
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-TE-12-003

^`nrfpfqflk=obpb^o`e=

pmlkploba=obmloq=pbofbp=
=

Virtualization of System of Systems Test and Evaluation

4 June 2012

by

Major Seth F. Gibson, USMC

Advisors: Dr. John S. Osmundson, Associate Professor, and

Brad Naegle, Senior Lecturer

Graduate School of Operational & Information Sciences

Naval Postgraduate School

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
04 JUN 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Virtualization of System of Systems Test and Evaluation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School (NPS),Graduate School of Business & Public
Policy,555 Dyer Road, Room 332,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Virtualization is the use of a software application to emulate the physical performance of a computer,
including the central processing unit (CPU), storage network device, random access memory (RAM), and
operating system (OS) through executable data files. The virtualization software application allows for
multiple virtual machines to exist on a single set of physical hardware. This technology can increase the
flexibility of the hardware while reducing hardware configuration time. Virtualization technology will
improve the Department of Defense (DoD) system of systems (SoS) test and evaluation (T&E) process. The
implementation of virtualized systems within SoS will create three primary benefits. First, test personnel
can improve configuration management for all component systems. Second, test personnel can reduce test
environment setup time. Third, test personnel can improve the scalability of SoS architectures. The success
of a DoD information system depends on its ability to meet the established criteria of cost, schedule, and
performance. By appropriately integrating virtualization technology into the SoS T&E process, system
program managers can improve the likelihood of meeting these criteria.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

103

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli

The research presented in this report was supported by the Acquisition Chair of
the Graduate School of Business & Public Policy at the Naval Postgraduate
School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret.)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website: www.acquisitionresearch.net

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i -=
k^s^i=mlpqdo^ar^qb=p`elli

ABSTRACT

Virtualization is the use of a software application to emulate the physical

performance of a computer, including the central processing unit (CPU), storage,

network device, random access memory (RAM), and operating system (OS) through

executable data files. The virtualization software application allows for multiple

virtual machines to exist on a single set of physical hardware. This technology can

increase the flexibility of the hardware while reducing hardware configuration time.

Virtualization technology will improve the Department of Defense (DoD) system of

systems (SoS) test and evaluation (T&E) process. The implementation of virtualized

systems within SoS will create three primary benefits. First, test personnel can

improve configuration management for all component systems. Second, test

personnel can reduce test environment setup time. Third, test personnel can

improve the scalability of SoS architectures. The success of a DoD information

system depends on its ability to meet the established criteria of cost, schedule, and

performance. By appropriately integrating virtualization technology into the SoS T&E

process, system program managers can improve the likelihood of meeting these

criteria.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ii -=
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iii -=
k^s^i=mlpqdo^ar^qb=p`elli

ACKNOWLEDGMENTS

I would like to thank my dear wife, Natalie, for her support and

encouragement throughout my time at the Naval Postgraduate School. You are

my best friend, and I am blessed to have you as my wife. Thank you to my

children, Shey, Megan, and Cole, for their inspiration to enjoy each moment and

their reminder that I was a kid once, too. Special thanks to my parents, who have

provided unwavering support and continue to inspire me to reach new personal,

professional, and academic heights. I also want to share my appreciation with my

advisors, Dr. John Osmundson, Dr. Deborah Goshorn, and LTCOL Brad Neagle

(Ret.). Professor Osmundson, your insight, and experience have allowed me to

develop a thesis worthy of the Naval Postgraduate School. Professor Goshorn,

without the aid of your research, I would have been unable to complete this

thesis. LTCOL Neagle, your instruction in the field of acquisition has transformed

my professional and educational experience. Finally, I would like to express my

gratitude for the tremendous guidance and support of Ms. Karey Shaffer and Ms.

Tera Yoder and the team of staff and editors of the Acquisition Research

Program. Thank you all for your effort in support of my research.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iv -=
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - v -=
k^s^i=mlpqdo^ar^qb=p`elli

NPS-TE-12-003

^`nrfpfqflk=obpb^o`e=

pmlkploba=obmloq=pbofbp=
=

Virtualization of System of Systems Test and Evaluation

4 June 2012

by

Major Seth F. Gibson, USMC

Advisors: Dr. John S. Osmundson, Associate Professor, and

Brad Naegle, Senior Lecturer

Graduate School of Operational & Information Sciences

Naval Postgraduate School

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of
the Navy, the Department of Defense, or the Federal Government.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vi -=
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vii -=
k^s^i=mlpqdo^ar^qb=p`elli

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. BACKGROUND AND HYPOTHESES ... 1
B. BENEFITS OF STUDY ... 2
C. RESEARCH QUESTIONS ... 2
D. THESIS ORGANIZATION .. 3

