

AFRL-RQ-WP-TR-2012-0291

ROTATESTL: A MATLAB ROTATION ALGORITHM FOR
THE ANALYSIS OF COMPUTATIONAL MESHES IN
STEREOLITHOGRAPHY FILE FORMAT

James A. Tancred

Aerodynamic Configuration Branch
Vehicle Aerodynamics Division

SEPTEMBER 2012
Interim Report

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
AEROSPACE SYSTEMS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

September 2012 Interim 20 August 2010 – 31 August 2012
4. TITLE AND SUBTITLE

ROTATESTL: A MATLAB ROTATION ALGORITHM FOR THE ANALYSIS OF
COMPUTATIONAL MESHES IN STEREOLITHOGRAPHY FILE FORMAT

5a. CONTRACT NUMBER

In-house
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

62201F
6. AUTHOR(S)

James A. Tancred
5d. PROJECT NUMBER

2404
5e. TASK NUMBER

N/A
5f. WORK UNIT NUMBER

Q05R
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Aerodynamic Configuration Branch (AFRL/RQAA)
Vehicle Aerodynamics Division
Air Force Research Laboratory, Aerospace Systems Directorate
Wright-Patterson Air Force Base, OH 45433-7542
Air Force Materiel Command, United States Air Force

 REPORT NUMBER

AFRL-RQ-WP-TR-2012-0291

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Air Force Research Laboratory
Aerospace Systems Directorate
Wright-Patterson Air Force Base, OH 45433-7542
Air Force Materiel Command
United States Air Force

AGENCY ACRONYM(S)

AFRL/RQAA
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

AFRL-RQ-WP-TR-2012-0291

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

PA Case Number: 88ABW-2012-5233; Clearance Date: 28 Sep 2012. This report contains color.

14. ABSTRACT

With the continued increase in power of the modern computer, more computational problems are tractable via computer
simulation, leading to fast production of data, analysis, and quantitative solutions. Discrete three dimensional analyses,
including those involving computational fluid dynamics, now show even more promise as the time required to meet
solutions has been shown, in some instances, to be on the order of hours and days rather than weeks or months for the
same problem. As a means to exploit such computational power, a MATLAB algorithm has been developed for use with
computational meshes in applications requiring the rotation of a mesh about an axis. The algorithm, called
ROTATESTL, has been developed such that any number of original mesh files in stereolithography file format can be
rotated by any number of angular deflections about specified rotation axes. The algorithm is platform portable and runs
on both Windows and Linux operating systems supporting MATLAB 7.

15. SUBJECT TERMS

vehicle configuration design, aero database, rapid prototyping, CART3D, CFD, stereolithography, STL, standard
tessellation language

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 74

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 James H. Miller
19b. TELEPHONE NUMBER (Include Area Code)

N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i
Approved for public release; distribution unlimited.

Table of Contents

Table of Figures .. ii
List of Tables ... iv
1.0. Introduction .. 1

1.1. Program Description and Portability .. 1
1.2. The ASCII Stereolithography File Format ... 1

2.0. Program Functionality ... 5
2.1. The runX Folder System .. 6
2.2. Setting the Path for rotatestl .. 6
2.3. The Help Command ... 8
2.4. Algorithm Coordinate System .. 9

3.0. Input Descriptions .. 10
3.1. Input Argument Syntax .. 10
3.2. Input Designator: world ... 11
3.3. Input Designator: parentFN .. 12
3.4. Input Designator: childrenFN .. 15
3.5. Input Designator: hp1FN or hp2FN .. 16
3.6. Input Designator: deflectionsFN .. 19
3.7. Input Designator: visualflagFN .. 27
3.8 Input Designator: reverseflagFN ... 35
3.9. Input Designator: delimiter .. 37

4.0. Sample Program Execution and Results .. 39
5.0 Conclusion ... 45
6.0 References .. 46
Bibliography ... 47
Appendix – Source Code for rotatestl.. 48
LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS ... 64

ii
Approved for public release; distribution unlimited.

Table of Figures

List of Figures

1. Beginning of ASCII STL Text File with Example Geometry .. 2
2. Input and Output Work Flow for rotatestl ... 7
3. Excerpt from Help Menu Invoked at MATLAB Command Prompt .. 8
4. Coordinate System Convention Used by rotatestl ... 9
5. Generic Hypersonic Vehicle Geometry for the Illustration of STL Mesh Rotation 10
6. Example Input Argument of World Origin to rotatestl .. 11
7. Example Input Argument for Input Designator, parentFN .. 12
8. The Five Example Control Surfaces of a Generic Hypersonic Vehicle 14
9. Actual Body Flap Geometry from Bflap.stl for Input to rotatestl 15
10. Example Input Argument for Input Designator, childrenFN .. 15
11. Example Input Argument for Input Designators hp1FN and hp2FN .. 17
12. Display of Hinge Line and Point hp1 for Example Body Flap ... 19
13. Example Input Argument for Input Designator, deflectionsFN .. 19
14. General Input Format for deflectionsFN File .. 21
15. Unordered Input Including Zeros along Columns of deflectionsFN File 23
16. Unordered Input with Repeated Values along Columns of deflectionsFN File 24
17. Ordered Input with Comma Delimiter for deflectionsFN File .. 25
18. Ordered Input with Zero Values and Comma Delimiter for deflectionsFN File 26
19. Example Input Argument for Input Designator visualflagFN ... 27
20. Initial Display of Rotated Body Flap for a Generic Hypersonic Vehicle 28
21. Initial Display of Rotated Left Elevon for a Generic Hypersonic Vehicle 29
22. Description of Figure Legend for Child STL Body Flap .. 30
23. Zoom, Pan, and Rotate Commands of MATLAB Figures ... 30
24. Zoom In Command Enabled in MATLAB Figure Display .. 31
25. Creating a Box around the Child STL Body Flap with the Zoom Command 32
26. Initial Zoomed Image of Child STL Body Flap .. 32
27. Rotate 3D Command Enabled in MATLAB Figure Display.. 33
28. Example Rotation of Body Flap ... 33
29. Pan Command Enabled in MATLAB Figure Display .. 34
30. Example Pan of Body Flap ... 34
31. Example Input Argument for Input Designator, reverseflagFN .. 35
32. Example Set-up of reverseflagFN File .. 36
33. Example of Rotation Reversal for +20º Rotation of Bflap.stl File 37
34. Example Input Argument for Input Designator, delimiter ... 38
35. Contents of Input Files for Program Execution Example ... 40
36. Command Window Output upon Successful Execution of rotatestl 41
37. Folder System Created after Execution of rotatestl ... 41

iii
Approved for public release; distribution unlimited.

List of Figures (Concluded)

38. Child STL Files Created after Successful Execution of rotatestl 42
39. Generic Hypersonic Vehicle STL Geometry with Rotated Control Surfaces 43

iv
Approved for public release; distribution unlimited.

List of Tables

1. Input Argument Descriptions for rotatestl ... 5
2. Format for hp1FN and hp2FN Input Files .. 18
3. Example Hinge Point Files for Generic Hypersonic Vehicle ... 18
4. Variable Descriptions for deflectionsFN File Format ... 20
5. Summary of Visualization Choice Input to visualflagFN File .. 27
6. Example Set-up of visualflagFN File .. 28
7. Summary of Reverse Flag Input to reverseflagFN File ... 36

1
Approved for public release; distribution unlimited.

1.0. Introduction

The use of grids and meshes to transfer geometric information is a basic requirement for many
three dimensional analyses, including flow analysis via computational fluid dynamics (CFD) and
finite element analysis (FEA) of structural systems and components. In some cases, a part (or all)
of the mesh at hand requires rotation such that a new geometry may be subject to analysis. A
simple example may include the analysis of flow about a flight vehicle mesh with control
effectors deflected in some configuration. If the originally constructed mesh of the vehicle
geometry has only control surfaces with no deflection, then one of two feasible options would be
available to analyze deflected control surface configurations: either manual reconstruction of the
mesh would be required or the surfaces could be rotated separately in an automatic process. The
latter option is possible with the use of a recently developed rotation algorithm called
rotatestl.

1.1. Program Description and Portability

The rotation algorithm, rotatestl, is a MATLAB®-implemented, platform-portable m-file
(MATLAB file format) script that takes any number of original mesh files in Stereolithography
(STL) format and rotates them by any number of angular deflections about specified rotation
axes. The algorithm (named explicitly as rotatestl.m) is designed to run on any operating
system supporting MATLAB 7. It was written in MATLAB 7.11.0 (R2010b) and has been
successfully tested on 32-bit Windows XP (Service Pack 3) and Red Hat Enterprise Linux 5.2
operating systems. Input is provided through ASCII formatted files to further enable platform
portability. The software description that follows assumes that the user is familiar with the
general use of MATLAB commands, syntax, and operation.

1.2. The ASCII Stereolithography File Format

The rotation algorithm requires the ASCII Stereolithography (STL) file format for geometric
input of a given computational mesh. This particular file format was chosen as the main
geometric input to the program due to its wide use in manufacturing and rapid prototyping (RP)
systems. In fact, it is considered the standard file format for the transfer of geometric information
from computer-aided design (CAD) packages to many RP systems. (1) Despite some of the
formatting disadvantages of STL files—such as duplication of mesh nodes, unordered tessellated
facets, and the absence of topological information (1)—its format is rather simple and is widely
accepted by many RP systems. Therefore, its use in computational applications permits the
applications themselves to be subject to the multitude of tools and documentation readily
available for STL geometric data transfer.

2
Approved for public release; distribution unlimited.

The STL file is a triangular approximation to the topological geometry produced by a CAD
system or other topological data-generating software. (1) The surface of the geometry is
approximated by triangles. The individual surface of each triangle is denoted as a facet or face,
and the triangle vertices are denoted as nodes. Within the STL file, the geometric data may be
written in binary or in ASCII format. The binary format tends to be more compact and may load
faster onto RP machines or into various software packages that can read an STL file. However,
unlike the binary format, the ASCII STL format is human-readable, which enables users to create
simple parsing scripts in various programming languages for reading and writing the ASCII STL
file directly without the need to interpret binary data. This approach to reading and writing the
ASCII STL file was implemented in rotatestl. A general convention of the ASCII STL file is
standardized. For the purposes of this manual, a simple description of the file format is
discussed.

The extension of the STL file is <.stl>. The extensions in which rotatestl accepts are <.stl>
and <.STL>. If a different file extension is included with a file name input to rotatestl, an
error prompts the user to check the extension (more will be discussed on user input later).

There are standard text indicators within the ASCII STL file that direct any parsing algorithm
about what is to follow in the file as it is read. As an example, the beginning of an ASCII STL
file for a simple cube of edge length unity, approximated with twelve triangles, is shown below
in Figure 1. The first line of the STL file always starts with the word, solid.

solid OBJECT
 facet normal 0.000000e+000 -1.000000e+000 0.000000e+000
 outer loop
 vertex 0.000000e+000 0.000000e+000 0.000000e+000
 vertex 1.000000e+000 0.000000e+000 0.000000e+000
 vertex 1.000000e+000 0.000000e+000 1.000000e+000
 endloop
 endfacet
 facet normal 0.000000e+000 -1.000000e+000 0.000000e+000
 outer loop
 vertex 1.000000e+000 0.000000e+000 1.000000e+000
 vertex 0.000000e+000 0.000000e+000 1.000000e+000
 vertex 0.000000e+000 0.000000e+000 0.000000e+000
 endloop
 endfacet
 facet normal 1.000000e+000 0.000000e+000 0.000000e+000

Figure 1. Beginning of ASCII STL Text File with Example Geometry

3
Approved for public release; distribution unlimited.

 outer loop
 vertex 1.000000e+000 0.000000e+000 0.000000e+000
 vertex 1.000000e+000 1.000000e+000 0.000000e+000
 vertex 1.000000e+000 1.000000e+000 1.000000e+000
 endloop
 endfacet
 .
 .
 .

Figure 1. Beginning of ASCII STL Text File with Example Geometry (Concluded)

It is followed by any general, descriptive text written by the software or machine that creates the
STL file. In the case of the cube above, the descriptive text is given as OBJECT. For the use of
rotatestl, there should be no space or whitespace within this descriptive text. Otherwise, the
parsing algorithm within rotatestl improperly reads the STL at hand. For instance, if the first
line of the STL file reads

solid OBJECT Cube

the parsing algorithm of rotatestl would interpret Cube as the next set of information to read
instead of incorporating the entire set of text < OBJECT Cube > as one entity. However, if the
first line reads

solid OBJECT_Cube

then the parsing algorithm would read the STL file properly, assuming the rest of the file is
properly formatted.

