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Abstract 

The one-dimensional motion of a particle is analyzed when the force on 
it is inversely proportional to its displacement and directly proportional 
to the elapsed time. Such a force law describes a projectile in a musket 
barrel that is propelled by a hot ideal gas where either the number of 
moles or the temperature increases linearly with time due to the burning 
gunpowder. A particular solution to Newton’s second law is found 
analytically for the case of zero initial position and velocity. For more 
general initial conditions, numerical integration is used to find the 
position of the particle as a function of time. A scaling argument shows 
that at long times, these numerical general solutions all converge to the 
analytic particular solution. Further analysis reveals how that 
convergence occurs: the general solutions slowly oscillate about the 
particular solution with a predictable period and amplitude. In addition 
to the dynamics, the energetics of the motion are analyzed. 

 

Basic Dynamics of the Ball in a Musket 

A LEAD BALL of mass m is tamped down the barrel of a musket of cross-
sectional area A, so that it rests against a layer of black powder with initial 
position 0 0x =  and velocity 0 0υ = , as sketched in Figure 1. Model the 

system by making three assumptions that simplify the analysis and bring 
out its essential features. First, suppose [1] the powder burns at a constant 
rate r, creating n moles of hot gas at temperature T as a function of time t, 
so that 

 n rt= . (1) 

Second, assume that the gas expands isothermally [2] as the ball proceeds 
down the barrel, so that T is constant. Third, neglect the losses: Suppose 
that there is no friction between the barrel and the sliding ball, but at the 
same time assume the ball fits tightly enough that there is no leakage of 
gas around it [3]. (Historically, lead shot would often be wrapped with 
linen to prevent gas from escaping while minimizing the coefficient of 
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friction.) Also suppose that the atmospheric back pressure on the ball can 
be ignored compared to the forward gas pressure. 

 

 

powder ball of mass m 

x(t) barrel of length L

A  

 
Figure 1. Ball in the Barrel of a Musket.  

 

The gas pressure P is then related to the net force F on the ball by 
the definition of pressure as force per unit area, / /P F A ma A= = , where 
a is the acceleration of the ball along the barrel using Newton’s second 
law. Furthermore, the volume of the gas is given by V Ax=  where x is the 
displacement of the ball (cf. Figure 1), and thus PV max= . Treating the 
gas as ideal, i.e., PV nRT=  where R is the gas constant, it follows that 

 xa kt=  (2) 

using Equation (1), where k is the positive constant 

 
rRT

k
m

= . (3) 

Substituting 2 2/a d x dt≡ , Equation (2) becomes a nonlinear 
inhomogeneous differential equation for the position of the ball as a 
function of time, ( )x t . A particular solution of it can be immediately 
found using the trial form 

 Nx Bt=  (4) 

where B and N are constants to be determined. By substituting Equation 
(4) into (2) and equating both the powers and prefactors of t on the two 
sides of the equation, one finds 

 
3

2
N =   and  

4

3

k
B = , (5) 
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so that 

 ( )1/2 3/24
3x k t= . (6) 

The first and second time derivatives of this result give the velocity and 
acceleration of the ball as a function of time, 

 3ktυ =  (7) 

and 

 
3

4

k
a

t
= . (8) 

Equation (6) is not the general solution of Equation (2) because it does not 
include two arbitrary integration constants. Instead it is the particular 
solution corresponding to 0 0x =  and 0 0υ =  (which happily is the case 

most relevant to a ball in a musket). Later in this article we will consider 
how to find solutions for other initial conditions (see the section, “General 
Solution of the Differential Equation,” below).  

The ball is in the barrel during the time interval from 0t =  until 
some later time maxt t= . Equations (6) and (7) then imply that the length 

of the barrel is 

 ( )1/2 3/24
max3L k t=  (9) 

and the muzzle velocity of the ball is 

 max max3ktυ = . (10) 

Equations (9) and (10) are two equations in two unknowns (k and 
tmax) if L and υmax are measured. For example, the 58 Springfield musket 
[4] has a barrel length of 1 m and a muzzle velocity of 290 m/s, from 

which one deduces that 2 35.4 km / sk = and max 5.2 mst = . Equations (6) 

to (8) are plotted in Figure 2 for these values. Although the acceleration 
initially diverges, the velocity and position are nevertheless well defined at 
all times. The rise in the velocity quickly tapers off, demonstrating that 
there is little advantage in increasing the barrel length past a certain point. 
(In particular, if losses were included, there would be some definite 
optimal length for a given powder charge.)  
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Figure 2. Graphs of x (in m), υ (in km/s), and a (in m/ms2) 
versus t ranging from 0 to 5.2 ms if 2 35.4 km / sk =  for the initial 
conditions 0 0x =  and 0 0υ = . 

