helps enforce a set of security

policies including information flow (noninterference),
mandatory access control (MAC), and discretionary
access control (DAC), as well as supporting policies
such as audit and login.

The enforcement of a given policy element within
a policy domain can be allocated to a selected com-
ponent. For example, the audit storage and protection
policy can be centralized in one component, and the
DAC policy might be allocated to another compo-
nent. The eSS architecture allocates the MLS policy
decisions to the NSC, and MLS policy enforcement
to the encryption gateways, similar to John Rushby’s
trusted network interface unit.2 Although the NSC
could equally enforce any policy regarding access to
host-to-host messages, one of the eSS’s first-order re-
quirements was the ability to support the US national
confidentiality lattice (ordered security labels such as
“top secret” [TS], “secret” [S], “confidential” [C], and
“unclassified” [U], which can be combined with the
power set of nonordered categories as a cross prod-
uct),3 a form of MLS.

eSS MLS Design Decisions
The designation of particular security labels to vari-
ous system components is a critical design decision for
an MLS network security architecture (see Figure 1).
The simplest decision is the labeling of the AAP hosts
within the architecture because of the design decision
that each AAP would have a static label.

The choice of level for encrypted information plays
a key role. In this project, the developers made two
design decisions to keep the system simple. The first
was that all black data and components would have the
same level; to do otherwise—for example, to label each
encrypted datum at its native data level—would result
in a multilevel network and the need for trusted rout-
ers and other intermediate components. The second
decision was that the level of black data and network
components would be U, meaning that the network
itself could be protected as unclassified. In other words,
it would be acceptable to the security policy if any
component on the network could read any (encrypt-
ed) data on the network, and unclassified components
could write to the network (this could support, for
example, allowing U elements to use the network for
unencrypted traffic). To choose a label other than U
for black components would have required protecting
the network from access by unclassified components.
A similar analysis holds when you consider an integrity
policy: if all black data were labeled with the lowest
integrity level, low-integrity components could both
read from and write to the network.

An encryption gateway separates an AAP’s red data
and actions from the black network. Internally, the
encryption gateway is divided into a black and a red

G

G

G

G

AAP

AAP

NSC

G

Network
[U]

G

G

MLS

AAP

[U – S]

[U – S]

[U]

[U – S]

[U – TS]

[U – TS]
[U – TS]

[S]

[U]
[U] [S]

[U]

[TS]

[S]

[S]

[U]

[S]

Internal device, labeled SECRET

AAP

AAP

[S]

[U – S]

Figure 1. Encryption-box Security System (eSS). Each arbitrary application

processor (AAP) operates at a single security level, in this case, [S]. The

encryption gateway [G] operates at the security levels of both its attached

AAP and the network [U].

Trusted Components

A component of a network security architecture may trust, or depend

on, another component to perform certain functions. The trustwor-

thiness of the first component is, then, limited by the trustworthiness of

the other. A trusted component must be verified as being worthy of that

trust with respect to some criterion for trustworthiness that, itself, has

been vetted to reflect the concerns of the information stakeholders. The

trust can range from incidental to security critical. The greater the trust in

a component, the more rigorous its trustworthiness must be verified. For

example, in an MLS system, a component that reads and writes a wide

range of information sensitivity levels must be verified to the highest

degree to perform only the intended data movements, since the system

itself depends on the component to maintain the security policy. For the

Common Criteria, the highest degree is EAL7, which corresponds gener-

ally to a TCSEC classification of A1.

Engineering Secure Systems

 www.computer.org/security 33

side. The red side manages the AAP traffic and en-
crypts cleartext data and places it in black-side mes-
sage buffers. The black side then employs the IPsec
protocol stack to process the message for output to the
network. Thus, the encryption gateway is allocated
a security level (such as [U – S]) that spans that of its
AAP (for example, [S]) and that of the network ([U]),
resulting in a multilevel device (see “MLS AAP” in
Figure 1).