Formatting of the STL file continues with a listing of each facet or face (i.e. each triangle)
describing the geometry. A single facet of the geometry has the following format:

4
Approved for public release; distribution unlimited.

 facet normal nx ny nz
 outer loop
 vertex xv1 yv1 zv1
 vertex xv2 yv2 zv2
 vertex xv3 yv3 zv3
 endloop
 endfacet

where nx, ny, and nz are the x, y, and z components, respectively, of the surface normal vector of
the facet and xvi, yvi, and zvi are the x, y, and z components, respectively, of each vertex of the
triangle for i = 1,2,3. Each triangle of the mesh is listed until the last triangle is accounted within
the STL file. For each facet subsection of the file, only text changes occur for nx, ny, nz, xvi, xyi,
and xzi. The indicators <facet normal>, <outer loop>, <vertex>, <endloop>, and
<endfacet> remain the same, as above, throughout the file for each facet of the geometry. The
end of the STL file is reached when the term <endsolid> is read, as shown below:

 .
 .
 .

 facet normal 0.000000e+000 0.000000e+000 -1.000000e+000
 outer loop
 vertex 1.000000e+000 1.000000e+000 0.000000e+000
 vertex 1.000000e+000 0.000000e+000 0.000000e+000
 vertex 0.000000e+000 1.000000e+000 0.000000e+000
 endloop
 endfacet
 facet normal 0.000000e+000 0.000000e+000 1.000000e+000
 outer loop
 vertex 0.000000e+000 0.000000e+000 1.000000e+000
 vertex 1.000000e+000 0.000000e+000 1.000000e+000
 vertex 1.000000e+000 1.000000e+000 1.000000e+000
 endloop
 endfacet
 facet normal 0.000000e+000 0.000000e+000 1.000000e+000
 outer loop
 vertex 1.000000e+000 1.000000e+000 1.000000e+000
 vertex 0.000000e+000 1.000000e+000 1.000000e+000
 vertex 0.000000e+000 0.000000e+000 1.000000e+000
 endloop
 endfacet
endsolid OBJECT <--------------- End of STL reached

The descriptive text OBJECT is once again listed after <endsolid>, and the STL file ends.

The algorithm for rotatestl does not check to ensure that the continuity of the geometry from
the STL file is valid without gaps, overlapping or degenerate facets, etc. Verification of properly
posed and formatted geometry within the ASCII STL file is left to the user. Any STL in which
rotatestl reads successfully will proceed with the rotation algorithm, regardless of the state of
the geometry within the STL.

5
Approved for public release; distribution unlimited.

2.0. Program Functionality

The functionality of rotatestl is rather straightforward: input geometric and user-defined
information, perform user-specified rotations, and output the resulting geometry in
Stereolithography file format. All input files are written in ASCII formatted text to enable
platform portability from one operating system to another. Binary input files have not been
implemented for rotatestl. The general input and output work flow is shown in Figure 2 on
page 7. Note that there are nine major input components required for successful program
execution, seven of which are the ASCII formatted input files. The output is a file structure
containing the newly rotated STL files. Table 1 gives a brief description of each input.

Table 1. Input Argument Descriptions for rotatestl

Expected Input
Argument Order

Input Designator Input Argument Type Description

1 world Floating Point
1 X 3 Vector; World origin of
geometry in the form [x, y, z]

2 parentFN String
File name with extension;
refers to file containing
original STL file names

3 childrenFN String

File name with extension;
refers to file containing child
names used to label rotated
STL files

4 hp1FN String

File name with extension;
refers to file containing hinge
line coordinates for "first"
points on hinge line

5 hp2FN String

File name with extension;
refers to file containing hinge
line coordinates for "second"
points on hinge line

6 deflectionsFN String
File name with extension;
refers to file containing
deflection angles in degrees

7 visualflagFN String

File name with extension;
refers to file containing
decision flags to show
visualization of rotation

8 reverseflagFN String

File name with extension;
refers to file containing
decision flags to reverse
direction of rotation

9 delimiter String
Printable ASCII character;
delimiter character used
within input files

6
Approved for public release; distribution unlimited.

2.1. The runX Folder System

Taking note of the output, a file system is generated for each run of rotatestl. The top
directory of the file system is designated runX, where X refers to the number of times rotatestl
has been executed consecutively within the present working directory. The algorithm itself
searches in the present working directory for the file runX until it cannot be found. For instance,
if rotatestl is executed for the fifth time, the algorithm searches the present working directory
for run1 through run4. Once it determines that run5 is not in the present working directory, it
creates a new system of directories, in the present working directory, with the top directory
labeled run5. In this way, rotatestl does not overwrite files that it generates from previous
executions. Further note, however, that if a former runX system is deleted manually by the user,
a subsequent execution of the program then creates a file system with a label having the same
name as the deleted folder system. For example, in the previous case of executing rotatestl for
the fifth time, if the file system run3 were deleted and if the program is executed for the sixth
time, a new folder system called run3 would be created. Moreover, a seventh execution in this
instance, however, would produce the directory system run6, not run7, because run6 does not yet
exist. Thus, even though rotatestl does not overwrite files, the user must still take care to
book-keep executions if runX folder systems are deleted or labeled differently during
consecutive runs to prevent confusion among run folders.

The runX folder system itself is composed of subdirectories containing the rotated STL files
produced by an execution of rotatestl. There is precisely the same number of subdirectories as
there are original STL files. That number is noted as N in the output section of Figure 2. Within
each subdirectory is the storage of each rotated STL file derived from an original “parent” STL
file. The number of “children” STL files in each subdirectory depends upon how many rotations
the user has specified for a given “parent” STL file.

2.2. Setting the Path for rotatestl

The execution of rotatestl may take place locally in the present working directory or may be
invoked from a designated path set by the user. In either case, the runX folder is written to the
present working directory. A path for the algorithm may be set manually through MATLAB by
using either the addpath or pathtool commands.

To create a temporary path that expires after the current session of MATLAB is closed, the
addpath command may be used. First, place rotatestl.m in the desired directory from which it
is to be invoked. Then execute the following command at the MATLAB command prompt:

>> addpath('YOUR_FAVORITE_PATH')

7
Approved for public release; distribution unlimited.

Place any path within the quotes, including directories with white space. For example, if
rotatestl.m were placed in the folder <C:\Tools\Rotatestl\> on a Windows operating system,
then the following would be entered using the addpath command in MATLAB:

>> addpath('C:\Tools\Rotatestl\')

For a path that is remembered automatically by MATLAB at every startup, use the pathtool
command. Please see the MATLAB documentation for more information on setting the path for
a given operating system.

Figure 2. Input and Output Work Flow for rotatestl

8
Approved for public release; distribution unlimited.

2.3. The Help Command

In general, for a quick reference to questions about work flow or input and output while running
rotatestl, a general help menu may be invoked at the command prompt of MATLAB. At the
command prompt simply type

>> help rotatestl

A path must be established for rotatestl (or the program must be in the present working
directory) for the help menu to appear. A general help menu prints to the screen. The first section
of the help menu is shown below in Figure 3:

ROTATESTL STL file rotation algorithm
 ROTATESTL(world,parentFN,childrenFN,hp1FN,hp2FN,deflectionsFN, ...
 visualflagFN,reverseflagFN,delimiter)

 transforms a stereolithography (STL) file via rotation angles
 specified by the user. The user provides input through files in
 ASCII format.

 For each execution, ROTATESTL will generate a run folder called
 "runX," where X is an integer counting each run. For example, if
 ROTATESTL is executed for the 5th time, the folder "run5" will
 be generated. Within each runX folder, a sub-folder, containing
 rotated STL files, will be created for each parent STL file.
 Therefore, the file structure of the runX folder becomes

 runX
 |
 |__ CHILD_NAME_1
 |
 |__ CHILD_NAME_2

 .
 .
 .

 |
 |__ CHILD_NAME_N

 ROTATESTL will not overwrite a runX folder that all ready
 exists.

 When rotations are performed, a rotation of zero is not
 executed (even if a zero is specified as a desired rotation),
 as this would result in a file with points identical to those of the
 parent STL file. Furthermore, if identical rotation angles are
 specifed for a given parent STL, the rotation angle will only be
 recorded once, and only one child STL file will be rotated for that
 angle. This enables the user to specify any set of deflections,
 whether repeated, non-repeated, or zero, for a parent STL. Only
 unique, nonzero rotation angles will be rotated. The user does not
 have to sort through a set of rotations. ROTATESTL will sort through
 the rotations automatically.

Figure 3. Excerpt from Help Menu Invoked at MATLAB Command Prompt

9
Approved for public release; distribution unlimited.

2.4. Algorithm Coordinate System

The coordinate system used by rotatestl is that of body coordinates used in various aerospace
engineering applications. In this case, the x-axis is positive aft (from the front of body to the
back of the body). The y-axis is positive to the right when looking at the rear of the body. The z-
coordinate is the direction of the cross-product of x with y (in most cases, usually vertical). This
convention must be used in the geometry exported to STL format for rotations to take place
properly and as desired. A diagram of the coordinate system orientation is given in Figure 4.

Figure 4. Coordinate System Convention Used by rotatestl

The units of the STL files are implied by the magnitude of the node components within each file.
It is the user’s responsibility to ensure that appropriate units are associated with each original
STL file. Conversion from one unit type to another is not implemented in rotatestl.

10
Approved for public release; distribution unlimited.

3.0. Input Descriptions

There are nine major input arguments to rotatestl. Each argument must be passed to
rotatestl for proper execution of the program. The set-up of ASCII file input must also be
prepared correctly for successful execution. Input files are placed in the present working
directory. Descriptions of each input argument and ASCII file set-up are discussed next.

As a running example to illustrate input and output to rotatestl, the mesh of a generic
hypersonic flight vehicle with various control surfaces is visualized throughout the program
description. A picture of the vehicle mesh is given in Figure 5. Control surfaces are shown in
green. The intent of the example is to show rotations of the vehicle control surfaces, which
emphasize the main capability of rotatestl: to rotate tessellated geometric data in STL format
about a desired rotation axis.

Figure 5. Generic Hypersonic Vehicle Geometry for the Illustration of STL Mesh Rotation

3.1. Input Argument Syntax

Input arguments to rotatestl are passed in a function format. The nine input argument types
listed in Table 1 are passed to rotatestl for program execution. The general syntax for input
arguments takes the following form:

rotatestl(world,parentFN,childrenFN,hp1FN,hp2FN,deflectionsFN,visualflagFN,reverseflagFN,delimiter)

where each input designator above must be of input argument type as listed in Table 1. Note that

11
Approved for public release; distribution unlimited.

strings in MATLAB are entered with single quotes. For example, a set of rotations are performed
by entering the following at the MATLAB command prompt or in an m-file:

rotatestl([0,0,0],'parents.txt','children.txt','hp1.txt','hp2.txt', ...
'deflections.txt','visualflag.txt','reverseflag.txt',',');

Further note that all string input arguments, except the delimiter, are file names. The full file
name with extension should be included as input. Once again, the format of the files should be in
ASCII format (complete format to be discussed later). The extension to each input argument file
name does not necessarily matter, as long as the files to which the input strings refer are
formatted with printable ASCII (plain text) characters. The ellipsis character above <...> is
simply MATLAB syntax that continues a command to the next line.

3.2. Input Designator: world

Input designator world refers to the world origin. The world origin of the geometry passed to
rotatestl must be specified. Use the coordinate system convention discussed previously for
proper origin input. The algorithm assumes that the entered origin pertains to all files that it reads
and writes for a given execution. Input itself is a 1 X 3 row vector, where the first, second, and
third elements are the x, y, and z components, respectively, of the world origin entered as
floating point data types. As in the above example regarding syntax, the world origin is given by

[0,0,0]

within the function call to rotatestl:

Figure 6. Example Input Argument of World Origin to rotatestl

The origin does not have to be [0,0,0]. It can be any origin, as long as the same origin is used
for each original STL file read by the program.

12
Approved for public release; distribution unlimited.

3.3. Input Designator: parentFN

The input designator parentFN implies “parent file name.” The corresponding input argument
for parentFN is a string of a file name. The file to which it refers is an ASCII file in the present
working directory containing all file names of the original STL files to be rotated.

Using the syntax example and the generic hypersonic vehicle as a guide, a notional input
argument to rotatestl is

'parents.txt'

within the rotatestl function call:

Figure 7. Example Input Argument for Input Designator, parentFN

The file itself, parents.txt, would have the following syntax for the rotation of the various
control surfaces of the hypersonic vehicle in Figure 5:

Bflap.stl
Lelevon.stl
Relevon.stl
Ltail.stl
Rtail.stl

where each line of the file contains the file name of each original, or “parent,” STL file prepared
for rotation. In this case, a body flap (Bflap.stl), left and right elevons (Lelevon.stl and
Relevon.stl), and left and right vertical tails (Ltail.stl and Rtail.stl) are considered for
rotation about their hinge lines. Each of the files parents.txt, Bflap.stl, Lelevon.stl,
Relevon.stl, Ltail.stl, and Rtail.stl would be placed in the present working directory
where the execution of rotatestl is to take place.

The rotation algorithm requires a standard syntax for the parents.txt file. The extensions listed
for each parent STL file should be either <.stl> or <.STL>. Secondly, there should be only one
period or decimal <.> within the filename. That is, the period character is reserved exclusively
for the extension of each STL file. The program searches for this period character and determines
if the remaining extension is properly entered into parents.txt. If there is an error in the
extensions, such as disorder of characters or improper syntax, rotatestl will return an error to
the MATLAB command window. For example, if the input to parents.txt were given to be

13
Approved for public release; distribution unlimited.

Bflap.stl
Lelevon.st
Relevon.Stl
Ltail.tlS
Rtail.STL

then rotatestl would return the following error message (assuming there are no other errors):

++++ Error in file <parents.txt> +++++
File with name [Lelevon.st] does not have an extension of <.stl> or <.STL>.
Please include <.stl> or <.STL> extension to the end of the parent filename.

