

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

14-04-2011 Technical Paper MAR 2011 - APR 2011

CAUSE Multi-UAV Simulation Demonstration FA8720-05-C-0002

Herbert E. M. Viggh, Christopher Weed, Michael T. Chan, and Daniel J.
Van Hook

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420

AFLCMC/PZE
20 Schilling Circle, Bldg 1305
Hanscom AFB, MA 01731

AFLCMC/PZE

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Intelligence Surveillance and Reconnaissance (lSR) systems have the potential to operate in a net-centric environment in which
tasking control, resulting sensor data, and intelligence feeds can be made available via web services under a service oriented
architecture. Rapid composition of ISR applications from such services would enable analysts and warfighters to quickly adapt to
changing missions and ISR asset availability. A preceding paper described the development of a new composition approach in which
plug-ins that encapsulate service interactions are used to rapidly compose applications using a Graphical User Interface (GUI). The
composition GUI allows the user to discover needed service plug-ins, connect outputs and inputs between services, and generate a
consolidated application GUI. This paper describes a demonstration of this composition approach utilizing simulated ISR assets.
Service plug-ins were developed for accessing a simulated Signals Intelligence (SIGINT) data feed, a simulated Electronic Order of
Battle (EOB) data feed, and a SIGINT to EOB correlation service. Additional ping-ins were developed for tasking multiple unmanned
air vehicle (UAV) simulations supporting full motion video (FMV) and for accessing a resource brokering service. The composition Gill
was then used to compose various applications that enabled FMV data collection by the UAVs on SIGINT and EOB locations of
interest, utilizing both manual tasking and automated tasking via the resource brokering service.

component; service composition; SOA; service oriented architecture

U

U U U
SAR 6

Zach Sweet

781-981-5997

CAUSE Multi-UAV Simulation Demonstration

Dr. Herbert E.M. Viggh, Christopher Weed, Dr. Michael T. Ch..,.,""""""'IMI'IM"~f'Mir"'!!!''ltftl!-----~
MIT Lincoln Laboratory THIS MATERIAL HAS BEEN CLEA~~D

Lexington, MA USA FOR PUBLIC RELEASE BY 66 AB~A
{Viggh, CWeed, MChan, DVanHook} @LL.MI .EDU ~ 11 .., .-. /(

DATE: f V-/f...,L
......,{;""""-11~......:..£v_:::20~,,-o____,....,.r.,...-:::s==-1..---

Abstract-Intelligence Surveillance and Reconnaissance (ISR) GASEiijffionstration activities are then
systems have the potential to operate in a net-centric
environment in which tasking control, resulting sensor data, and
intelligence feeds can be made available via web services under a
service oriented architecture. Rapid composition of ISR
applications from such services would enable analysts and
warfighters to quickly adapt to changing missions and ISR asset
availability. A preceding paper described the development of a
new composition approach in which plug-ins that encapsulate
service interactions are used to rapidly compose applications
using a Graphical User Interface (GUI). The composition GUI
allows the user to discover needed service plug-ins, connect
outputs and inputs between services, and generate a consolidated
application GUI. This paper describes a demonstration of this
composition approach utilizing simulated ISR assets. Service
plug-ins were developed for accessing a simulated Signals
Intelligence (SIGINT) data feed, a simulated Electronic Order of
Battle (EOB) data feed, and a SIGINT to EOB correlation
service. Additional plug-ins were developed for tasking multiple
unmanned air vehicle (UA V) simulations supporting full motion
video (FMV) and for accessing a resource brokering service. The
composition Gill was then used to compose various applications
that enabled FMV data collection by the UA Vs on SIGINT and
EOB locations of interest, utilizing both manual tasking and
automated tasking via the resource brokering service.

Keywords-comJWnent; senice composition; SOA; senice
orie11ted architecture

I. INTRODUCTION

This paper describes the second year results of a two-year
research project into rapid composition of applications under a
service oriented architecture (SOA), with the goal of allowing
non-software developers to compose applications in days or
hours. The general approach involves interconnecting plug-ins
that hide the details of service interactions, and is referred to as
Composable Applications Using Service Encapsulation, or
CAUSE.