The typical AAP is assigned a single sensitiv-
ity level and bears no responsibility for supporting
the eSS MLS policy. The eSS can support multilevel
AAP components, which would be somewhat more
complex. For example, an AAP host might be as-
signed a security level range from U to TS and is then
trusted to keep separate the individual levels within
that range, U, C, S, and TS. To support separation,
a different encryption gateway is used for each sepa-
rate security level that’s configured for the AAP, with
a single-level internal device to interface with each
gateway. This approach avoids the need for multilevel
internal devices.

There are relatively few choices of accredited,
high-assurance MLS platforms for hosting an MLS
AAP, including Integrity and GEMSOS (http://
NIAP-CCEVS.org/CC-Scheme/VPL/). However,
designers should be wary about attempting to build
their own trusted host component: it’s possible, but
only at a considerable cost in labor and time (years).

The eSS project created a formal security policy
model in the Alloy language, along with a formal
specification and operational code to match the mod-
el.4 We crafted the architecture to minimize the num-
ber of trusted components—for example, only the
AAP and the encryption gateway on the red side are
exposed to classified information. For the encryption
gateway device, we employed high-grade encryption
algorithms (AES256 and HMAC SHA-1) that satis-
fied the US National Institute of Standards and Tech-
nology’s Federal Information Processing Standards
Publication 140-2 (csrc.nist.gov/publications/fips/
fips140-2/fips1402.pdf).

Two-Way MLS Communication
One of the toughest challenges in designing a dis-
tributed MLS architecture is how to handle two-way
protocols for transmission of information between
components with heterogeneous security levels. Most
communication protocols include data flow in both
directions, if only to acknowledge message receipt.
However, lattice-based security policies such as those
described by the Bell-LaPadula (B&L) model allow
only one direction of flow between components of
different levels.5 For example, data may flow from S to
TS, but not from TS to S. The contradiction between

the communication protocols’ needs and the policy’s
restrictions is at the root of many design challenges.

Internet Control Message Protocol (ICMP). Our first
product version was incomplete because we forgot to
provide for the standard ICMP health messages—the
pings—that travel between an endpoint such as the
AAP and one of the network routers. In addition to
the problem that the black-side router is unclassified
and the red-side AAP generally is not, ICMP raised
a major design issue of communication between en-
crypted and non-encrypted data domains.

An ICMP/IPsec stack resides on each router, en-
cryption gateway, NSC, and AAP. For each communi-
cating pair, the ICMP component on one end generates
queries that are responded to by the IP stack on the
other end of the pair. As Figure 2a shows, the problem
is that the router components don’t know the encryp-
tion keys with which to talk to the AAP (see line of
communication marked “1”)—likewise, the encryp-
tion gateway would encrypt an AAP response (“2”).

This became a show stopper because the only so-
lution appeared to be to allow high-to-low message
flow, a significant violation of the eSS security policy.

[S][U] [U – S](a)

1
2

Transform

AAPRouter Gateway

[S]ICMP [U]

IP [U]

ICMP [S]

IP [S]

[S][U] [U – S](b)

AAPRouter Gateway

Encrypted data Cleartext data

[S]ICMP [U]

IP [U]

ICMP [U]

IP [U]

ICMP [S]

IP [S]

Figure 2. Internet Control Message Protocol (ICMP) query problem. In this

example, incoming ICMP messages (shown as line 1 in (a)) cross from U to

S, and require a decryption operation. Similarly, response messages (shown

as line 2) cross from S to U, and require an encryption operation. (b) The

alternative short-circuits the need for cross-domain communication and

related cryptographic transformation by resolving ICMP messages in the U

side of the gateway, simplifying the design and avoiding the policy violation

of S to U communication.

Engineering Secure Systems

34 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

To solve this, we established an ICMP/IPsec stack on
both sides (red and black) of each encryption gate-
way. The encryption gateway’s black-side IPsec stack
intercepts and responds generically (“no op”) to any
ICMP query from a router to the associated AAP.
Similarly, the encryption gateway’s red-side IPsec
stack intercepts and responds to a query from the clas-
sified AAP to a router (the solution is also simplified
when the AAP is U—in which case, the encryption
gateway passes ICMP messages to the AAP host for
its red-side IPsec stack to respond to the query—or
when ICMP communication goes between two AAP
end system at the same security level). This eliminates
the need for two-way communication across security
levels and resolves the violation of security policy on
the secure network.