++++ Error in file <parents.txt> +++++
File with name [Relevon.Stl] does not have an extension of <.stl> or <.STL>.
Please include <.stl> or <.STL> extension to the end of the parent filename.

++++ Error in file <parents.txt> +++++
File with name [Ltail.tlS] does not have an extension of <.stl> or <.STL>.
Please include <.stl> or <.STL> extension to the end of the parent filename.

Not all parent STL file names have been input correctly.
Please check file extensions of parent STL file names.

Furthermore, there should be no spaces within file names provided in the parentFN file. If there
are spaces within the file names, the text on a given line will be merged and interpreted as one
file name. The five control surfaces listed in parents.txt are highlighted in blue in Figure 8.

It is recommended that each of the STL files in parents.txt only contain the geometric
information of the specific geometry desired for rotation. Usually, the geometry is a closed
surface with no gaps. For example, the STL Bflap.stl should only contain the nodes and facets
for the body flap. The other control surfaces and body components should not be exported to the
file. In this way the user knows exactly what particular geometry is passed to rotatestl. The
actual geometry to be rotated from Bflap.stl is shown in Figure 9 to emphasize this point. The
algorithm will rotate any STL that is input to it, even if the geometry is a combination of nodes
and facets unwanted by the user. The quality and nature (presence of degenerate facets, gaps,
smoothness of the mesh, etc.) of the input parent STL files are left to the user to troubleshoot.

The file designated by the parentFN input argument sets the stage for the rest of the execution of
rotatestl. The number of parent STL files listed in parents.txt, for instance, governs the
amount of information input to rotatestl. The necessary constraints on input are discussed
with each of the different input arguments that follow.

14
Approved for public release; distribution unlimited.

Figure 8. The Five Example Control Surfaces of a Generic Hypersonic Vehicle

15
Approved for public release; distribution unlimited.

Figure 9. Actual Body Flap Geometry from Bflap.stl for Input to rotatestl

3.4. Input Designator: childrenFN

The input file designator childrenFN implies “children file name.” A string argument is passed
to rotatestl denoting a file name. The file itself is an ASCII text file in the present working
directory containing names that label rotated STL files. Each line in childrenFN corresponds to
a label for the respective line in parents.txt. For output STL naming consistency, this line-by-
line correspondence between the childrenFN file and the parentFN file should be enforced.

Any text may be entered as a label for each line of childrenFN, provided that the text does not
violate file name restrictions of the operating system. An example input argument is

'children.txt'

and is boxed below in the rotatestl function call:

Figure 10. Example Input Argument for Input Designator, childrenFN

The file children.txt to which the above input argument denotes could contain the following
format for the example of the generic hypersonic vehicle:

bflap
Lelevon
Relevon
Ltail
Rtail

16
Approved for public release; distribution unlimited.

After a rotation is executed, rotatestl creates a new file name each rotated STL file of the form

<CHILD_NAME><DEFLECTION ANGLE><deg.stl>

For example, if the file Bflap.stl is rotated by -10.5 degrees, the resulting rotated file name
becomes

 bflap-10.5deg.stl

The newly created STL file is then placed in a respective folder called bflap in the runX file
system. In a similar manner, the other input STL files are passed to rotatestl, and the resulting
output files are placed in the respective subfolders of bflap, Lelevon, Relevon, Ltail, and
Rtail within the runX file structure.

Note that there are five label names in children.txt and that there are five input STL files
listed in parents.txt. There should be the same number of label names in the childrenFN file
as the number of parent STL files input for rotation. If this is not the case, rotatestl will
prompt the user with an error similar to the following:

The number of parent .stl files provided determines the
number of specified child names, the sizes of the hinge
point matrices, and the size of the deflection structure.
The number of rows in the hinge point matrices, the
number of columns in the deflection structure, and the
number of child names specified must be equal to the number
of parent .stl files provided.

Number of specified names for child .stl files
not equal to the number of parent .stl files provided.

In this case, the prompt simply tells the user that the number of labels in the childrenFN file is
not equal to the total STL files provided. Like the parentFN file, the childrenFN file must
contain names with no spaces within the name along a given line of input.

3.5. Input Designator: hp1FN or hp2FN

The input designator hp1FN or hp2FN implies “hinge point [1 or 2] file name.” The input
argument to rotatestl is a string denoting one of two file names. The file denoted by the input
argument is one of two ASCII files in the present working directory that contains the Cartesian
coordinates of points along a specified rotation axis.

For each rotation that is performed, a rotation axis must be specified. One rotation axis must
correspond to one input (parent) STL file. Because a line may be defined by two points, two
input files are required. One input file contains the Cartesian coordinates of one point on a given
hinge line while the other input file contains the coordinates of the second point the hinge line.
Example input arguments to rotatestl regarding the vehicle in Figure 5 include

17
Approved for public release; distribution unlimited.

‘hp1.txt’

and

‘hp2.txt’

within the function call to rotatestl:

Figure 11. Example Input Argument for Input Designators hp1FN and hp2FN

The coordinates of the first input file, hp1.txt, are denoted collectively as the hinge point 1
matrix, or hp1. Similarly, the second set of coordinates of hp2.txt is denoted as the hinge point
2 matrix, or hp2. The algorithm in rotatestl then defines a vector along each given hinge line
such that the right hand rule points in the direction of hp1. That is, when one’s thumb is placed in
the direction of hp1, a positive rotation of a parent STL follows the motion of one’s hand using
the right hand rule convention. Futhermore, the order of input arguments four and five
determines hp1 and hp2. Input argument four (in this case, ‘hp1.txt’) is always denoted as hp1
in rotatestl while input argument five (in this case, ‘hp2.txt’) is always denoted as hp2.

Each row in the hinge point files hp1.txt or hp2.txt contains, strictly speaking, the hinge point
coordinates along the hinge line corresponding to the input STL file of the respective row in the
parentFN input file. Let each coordinate on a hinge line be defined with the following
convention:

𝐶𝑝,𝑗 ,

(1)

where 𝐶 denotes a Cartesian coordinate X, Y, or Z; the subscript 𝑝 is the denoted point on the
hinge line (point 1 or point 2); and the subscript 𝑗 is a specific row of the parentFN file to which
the hinge line corresponds. Therefore, hp1FN and hp2FN have the form shown in Table 2. Note
that 𝑁 is the total number of input STL files listed in parentFN. By convention of the algorithm,
only one hinge line corresponds to one input STL file. Once again, positive rotations follow the
right-hand-rule and point in the direction of hp1.

Continuing the example with the generic hypersonic vehicle, the input files hp1.txt and
hp2.txt are shown in Table 3 with white space separating each coordinate. When observing

18
Approved for public release; distribution unlimited.

Table 2. Format for hp1FN and hp2FN Input Files

hp1FN hp2FN

𝐿𝐼𝑁𝐸 1: 𝑋11 𝑌11 𝑍11
𝐿𝐼𝑁𝐸 2: 𝑋12 𝑌12 𝑍12

 ⋮
𝐿𝐼𝑁𝐸 𝑁: 𝑋1𝑁 𝑌1𝑁 𝑍1𝑁

𝐿𝐼𝑁𝐸 1: 𝑋21 𝑌21 𝑍21
𝐿𝐼𝑁𝐸 2: 𝑋22 𝑌22 𝑍22

 ⋮
𝐿𝐼𝑁𝐸 𝑁: 𝑋2𝑁 𝑌2𝑁 𝑍2𝑁

Table 3. Example Hinge Point Files for Generic Hypersonic Vehicle

hp1.txt: hp2.txt:
 11.766 0.638 -0.004
 11.766 -0.638 -9.51685e-6
 11.766 1.500 -9.51685e-6
 10.778 -0.388 1.066
 10.778 0.388 1.066

 11.766 -0.638 -0.004
 11.766 -1.500 -9.51685e-6
 11.766 0.638 -9.51685e-6
 10.737 -0.388 0.067
 10.737 0.388 0.067

Table 3, combining Line 1 of hp1.txt and Line 1 of hp2.txt creates the hinge line for the body
flap STL file, Bflap.stl, listed on Line 1 of parents.txt. Line 2 of hp1.txt and Line 2 of
hp2.txt create the hinge line for the STL file listed on Line 2 of parents.txt—in this case
Lelevon.stl. Other specified hinge lines are created in a similar manner. To visualize a hinge
line, the body flap hinge line is shown in Figure 12. The point hp1 of the body flap hinge line is
represented by the red dot on the body flap right side. With this input, a positive rotation (by the
right hand rule as previously described) of the body flap creates a downward deflection (the aft
end of the flap displaces in a negative z-direction relative to the reference frame convention of
rotatestl).

It is emphasized that only coordinates separated by white space or a delimiter may be placed in
the hp1FN and hp2FN files. Inserting other information or characters will prevent successful
execution of rotatestl.

19
Approved for public release; distribution unlimited.

Figure 12. Display of Hinge Line and Point hp1 for Example Body Flap

3.6. Input Designator: deflectionsFN

The input designator deflectionsFN implies “deflections file name.” A string denoting a file
name is the input argument to rotatestl. The file to which the name refers is an ASCII file in
the present working directory that tabulates user-specified angular deflections, in degrees. The
algorithm of rotatestl rotates, about the specified hinge lines, the parent STL file geometries
by the angular deflections.

The generic hypersonic vehicle is again used as an example for input. An ASCII file named
deflections.txt is used to store the deflection information (any name is suitable as long as the
file name does not violate naming restrictions of the operating system). The string input could be

 ‘deflections.txt’

and is shown as an assignment below to rotatestl:

Figure 13. Example Input Argument for Input Designator, deflectionsFN

Each column of the deflections input file implicitly represents the schedule of deflections for
each parent STL file. If parents.txt as previously described were used for STL input, then
deflections.txt would have five columns, one for each input STL file. Any number of

20
Approved for public release; distribution unlimited.

deflections in degrees, in any order, may be listed under each column of the deflections.txt
file. Within a column, the deflection angles may be positive, negative, repeated, and may even be
zero, but only the unique, non-zero rotation angles within a column are rotated for a given STL
file. This enables the user to give any (real) number, in degrees, as input to the deflection input
file, and rotatestl sorts through the angles automatically. If an angle is repeated, rotatestl
rotates via the angle only once (per specified parent STL file). Again, only non-zero rotations are
considered by the algorithm, as a zero deflection will result in no change to the geometry
orientation.

The general format of the deflectionsFN file is further described as follows. Using the
following definitions in Table 4, a general formulation of deflection input to the deflectionsFN
file is shown in Figure 14.

Table 4. Variable Descriptions for deflectionsFN File Format

Variable Description

N Total number of input parent STL files

jth column in the deflectionsFN file or jth row in parentFN file

j = 1, 2, 3, . . ., N

ND(j) Total number of deflections scheduled for the jth parent STL file

kth row of the jth column of the deflectionsFN file

k = 1, 2, 3, . . ., ND(j)

dj,k Specific deflection value, in degrees, for the kth row of the jth column of the deflectionsFN file

j

k

Each column represents the deflection schedule for a single parent STL file and is independent of
all other columns. Moreover, the total number of deflections specified for a given parent STL
file—that is, the value of ND(j)—may be different for any or all parent STL files. For instance,
five rotations might be scheduled for the body flap of the generic hypersonic vehicle (in this case
ND(1) = 5 and j = 1, representing total deflections Bflap.stl in the first row of the parentsFN
file and signifying the first column of the deflectionsFN file) while the right elevon might be
scheduled for ten deflections (in this case ND(3) = 10 and j = 3, representing 10 total deflections
for Relevon.stl in the third row of the parentsFN file and signifying the third column of the
deflectionsFN file). This explains why the deflection angle inputs in Figure 14 occupy
differing lengths along the rows of each column. The maximum row dimension is equal to the
maximum number of scheduled rotations across all STL files or, explained numerically,
max[ND(j)]. Thus, the total dimension of the deflection input to deflectionsFN should be

max[𝑁𝐷(𝑗)] 𝑋 𝑁 ,

(2)

21
Approved for public release; distribution unlimited.

If the total number of deflections is not the same for all STL files (i.e. max[ND(j)] ≠ ND(j) for
all j), then the remaining rows of the columns with a total number of input deflections less than
max[ND(j)] should be filled with zeros [0]. This is shown by the zeros in Figure 14. Any
column can have the maximum total number of deflections, or all columns may be completely
filled with the same total number of deflections. The display shown in Figure 14 is generalized
and illustrates the case when not all parent STL files have the same total number of deflections
specified. By convention, however, all columns of every row must be filled. If no deflection is
necessary for a given column along a row, fill the column with a zero [0]. If not all columns of
all rows are specified with a numeric value, rotatestl prints an error to the MATLAB
command prompt and terminates the program.