The first year development and demonstration results were
presented in [1]. That paper described an approach to SOA
application composition that uses service plug-ins that
encapsulate the details of the service client. The first year
demonstration involved a simple use-case in which static image
collections by a UA V were cued from Signal Intelligence
(SIGINT) reports, and was demonstrated using very simple
SIGINT and image collection simulations. For the convenience
of the reader, this paper summarizes the problem description
and approach from the first paper, and briefly describes the
development and demonstration environment used. The second

This work is sponsored by the United States Department of Defense under
Air Force Contract# FA8721-05-C-0002. Opinions, interpretations,
recommendations and conclusions are those of the authors and are not
necessarily endorsed by the United States Government.

service.

II. PROBLEM

Intelligence Surveillance and Reconnaissance (ISR)
systems have the potential to operate in a net-centric
environment in which tasking control, collected sensor data,
and intelligence feeds can be made available via web services
under a service oriented architecture (SOA). ISR software
applications used by analysts, decision makers, and warfighters
will need to connect to these services and send and receive.

Problems in the ISR domain often involve rapidly evolving
threats, opponent tactics, and ISR sensors. Rapid composition
and modification of ISR applications would enable quick
reaction and adaptation to changing missions and ISR system
availability. Enabling ISR application users to compose and
modify applications themselves will generate the fastest
adaptation possible.

It is currently very difficult for a non-software developer to
compose a SOA application from existing services. This
typically involves a team of software developers who discover
and connect to the existing services, learn enough domain
knowledge to effectively use the services and the data they
provide, and then write or modify the application itself to
connect to the service and use it. This process can take weeks
to months.

III. APPROACH

A. Service Plug-ins

In the CAUSE approach, a plug-in concept is used, similar
to a web-browser plug-in for a movie player. With such plug­
ins, a non-software developer can compose a new application
that combines the movie player with the browser, without
needing to understand the details of the underlying service
interactions.

Generalizing this approach, the authors developed plug-ins
that have the following characteristics:

• Each plug-in contains the service client code to
connect to one or more services, encapsulating and
hiding the details of the service connections from
the user.

• Each plug-in contains a graphical user interface
(GUI) for interacting with the service, which
allows the user to input information and action
requests needed by the service, and to display
resulting data and status from the service
interaction. This allows each plug-in to operate
stand alone as a mini-application.

• Each plug-in has standardized input and output
ports that can be connected to other plug-ins, and
mirror the inputs and outputs of the GUI.

• Both the service plug-ins themselves and the I/0
ports are annotated semantically.

• Each plug-in also contains help files and other
domain specific information to allow the user to
come up to speed on the use of the service and
data without interacting with the service provider.

• Plug-ins are stored in a registry similar to a service
registry that can be searched by the user based on
semantic descriptions.

Figure I depicts the architecture of the plug-ins, and how
they fit into an overall architecture for composing and
executing applications using the CAUSE approach.

Plug-ins are composed of two types of components. The
User Interface Components are needed for the user to interact
with the plug-in. These include a GUI and domain specific
information for educating the user on the correct use of the
service. The Service Interface Components encapsulate the
service client code, include standard Input/Output (I/0) ports
for communicating with the GUI components and other plug­
ins, and contain semantic specification information describing
the service and the 110 ports. Note that the encapsulation of the
service client code allows for the use of heterogeneous service
technologies within the same application. A notional Resource
Brokering service is depicted as the third service, which
performs automated service composition using only the Service
Interface Components.

B. Compostion and Execution Architecture

Figure 1 also depicts the Composition GUI, which allows
the user to discover needed plug-ins in the Plug-in Registry and
graphically connect 110 ports among plug-ins to compose
applications.

The Composition GUI also has a toolbox of local
processing blocks that facilitate the interconnection of service
plug-ins. These include pre-built blocks such as data filters and
consolidated GUis to replace multiple individual plug-in Gills.

The Execution Framework shown in Figure 1 takes the
composed application description and runs the resulting
application.

C. CAUSE Benefits for Software Developers

While the CAUSE approach is aimed at non-software
developers, software developers will find it useful as well. For
service developers, plug-in templates could provide a quick
way to develop a stand-alone mini-application to test one's

service, and a test application could be composed to test
planned interactions with other services. Likewise, end-user
application developers could use CAUSE to rapidly prototype
applications. In an open-source environment, the plug-ins can
serve as example code to help the developers create optimized
applications.

IV. CAUSEDEMONSTRATIONENVmONMENT

Development and demonstration of the CAUSE concept
was done at MIT Lincoln Laboratory as part of a research
project on service composition.