Covert channels. A “covert channel” is a means of
signaling over a mechanism that was not intended for
communication, which violates the security policy.
Illicit access to an explicitly exported data object is
considered a design flaw, whereas covert channels are
based on the modulation of internal values or meta-
data by a high-sensitivity source AAP, which is visible
to a low-sensitivity sink AAP. A complete security
design results in complete virtualization of shared
resources in which there are not any extraneous in-
ternal attributes that could be used to covertly signal
from high to low. When complete virtualization is
not possible, the goal is to narrow covert channels to
acceptable levels. According to historical guidance,6,7
storage channels above 100 bps must be closed; covert
storage channels that are less than 10 bps are accept-
able; covert storage channels of 10 to 100 bps should
be audited for misuse; and covert timing channels,
which are very difficult to close without crippling sys-
tem performance, must be audited.

Shared, exported resources. In eSS, the only shared,
exported resources are the messages flowing through
the network, which comprise the data objects of the
access control policy. The first order concern of the
design was to ensure that the access control over these
objects was complete and correct. The next concern
was whether message attributes could be modulated
to create a covert channel. An easy modulation
mechanism is the message length, which can be visible
to unclassified network components such as routers.
eSS closes that channel by ensuring messages are of a
standard length. A timing channel results if the source
AAP can generate messages at known intervals, which
might be visible to network components as well as
to end systems in the form of traffic congestion. eSS
lowers the bandwidth available by generating random
messages between AAP crypto channels: this isn’t

a perfect solution, but the resulting covert channel
bandwidth is acceptable per the guideline.7

Brave new flows. eSS effectively creates a network
of single-level subnets, much like virtual private net-
works (VPNs) that can’t interact with each other.
However, the eSS policy, a variant of the B&L se-
curity policy,5 permits information to flow upward,
from lower to higher classification levels. This led us
to wonder whether a constrained form of the two-way
protocol could enable a more efficient, yet secure, con-
nection between AAPs at different levels: a multilevel
network. We studied the feasibility of a multilevel
network in which a canned downward acknowledge-
ment (ACK) message could be allowed in response to
an originating upward TCP message—assuming the
overall stream of downward messages is throttled to
a minimum bandwidth. Although downward mes-
sage flow violates B&L, innovative handling of two-
way network traffic has received serious consideration
among certifying agencies, such as the US National
Security Agency (NSA), when the write-downs are
shown to be tightly limited (to 10 bps or less). This
sort of ACK policy has many applications to secure
networks, including that of a trusted guard to manage
the flow of current-event news to a classified environ-
ment.8 It appears that in the future, the trade-off be-
tween practical increased access to information versus
possible classified data leakage might permit an ACK
write-down channel in tightly controlled security
situations, such as those that are audited or throttled
by real-time feedback mechanisms—for example, the
Global Information Grid program9 characterizes this
change in policy as a shift from “need to know” to
“need to share.”

Secure Implementation
A secure implementation of any trusted architecture
component must satisfy a rigorous certification process
and consider issues such as incomplete design and use
of breakpoints (see “Common Criteria Evaluation and
Validation Scheme (CCEVS)” sidebar).

Incomplete Design
Certification of a product is an exhausting process,
with increasing rigor required for products that
separate a broader range of security levels. The most
critical aspect of certification is to ensure that the
submitted documentation reflects a complete design.
A system design specification often shows what the
system is supposed to do in an ideal environment,
but in practice, the environment is seldom ideal. A
complete design specification must therefore describe
secure behavior when the system or environment
doesn’t conform to nominal expectations: the burden

Engineering Secure Systems

 www.computer.org/security 35

of complete specification is to ensure that the system
continues to operate securely over the full range of
inputs and failure modes.