To reiterate, any numeric input (excluding complex numbers, of course) in degrees may be
entered in the deflectionsFN file. It is up to the user to determine the upper and lower bounds
of rotations to perform based upon the geometry at hand and upon the necessary analysis that
requires the use of rotatestl. Once again, the numeric input may be repeated or unordered, but
only the unique, non-zero deflection angles are rotated by the algorithm. For instance if, in a

Col. 1 Col. 2 … Col. (j) … Col. (N - 2) Col. (N - 1) Col. N
LINE 1 d11 d21 … dj1 … d(N - 2),1 d(N - 1),1 dN,1

LINE 2 d12 d22 dj2 d(N - 2),2 d(N - 1),2 dN,2

LINE 3 d13 d23 dj3 d(N - 2),3 d(N - 1),3 dN,3… …

dj,k d(N - 1),ND(N - 1)

d1,ND(1) 0
0 d2,ND(2)

0 dj,ND(j)

0 dN,ND(N)

0
LINE {max[ND(j)] - 1}

…

LINE {max[ND(j)]} 0 0 … 0 … d(N - 2),ND(N - 2) 0 0

Actual input to deflectionsFN file is bound by the box above.

…

… …

…

……

……

… …

… …

Figure 14. General Input Format for deflectionsFN File

single column of deflectionsFN, two values of 5 are listed, rotatestl takes only the first
occurrence of the value 5 in the column and generates a child STL file rotated by 5º. The
extraneous value of 5 is ignored. Furthermore, if values are not listed in numerical order, this has
no effect on the ability of the algorithm to rotate STL files by the specified angles. Finally, if
zeros are encountered in the columns of deflectionsFN, they are ignored.

22
Approved for public release; distribution unlimited.

The general format shown in Figure 14 may be described more plainly. For every parent STL,
specify a set of rotation angles for rotatestl to perform. Determine the maximum number of
rotations specified for any given parent STL. This maximum number is the total number of rows
of input in the deflectionsFN file. Then, place each individual set of rotations (one per parent
STL) into a column. Stack the columns of rotations side by side (left-to-right) in the
deflectionsFN in the same order as the parent STL files are listed in the parentFN file (row per
row). Fill any unfilled columns along a row in the deflectionsFN file with zeros until every
column has the same number of rows (equal to the maximum number determined previously).
The deflectionsFN file should then be ready for input to rotatestl.

Examples of input to the deflectionsFN file are given below. Each example shows valid and
invalid files with the same intended input deflection angles in degrees. For the invalid cases, a
pertinent error message is included in each example that rotatestl would print to the
MATLAB command were the invalid file used as input. Figure 15 shows angular deflections that
are unordered along each column (the tan shaded column at the left is a labeling of the line
number of the file and is not strictly text within the file). Recall that unordered columns have no
effect on successful execution of rotatestl. Zero values are also included in columns where
deflections are unspecified. Note that the invalid case is rejected by rotatestl because columns
on lines 4 and 5 of the deflectionsFN file have missing input. Figure 16 shows input that is
unordered and that has repeated deflection values along columns. Further recall that repeated
values along a column (specified for a specific parent STL file) is only implemented as a rotation
once. The algorithm again notes missing input along columns if the invalid file is used.
Figure 17 shows ordered data, from least to greatest, along columns. The input is also comma-
delimited, as is implemented by common <.csv> files. If multiple columns have missing input in
the deflectionsFN file, the rows in which the missing data occurs are identified in the error
message. Finally, Figure 18 shows a similar comma-delimited input file. In this case, zeros are
included along columns where input is not specified. Missing input is identified if the deflections
input file is invalid. In all cases, the columns do not have to line up directly. As long as white
space, a specified delimiter, or both are used to separate data from column to column, the input
should load successfully into rotatestl.

23
Approved for public release; distribution unlimited.

Valid Input of Deflection Angles

Invalid Input of Deflection Angles

 It appears that deflection angles may not be specified for all columns
 along (at least) one row of the deflections file. Please include a deflection
 for all columns of all rows. The number of columns entered must equal
 the number of parent .stl files to be rotated. If not all parent .stl files
 will experience the same number of rotations, fill each empty column with a
 zero [0].

 Rows without all columns filled with input are:

 line 4
 line 5

 in the file

 <deflections.txt>

 Program terminated.

Error Message for Above Invalid Input of Deflection Angles

Figure 15. Unordered Input Including Zeros along Columns of deflectionsFN File

24
Approved for public release; distribution unlimited.

Valid Input of Deflection Angles

Invalid Input of Deflection Angles

 It appears that deflection angles may not be specified for all columns
 along (at least) one row of the deflections file. Please include a deflection
 for all columns of all rows. The number of columns entered must equal
 the number of parent .stl files to be rotated. If not all parent .stl files
 will experience the same number of rotations, fill each empty column with a
 zero [0].

 Rows without all columns filled with input are:

 line 3
 line 4
 line 5

 in the file

 <deflections.txt>

 Program terminated.

Error Message for Above Invalid Input of Deflection Angles

Figure 16. Unordered Input with Repeated Values along Columns of deflectionsFN File

25
Approved for public release; distribution unlimited.

Valid Input of Deflection Angles

Invalid Input of Deflection Angles

 It appears that deflection angles may not be specified for all columns
 along (at least) one row of the deflections file. Please include a deflection
 for all columns of all rows. The number of columns entered must equal
 the number of parent .stl files to be rotated. If not all parent .stl files
 will experience the same number of rotations, fill each empty column with a
 zero [0].

 Rows without all columns filled with input are:

 line 13
 line 14
 line 15
 line 16
 line 17
 line 18
 line 19
 line 20

 in the file

 <deflections.csv>

 Program terminated.

Error Message for Above Invalid Input of Deflection Angles

Figure 17. Ordered Input with Comma Delimiter for deflectionsFN File

26
Approved for public release; distribution unlimited.

Figure 18. Ordered Input with Zero Values and Comma Delimiter for deflectionsFN File

Valid Input of Deflection Angles

Invalid Input of Deflection Angles

 It appears that deflection angles may not be specified for all columns
 along (at least) one row of the deflections file. Please include a deflection
 for all columns of all rows. The number of columns entered must equal
 the number of parent .stl files to be rotated. If not all parent .stl files
 will experience the same number of rotations, fill each empty column with a
 zero [0].

 Rows without all columns filled with input are:

 line 14
 line 15
 line 16
 line 17
 line 18
 line 19
 line 20

 in the file

 <deflections.csv>

 Program terminated.

Error Message for Above Invalid Input of Deflection Angles

27
Approved for public release; distribution unlimited.

3.7. Input Designator: visualflagFN

The input designator visualflagFN implies “visualization flag file name” and requires a string
input argument of a file name. The file to which it refers is an ASCII file containing a listing of
choices to show, or not to show, the maximum rotation specified for a given parent STL file. If
visualization is desired, a figure of the desired parent STL and its child STL of maximum
rotation is displayed. The visualflagFN file is placed in the present working directory.

Provide rotatestl with a string for the visualflagFN designator. An example input argument
may be

 ‘visualflag.txt’

and is shown below in the call to rotatestl:

Figure 19. Example Input Argument for Input Designator, visualflagFN

Input to the file visualflag.txt is a single column of ones [1] or zeros [0]. Each row of the
column corresponds to a visualization choice regarding the output derived from the parent STL
of the respective row in the parentFN file. A value of one indicates that the user requires that a
child STL be displayed. The STL file displayed is that file of maximum rotation for a given
parent STL file. A zero indicates that no visualization is required, and no display is shown for the
respective parent STL. These visualization choices are summarized in Table 5. All choices for
every parent STL file are required to run rotatestl. The default value for visualization is zero,
which gives no display. If a large number of rotations is being performed, it is recommended that
the user choose zero for all visualization flags to prevent the computer from running out of
memory.

Table 5. Summary of Visualization Choice Input to visualflagFN File

Flag Value Result
0 No visualization displayed (default input)
1 Display child STL file of maximum specified rotation

An example visualization set-up for the generic hypersonic vehicle is provided in Table 6. On the
left is the visualflag.txt file. On the right is the deflections.txt file with a simple schedule
of rotations for the parents.txt file discussed previously. The hinge point files of Table 3 also

28
Approved for public release; distribution unlimited.

apply. Because the parents.txt file lists five parent STL files, the visualization flag file should
contain five input choices along a single column. The body flap and left elevon flags—the first
and second rows, respectively, of the visualflag.txt file—have been set to one as a means to
emphasize the visualization feature of rotatestl. By convention, the child STL that has been
rotated by the largest angular deflection is displayed. In this case, the child body flap that is to
rotate by 20º is displayed upon execution of rotatestl. Similarly, the left elevon that is to rotate
by 15º is displayed upon execution of the program. If the set-up of Table 6 is executed via the
command of Figure 19 (assuming all proper input), the resulting displays are shown in Figure 20
and Figure 21.

Table 6. Example Set-up of visualflagFN File
visualflag.txt deflections.txt

Figure 20. Initial Display of Rotated Body Flap for a Generic Hypersonic Vehicle

29
Approved for public release; distribution unlimited.

Figure 21. Initial Display of Rotated Left Elevon for a Generic Hypersonic Vehicle

Each display initially shows the world origin with a red asterisk, the parent STL file in blue, and
child STL file in yellow. Also note that a legend appears in the upper right-hand corner of the
figure. Within the legend, the parent and child STL file colors are labeled, and the deflection
angle of the child STL file is displayed. The world origin label is also included in the legend.
Furthermore, the angle of deflection shown for each STL geometry is the maximum deflection
input for a given parent STL file along a column of the deflectionsFN file. An enhanced view
and description of the legend is given in Figure 22 with a side comparison of the deflectionsFN
file.

At the top of the figure display is a tool bar with numerous display options and functions. Of
particular use in immediate analysis with rotatestl are the zoom, pan, and rotate commands.
These commands are noted in Figure 23.

To use either of the Zoom In or Zoom Out commands, left click on either icon to enable the
command. The Zoom In command is shown in the enabled position in Figure 24. Once the zoom
command is enabled, create a box around the area of interest in the display by left clicking,
holding the left click button, and dragging the cursor over the area of interest. To show this
procedure, Figure 25 shows a box around the body flap as the zoom command is enabled. An
alternative approach to zooming is to simply left click and release over a certain area of the

30
Approved for public release; distribution unlimited.

figure display. After creating the box around the body flap, the left click button may be released.
The display zooms, showing an enlarged view of the body flap, as shown in Figure 26. Zooming
in or out may continue by repeating the above procedure with either Zoom In or Zoom Out
enabled. Double click the left mouse button (with zoom, pan, or rotate enabled) in the figure
display to reset the view.

Figure 22. Description of Figure Legend for Child STL Body Flap

Figure 23. Zoom, Pan, and Rotate Commands of MATLAB Figures

31
Approved for public release; distribution unlimited.

Figure 24. Zoom In Command Enabled in MATLAB Figure Display

The rotate command may be utilized to view other perspectives of the rotated STL files. When in
the zoom position as shown in Figure 26, enable the rotate command at the toolbar by left
clicking the Rotate 3D button that shows a circular arrow surrounding a box, shown in Figure 27.
Similar to the zoom commands, the Rotate 3D command may be executed by dragging the
mouse icon while clicking and holding the left mouse button. With the rotate command now
enabled, left click, hold, and drag a section of the figure. The body flap rotates via the mouse
commands. An example rotation of the body flap is shown in Figure 28. The rotated child STL
file is shown in yellow. Note that the image in the figure is simply a tool to observe how a
rotation has taken place based upon user input and upon the convention of rotation discussed in
Section 3.5 relative to hinge point input. The blue image of the body flap is the original parent
STL file, shown to visualize the child STL rotation. The actual child STL files, however, contain
solely the rotated geometric parent STL information. To be clear, only the geometry for a single
component is contained in each child STL file. As a hint for using the rotate command with
rotatestl, zoom around the desired image with a box first, and then rotate the image. This
allows for more intuitive rotation.

32
Approved for public release; distribution unlimited.

Figure 25. Creating a Box around the Child STL Body Flap with the Zoom Command

Figure 26. Initial Zoomed Image of Child STL Body Flap

33
Approved for public release; distribution unlimited.

Figure 27. Rotate 3D Command Enabled in MATLAB Figure Display

Figure 28. Example Rotation of Body Flap

34
Approved for public release; distribution unlimited.

If translation of the figure is necessary, use the pan command. The pan command will translate
the present image on the figure to a new location specified by user mouse movements. To enable
the pan command, left click on the Pan icon, denoted by a hand shown in Figure 29. Using the
pan command is similar to that of using the rotate command. Clicking and dragging the mouse
icon translates an image of the figure from one point to another. The procedure is shown in
Figure 30. Repeat the procedure to pan an image to other locations in the figure.

Figure 29. Pan Command Enabled in MATLAB Figure Display

Figure 30. Example Pan of Body Flap

35
Approved for public release; distribution unlimited.

Many other features that are inherent capabilities within MATLAB are embedded within each
figure. These features include, among others, printing to various output formats, figure labeling,
and viewing of data points directly on the figure. To find more information about the use of
figures within MATLAB, please see the MATLAB documentation.

3.8 Input Designator: reverseflagFN

Input through the designator reverseflagFN implies “reverse flag file name.” The input
argument is a string denoting a file name. The file name to which the input refers is an ASCII
formatted file containing decision flags, either one or zero, that direct rotatestl to change (or
not to change) the direction of rotation of a set of child STL file.