A. KEPLER Composition GUJ and Execution Framework

The open-source KEPLER version 1.2 [2] scientific
workflow application was used to demonstrate the CAUSE
approach and is described in detail in [1]. KEPLER actors,
which represent java code blocks with 1/0 ports, were used to
implement service plug-ins. KEPLER provides a composition
GUI that allows non-software developers to drag and drop
connections between actors' ports to create workflows.
KEPLER also provides a Plug-in Registry with a search
(discovery) capability and an execution framework for running
an application composed as an actor workflow.

B. ISR Use-Case

The following use-case was selected to drive the
development of the second year CAUSE demonstrations
described in this paper. An analyst needs to gather full motion
video (FMV) of locations of select SIGINT reports. Of
particular interest are those SIGINT reports that come from
known emitters stored in an Electronic Order of Battle (EOB).
Initially, only a single UAV is available to be tasked for FMV.
Later, a second UA V becomes available, and the user needs to
make use of both UAVs to collect FMV.

To task a single UAV, the analyst needs to:

• Discover a SIGINT data feed service plug-in

• Discover an EOB service plug-in

• Discover a SIGINT-to-EOB correlation service
plug-in

• Pass the SIGINT reports and EOB info to the
correlation service plug-in

• Discover a UAV service plug-in that provides
platform position, sensor pointing information
(SPOI), a FMV tasking interface, and FMV data

• Pass the SIGINT reports, EOB locations, SIGINT­
EOB correlations, and UA V position and SPOI to
a consolidated display in which the user can click
on correlations of interest for FMV tasking

• Display the resulting FMV

To task a second UAV, the analyst needs to:

• Discover a second UA V plug-in

• Discover a resource brokering service that
optimally tasks each UAV

• Pass the user selected fMV tasking to the resource
brokering service

• Display the resulting fMV from both UAVs

C. Services and Plug-ins

For this demonstration, several types of service plug-ins
were developed. The SIGINT and EOB Plug-ins access Simple
Object Access Protocol (SOAP) [3] I Web Service Description
Language (WSDL) [4] services that provide the endpoints of
User Datagram Protocol (UDP) [5] feeds for each type of data.
The SIGINT UDP feed sends simulated SIGINT detections in
eXtensible Markup Language (XML) [6] schema. Similarly,
the EOB UDP feed provides a-prior locations of simulated
known emitters. The Correlator Plug-in connects to a
COITelation service that has a SOAPIWSDL interface for both
setting and querying for the UDP endpoints for input and
output. The correlation service takes the EOB and SIGINT
reports inputs and outputs an alert when a SIGINT report is
determined to be correlated with an emitter in the EOB.
Location, location uncertainty, and emitter type are used in the
correlation algorithm.

The UAV SPOI-Tasking Plug-in interfaces to two services.
First, it accesses a SOAPIWSDL services that provides the
endpoint of the UDP feed that continuously reports the UAV's
position and the FMV sensor pointing information (SPOI). The
SPOI includes the center and ground footprint of the sensor
field-of-view (FOV). Second, the plug-in queries a data feed
registry using a SPARQL [7] query over SOAP to obtain the
endpoint for a UDP feed of streaming FMV.

Two independent UA V Plug-ins were implemented to
connect to two independent UA V FMV sensor simulations.
These simulations were developed by MIT Lincoln Laboratory
under a prior program and use the commercial VRSG Meta-VR
environment [8].

Finally, an RB Tasking plug-in was developed to access a
resource brokering service [9] that provides capabilities for
discovering and tasking information resources such as sensors,
processors, mediators, archived data, networks, and
communication systems. This RB Tasking plug-in uses a
SOAPIWSDL service to obtain the endpoint of a UDP channel
to the resource broker that accepts a latitude-longitude tasking
request in Cursor on Target (CoT) [10] format, along with a
requested sensor type in CoT. The UA V sensor simulations
support both electro-Optical (EO) and Infra-Red (IR) video
sensors. The resource broker interfaces to both UA V
simulations, monitors their positions, and sends the tasking
request to the UA V closest to the tasked point of interest.

V. DEVELOPMENT AND DEMONSTRATION

In this section we step through the use-case and discuss the
applications composed to demonstrate the CAUSE approach.

A. Correlated S/G/NT Cueing of FMV from a Single UA V

The first part of the use-case involves tasking fMV from a
single UA V and was completed through the composition of the
application embodied in the workflow depicted in Figure 2.
This workflow tasks a specific UA V to collect FMV on a
SIGINT-EOB correlation selected by the user.