Our project experience has shown that roughly
10 percent of most system specifications describe
ideal performance, whereas 90 percent describe
performance under non-ideal circumstances.
The encryption gateway establishes the initial
cryptographic keys at both AAPs of a cryptographic
connection in a series of six or so exchange messages
before the network becomes operational—that
is, the keys are initially established in an ideal
environment. However, if a cryptographic period
expires, the encryption gateway must be rekeyed,
which takes many hundreds of trusted messages to
avoid threats from the operational environment,
such as attempts to steal rekeying information. Key
theft isn’t a threat in the initial key exchange, in the
sense that no users are yet operating—that is, the
environment is nearly ideal.

Lesson 1. The commercial Internet is the classical
example of an incomplete design that enables hos-
tile attacks. It was originally designed as a benign
environment with cooperating users rather than the
hostile users with which it operates today. Because
Internet protocols are incomplete with respect to
their design for response to hostile action, the Inter-
net is a target for attacks ranging from defacement
by attention-seeking kids to clandestine coordinated
attacks by teams of government-sponsored, well-
funded attackers. The entire situation is exacerbated
when maintenance of key components follows the
“penetrate and patch” strategy often associated with
office productivity software.

Breakpoints
Another classical incomplete design for security is the
popular “breakpoint” function in many debugging
tools. This function lets a programmer designate target
instructions in an instrumented program where the
debugger will stop the program, report on specified
system and program conditions, and then continue
executing the instrumented program. A sequence of
breakpoints can provide great insight as to how the
program is behaving and is often used to help debug a
program before it’s tested and released.

In a typical OS, a program executes in one of
two modes: kernel or user. Kernel mode allows the
program to execute privileged instructions that affect
system security. To access all the required system status
information, the debugger runs in kernel mode—thus,
it’s a trusted process. Debugging tools are written to
carefully control the user and instrumented program
so that kernel mode isn’t abused. Specifically, the

debugger must be designed to ensure that untrusted
programs are only executed in user mode. A key flaw
occurs during the breakpoint function if an instruction
is executed in kernel mode.

A malicious programmer can exploit the breakpoint
flaw as follows (see Figure 3). The programmer defines
the breakpoint in terms of a malicious transition
instruction and a benign report sequence (which,
here, returns the status of three program variables).
When the program arrives at the breakpoint, the
debugger executes the report sequence followed by
the transition instruction. However, the transition
instruction changes the processor to the kernel mode,
which permits subsequent instructions to execute
unconstrained and perform malicious operations.
Under normal conditions, a program couldn’t
manipulate the processor mode because it requires a
privileged instruction; however, breakpoint operates
in privileged mode, from where the flaw is exploitable.
Penetration testing unveiled this design flaw.

Lesson 2. Variants of the breakpoint function al-
low this attack because of incomplete design of the
trusted code that controls program execution. The
countermeasure is that trusted programs shouldn’t
allow user programs to operate in kernel mode. This
problem also points to the lack of assurance in com-
pilers and other development tools. So, another take
on this lesson would be that untrustworthy develop-

Common Criteria Evaluation
and Validation Scheme (CCEVS)

T here are three players in a high-assurance Common Criteria evalua-

tion: the vendor prepares the product technical material; the Com-

mon Criteria Testing Laboratory (CCTL) performs the product testing and

evaluation per the CCEVS; and NSA evaluators confirm the tests meet the

CCEVS via a series of CCTL/CCEVS structured interactions called valida-

tion oversight reviews (VORs). The product vendor defines a clear, logical

boundary of the target of evaluation (TOE) and a security functional re-

quirement (SFR) of the security target (ST) to be certified. There must be

an NSA-acceptable security policy for the ST, for example, Bell-LaPadula

or a suitable cryptographic policy. The SFR must correspond to the ST

features, advertising literature, and ST user and administration guides.

The NSA reviews all test plans, procedures, and results, including pen-

etration tests and senior valuator evidence review. A final VOR concludes

the CCEVS evaluation with a fail or pass grade. A pass grade results in

a certificate and a Validated Product Listing (VPL) for the TOE. Further-

more, many deployment environments require a separate certification

and accreditation process, indicating that the IT products involved (which

may have separate Common Criteria certifications) are used correctly and

are suitable for the documented risks.