 
Energetics of the Powder, Gas, and Projectile 

The derivation of Equation (2) above depends on the fact that nRT 
increases linearly with time t. Specifically, it was assumed that T is 
constant and that n rt= . Hot gas is created (starting from zero moles) by 
chemical conversion of the solid powder. For simplicity, consider the gas 
to be monatomic. An alternative way to model the system is to take n to be 
constant, while T rt= , i.e., the temperature is no longer constant. One 
could now think of the gas atoms as initially existing latently in the 
gunpowder in condensed form (which classically corresponds to absolute 
zero temperature) and that they get rapidly warmed up by thermal energy 
transfer Q from the burning charge. 

Reversible thermodynamics can be used in the analysis because the 
gas expansion is quasistatic and there are no dissipative losses. Appendix 
A shows that the gas is always in quasi-equilibrium by treating the 
expansion of the gas behind the ball like the familiar example of a piston 
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in a frictionless cylinder. The piston slides slowly compared to the speed 
of sound, provided that its mass is much larger than that of the gas.  

 

 

 Q into gas

n = constant amount of gas (initially condensed) 
burning
powder

internal energy of gas
3

2
E nRT=  

W  out of gas into ball 

 
 

Figure 3. Relevant energy transfers between the gunpowder, 
propelling gas, and musket ball in the model where the number 
of moles n of the gas is taken to be constant and its temperature 
T increases linearly.  

 

The energetics of the musket are now analyzed by reference to 
Figure 3. Consider an arbitrary interval of time between 0 and t. During 
this interval, the monatomic gas ends up with an internal energy [5] of 

( ) 1.5 ( )E t nRT t= , whereas it started with no internal energy when 
condensed. Thus the change in internal energy of the propellant gas is 

 
3

2
E nRTΔ = . (11) 

During this time, the gas does work W on the ball, calculated from 

 W Fdx m adx= =   (12) 

(or equivalently from PdV .) One could proceed by substituting 

Equations (6) and (8) to convert the last result into a time integral that can 
be performed. A simpler and more general approach is to use the 
definitions of velocity and acceleration to rewrite Equation (12) as 

 ( )21

2

d
W m dt m K

dt

υ υ υ= = Δ = Δ  (13) 

where 21
2K mυ≡  is the kinetic energy of the ball. Equation (13) is 
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simply a derivation of the work-kinetic-energy theorem of the ball since it 
is treated here as a particle. For the particular solution of interest (which is 
also the asymptotic solution for large times for any choice of initial 
conditions, as is proven in the section below, “Scaling Argument to Find 
the Asymptotic Behavior”), Equations (1), (3), and (7) can be substituted 
into this result to obtain  

 
3

2
W nRT= . (14) 

Finally, the first law of thermodynamics applied to the gas implies that 

 3E Q W Q nRTΔ = −  =  (15) 

using Equations (11) and (14). In words, these results prove that energy is 
being transferred from the powder to the gas and projectile at the constant 
rate / 3dQ dt nRr= . Half of that added energy goes into warming up the 
gas, increasing its internal energy, while the other half goes into 
accelerating the ball, increasing its translational kinetic energy. Thus the 
energy transfer efficiency from the powder to the ball is 50% even for this 
ideal musket. 

General Solution of the Differential Equation 

In this section we explore the nonlinear differential equation 
xa kt=  from a more general mathematical point of view. The physical 
application presented above helps interpret these general numerical 
results. 

Reparameterizing the Equation 

Equation (2) is second order and so its general solution must 
contain two constants of integration, corresponding to the initial position 
x0 and initial velocity υ0, in addition to the adjustable value of k. In total, 
there are thus three parameters in the family of solutions. However, some 
of these parameters can be eliminated by rescaling the units of length and 
time. This reparameterization is performed in different ways, depending 
on the initial conditions. 