The general input argument of the reverseflagFN designator is a string. Example input to
rotatestl could be

 ‘revereseflag.txt’

which would denote the file reverseflag.txt. The representation of such input is shown below
in Figure 31:

Figure 31. Example Input Argument for Input Designator, reverseflagFN

The input file itself, reverseflag.txt, contains a column of ones and zeros denoting the user
decision flags for STL rotation reversal. There is only one flag per row of the column, each row
corresponding to the STL file listed in the respective row of the parentFN file. The decision to
reverse the direction of rotation is denoted by the value one [1]. The decision to leave the
direction of rotation unchanged is denoted by the value zero [0]. The default input to
rotatestl is zero. These decision inputs are reiterated in Table 7. A reverse flag value must be
supplied for every parent STL file provided in the parentFN file. Every child STL corresponding
to a given parent STL is rotated in the direction according to the decision implied by the reverse
flag value.

36
Approved for public release; distribution unlimited.

Table 7. Summary of Reverse Flag Input to reverseflagFN File

Flag Value Result
0 Direction of rotation unchanged (default input)
1 Reverse direction of rotation of child STL file

An example column of input to the reverseflag.txt file is shown in Figure 32. Note that the
input to reverseflag.txt in this case would cause rotatestl to reverse the direction of
rotation of the child STL files corresponding to Bflap.stl of the parentFN file discussed
previously in Section 3.3. A comparison of +20º rotation with and without reversal for the
Bflap.stl file is shown in Figure 33. The idea here is that, regardless of the direction in which
rotatestl rotates an STL file about a hinge line, the reverse flag option may be used to denote
the rotation direction. For the case of the body flap above, both rotations shown in Figure 33
denote positive rotation. However, the convention of positive rotation for the body flap in which
rotatestl implements depends upon the value of the reverse flag option that the user specifies.
Once again, all child STL files are rotated relative to the convention implied by the reverse flag
option of a given parent STL file. The child body flap STL files, linked to the example set-up of
Figure 32, would take on positive rotations for a reverse flag option equal to one, shown on the
right side of Figure 33. The user must determine which convention of positive rotation is
appropriate for the application at hand.

reverseflag.txt

Figure 32. Example Set-up of reverseflagFN File

37
Approved for public release; distribution unlimited.

Reverse Flag = 0 Reverse Flag = 1

Figure 33. Example of Rotation Reversal for +20º Rotation of Bflap.stl File

As a note on a potential issue with the reverse flag option, if the hinge line is nearly parallel with
the z-axis (as defined by the coordinate system convention of Figure 4), the reverse flag option
does not appear to reverse the direction of rotation properly. The user may need to be mindful of
the labeling of child STL files if the opposite rotation direction implemented by rotatestl is
desired in this case. Positive and negative input deflection angles to the deflectionsFN file still
produce opposite rotations as expected. Therefore, if the opposite rotation direction is desired for
STL files in this case, the user may need to swap the sign of the respective deflection angle in the
labeling of the child STL files.

3.9. Input Designator: delimiter

The input designator delimiter is a string character that denotes a user-specified delimiter, or
separating character, found within the input files for rotatestl. The default delimiter is white
space or repeated white space and is readily implied for user input. If the user desires to supply a
delimiter, any printable ASCII character may be entered as a string input argument except for
numbers, the dash symbol < - >, and the backslash symbol < \ >. In fact any combination of
characters (excluding those just mentioned) may also be used as a user-defined delimiter.
However, this is not recommended, as rotatestl may perform unexpectedly. A single ASCII
character specified as a user-defined delimiter is sufficient. The user-defined delimiter applies
only to the hp1FN, hp2FN, and deflectionFN input files. The parentFN, childrenFN,
visualflagFN, and reverseflagFN files all have input syntax, as defined in the previous

38
Approved for public release; distribution unlimited.

sections, that do not require delimiters. The delimiter input argument itself, however, is required
for successful program execution.

The input argument to rotatestl should be a printable ASCII character placed within single
quotes. If the user chooses not to supply a delimiter, place a space within single quotes as the
input argument < ‘ ’>. An example input argument for the use of a comma as the user-specified
delimiter would be input as <‘,’>. This is shown in Figure 34.

Figure 34. Example Input Argument for Input Designator, delimiter

It is recommended that the user does not provide the decimal character < . >, the plus character
<+>, or the asterisk character <*> as a user-specified delimiter. These characters may interfere
with valid input such as a file extension or a decimal point for a deflection angle, for example. If
.csv files are used for input, provide the comma as the specified delimiter, as shown in Figure 34.
Consecutively repeated delimiter characters, such as <,,,,>, cause rotatestl to read input
improperly and should not be placed within input files. The program can accommodate,
however, repeated white space inside the input files. Furthermore, if a user-specified delimiter is
provided, both white space and the delimiter are ignored. For instance, if the comma delimiter is
specified as in Figure 34, rotatestl would still successfully read the valid deflectionsFN files
of Figures 15 through 18.

In general, the input delimiter must follow the rules of the textscan function in MATLAB.
Please see the MATLAB help documentation, if necessary, for more information on the
textscan function.

39
Approved for public release; distribution unlimited.

4.0. Sample Program Execution and Results

Throughout the former discussion of the use of rotatestl, a set of examples were introduced in
order to describe the program with the geometry of a generic hypersonic vehicle, shown in
Figure 5. The discussion now continues, showing the execution of the running example
previously noted and highlighting the implications of the use of rotatestl for applications to
computational analyses.

Using the example input information provided in Section 3.0, the component control surfaces of
the generic hypersonic vehicle of Figure 5 are rotated as follows. The various input files
discussed in Section 3.0 are shown together below in Figure 35 on page 40. The command input
discussed in Section 3.1 is used to execute rotatestl and is repeated below:

rotatestl([0,0,0],'parents.txt','children.txt','hp1.txt','hp2.txt', ...
'deflections.txt','visualflag.txt','reverseflag.txt',',');

Upon full execution of the program, rotatestl prints a message to the MATLAB command
prompt as shown in Figure 36 on page 41. The presented message indicates that the runX folder
system has been created for the first execution of rotatestl within the present working
directory and displays the elapsed time necessary to perform all rotations requested by the user.
Execution times vary depending upon the operating system used, the number of rotations
requested, the size of each parent STL file, and whether or not visualization is needed. The runX
folder system is labeled run1 and is shown on page 41 in Figure 37. Note that the sub-directories
are labeled according to the input found in the children.txt file. Moreover, within each sub-
directory, each child STL is labeled according to the convention specified in Section 3.4 in
which the respective deflection angle is combined with the child name indicated by the user. The
actual rotated child STL geometries are shown in Figure 28. The geometries are shown at a
perspective to emphasize the rotation that has taken place and are not shown to scale. Following
the input to the visualflag.txt file, rotatestl generates figures that look exactly like those
shown in Figure 20 and Figure 21. Finally, note that, in Figure 38, the positive rotation
convention of the bflap20deg.stl file is the same as that displayed to the right of Figure 33 due
to the reverse flag option value of one, set for the body flap in the reverseflag.txt file.

The net effect of rotating the control surfaces may be realized if the surfaces are rejoined with
the rest of the hypersonic vehicle. Some perspectives of the vehicle are shown in Figure 39 on
page 43 with rotated control surfaces superposed to wing and body geometry. In general, if the
rotated STL surfaces are combined with other geometry, such as a vehicle mesh in the case
above, the door to various computational analyses is opened. In the case of the vehicle described,
forces and moments about the vehicle in a flow field may be determined through CFD for any
configuration change to the control surfaces. This allows the engineer or the designer to
characterize the aerodynamic response of the vehicle at different flight conditions. Other

40
Approved for public release; distribution unlimited.

applications may be possible, such as rotation of meshes for graphics or rapid prototyping.
Though, the latter two applications have not yet been implemented with rotatestl. Regardless
of the application, however, the intent of the program is to change the orientation of a mesh
directly, without the need to re-create or to re-mesh new surface topology. Such utility enables
tools and methods involving grid generation to take place at much faster time scales than would
be possible otherwise.

parents.txt hp2.txt

children.txt deflections.txt

hp1.txt visualflag.txt

reverseflag.txt

Figure 35. Contents of Input Files for Program Execution Example

41
Approved for public release; distribution unlimited.

Figure 36. Command Window Output upon Successful Execution of rotatestl

Figure 37. Folder System Created after Execution of rotatestl

42
Approved for public release; distribution unlimited.

Figure 38. Child STL Files Created after Successful Execution of rotatestl

bflap-20deg.stl bflap20deg.stl

Lelevon-15deg.stl Lelevon15deg.stl

Ltail-10deg.stl Ltail10deg.stl

Relevon-15deg.stl Relevon15deg.stl

Rtail-10deg.stl Rtail10deg.stl

43
Approved for public release; distribution unlimited.

Figure 39. Generic Hypersonic Vehicle STL Geometry with Rotated Control Surfaces

44
Approved for public release; distribution unlimited.

Figure 39. Generic Hypersonic Vehicle STL Geometry with Rotated Control Surfaces
(Concluded)

45
Approved for public release; distribution unlimited.

5.0 Conclusion

In some computational applications, such as computational fluid dynamics or finite element
analysis, mesh rotation can be a necessary requirement to change the geometric object at hand in
order for new analysis to take place. Performing grid generation manually through a re-
triangulation of rotated geometry can be time consuming, especially if many different rotations
are being considered. The MATLAB rotation algorithm, rotatestl, is a tool that provides a
means to rotate grid or mesh geometry in the form of the Stereolithography file format. Any
number of rotations may be specified for any number of original STL files. The program has
nine major inputs required for execution and has helpful features such as rotation visualization,
rotation direction reversal, and the accommodation of user-specified delimiters. Moreover, the
algorithm is platform portable to both Window and Linux operating systems. With its use,
rotatestl may reduce the time necessary to change components of tessellated meshes requiring
rotation about an axis or a hinge line. Thus, computational applications requiring many rotational
changes may be enhanced through the use of the algorithm.

46
Approved for public release; distribution unlimited.

6.0 References

[1] Kai, Chua Chee, and Leong Kah Fai. Rapid Prototyping: Principles and Applications in
Manufacturing. New York: John Wiley & Sons, Inc., 1997.

47
Approved for public release; distribution unlimited.

Bibliography

Greenwood, Donald T. Principles of Dynamics. 2nd ed. Englewood Cliffs: Prentice-Hall, Inc.,
1988.

MATLAB. Vers. 7.11.0.584 (R2010b). The MathWorks, 16 Aug. 2010.
<http://www.mathworks.com/products/matlab/>.

Rhinoceros 3D. Vers. 3.0 (SR5b). Robert McNeel & Associates, 2006. <www.rhino3d.com>.

48
Approved for public release; distribution unlimited.

Appendix

Source Code for rotatestl

49
Approved for public release; distribution unlimited.

function [] = rotatestl(world,parentFN,childrenFN,hp1FN,hp2FN,deflectionsFN,visualflagFN,reverseflagFN,delimiter)
%ROTATESTL STL file rotation algorithm
% ROTATESTL(world,parentFN,childrenFN,hp1FN,hp2FN,deflectionsFN, ...
% visualflagFN,reverseflagFN,delimiter)
%
% transforms a stereolithography (STL) file via rotation angles
% specified by the user. The user provides input through files in
% ASCII format.
%
% For each execution, ROTATESTL will generate a run folder called
% "runX," where X is an integer counting each run. For example, if
% ROTATESTL is executed for the 5th time, the folder "run5" will
% be generated. Within each runX folder, a sub-folder, containing
% rotated STL files, will be created for each parent STL file.
% Therefore, the file structure of the runX folder becomes
%
% runX
% |
% |__ CHILD_NAME_1
% |
% |__ CHILD_NAME_2
%
% .
% .
% .
%
% |
% |__ CHILD_NAME_N
%
% ROTATESTL will not overwrite a runX folder that all ready
% exists.
%
% When rotations are performed, a rotation of zero is not
% executed (even if a zero is specified as a desired rotation),
% as this would result in a file with points identical to those of the
% parent STL file. Furthermore, if identical rotation angles are
% specifed for a given parent STL, the rotation angle will only be
% recorded once, and only one child STL file will be rotated for that
% angle. This enables the user to specify any set of deflections,
% whether repeated, non-repeated, or zero, for a parent STL. Only
% unique, nonzero rotation angles will be rotated. The user does not
% have to sort through a set of rotations. ROTATESTL will sort through
% the rotations automatically.
%
% Input to ROTATESTL:
% NOTE: All input files are saved in ASCII format. The
% extension of the input files does not matter, as long as the
% files are saved in ASCII format. CSV files (comma delimited,
% DOS format, and MAC format) are also supported. All input
% arguments to ROTATESTL are entered as strings except the world
% origin.
%
% world -world origin
% -argument assignment is a row vector of the form [x,y,z]
%
% Specify the world origin designated for the geometry at
% hand. Note that body coordinates are assumed for each STL
% such that:
%
% x is positive aft
% y is positive spanwise to the right (when viewing the
% geometry from the aft end forward)
% z is positive by the right-hand-rule crossing x and y (up)
%
% The origin does not necessarily have to be [0,0,0]. As
% long as the above convention is used, any origin may be
% specified.
%
% parentFN -file name with extension; refers to file containing
% original STL file names
% -argument assignment is a string
%
% parentFN is the file name, entered as a string, of a file
% containing the file names of each original STL file to be rotated.
% Place a single file name per line of parentFN in ASCII text
% with an extenstion of either <.stl> or <.STL>. For
% example, a file called 'parents.txt' with 5 original STL
% file names could have the following text:
%
% LINE 1: Bflap.stl
% LINE 2: Lelevon.stl