Engineering Secure Systems

36 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

ment tools, such as a debugger, shouldn’t be used on
shared systems.

Trustworthy Development
Highly trustworthy development is the single most
difficult technical issue that separates secure product
development from general product engineering.
So what is “trustworthiness?” Essentially, it’s the
confidence that a product performs as specified and
does nothing else, satisfying its advertised claim
even in a hostile environment. This confidence must
be earned for secure systems, where we consider
the system trustworthy according to analyses,
documentation, tests, and correctness proofs validated
by an independent agency.

Design Model
The Common Criteria Evaluation and Validation
Scheme (CCEVS) certification process (http://NIAP
-CCEVS.org) ensures that the design documentation
(called the security target, or ST) is complete. Yet,
completeness in a complex system is daunting. Where
does the designer start? Sequential design refinement
is one of the primary models for secure product
development. For security products, the design is built
in several conceptual stages:

•	Stage 1 is the core set of functions to carry out the
system’s principal purpose. The goal here is to pro-
vide correct functionality.

•	Stage 2 adds the procedures that result in a secure
initial state.

•	Stage 3 adds processing to check all input parameters
for correct range values and to respond appropriately

when values are out of range (an error condition).
•	Stage 4 adds the defensive response for violations in

stages 2 and 3, for example, alarms, audit messages,
locking out the user from any further function, and
clearing all data generated to date for the user. It dis-
ables or repairs any malfunctioning modules, serv-
ing as an error trap state that essentially returns the
ST to a secure initial state.

The completion of these stages results in an
operational system capable of “steady state” processing.
All security policy rules are imposed at all times and
all classified boundary crossings are properly checked.
For high-assurance systems, the correctness and
completeness of processing is further assured through
formal verification, discussed next.

Lesson 3. The Common Criteria provides a very
detailed set of functional requirements for an ST.
When used correctly, it’s an effective tool to check
your design, become knowledgeable about the struc-
tured development of requirements, and gain insight
to what you’ll face during the CCEVS process.

Formal Specifications
The design model serves as a framework upon which
to build a set of formal specifications, resulting in a
two-level formal system: an abstract formal security
policy model and a more concrete formal top-level
specification. The formal model and specifications
are written in a precise mathematical (formal)
language that allows a rigorous and consistent system
description; several language options are available.10

The formal specification language consists
of well-defined syntax and semantics, and a set
of language-processing tools that manage the
specifications and related text. Ideally, the tools
can automatically generate correctness theorems
about the specification (that is, the theorems are
“conjectures” until successfully proved, at which
point they’re theories). The latter is a significant
capability because otherwise a thorough manual
inspection is required to ensure that the hand-crafted
security theorems are precise and correct—that the
right thing is ultimately proved.

Today, program code is manually generated
from formal specifications. A one-to-one formal or
informal mapping is required between the code and
the formal specification, an arduous process that might
be lessened in the future via automatic translation or
execution of the formal specifications.11

Lesson 4. The code-to-spec mapping compares the
formal top-level specification versus the relevant
code, line by line, side by side in the listing and

Name Comment
Instruction # normal instruction
Instruction # normal instruction
 Breakpoint # pseudo instruction, jump to
Set kernel privilege on # Transition instr : set mode to

 privileged
Privileged instr # malicious action
Privileged instr # malicious action
Set kernel privilege off # set mode to user
Instruction # resume normal operation
Instruction # normal instruction

In privileged mode do:
I. Execute Report Sequence

a) Write status var1 # Report on system state
b) Write status var2 # Report on system state
c) Write status var3 # Report on system

II. Execute instruction 4
end

Mode
User1.
User2.
User3.

Privileged4.

Privileged5.
Privileged6.

User7.
User8.
 9.

3

3

Figure 3. Breakpoint exploitation. This pseudo code illustrates how breakpoint

can be misused to transition the system into kernel mode, as in instruction 4,

thus bypassing the system’s policy enforcement mechanism.