At the top left and center of Figure 2 are located the EOB,
SIGINT, and Correlator Plug-ins, which were discovered by
the user in the Plug-in Registry and loaded into the composition
GUI. Note that each plug-in has three output ports: a 'data'
output (emitter type and location, SIGINT reports, and
correlation locations for the three plug-ins, respectively), a
'display' output of the same data but in a format compatible
with toolkit displays, and 'status' information. Using the
composition GUI, the user connected the EOB and SIGINT
data outputs to the proper inputs of the Correlator Plug-in.

Note that the EOB and SIGINT Plug-ins each come with
their own independent data displays. In order to view the EOB
locations, SIGINT reports, and locations of any correlations on
a single display, the user first selected a Nondeterministic
Merge local processing block from the composition GUI
toolkit and then connected the 'display' outputs of the EOB,
SIGINT, and Correlator Plug-ins to the input of the merge
block. Note that connecting the 'display' outputs of the
SIGINT and EOB Plug-ins to another actor suppresses their
independent data displays. Next, the user selected a User
Interactive Display component from the composition GUI
toolkit and connected the merged display output to the User
Interactive Display input port. This display is a Graphical
Information System (GIS) type display that plots icons at
latitude-longitudes (lat-Ions) on a map, and was implemented
using ESRI's ArcGIS Engine Java API (Ver 9.3) [11]. The
display is interactive in the sense that the user can click on the
displayed icon of a correlation, EOB, or SIGINT report and the
lat-lon position of the icon will be sent to the display's
'selection' output port as Graphics Markup Language (GML).

Now that the user can select correlations of interest, they
must be sent to a UA V as fMV tasking. In the lower left of
Figure 2 is depicted the UAV SPOI-Tasking I Plug-in for the
first UA V FMV simulator, which was discovered by the user
and downloaded. The user connected the 'selection' output of
the User Interactive Display to the 'GML Tasking' input, one
of two formats supported by the UAV plug-in. This tasking is
in a Geography Markup Language (GML) format used by the
ArcGIS display. This tasking causes the UA V FMV sensor to
slew to and stare at the tasked lat-lon. The 'display' output of
the UAV plug-in was then connected to the input of the
Nondeterministic Merge block so that the UA V position and
SPOI are also displayed on the User Interactive Display for
situational awareness. Note that the collected fMV is displayed
in the UAV plug-in's independent FMV display, since a non­
GIS video display is required.

Figure 3 shows the run-time GUI generated by the
composed application in Figure 2. The GIS User Interactive
Display is on the right and the UAV plug-in's FMV display is
on the left. In the GIS display, EOB locations are displayed as
red diamonds. SIGINT reports are shown as yellow clovers
with question marks, plus a red error ellipse. The UAV's

position is indicated by a light blue Mil-Std-2525b 'Pac-Man'
icon with a single chevron. The UA V SPOI is represented by a
a green outline of the FOV footprint on the ground with a
yellow clover indicating the center of the FOV. Correlations
between SIGINT and EOB are displayed as green squares, and
one is present just above of the center of the map. Clicking on
the green correlation icon would task the UA V's FMV sensor
to slew to location. The resulting FMV of that location would
then be shown in the video display.

B. Tasking Multiple UA Vs

The second part of the use-case involves tasking FMV
collections from two available UAVs. One option for the user
would be to modify the workflow in Figure 2 by adding a
second UA V plug-in connected via a second merge block to a
second User Interactive Display, and connect the outputs of the
SIGINT, EOB, and Correlator Plug-in to that display as well.
The user would then click in the GIS display of the UA V that
the user decides to task. Such an application was successfully
demonstrated under. However, adding more UAV's causes a
corresponding increase in the number of GIS displays, which
quickly uses up the available display area of the computer
monitor. In addition, the task of deciding which UA V to
request FMV from increases the users workload and will often
not result in an optimal tasking sequence.

A better approach would be to have a single GIS display
that shows the EOB, SIGINT, correlations, and both UA V
positions and SPOI, with user selected correlations sent to a
resource brokering service that automatically determines which
UAV to task. Such an application was also successfully
demonstrated.