Choose the +x axis to point in the direction of motion of the 
particle at long times. Then for 0k > , the position of the particle can 
never be negative. Appendix B discusses what happens if the ball is 
launched toward the origin and shows that x cannot reach (or cross) zero 
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no matter how large the initial speed is. The particle is repelled from the 
origin and must eventually move in the positive x direction, either because 
it initially started moving in that direction or because it reversed direction 
after exactly one bounce. 

Therefore, at times t other than zero, the position x must always be 
strictly positive. In contrast, at 0t =  the initial position x0 can be either 
positive or zero. For example, Equation (2) indicates that x0 can be 
nonzero if the initial acceleration is zero, whereas Equation (6) applies to 
the special case 0 0x = . If 0 0x = , then the initial velocity υ0 cannot be 

negative, because otherwise the particle would thereafter move in the 
direction of negative x, contrary to our choice of axis. The various possible 
initial conditions can therefore be divided into three classes. 

Class A: x0 is positive and υ0 is arbitrary 

Define a characteristic length 0x x≡  and a characteristic time 
2/3 1/3
0t x k−≡ . These two quantities can be used to define a characteristic 

speed 1/3 1/3
0/x t x kυ ≡ =   and a characteristic acceleration 

2 1/3 2/3
0a x t x k−≡ =  . In effect, the units of distance and time have been 

chosen to scale away x0 and k, reducing the three-parameter family of 

solutions to a form that depends only on υ0. 

Class B: x0 is zero but υ0 is positive 

Now define the characteristic length as 3 1
0x kυ −≡  and the 

characteristic time as 2 1
0t kυ −≡ . Then the characteristic speed is 

0/x tυ υ≡ =   and the characteristic acceleration is 2 1
0a x t kυ−≡ =  . That 

is, the units of distance and time have been chosen to eliminate υ0 and k. 

Given that 0 0x = , the family of solutions to Equation (2) reduces to zero 

adjustable parameters with two specified initial conditions. 

Class C: both x0 and υ0 are zero 

In this case, there is only one parameter in the original problem 
and so we cannot independently define both a characteristic length and 

time. Arbitrarily choosing 1 mx ≡  in base SI units, then 2/3 1/3t x k−≡  , 
1/3 1/3x kυ =  , and 1/3 2/3a x k−≡  . This class corresponds to the particular 
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solution already found in the first section of this paper, “Basic Dynamics 
of the Ball in a Musket.”  

For any of the three classes, dimensionless kinematic variables can 
be introduced as /t t t′ ≡  , /x x x′ ≡  , /υ υ υ′ ≡  , and /a a a′ ≡  . In terms of 
these dimensionless variables, Equation (2) becomes 

 x a t′ ′ ′=  (16) 

where /dx dtυ′ ′ ′=  and /a d dtυ′ ′ ′= . The initial conditions for class A are 

0 1x′ =  and 1/3 1/3
0 0 0x kυ υ− −′ = . The differential equation has thus been 

recast in a form that only depends on the single combined value 0υ′ . That 
makes it easier to investigate and plot its family of solutions. For class B, 
the initial conditions are uniquely specified as 0 0x′ =  and 0 1υ′ = . Using 
l’Hôpital’s rule, the initial acceleration is then 0 1a′ = . 
 

Numerical Solution 

Equation (16) has no discernible closed-form analytic solution in 
general, but one can numerically integrate it. Different methods can be 
used for this purpose, depending on the desired accuracy and ease of 
calculations. To start with, the first-order Euler-Cromer method [6] can be 
implemented in a spreadsheet. Given values ix′  and iυ′  at any time it ′ , 
their values at the next time step 1i it t t+′ ′ ′= + Δ  (where 0.1t′Δ =  say, 
corresponding to a time step in real units of /10t ) are sequentially 
calculated as 

 
( )1

1 1

/i i i i i i

i i i

a t t x t

x x t

υ υ υ
υ

+

+ +

′ ′ ′ ′ ′ ′ ′ ′= + Δ = + Δ
′ ′ ′ ′= + Δ

 (17) 

with starting values for class A of 0 0t′ = , 0 1x′ = , and any chosen value of 

0υ′ . The results are plotted as the solid curves in Figure 4 for four values 

of 0υ′ . A similar numerical integration for class B (when 0 0x′ = , 0 1υ′ = , 

and 0 1a′ = ) results in a curve that is almost indistinguishable from the 

dashed curve (corresponding to class C). 