Engineering Secure Systems

 www.computer.org/security 37

with necessary comments to explain correspondence
quirks of either language. A mapping that shows an
absence of code for a component of the formal speci-
fication might indicate missing security functions.
The other alternative—code without corresponding
specification—might indicate unwanted extra code,
a Trojan horse, or a trap door.

Finally, a theorem prover associated with the
specification language processes the formal model
and related specifications to discharge the proof
obligations. Even a relatively simple security target,
such as the eSS, can require hundreds of pages of
formal specifications, and the proofs can be a long,
tedious process. The security policy model’s proof
shows that it’s consistent with its stated correctness
criteria (for example, the system only allows secure
access to resources). The proof of the formal top-level
specification provides a formal demonstration that it’s
consistent with the formal model.12

Theorem generation and proof can uncover
subtle problems with the system design or with its
specification when theorems can’t be proved, perhaps
because the specification is inconsistent or specified
boundary conditions aren’t broad enough with respect
to possible values. For example, in an earlier program
for the US Department of Defense,7 a proposed design
change would have provided operational flexibility,
such that the B&L policy could be suspended
in emergency conditions—innocuously, it was
thought—and restored after the emergency passed.

The proposed policy change satisfied the
operational imperative, but it introduced a subtle
inconsistency that made it impossible to prove the
security theorems correct, thus halting progress of
the formal proofs and the project itself. This problem
became a cause celebre until a resolution could be
formulated. The B&L policy defines restrictions
regarding both security levels (MAC) and individuals
(DAC). To resolve the problem, we modified the
design change to apply to DAC only. Thus, we were
able to enforce the MAC rules at all times and found
that relaxation of the DAC rules was sufficient for
operational needs during the emergency condition.
This solution required additional effort to redefine the
emergency security policy formally, but it resulted in
consistent theorems that we proved to be true—plus,
it delighted the customer.

Lesson 5. Flaws found by formal methods usually
aren’t as dramatic as code flaws found during test-
ing. An initial-conditions theorem might not prove
because the conditions are too constrained to per-
mit proof. Alternatively, they might be too weak—
underconstrained—and allow any state to satisfy the

specifications. Finally, the functional specifications
for transitions to new states might not correspond to
the formally specified initial or terminal states.

Security Testing
Each correspondence step—from model to policy,
from specification to model, and from code to speci-
fication—brings further evidence of the product’s
trustworthiness. However, the security code isn’t the
functioning product: there must also be a binding be-
tween the source code and the system in execution.
This is the domain of security testing.

Lesson 6. We divide testing into three parts: func-
tional testing that shows the code’s correct function-
ality, security testing that shows the omnipresent
security policy enforcement even under hostile con-
ditions, and penetration testing that attempts to show
any security vulnerabilities in the code, such as in-
correct or incomplete policy enforcement and other
anomalies that are the sustenance of the code hacker.
Some people have observed that functional testing
shows the strength of the good guys, whereas pen-
etration testing shows the strength of the bad guys.

Our penetration testing revealed that attackers
could hack the encryption gateway, a case of
incomplete design. The design called for establishing
the initial crypto keys over the network before there
were any external users. However, the absence of users
couldn’t be guaranteed, thus, malicious users might
be able to log on surreptitiously and capture the keys.
The solution was to add a removable cryptographic
token (a key on a microSD memory card) for each
AAP and NSC. This foiled any hacker attempts, as
without a physical token a given host couldn’t access
the network.

Lesson 7. We can liken a secure system to a security
utopia that operates perfectly when its assumptions
are met and it’s perfectly initiated. But like all uto-
pias, the question arises as to how you get it started,
securely. A classic attack strategy is to perform a legal
operation that causes the utopia to restart, but this
time with the hacker camped on the initiation se-
quence when the system’s guard is down.