50
Approved for public release; distribution unlimited.

% LINE 3: Relevon.STL
% LINE 4: Ltail.stl
% LINE 5: Rtail.STL
%
% Note the included use of the two different STL extensions.
% ROTATESTL will report an error if more than one period or
% decimal <.> is included in any of the file names listed in
% parentFN. An error will also be reported if any of the
% extensions of .stl or .STL are incomplete or disordered
% (for example .st or .TSL).
%
% childrenFN -file name with extension; refers to file
% containing child names used to label rotated STL files
% -argument assignment is a string
%
% childrenFN is the file name, entered as a string, of a
% file containing a list of generic names that will be
% assigned to each rotated STL file. Each line in childrenFN
% corresponds to a label for the respective line in
% parentFN. For instance, using the above parentFN example,
% a file called 'children.txt' could have the following
% input:
%
% LINE 1: bflap
% LINE 2: Lelevon
% LINE 3: Relevon
% LINE 4: Ltail
% LINE 5: Rtail
%
% Any text may be entered as a label for each line of
% childrenFN, provided it does not violate file name
% restrictions of the operating system.
% A generic name will be assigned to each rotated STL file
% via the following format:
%
% <CHILD_NAME><DEFLECTION ANGLE><deg.stl>
%
% If the file Bflap.stl is rotated by -10.5 degrees, the
% resulting rotated file name will become
%
% <bflap-10.5deg.stl>
%
% hp1FN, hp2FN -file name with extension; refers to file
% containing hinge line coordinates
% -argument assignment is a string
%
% Provide point coordinates of 2 points on the hinge line
% designated for each surface such that
%
% hp1 is a matrix of all "first" points on the hinge line
% hp2 is a matrix of all "second" points on the hinge line
%
% Each matrix contains the Cartesian coordinates of each
% point of each respective hinge line. Enter each matrix via
% the following format in the files hp1FN and hp2FN:
%
% hp1FN: hp2FN:
% XP1_1,YP1_1,ZP1_1 XP2_1,YP2_1,ZP2_1
% XP1_2,YP1_2,ZP1_2 XP2_2,YP2_2,ZP2_2
% . .
% . .
% . .
% XP1_n,YP1_n,ZP1_n XP2_n,YP2_n,ZP2_n
%
% where each row of hp1 or hp2 corresponds to the
% coordinates of points on the hinge line of the nth parent
% STL file. The coordinates may be separated along a line by
% a space or a specified delimiter.
%
% Note that a positive rotation by the right-hand-rule will
% point in the positive direction of the hinge line vector.
% Placing one's thumb in the direction of hp1, the rotation
% of the STL will follow the rotation of one's hand while
% following the right hand rule. Therefore, positive input
% deflection angles point in the direction of hp1 by the
% right hand rule (by the convention of the algorithm):
%
% hp1 <---------- hp2
%
% deflectionsFN -file name with extension; refers to file
% containing deflection angles in DEGREES

51
Approved for public release; distribution unlimited.

% -argument assignment is a string
%
% Specify any number of deflection angles, in DEGREES,
% for each parent STL file, implicitly represented by each
% column of deflectionsFN. For example, column 1 of
% deflectionsFN represents all deflections for parent STL of
% LINE 1 of parentFN. The deflection angles for a given
% parent STL are listed along the rows of each respective
% column. The input to deflectionsFN must be entered such
% that a rectangular matrix may be read. If some parent STL
% files have a different number of scheduled rotations,
% fill any remaining columns with zero [0].
%
% If the above parent STL files were to be used, a possible
% format to a file deflectionsFN named 'deflections.txt'
% could be
%
% bflap Lelevon Relevon Ltail Rtail
% _______|_______|_______|_______|_______
% | | | |
% LINE 1 DEGREES DEGREES DEGREES DEGREES DEGREES
% LINE 2 DEGREES DEGREES DEGREES DEGREES DEGREES
% LINE 3 DEGREES 0 DEGREES DEGREES DEGREES
% LINE 4 DEGREES 0 DEGREES DEGREES DEGREES
% LINE 5 DEGREES 0 0 DEGREES DEGREES
% LINE 6 DEGREES 0 0 DEGREES 0
% LINE 7 DEGREES 0 0 0 0
%
% Actual input begins on LINE 1. White space and specified
% delimiters are ignored.
%
% visualflagFN -file name with extension; refers to file
% containing decision flags to show visualization
% -argument assignment is a string
%
% Choose a visualization option by specifying a value for
% visualFLAG:
%
% visualFLAG = 0 for no visualization
% visualFLAG = 1 to show a rotation
% Default is visualFLAG = 0 (no visualization)
%
% The rotation shown will be the maximum value
% deflection for the chosen parent STL file and is relative
% to the assigned direction of the hinge line vector based
% upon the user-defined sign of rotation and the vector
% convention of the algorithm (as noted above in the hinge
% line input file description).
%
% Visualization flag input is expected by the algorithm.
% White space and specified delimiters are ignored. A simple
% way to input the flags to visualflagFN is simply to place
% a single flag (0 or 1) per row for each respective parent
% STL file. There should be exactly the same number of flags
% in visualflagFN as there are parent STL files.
%
% For ease of viewing, zoom with a box first, then rotate.
% Double click while zoom or rotate is enabled to reset the
% original view.
%
% reverseflagFN -file name with extension; refers to file
% containing decision flags to reverse
% direction of rotation
% -argument assignment is a string
%
% If the rotation made by ROTATESTL is opposite that of
% the desired rotation direction, reverseFLAG can be set to
% reverse the direction of rotation for the nth parent STL
% file.
%
% Choose a reverse option by specifying a value for
% reverseFLAG:
%
% reverseFLAG = 0 for no change in rotation direction
% reverseFLAG = 1 to reverse direction of rotation
% Default is reverseFLAG = 0 (no rotation reversal)
%
% Reverse flag input is expected by the algorithm.
% White space and specified delimiters are ignored. A simple
% way to input the flags to reverseflagFN is simply to place
% a single flag (0 or 1) per row for each respective parent

52
Approved for public release; distribution unlimited.

% STL file. There should be exactly the same number of flags
% in reverseflagFN as there are parent STL files.
%
% delimiter -delimiter character used within input files
% -argument assignment is a string
%
% By default, whitespace is ignored within each of the ASCII
% input files. If a different delimiter is used, specify it
% as a string input. If a delimiter is specified, it applies
% to all ASCII files such that both white space and the
% desired delimiter will be ignored.
%
% The delimiter string must be specified as input. The
% following are common delimiters:
%
% ' ' -space or whitespace
% ',' -comma; use for .csv files
% '#' -pound symbol
%
% Because white space is ignored automatically, entering the
% comma delimiter string will be valid input for any ASCII
% file, including .csv files, that includes white space
% delimiters only, comma delimiters only, or both white
% space and comma delimiters combined.
%
%
% Written by James Tancred, Air Force Research Laboratory
% Last Modified: 27 AUGUST 2012

%========================= READ INPUT FILES ===============================

%================ Read STL parent name storage file =======================
stlparent = readnames(parentFN,'stlparent','file');

%Check for ".stl" extension for the filename
[mp np] = size(stlparent);
parentGO = 0; %intitialize proceed flag for parent files; 1 = proceed
parenttally = 0; %Initialize counter for proper input file names
for plcv = 1:np
 %Get length of current recorded filename
 parentlength = length(stlparent(plcv).file);

 %Sample end of filename to look for .stl file extension
 %Find period <.> of file extension
 decimalcount = 1;
 walk1 = 1;
 decimalfound = 0;
 while(walk1 <= parentlength && ~decimalfound)
 getchar = stlparent(plcv).file(walk1);

 if(~strcmp(getchar,'.') && walk1 < parentlength)
 decimalcount = decimalcount + 1;
 walk1 = walk1 + 1;

 elseif(~strcmp(getchar,'.') && walk1 == parentlength)
 walk1 = walk1 + 1;

 elseif(strcmp(getchar,'.') && walk1 <= parentlength)
 decimalfound = 1;

 else
 end

 end

 %Assess filename
 if(decimalfound)
 sremain = parentlength - decimalcount;

 %3 characters exist past period of the extension
 if(sremain == 3)
 decimalchar = stlparent(plcv).file(decimalcount);
 extchar1 = stlparent(plcv).file(decimalcount + 1);
 extchar2 = stlparent(plcv).file(decimalcount + 2);
 extchar3 = stlparent(plcv).file(decimalcount + 3);

 %If <.stl> or <.STL> extension exists, take note that the
 %proper extension was included
 if(strcmp('.stl',[decimalchar extchar1 extchar2 extchar3]) ...
 || strcmp('.STL',[decimalchar extchar1 extchar2 extchar3]))

53
Approved for public release; distribution unlimited.

 %Count number of properly input filenames
 parenttally = parenttally + 1;

 %If <.stl> or <.STL> extensions do not exist, tell the user.
 elseif(~strcmp('.stl',[decimalchar extchar1 extchar2 extchar3]) ...
 || ~strcmp('.STL',[decimalchar extchar1 extchar2 extchar3]))

 fprintf('\n\n ++++ Error in file <%s> +++++',parentFN);
 fprintf('\n File with name [%s] does not have an extension of <.stl> or <.STL>.\n',stlparent(plcv).file);
 fprintf(' Please include <.stl> or <.STL> extension to the end of the parent filename.\n');

 else
 end

 %Fewer than 3 characters exist past period of the extension.
 %Proper extension does not exist. Report to user.
 elseif(sremain < 3)
 fprintf('\n\n ++++ Error in file <%s> +++++',parentFN);
 fprintf('\n File with name [%s] does not have an extension of <.stl> or <.STL>.\n',stlparent(plcv).file);
 fprintf(' Please include <.stl> or <.STL> extension to the end of the parent filename.\n');

 %Greater than 3 characters exist past period of the extension.
 %Proper extension does not exist. Report to user.
 elseif(sremain > 3)
 fprintf('\n\n ++++ Error in file <%s> +++++',parentFN);
 fprintf('\n File with name [%s] does not have an extension of <.stl> or <.STL>.\n',stlparent(plcv).file);
 fprintf(' Please include <.stl> or <.STL> extension to the end of the parent filename.\n');

 end

 %Period of extension not found. Report to user.
 elseif(~decimalfound)
 fprintf('\n\n ++++ Error in file <%s> +++++',parentFN);
 fprintf('\n File with name [%s] does not have an extension of <.stl> or <.STL>.\n',stlparent(plcv).file);
 fprintf(' Please include <.stl> or <.STL> extension to the end of the parent filename.\n');

 else
 end

end

%If all recorded file names include a file extension, set parent file name
%proceed flag to 1. (If parentGO == 1, then file name input is entered
%as required).
if(parenttally == np)
 parentGO = 1;
else
end

%================= Read STL child name storage file =======================
stlchildname = readnames(childrenFN,'stlchildname','name');

%================== Read first set of hinge points ========================
fid = fopen(hp1FN,'rt');
hp1cell = textscan(fid,'%f %f %f','Delimiter',delimiter);
fclose(fid);

hp1 = cell2mat(hp1cell); %convert to matrix format

%==================== Read second set of hinge points =====================
fid = fopen(hp2FN,'rt');
hp2cell = textscan(fid,'%f %f %f','Delimiter',delimiter);
fclose(fid);

hp2 = cell2mat(hp2cell); %convert to matrix format

%==
%Check deflection file to determine if all columns are filled with input
%==
[badrowstore] = checkcolumns(deflectionsFN,np,delimiter);

%Do not proceed if deflections are not input properly
if(~isempty(badrowstore))
 fprintf('\n\n It appears that deflection angles may not be specified for all columns\n');
 fprintf(' along (at least) one row of the deflections file. Please include a deflection\n');
 fprintf(' for all columns of all rows. The number of columns entered must equal\n');
 fprintf(' the number of parent .stl files to be rotated. If not all parent .stl files\n');
 fprintf(' will experience the same number of rotations, fill each empty column with a\n');
 fprintf(' zero [0].\n\n');
 fprintf(' Rows without all columns filled with input are:\n\n');

54
Approved for public release; distribution unlimited.

 for badlcv = 1:length(badrowstore)
 fprintf(' line %d\n',badrowstore(badlcv));
 end

 fprintf('\n in the file\n\n');
 fprintf(' <%s>\n\n',deflectionsFN);
 fprintf('\n\n Program terminated.\n\n');