The equation for 1ix +′  involves the updated velocity 1iυ +′  rather than 

the previous value iυ′ , in contrast to the equation for 1iυ +′  which uses the 

previous value of the acceleration ia′ . That is the hallmark of Cromer’s 
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modification of the standard Euler method, classified as a symplectic 
integrator. Symplectic methods are the preferred choice when the 
Lagrangian L has no explicit time dependence, but they can be used even 
when L is time dependent (as is shown in Appendix C to be the case here). 
By comparison with the results of the second-order leapfrog integration in 
Appendix D, the Euler-Cromer method obtains values of position and 
velocity that are found to be accurate to 0.4% or better, so Equation (17) 
suffices to generate Figure 4. 

 
 

Figure 4. Graphs of x′  versus t′ . The four solid curves were 
calculated numerically using Equation (17) for 0 1x′ =  and 0υ′  
equal to 2, 1, 0, and –1 (from top to bottom at 1t′ = ). The dashed 
curve is a plot of Equation (18). 

 
Scaling Argument to Find the Asymptotic Behavior 

The dashed curve in Figure 4 is a plot of the solution represented 
by Equation (6) in dimensionless form, 

 3/24
3

x t′ ′=  (18) 

which is the particular solution of Equation (16) for class C, i.e., initial 
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values 0 0x′ =  and 0 0υ′ = . To investigate how Equation (18) relates to the 

numerical results in the “Numerical Solution” section above, introduce 

new variables 3/x x s′′ ′≡  and 2/t t s′′ ′≡  where s is an arbitrary positive 
scaling factor that zooms Figure 4 in or out (albeit not equally for the two 

axes). Defining /dx dtυ′′ ′′ ′′≡  and 2 2/a d x dt′′ ′′ ′′≡ , Equation (16) becomes 

 x a t′′ ′′ ′′=  (19) 

with initial conditions 3
0 0 /x x s′′ ′=  and 0 0 / sυ υ′′ ′= . Then if s → ∞ , the 

solution corresponding to 0 0x′′ =  and 0 0υ′′ =  is obtained, namely 
1/2 3/2(4 / 3)x t′′ ′′= . Therefore Equation (18) is an asymptotic solution of 

Equation (16) at large times for any initial values. To verify that 
conclusion, Figure 4 was replotted with the range of t ′  values increased 
25-fold. On this expanded scale, the solid curves are indistinguishable by 
eye from the dashed curve. 

Oscillations about the Asymptotic Solution 

To quantify the manner in which the general solutions approach 
the asymptotic curve, dimensionless residuals x′Δ  are computed by 
subtracting the analytic particular solution given by Equation (18) from 
any solution ( )x t′ ′  computed numerically. Whenever a numerical solution 
has a smaller value of x′  (at a given t ′ ) than the asymptotic solution, it 
has a larger acceleration (i.e., second derivative), and vice-versa, 
according to Equation (16). The numerical solution thus repeatedly 
catches up to and crosses the asymptotic curve, oscillating about it. It is 
found that these oscillations have both increasing period and increasing 
absolute amplitude. 

A physical explanation for these oscillations can be found in the 
ballistic situation of the first section, “Basic Dynamics of the Ball in a 
Musket.” If the ball gets ahead of the position it has in the particular 
solution at the same time, the gas becomes under-pressured in comparison 
and the ball’s acceleration drops. That permits the gas pressure to “catch 
up,” but the inertia of the ball leads to an overcorrection, and the cycle 
now reverses. 

Returning to the residuals, the amplitude of x′Δ  is proportional to 

t′  as t′ → ∞ , according to the analysis in Appendix D. Therefore the 
relative amplitude of the oscillations, x x′ ′Δ , decreases to zero in 



45 

 

Summer 2012 

proportion to 1 / t′  for large times. In this relative sense, solutions of 
Equation (16) for any initial conditions converge onto the asymptotic 
solution, Equation (18). 