Commercial Development
Our experience is that industrial-strength
software development using the Common Criteria
requirements paradigm can be very high quality. As
discussed, much of this process is based on rigorous
use of model-based development, design reviews,
state transition analyses, and other diagrammatical
tools. Trusted software must also be very tightly

Engineering Secure Systems

38 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

configuration-controlled using high-quality tools
because of the large number of objects to be controlled
compared to those found in typical nontrustworthy
projects. Although usual commercial practices work

well for myriad products in many contexts, it doesn’t
match the NIAP CCEVS process in eliminating
coding errors, security flaws, and Trojan horses.
Assurance against the latter in particular differentiates
the discipline of high-assurance security from that of
product safety. In the end, commercial practice can
be very good—a less expensive compromise than
some of the CCEVS methods—but we’re hopeful
that advances in development tools might enable
commercial use of CCEVS methods in the future.

Overall, rigorous development methods work
considerably better than ad hoc schemes, but we pay
a price for that rigor. In system development’s early
days, when the system failed to work as desired, we
said, “now that we understand the problem, we can
write the programs again.” The rigor provided by
trustworthy development is like doing the job mul-
tiple times, concurrently. The system is instantiated at
several different levels of abstraction simultaneously,
and the developer’s job is to ensure that these instanti-
ations are consistent. Modeling, formal specifications,
coding, correspondence analysis, testing, and opera-
tional guides provide the different system instantia-
tions. For eSS, all of these tasks covered a seven-year
development period.

We built various aspects of eSS as prototypes
running on our internal network. These experiments
led to many areas of incomplete and even wrong
design, providing valuable lessons. In constructing the
formal model and specification, we found errors in
our design and incomplete states, mostly dealing with
key distribution and attack vulnerabilities. Trusted
initial key distribution was the biggest issue that led
to a new design based on a physical ignition key for
each encryption gateway. The Common Criteria
was our “bible,” always close by to keep us focused
on proper design. Writing the code from the formal
specification was relatively easy and straightforward,
although it required some adjustment in the I/O code
to interface with the limited rate initial production
(LRIP) microprocessor we selected. We built six
prototype encryption gateways and a closed network

to run extensive system testing before selecting the
LRIP processor. After that, we found few errors in
the code; those that did occur were related to the
anomalies of compilation tools.

Lesson 8. A large class of the anomalies found in our
code resulted from our choice to drop all the open
source C++ library macros and write the needed
macro code ourselves from scratch. This closed a
possible Trojan horse or trapdoor insertion vulner-
ability, but increased code writing and testing.

We spent many weeks on penetration testing trying
to break the system. The system performed so well,
we used recorded unmanned aerial vehicle (UAV)
video as the AAP data flow between simulated S and
TS sites, and also used the video as part of the product
demonstration to management. We were excited,
with our live tests proving out the value of long years
of work. The final steps for us were to complete the
evaluation and attain a Common Criteria certificate
for eSS.

We studied the NIAP CC Testing Laboratories
(CCTL) list, made our choice, and contracted with
one that had extensive network and encryption
experience. We entered the first phase of the NIAP
certification process and prepared the necessary
information for the NSA validation oversight review
(VOR). We completed all of the secure and trusted
engineering and were on the verge of Common
Criteria certification success.

Lesson 9. The biggest lesson to be learned from this
project was hard. Before we completed product cer-
tification, management cut off our funding. Their
justification for this surprise was that there was no
market for our product. A few months later, on
17 December 2009, the following article appeared
in The Wall Street Journal: “Insurgents Hack U.S.
Drones.” The article noted the insurgents intercepted
the cleartext video images from operational Ameri-
can drones using a $26 commercial software pack-
age called “SkyGrabber,” made by Russian vendor
Sky Software. The lack of encryption—equivalent
to that of eSS—allowed this attack. The key lesson
learned was to always make senior management part
of the development team, so that their commitment
to the project and to the market is clear.

W hile the result of the subject project was not taken
to market, it nevertheless provided a foundation

for confirmation and demonstration of the high-
assurance development techniques we have discussed.
As the need for high-assurance technology becomes

The proposed policy change satisfied the

operational imperative, but it introduced a subtle

inconsistency that made it impossible to prove the

security theorems correct.

Engineering Secure Systems

 www.computer.org/security 39

clearer, and subsequent secure products are developed,
we hope that these lessons will help to light the way
for those who follow.