%Proceed if deflections are input properly
else

 %========================== Read deflections ==============================
 %Create the format for scanning the deflections based upon the number of
 %parent STL files. The number of parent STL files is equal to the number of
 %surfaces requiring N deflections.
 inputscan = [];
 scantype = '%f';
 space = ' ';
 for lcv3 = 1:np
 if(lcv3 ~= np)
 inputscan = [inputscan scantype space];

 elseif(lcv3 == np)
 inputscan = [inputscan scantype];

 else
 end
 end

 fid = fopen(deflectionsFN,'rt');
 deflectionsCell = textscan(fid,inputscan,'Delimiter',delimiter);
 fclose(fid);

 deflectionsMAT = cell2mat(deflectionsCell); %convert to matrix format

 %========================== Read visual flags =============================
 fid = fopen(visualflagFN,'rt');
 visualCell = textscan(fid,'%f','Delimiter',delimiter);
 fclose(fid);

 visualMAT = cell2mat(visualCell); %convert to matrix format

 %========================== Read reverse flags ============================
 fid = fopen(reverseflagFN,'rt');
 reverseCell = textscan(fid,'%f','Delimiter',delimiter);
 fclose(fid);

 reverseMAT = cell2mat(reverseCell); %convert to matrix format

 %Place deflections, visual flags, and reverse flags into structure arrays
 for lcv4 = 1:np
 %Deflections structure
 %Keep only only nonzero deflections. Record only unique deflections.
 deflections(lcv4).hinge = nonzeros(unique(deflectionsMAT(:,lcv4)))';

 %Visual flag structure
 visual(lcv4).choice = visualMAT(lcv4);

 %Reverse flag structure
 reverseFLAG(lcv4).reverse = reverseMAT(lcv4);

 end

%============================ END READING INPUT ===========================

 %===== Get size of inputs =====
 [mparent nparent] = size(stlparent); %stlparent filetype is a structure
 [mchild nchild] = size(stlchildname); %stlchildname filetype is a structure
 [mp1 np1] = size(hp1); %hp1 is a matrix
 [mp2 np2] = size(hp2); %hp2 is a matrix
 [mdef ndef] = size(deflections); %deflections filetype is a structure

 %Check user input
 if((nparent == nchild) && (nparent == mp1) && (nparent == mp2) && (nparent == ndef))

 if(parentGO == 1)

 %Verify that parent .stl files are in the present working
 %directory
 absentstl = 0;
 for index = 1:nparent

55
Approved for public release; distribution unlimited.

 ncheck = stlparent(index).file(1,:);

 if(exist(ncheck,'file') == 2)
 %Allow program to proceed

 else
 fprintf('\n\n File <%s> not detected in present working directory.\n',ncheck);
 absentstl = absentstl + 1;
 end
 end

 if(absentstl)
 %Proceed no further - absent .stl files detected.

 %Continue - all .stl files detected
 elseif(~absentstl)
 tic

 %===== Initialize Visualization Parameters
 viscount = 0;
 for k1 = 1:nparent
 tally(k1).figureup = 0; %counter to denote that a figure has been created for a rotation
 viscount = viscount + visual(k1).choice; %number of figures to create
 end
 visfignum = [1:viscount]; %vector numbering each figure
 viswalk = 1; %counter to walk through visfignum

 %===== Generate folder system to store new .stl files=====
 %Create new run folder for each run of this function:
 matchcount = 1;

 %Check to see if directory runX exists, search for runX directory
 eval(['stat = exist(' '''' 'run' num2str(matchcount) '''' ',' '''' 'dir' '''' ');']);

 %If runX directory exists, continue to search for runX until a runX folder
 %is no longer found
 while(stat == 7)

 %If runX does not exist, do not update counter
 if(stat ~= 7)

 %If runX does exist, update counter, continue searching
 else

 matchcount = matchcount + 1;
 eval(['stat = exist(' '''' 'run' num2str(matchcount) '''' ',' '''' 'dir' '''' ');']);
 end
 end %all runX directories identified

 %Create a new runX directory that does not have the same name as the other
 %run directories (tag counter number to "run" name)
 eval(['mkdir(' '''' 'run' num2str(matchcount) '''' ');']);

 %Tell user what storage folder is created
 folder1 = 'run';
 folder2 = num2str(matchcount);
 folder = [folder1 folder2];
 fprintf('\n Storage folder for new .stl files created: %s\n\n',folder);

 %Make subdirectories for each component
 for sublcv = 1:nchild
 eval(['mkdir(' '''' 'run' num2str(matchcount) '''' ',' '''' stlchildname(sublcv).name(1,:) '''' ');']);
 end

 % %===== Define the hinge line vector =====
 %Define hinge position vectors relative to world body origin
 for wlcv = 1:nparent
 for rlcv = 1:3;
 worldmat(wlcv,rlcv) = world(rlcv);
 end
 end

 r = hp2 - worldmat;
 r0 = hp1 - worldmat;

 %**
 h = r - r0; %hinge line vector r - r0 in world body c-syst

 hreverse = r0 - r; %reversed-direction hinge line vector for reverse rotation option
 %***

56
Approved for public release; distribution unlimited.

 %==
 % Perform deflections and generate new .stl with rotated geometry
 %==

 %===== Parent STL loop
 for plcv = 1:nparent

 %=== Extract data for current parent .stl deflection schedule ===

 %Get hinge line
 if(reverseFLAG(plcv).reverse == 0)
 %Reverse option OFF
 hi = h(plcv,:); %extract hinge line

 elseif(reverseFLAG(plcv).reverse == 1)
 %Reverse option ON
 hi = hreverse(plcv,:); %extract hinge line

 else
 %Tell user to enter proper value for reverse
 %option
 fprintf('\n\n The value for the reverse flag must be either 0 or 1.');
 fprintf('\n Ensure that the entries in the reverse flag file are entered correctly.\n\n');
 end

 p2 = hp2(plcv,:); %extract p2 (used for translation vector)
 filename = stlparent(plcv).file(1,:); %get parent .stl filename
 child = stlchildname(plcv).name(1,:); %get child name

 %====================== Read the parent .stl file =====================
 %Open the .stl file
 fidold = fopen(filename,'rt');

 count = 1; %initialize a counter to aid in the storage of vertices
 normalcount = 1; %initialize a counter for surface normal storage

 while(~feof(fidold))
 %Read the next occurring delimited string
 readline = textscan(fidold,'%s',1);

 %Get size currently read string
 [mread nread] = size(readline{1});

 %ID leading whitespace
 if(mread == 0)
 %Do nothing if leading whitespace is read

 %ID "solid name" label
 elseif(strcmp(readline{1},'solid'))
 %If first line is read, read the rest of the first line
 readline = textscan(fidold,'%s',1);
 stllabel = readline{1}; %record the label in .stl file

 elseif(strcmp(readline{1},'facet'))
 %Read the rest of "facet normal" line
 readline2 = textscan(fidold,'%*s %f %f %f');

 %Record surface normal values
 normalvals = cell2mat(readline2);
 normalStore(normalcount,:) = normalvals;

 %Read "outer loop" label
 readline3 = fgetl(fidold);

 %Read vertex points
 c = textscan(fidold,'%*s %f %f %f',3);
 vert = cell2mat(c); %temporarily store vertex points of current face
 v1(normalcount,:) = vert(1,:); %store first vertex point for normal calculations

 %Store Vertices
 vertRow = 1; %row counter for variable "vert"
 for row = count:(count + 2)
 for col = 1:3
 %Store current verticies
 vertStore(row,col) = vert(vertRow,col);
 end
 vertRow = vertRow + 1;
 end
 count = count + 3; %"count" jumps by 3 to allow printing, in
 %vertStore, of vertices in sequence as they

57
Approved for public release; distribution unlimited.

 %are read

 %Read entire "endloop" label line
 readline3 = fgetl(fidold);
 %Read entire "endfacet" label line
 readline4 = fgetl(fidold);

 %Update surface normal counter
 normalcount = normalcount + 1;

 %ID "endsolid" label
 elseif(strcmp(readline{1},'endsolid'))
 %If this line is read, do nothing.

 else
 end
 end

 %Close original .STL file
 status = fclose(fidold);

 %======================== End read parent .stl ========================

 %Deflection loop
 for deflcv = 1:length(deflections(plcv).hinge)

 magh = sqrt(hi(1).^2 + hi(2).^2 + hi(3).^2); %magnitude of h

 %Direction cosines to world body primary directions
 alph = (180/pi)*acos(hi(1)./magh); %angle between h and x-world vectors, degrees
 bet = (180/pi)*acos(hi(2)./magh); %angle between h and y-world vectors, degrees
 gam = (180/pi)*acos(hi(3)./magh); %angle between h and z-world vectors, degrees

 %===== Catch angles that cause singularities in calculations =====
 %ALPHA = 90 DEG, GAMMA = 0, 180 DEG

 %Check ALPHA
 if(alph == 90)
 alph = 90 - 0.000001;
 else
 end

 %Check GAMMA
 if((~gam) || (gam == 180))
 %GAMMA = 0 DEG
 if(~gam)
 gam = gam + 0.000001;
 %GAMMA = 180 DEG
 elseif(gam == 180)
 gam = 180 - 0.000001;
 else
 end
 else
 end

 %Define translation vector from world origin to a point on hinge line
 delta = [p2 - world]'; %column translation vector

 %First rotation angle
 theta1 = (180/pi)*acos(((cosd(alph)^2) + (sind(gam)^2) - (cosd(bet)^2))/(2*cosd(alph)*sind(gam))); %degrees

 %Second rotation angle
 theta2 = 90 - gam; %degrees

 %===== Determine octant to which the hinge line vector points =====
 %OCTANT 1
 if((hi(1) >= 0) && (hi(2) >= 0) && (hi(3) >= 0))
 %Do nothing

 %OCTANT 2
 elseif((hi(1) < 0) && (hi(2) >= 0) && (hi(3) >= 0))
 %Do nothing

 %OCTANT 3
 elseif((hi(1) < 0) && (hi(2) < 0) && (hi(3) >= 0))
 theta1 = -theta1;

 %OCTANT 4
 elseif((hi(1) >= 0) && (hi(2) < 0) && (hi(3) >= 0))
 theta1 = -theta1;

58
Approved for public release; distribution unlimited.

 %OCTANT 5
 elseif((hi(1) >= 0) && (hi(2) >= 0) && (hi(3) < 0))
 theta2 = -theta2;

 %OCTANT 6
 elseif((hi(1) < 0) && (hi(2) >= 0) && (hi(3) < 0))
 theta2 = -theta2;

 %OCTANT 7
 elseif((hi(1) < 0) && (hi(2) < 0) && (hi(3) < 0))
 theta1 = -theta1;
 theta2 = -theta2;

 %OCTANT 8
 elseif((hi(1) >= 0) && (hi(2) < 0) && (hi(3) < 0))
 theta1 = -theta1;
 theta2 = -theta2;

 else
 end

 %====== Calculate a point at the end of surface normals =====
 [mv1 nv1] = size(v1);

 for normlcv = 1:mv1
 %Position vector from the origin to vertex 1 of a given
 %face
 rv1i = v1(normlcv,:) - world;

 %Equation of line in direction of normal vector, staring at
 %vertex 1; Equivalently the position vector from the origin
 %to point P on a line passing through the normal vector and
 %vertex 1
 rpi = rv1i + normalStore(normlcv,:);

 %Point P along line described by above assignment
 Px(normlcv) = world(1) + rpi(1);
 Py(normlcv) = world(2) + rpi(2);
 Pz(normlcv) = world(3) + rpi(3);
 end

 %======================= Perform a rotation ===========================

 thetaH = deflections(plcv).hinge(deflcv); %get deflection angle

 %Rotation Matrix 1
 L1 = [cosd(theta1) sind(theta1) 0;...
 -sind(theta1) cosd(theta1) 0;...
 0 0 1];

 %Rotation Matrix 2
 L2 = [cosd(theta2) 0 sind(theta2);...
 0 1 0;...
 -sind(theta2) 0 cosd(theta2)];

 %Rotation Matrix 3
 L3 = [1 0 0;...
 0 cosd(thetaH) sind(thetaH);...
 0 -sind(thetaH) cosd(thetaH)];

 %Execute rotation of vertex points
 [rowVert colVert] = size(vertStore);
 for rowlcv = 1:rowVert
 for collcv = 1:colVert
 if(collcv == 1)
 x = vertStore(rowlcv,collcv); %get x
 elseif(collcv == 2)
 y = vertStore(rowlcv,collcv); %get y
 elseif(collcv == 3)
 z = vertStore(rowlcv,collcv); %get z
 else
 end
 end

 %Get a vertex relative to world body coordinates
 Xb = [x y z]';

 %ROTATION TRANSFORMATION
 newVertices(rowlcv,:) = inv(L1)*inv(L2)*L3*L2*L1*(Xb - delta) + delta;

 end

59
Approved for public release; distribution unlimited.

 %Execute rotation of surface normals
 for rotnlcv = 1:mv1

 XbP = [Px(rotnlcv) Py(rotnlcv) Pz(rotnlcv)]';
 Xbv1 = [v1(rotnlcv,1) v1(rotnlcv,2) v1(rotnlcv,3)]';

 %ROTATION TRANSFORMATION
 newP = inv(L1)*inv(L2)*L3*L2*L1*(XbP - delta) + delta;
 newv1 = inv(L1)*inv(L2)*L3*L2*L1*(Xbv1 - delta) + delta;