Conclusions 

The force law described by xa kt=  has a simple form but exhibits 
rich behavior. Physically, it describes the idealized motion of a ball in an 
unrifled musket. Another situation that gives rise to Equation (2) is the 
radial motion of a particle (of mass m and charge q) in the electric field of 
a long straight wire whose linear charge density is proportional to time, 

tλ α= . Then 0/ 2k q mα π= e  (where 0e  is the permittivity of free space), 

which allows the possibility of a negative value of k that the ballistic 
application does not. Investigation of the motion for 0k <  could make an 
interesting student project. Further study of the equation /a t x∝  may 
uncover additional applications and intriguing behavior. 

Mathematically, the solution of Equation (2) involves power-law 
behavior (of the particular solution), oscillatory behavior (of the 
residuals), and exponential behavior (of the intervals between zero 
crossings of the oscillations). It calls for a diverse combination of analysis 
techniques, including insights from physics, trial solutions of differential 
equations, scaling laws, graphical methods, algebraic approximations, and 
computational algorithms. 

Appendix A: Quasistatic Expansion of the Gas  
Pushing the Ball in the Barrel  

 
At long times (if not initially), the speed of the musket ball is given 

by the slope of the dashed curve in Figure 4, obtained by substituting 
Equation (3) into (7) to get 

 ball
ball

3nRT

m
υ =  (A.1) 

after replacing n rt=  from Equation (1). Here the subscript “ball” has 
been added to υ and m to emphasize that those two variables refer to the 
speed and mass of the projectile specifically. On the other hand, the root-
mean-square speed of the atoms in a monatomic ideal gas is known from 
kinetic theory or equipartition [5] to be 
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 gas
gas

3nRT

m
υ =  (A.2) 

where mgas is the total mass of the gas in the musket. (The speed of sound 
has almost the same value, obtained by replacing the factor of 3 in this 
equation by the adiabatic exponent 5 / 3γ = .) Comparing Eqs. (A.1) and 
(A.2), one sees that the speed of the ball will always be small compared to 
typical molecular speeds provided that the mass of the ball is much larger 
than the total mass of the gas. In that case, the gas expansion is said to be 
quasistatically slow. 

Appendix B: Motion of the Ball for Negative Initial Velocities 

One cannot compress the volume of the gas in the barrel to zero (at 
nonzero temperatures). However, if one runs the Euler-Cromer simulation 
specified by Equation (17) with say 0 3υ′ = −  and 0.1t′Δ = , the trajectory 

appears to cross the horizontal axis (near 0.34t′ = ) and become 
increasingly negative thereafter. This zero crossing is an artifact of 
inaccurate numerical integration. It only occurs when the time step is large 
enough that the simulation can “jump” over the divergence in the 
repulsion that occurs at 0x′ = . We can prove that such a jump does not 
occur for infinitesimally fine time steps as follows. 

Consider the specific work, i.e., work per unit mass, a dx′ ′  as the 

ball approaches 0x′ = . Then t ′  is approximately constant (for example at 
about 0.34 if 0 3υ′ = − ) during the small time interval that x′  is smaller 

than some initial value ix′ , say 0.1. Now according to the work-kinetic-

energy theorem, 

 

i

2 2
i

i

2 2 ln
x

x

x
a dx t

x
υ υ

′

′

′′ ′ ′ ′ ′− = ≈
′  (B.1) 

using Equation (16). The right-hand side of this equation is negative 
(because ix x′ ′< ) and thus the ball slows down as it approaches 0x′ = . But 

it can never reach 0x′ =  because the left-hand side can never get smaller 

than 2
iυ′−  in value. Consequently, even if the negative initial velocity is 

very large in magnitude, the ball will necessarily bounce off the (infinite) 
potential barrier at the origin, as occurs for the curve corresponding to 
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0 1υ′ = −  in Figure 4. 