Acknowledgments
Steven Greenwald and Cynthia Irvine helped considerably
in reviewing a preliminary version of this document. Brant
Hashii built much of eSS.

References
1. C. Weissman, “MLS-PCA: A High Assurance Security

Architecture for Future Avionics,” Proc. 19th Annual
Computer Security Applications Conf. (ACSAC), ACM
Press, 2003, p. 2; www.acsac.org/2003/papers.

2. J. Rushby and B. Randell, “A Distributed Secure
System,” Computer, July 1983, pp. 55–67.

3. Controlled Access Program Coordination Office
(CAPCO), “Authorized Classification and Control
Markings Register,” vol. 1, Director of Nat’l
Intelligence (DNI) Special Security Center (SSC), May
2008.

4. B. Hashii, “Lessons Learned Using ALLOY to Formally
Specify MLS-PCA Trusted Security Architecture,”
Proc. ACM Workshop Formal Methods, ACM Press, 2004,
pp. 86–95.

5. D.E. Bell and L. LaPadula, “Secure Computer System:
Unified Exposition and Multics Interpretation,” tech.
report ESD-TR-75-306, MITRE Corp., 1975.

6. US Dept. Defense, “Trusted Computer Systems
Evaluation Criteria,” (Orange Book) 5200.28-STD,
US Nat’l Computer Security Center, Dec. 1985.

7. C. Weissman, “BLACKER: Security for the DDN:
Examples of A1 Security Engineering Trades,” Proc.
IEEE Symp. Security and Privacy, IEEE CS Press, 1992,
p. 286.

8. M.H. Kang and I.S. Moskowitz, “A Pump for Rapid,
Reliable, Secure Communication,” Proc. 1st ACM
Conf. Computer and Communications Security, V. Ashby,
ed., ACM Press, 1993, pp. 119–129.

9. P. Wolfowitz, “Global Information Grid (GIG)
Overarching Policy,” directive number 8100.1, US
Dept. Defense, Sept. 2002.

10. A. van Lamsweerde, “Formal Specification: A
Roadmap,” Proc. Conf. Future of Software Eng. (ICSE 00),
ACM Press, 2000, pp. 147–159.

11. M. Kaufmann, P. Manolios, and J. Moore, Computer-
Aided Reasoning: An Approach, Kluwer Academic, 2000.

12. J. Rushby, “Formal Methods and Their Role in the
Certification of Critical Systems,” tech. report security
level-95-1, SRI Int’l, Mar. 1995; www.csl.sri.com/
papers/csl-95-1.

Clark Weissman recently retired from Northrop Grumman

Avionics and Systems as head of the Information Assur-

ance/Multilevel Security (IA/MLS) group. He has more than

50 years of experience in secure systems research, develop-

ment, and management and was principal investigator of the

“e-Box Security System, eSS” program that evolved from a

DARPA-funded R&D program. Weissman was the lead secu-

rity developer of NSA’s Class A1-certified BLACKER encryption

appliqué for the Defense Data Net. He has a BS in aeronauti-

cal engineering from MIT. Contact him at ak096@lafn.org.

Timothy Levin is a research associate professor at the Naval

Postgraduate School. He has worked on the design, develop-

ment, and formal verification of high-assurance computer sys-

tems for 25 years, during which he has had the relatively rare

opportunities to develop a system security policy model that

was rigorously evaluated by the NSA, formally verify the secu-

rity properties of a commercially fielded OS, and participate

as a principal author of a protection profile for highly robust

separation kernels that has been accepted as a standard by

the US government. Levin has a BA in computer science from

the University of California, Santa Cruz, and is a member

of the IEEE Computer Society and the ACM. Contact him at

levin@nps.edu.

Selected CS articles and columns are also available for
free at http://ComputingNow.computer.org.

The magazine of computational
tools and methods.

MEMBERS $49
STUDENTS $25

www.computer.org/cise
http://cise.aip.org

CiSE addresses large
computational problems
by sharing

 ›› effi cient algorithms

 ›› system software

 ›› computer architecture