 %Calculate new normal vector
 newnorm = newP - newv1;

 %Store the new unit normal vector
 normal(rotnlcv,:) = newnorm./norm(newnorm);
 end

 %========================= Print new STL ===============================
 [mnorm nnorm] = size(normal);
 vertcount = 1;
 s1 = child;

 s2 = num2str(thetaH);
 s3 = 'deg.stl';
 stringIN = [s1 s2 s3];
 eval(['fidnew = fopen(' '''' eval(['stringIN']) '''' ',' '''' 'wt' '''' ');']);

 %===== Print to new .stl file =====
 fprintf(fidnew,'solid ');
 fprintf(fidnew,'%s\n',stllabel{1}); %include original label of .stl file
 for nlcv = 1:mnorm
 fprintf(fidnew,' facet normal %4.6e %4.6e %4.6e\n',normal(nlcv,1),normal(nlcv,2),normal(nlcv,3));
 fprintf(fidnew,' outer loop\n');
 for clcv = 1:3
 fprintf(fidnew,' vertex %4.6e %4.6e
%4.6e\n',newVertices(vertcount,1),newVertices(vertcount,2),newVertices(vertcount,3));

 if(clcv == 3 & nlcv == mnorm)
 else
 vertcount = vertcount + 1;
 end
 end
 fprintf(fidnew,' endloop\n');
 fprintf(fidnew,' endfacet\n');
 end
 fprintf(fidnew,'endsolid ');
 fprintf(fidnew,'%s\n',stllabel{1}); %include original label of .stl file

 status = fclose(fidnew);

 %====== Place new .stl in its respective component directory ======

 eval(['movefile(' '''' stringIN '''' ',' '''' 'run' num2str(matchcount) '/' child '''' ');']);

 %====================== VISUALIZATION =========================
 %Generate plot of rotation (if specified by user)
 if(visual(plcv).choice == 0)
 %Visualization not chosen

 elseif((visual(plcv).choice == 1) && (max(deflections(plcv).hinge)) == thetaH && ~tally(plcv).figureup)

 %Visualization CHOSEN
 facevert = [1:rowVert]; %create counter vector of
 %length equal to row dim of
 %newVertices (row dim =
 %rowVert)

 %Create coordinate plot sequence matrix (facemat)
 fcount = 1;
 for k2 = 1:(length(facevert)/3)
 for col = 1:3
 facemat(k2,col) = facevert(fcount);
 fcount = fcount + 1;
 end
 end

 %Plot a chosen rotation
 figure(visfignum(viswalk))
 patch('Vertices',vertStore,'Faces',facemat,'Edgecolor','k','Facecolor','b')
 axis equal

60
Approved for public release; distribution unlimited.

 axis off
 hold on
 patch('Vertices',newVertices,'Faces',facemat,'Edgecolor','k','Facecolor','y')

 %Plot origin
 plot3(world(1),world(2),world(3),'r*')

 %Label surfaces and origin
 eval(['legend(' '''' '\bf{Parent ' eval(['child']) ' STL (\delta = 0 Degrees)}' '''' ',' '''' '\bf{\delta =
' num2str(thetaH) ' Degrees (as Input by USER)}' '''' ',' '''' '\bf{World Origin}' '''' ');']);

 %Update or Reinitialize counters
 viswalk = viswalk + 1;
 tally(plcv).figureup = 1;
 clear facevert
 clear facemat

 else
 end
 %==

 end

 %Re-initialize storage matices
 clear vertStore
 clear newVertices
 clear normal
 clear normalStore
 clear v1
 clear Px
 clear Py
 clear Pz

 end
 fprintf(' Rotation Algorithm Performance: ');
 toc
 fprintf('\n\n');

 end

 elseif(~parentGO)
 fprintf('\n\n Not all parent STL file names have been input correctly.');
 fprintf('\n Please check file extensions of parent STL file names.\n\n');
 else
 end

 else
 fprintf('The number of parent .stl files provided determines the\n');
 fprintf('number of specified child names, the sizes of the hinge\n');
 fprintf('point matrices, and the size of the deflection structure.\n');
 fprintf('The number of rows in the hinge point matrices, the\n');
 fprintf('number of columns in the deflection structure, and the\n');
 fprintf('number of child names specified must be equal to the number\n');
 fprintf('of parent .stl files provided.\n\n');

 %ID child names not equal to number of parent .stl's
 if(nparent ~= nchild)
 fprintf('Number of specified names for child .stl files\n');
 fprintf('not equal to the number of parent .stl files provided.\n\n');
 else
 end

 %ID number of rows in hinge point 1 matrix not equal to number of parent .stl's
 if(nparent ~= mp1)
 fprintf('Number of rows for hinge point 1 matrix\n');
 fprintf('not equal to the number of parent .stl files provided.\n\n');
 else
 end

 %ID number of rows in hinge point 2 matrix not equal to number of parent .stl's
 if(nparent ~= mp2)
 fprintf('Number of rows for hinge point 2 matrix\n');
 fprintf('not equal to the number of parent .stl files provided.\n\n');
 else
 end

 %ID number of columns of deflection structure not equal to number of parent .stl's
 if(nparent ~= ndef)
 fprintf('Number of columns of deflection structure\n');
 fprintf('not equal to the number of parent .stl files provided.\n\n');

61
Approved for public release; distribution unlimited.

 else
 end

 end

end

%==
% SUBFUNCTIONS
%==

function [badrowstore] = checkcolumns(FN,np,delimiter)

fidcheck = fopen(FN,'rt');
rowcount = 0;
badrow = 0;
badrowstore = [];
while(~feof(fidcheck))
 rowcount = rowcount + 1;
 readline = fgetl(fidcheck);

 walk2 = 1;
 foundinput = 0;

 while(walk2 <= length(readline))
 look = readline(walk2);

 %If the current character is a space, the specified delimiter,
 %or the newline character, continue to look for user input
 if(strcmp(look,' ') | strcmp(look,delimiter) | strcmp(look,'\n'))
 walk2 = walk2 + 1;
 else

 lookahead = walk2 + 1;

 %If something other than the above condition is found and the
 %next character is greater than the length of the line, then
 %input is found at the last character of the current line
 if(lookahead > length(readline))
 foundinput = foundinput + 1;
 walk2 = walk2 + 1;

 %If something is detected and the next characte is a space or
 %delimiter, then input is found
 elseif(strcmp(readline(lookahead),' ') | strcmp(readline(lookahead),delimiter))
 foundinput = foundinput + 1;
 walk2 = walk2 + 1;

 %If something is detected, and more is detected, continue to
 %walk until nothing more is detected
 elseif(~strcmp(readline(lookahead),' ') & ~strcmp(readline(lookahead),delimiter))
 walk2 = walk2 + 1;

 else
 end
 end
 end

 %If input is found (i.e. foundinput is nonzero) and the total input in
 %the row is not equal to the number of parent .stl files, store the row
 %to report to user for more input
 if(foundinput ~= np & foundinput ~= 0)
 badrow = badrow + 1;
 badrowstore(badrow) = rowcount;
 else
 end
end
fclose(fidcheck);

%===== END checkcolumns =====

function [str] = readnames(fname,strname,strfield)
%====================== Read name storage file ========================
fid = fopen(fname,'rt');
pnamecount = 1;
while(~feof(fid))
 readline = fgetl(fid);

 %Inspect current line
 recordcounter = 1; %counter for the recording of filename characters
 for lcv1 = 1:length(readline)

62
Approved for public release; distribution unlimited.

 %Extraction of current character of current line
 examine = readline(lcv1);

 %Check for white space. If it exists, do not record. Otherwise,
 %record string.
 if(strcmp(examine,' '))
 %White space exists. Do not record.

 elseif(lcv1 ~= length(readline) && ~strcmp(examine,' '))
 %White space does not exist and not at end of readline. Record
 %string. Update recordcounter.
 namerecord(recordcounter) = examine;
 recordcounter = recordcounter + 1;

 elseif(lcv1 == length(readline) && ~strcmp(examine,' '))
 %White space does not exist and end of readline has been
 %reached. Record string. Do not update recordcounter.
 namerecord(recordcounter) = examine;

 else
 end
 end

 %===== Place current filename in a structure array =====
 %If at the end of the file record nothing, do not update.
 if(feof(fid) & ~exist('namerecord','var'))
 %Do not record, do not update

 %If at the end of the file, but the name recorded is the end-of-file
 %indicator from FGETL (i.e. the end of file is reached, FGETL
 %returns a -1, and -1 is assigned to namerecord), then do not record;
 %do not update.
 elseif(feof(fid) & (exist('namerecord','var') == 1) & (readline == -1))
 %Do not record, do not update

 %If end of the file is reached and if a filename has been correctly
 %detected, record the filename in a structure array and update the
 %structure counter. This will occur if a new line is not entered after
 %the last name in the file.
 elseif(feof(fid) & (exist('namerecord','var') == 1) & (readline ~= -1))
 %Place inspected filename string into structure array
 eval([strname '(' num2str(pnamecount) ').' strfield ' = namerecord;']);

 pnamecount = pnamecount + 1;
 clear namerecord
 clear examine
 clear readline

 %If not at the end of the file and a filename has been detected, record
 %the filename in a structure array and update structure counter.
 elseif(~feof(fid) & (exist('namerecord','var') == 1))
 %Place inspected filename string into structure array
 eval([strname '(' num2str(pnamecount) ').' strfield ' = namerecord;']);

 pnamecount = pnamecount + 1;
 clear namerecord
 clear examine
 clear readline

 else
 %Otherwise, do not record; do not update
 end

 clear readline
 clear examine
end
fclose(fid);

63
Approved for public release; distribution unlimited.

%Storage structure array
str = eval([strname]);

%===== END readnames =====

64
Approved for public release; distribution unlimited.

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

Acronyms
ASCII : American Standard Code for Information Interchange
CAD : Computer-Aided Design
CFD : Computational Fluid Dynamics
FEA : Finite Element Analysis
MATLAB : MAtrix LABoratory, numerical software language used to implement rotatestl
RP : Rapid Prototyping
STL : Stereolithography or Standard Tessellation Language

Abbreviations
.csv : Comma-Separated Values file format extension
.m : MATLAB script file format extension
m-file : MATLAB script file
.stl or .STL : Stereolithography file format extension
.txt : ASCII text document file format

Symbols
Cp,j = Cartesian coordinate x, y, or z of point p on the jth row of hinge point input files
dj,k = Specific angular deflection value, in degrees, for the kth row of the jth column of the

 deflectionsFN file
δ = Deflection angle, in degrees, noted in visualization figure legend
i = Vertex of a specific triangle in an STL file; i = 1, 2, 3
N = Total number parent STL files
ND(j) = Total number of angular deflections scheduled for the jth parent STL file
nx = x-component of the surface normal vector of a specific triangle in an STL file
ny = y-component of the surface normal vector of a specific triangle in an STL file
nz = z-component of the surface normal vector of a specific triangle in an STL file
X = Number of consecutive executions of rotatestl within the present working

 directory
x = Cartesian x-coordinate in 3D space
xvi = x-component of the ith vertex for a triangle in an STL file
y = Cartesian y-coordinate in 3D space
yvi = y-component of the ith vertex for a triangle in an STL file
z = Cartesian z-coordinate in 3D space
zvi = z-component of the ith vertex for a triangle in an STL file

Subscripts
j = specific row of the parentFN file or specific column of the deflectionsFN file;

 j = 1, 2, 3, …, N
k = specific row of the jth column of the deflectionsFN file; k = 1, 2, 3, …, ND(j)
p = hinge point; p = 1, 2

	Table of Figures
	List of Tables
	1.0. Introduction
	1.1. Program Description and Portability
	1.2. The ASCII Stereolithography File Format

	2.0. Program Functionality
	2.1. The runX Folder System
	2.2. Setting the Path for rotatestl
	2.3. The Help Command
	2.4. Algorithm Coordinate System

	3.0. Input Descriptions
	3.1. Input Argument Syntax
	3.2. Input Designator: world
	3.3. Input Designator: parentFN
	3.4. Input Designator: childrenFN
	3.5. Input Designator: hp1FN or hp2FN
	3.6. Input Designator: deflectionsFN
	3.7. Input Designator: visualflagFN
	3.8 Input Designator: reverseflagFN

	The general input argument of the reverseflagFN designator is a string. Example input to rotatestl could be
	‘revereseflag.txt’
	which would denote the file reverseflag.txt. The representation of such input is shown below in Figure 31:
	/
	Figure 31. Example Input Argument for Input Designator, reverseflagFN
	An example column of input to the reverseflag.txt file is shown in Figure 32. Note that the input to reverseflag.txt in this case would cause rotatestl to reverse the direction of rotation of the child STL files corresponding to Bflap.stl of the paren...
	3.9. Input Designator: delimiter

	4.0. Sample Program Execution and Results
	Throughout the former discussion of the use of rotatestl, a set of examples were introduced in order to describe the program with the geometry of a generic hypersonic vehicle, shown in Figure 5. The discussion now continues, showing the execution of t...
	5.0 Conclusion
	6.0 References
	Bibliography
	Appendix
	LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