Appendix C: Canonical Mechanics of the System 

An explicitly time-dependent Lagrangian L and Hamiltonian H can 
be constructed as follows. Equation (B.1) suggests a potential energy ( )U t  
that is logarithmic in the position and thus 

 21
2 lnL K U mx mkt x≡ − = +  (C.1) 

where x υ≡ . The momentum conjugate to the position x is 

 
L

p mx
x

∂≡ =
∂




 (C.2) 

and thus the Hamiltonian is 

 21
2 lnH px L mx mkt x≡ − = −  . (C.3) 

Then the equation of motion is obtained from Hamilton’s equation as 

 
H mkt

p m x
x x

∂= −  =
∂

   (C.4) 

which rearranges into xa kt= . Alternatively, this equation of motion can 
be obtained from Equation (C.1) using the Lagrange equation 

 
d L L

dt x x

∂ ∂=
∂ ∂

. (C.5) 

 

Appendix D: Harmonic Oscillations of the Residuals 

Dropping the primes so as to unclutter the notation, the 
dimensionless force law is 

 
t

x
x

=  (D.1) 

from Equation (16), with a particular solution of 

 3/24
p 3

x t= . (D.2) 

Define the residual Δx as the difference between a general solution of 



48 

 

Washington Academy of Sciences 

Equation (D.1) for x and the right-hand side of Equation (D.2). 
Examination of numerical results from Equation (17) suggests that the 
residual (for any value of the dimensionless initial velocity υ0) oscillates 
harmonically in the logarithm of the elapsed time t with an amplitude that 
increases in proportion to the square root of the time. To verify this 

suggestion, let the scaled residual z be defined as Δx divided by t , so 
that 

 1/2 4
3

z xt t−= −  (D.3) 

which can be solved for x to get 

 1/2 3/24
3

x zt t= + . (D.4) 

Take the second derivative of this equation with respect to time, and 
substitute both it and Equation (D.4) into (D.1) to obtain 

 ( ) ( )
1

3 4 1
4 3 41 / 1 /z t zt z z t

−
+ = + + −  . (D.5) 

Since it will be shown that the amplitude of the scaled residual z levels off 
in value asymptotically (cf. Figure 5), /z t  must approach zero for large t. 
Thus the left-hand side of Equation (D.5) can be approximated using the 
binomial expansion to first order. The result can be rearranged to get 

 2 1
2zt zt z+ = −  . (D.6) 

The left-hand side of this equation can be identified as the logarithmic 
second derivative 

 
2

2
2( ln )

d z
zt zt

d t
= +  . (D.7) 

Therefore Equation (D.6) implies that the (logarithmic) second derivative 
of z is proportional to –z, characteristic of simple harmonic motion. 
Consequently the residual oscillates semi-logarithmically with a period of 

2 2π , i.e., a half-period corresponds to a ratio of adjacent zero-crossings 

of ( )z t  that equals ( )exp 2 85.02π ≈ . 
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Figure 5. Semi-logarithmic plots of the scaled residual x t′ ′Δ  
against the dimensionless time t′  for the three indicated values 
of 0υ′  with 0 1x′ = .  

 

Figure 5 plots the scaled residual z as a function of time on semi-
logarithmic axes for 0 1x = . The three curves correspond to different 

values of υ0 between 0 and –1. Zero crossings for these three curves are 
listed in Table 1. For large t, the ratio between successive zero crossings is 
in excellent agreement with the asymptotic value 85.02 predicted by 
Equation (D.6). 

The results in Table 1 require x values accurate to better than 1 part 
in 109, because z is a small difference between large numbers. To achieve 
that level of accuracy, a C++ program [7] was written to calculate the 
residuals over a longer range of times and with higher accuracy than can 
be done using the spreadsheet solution. The program replaces the first-
order calculations of Equation (17) with the second-order leapfrog 
calculations 
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An adaptive time step size is used: Δt is gradually increased as t increases, 
to keep pace with the exponential increase in the period of oscillations. An 
even higher-order symplectic integrator [8] was used as a further check on 
the results. 

 
Table 1. Zero-crossing times in Figure 5 and their ratios, accurate to 
1 part in 104, for three different values of the dimensionless velocity.  

for 0 1.0υ′ = − : for 0 0.5υ′ = − : for 0 0.0υ′ = : 

zero- 
crossing 

time 

ratio 
zero- 

crossing 
time 

ratio 
zero- 

crossing 
time 

ratio 

8.7402 
 

20.493 
 

43.493 
 

89.47




 
87.02





 
85.98





 

781.99 1783.2 3739.5 

84.97




 
85.00





 
85.01





 

66 446 151 570 317 890 

85.02




 
85.02





 
85.02





 

5 649 300 12 886 000 27 027 000 
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