Figure 4 depicts a similar application that utilizes resource
brokering, but has been simplified for clarity by removing the
EOB and SIGINT-EOB correlation plug-ins. One can think of
this as solving a simpler use-case where the user tasks two
UAVs to look at selected SIGINT reports. To compose this
workflow, the user created a similar workflow as in Figure 2
(minus the EOB and Correlator Plug-ins), but added the UAV
SPOI-Tasking 2 Plug-in for the second UAV. The user then
connected its 'display' output, which carries position and SPOI
data, to the N ondetenninistic Merge block so that these data
will also be displayed in the single GIS User Interactive
Display. Note that the PN-Director block is a part of the
KEPLER execution framework and is required for any
workflow as described in [1].

Finally, the user discovered and downloaded the RB
Tasking plug-in that sends the tasking request to the resource
brokering service. This service selects the best UA V to task
based on a simple optimization algorithm that chooses the
UA V closest to the SIGINT report of interest. The UA V
selection could also take into account other conditions, such as
whether or not a UA V is busy collecting a minimum amount of
FMV on their previously tasked lat-lon.

Figure 5 shows the run-time GUI generated by the multi­
UA V application in Figure 4. Note the single GIS User
Interactive display, which can support an arbitrary number of
UAVs while minimizing the screen area used. There is,
however, a separate FMV display from each UA V plug-in.

VI. CONCLUSION

The CAUSE approach was developed to enable non­
software developers to rapidly compose service-based
applications under a service oriented architecture. This is
accomplished via a composition GUI that allows the user to
discover and download service plug-ins and interconnect their
110 ports, and adding other application components such as
consolidated GUI displays.

In the first year of this research effort, the CAUSE
architecture was developed, the KEPLER development
environment selected, and initial demonstrations done using a
few services driven by simple sensor simulations. In the second
and final year of the project, high fidelity UAV FMV sensor
simulators were used, and correlation and resource brokering
services were added to demonstrate a more complex use-case.

Several areas of future work are worth pursuing. While
Kepler provided an existing environment for demonstrating the
CAUSE approach, composition and execution architectures are
needed that support both analysts on enterprise level networks
and mobile users on disadvantaged networks. Finally, while the
plug-ins are assumed to handle security, authentication, and
identification, further work on plug-in architectures that
support these features is needed.

REFERENCES

[1) Viggh, H. E. M., Weed, C., Chan, M. T., Van Hook, D. 1., "Composable
Applications Using Service Encapsulation (CAUSE)",
Proceedings - IEEE Military Communications Conference MILCOM, p
243-248, 2010, 2010 IEEE Military Communications Conference,
MILCOM2010

[2] Kepler 2.0 Getting Started Guide, https:/lkepler·
project.orglusers/documentation

[3) http·//www.w3.orgffR/soap

[4) http://www w3.org!IR/wsdl

[5) http://en.wikipedia orglwikVUser Datagram Protocol

[6) http:Uwww.w3 org!IR/xml

[7) http://www. w3 .org/2009/sparqVwiki/Main Page

[8] http://www.metavr.com/products/vrsglvrsgoyerview html

[9] Van Hook, D. J., Ljungberg, M., Shaw, R., Ford, M., Aubin, E.,
Konieczny, E., Lee, D. H., Brown, S.T., "Resource Brokering: Timely
and Efficient Resource Allocation," SPIE Defense Security and Sensing
Conference, April 5-9, 2010. Kirstan, Michael J., et.al., Cursor-on­
Target Message Router User's Guide, MITRE Product MP0902S4,
November 2009

[10] Kirstan, Michael J., et.al., Cursor-on-Target Message Router User's
Guide, MITRE Product MP090284, November 2009

[111 ArcGIS Engine 9.3 Java API.
http://www esri com/softwan;farcgis/engine

User
Interface

Components

Plug-In
Registry

Figure I. The interactions between Plug-ins, Composition GUI, Plug-in Registry, and Execution Framework.

Coml!elor Plug-in

Figure 2. Composed application for tasking a single UAV to collect FMV on a SIGINT-EOB correlation of interest.

Figure 3. GUI Display of composed application for tasking a single U A V to collect FMV on a SIGINT -EOB correlation of interest.

~.,.....Mt;;s: ·,

R'-!:!ll'~

Figure 4. Composed application for tasking multiple UA Vs via a resource brokering service.

~~uti:. t i.:Jn•

~ ·'

Figure 5. GUI display of a composed application for tasking multiple UAVs via a resource brokering service.