II. VIRTUALIZATION AND CLOUD COMPUTING ... 5
A. BACKGROUND ... 5

1. Early Virtualization .. 5
2. Virtualization System Elements .. 5
3. Virtualization Architecture .. 6

B. COMPONENTS OF VIRTUALIZATION ... 8
1. Hardware .. 8

a. Server ... 8
b. Client .. 9
c. Storage Area Network (SAN) 10

2. Software Architecture ... 11
a. x86 Platforms .. 11
b. Virtual Machine Monitor or Hypervisor 12
c. Virtual Machine Operating System 12
d. Virtual Machine Configuration Management 13

3. Network .. 13
a. Components .. 13
b. Latency .. 14
c. Protocols ... 14

4. Server Virtualization .. 15
5. Virtual Desktop Infrastructure .. 15

C. VIRTUALIZATION: THE BUILDING BLOCK OF THE CLOUD 16
1. Cloud Service Models ... 16
2. Cloud Deployment Models .. 17

a. Private Cloud ... 17
b. Community Cloud ... 18
c. Public Cloud .. 19
d. Hybrid Cloud ... 20

D. DEPARTMENT OF DEFENSE VIRTUALIZATION INITIATIVES 20
1. United States Marine Corps .. 21
2. United States Navy .. 21
3. United States Army .. 22

E. LIMITATIONS .. 23
1. Hardware .. 23
2. Software ... 23
3. Network .. 23
4. Real-Time Systems .. 24

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - viii -=
k^s^i=mlpqdo^ar^qb=p`elli

F. CONCLUSION ... 24

III. TEST AND EVALUATION IN SYSTEM OF SYSTEMS
ARCHITECTURES ... 27
A. TEST AND EVALUATION ... 27

1. Overview ... 27
2. Purpose .. 28
3. Test and Evaluation Strategy (TES) 29
4. Test and Evaluation Master Plan (TEMP) 30

B. SYSTEMS BACKGROUND ... 30
1. Systems Science ... 30
2. Systems Engineering .. 30
3. Systems Framework .. 31
4. System of Systems .. 35
5. System of Systems in the Department of Defense 36

C. SYSTEM TEST METHODOLOGIES .. 36
1. Bottom-Up Testing .. 38
2. Top-Down Testing ... 39
3. Black-Box Testing (Functional) .. 39
4. White-Box Testing (Structural) ... 39
5. Regression Testing ... 40
6. Mission Thread Based Testing ... 40

D. CONCLUSION ... 40

IV. CASE STUDY OF THE DISTRIBUTED GLOBAL INFORMATION GRID
(GIG) INTELLIGENCE AUTOMATION SYSTEM ... 43
A. INTRODUCTION .. 43
B. DGIAS SUITABILITY ANALYSIS .. 43
C. DGIAS SYSTEM COMPOSITION .. 44

1. Description ... 44
2. Component Systems of DGIAS .. 47

a. Kiosk System .. 47
b. Fixed Camera System ... 50
c. Middleware System ... 53
d. Watchman Viewer System .. 54

D. PROPOSED DGIAS VIRTUALIZATION .. 56
1. Description ... 56

E. DGIAS TEST AND EVALUATION PROCESS MODEL 59
F. CONCLUSION ... 66

V. CONCLUSION .. 67
A. SUMMARY ... 67
B. FURTHER RESEARCH AND RECOMMENDATIONS 68

1. Limits of Virtualization .. 68
2. Improved Capabilities ... 69
3. Further Case Studies ... 69
4. Specific Measuring Tool.. 69

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ix -=
k^s^i=mlpqdo^ar^qb=p`elli

APPENDIX A ... 71

APPENDIX B ... 73

LIST OF REFERENCES .. 75

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - x -=
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xi -=
k^s^i=mlpqdo^ar^qb=p`elli

LIST OF FIGURES

Figure 1. Four VMs on a Single Set of Hardware ... 7
Figure 2. Six VMs on Two Sets of Hardware .. 7
Figure 3. Depiction of x86 Platform Hosting Windows- and Linux-Based OS 12
Figure 4. Depiction of Server Application Virtualization .. 15
Figure 5. Cloud Service Models .. 17
Figure 6. Private Cloud Model .. 18
Figure 7. Community Cloud Model ... 19
Figure 8. Public Cloud Model.. 19
Figure 9. Hybrid Cloud Model ... 20
Figure 10. Marine Corps Virtualization Strategy ... 21
Figure 11. DoD Decision Support Systems .. 27
Figure 12. Test and Evaluation Framework .. 29
Figure 13. Overview of Phases in the Systems Engineering Core Model 32
Figure 14. Systems Engineering Core Model ... 33
Figure 15. Systems Engineering of a System ... 34

Figure 16. Applied Methodology for Systems Engineering of Systems of
Systems .. 35

Figure 17. VV&T Techniques ... 38
Figure 18. System View Diagram for DGIAS .. 45
Figure 19. Selected DGIAS Systems .. 46
Figure 20. Physical Architecture of Selected DGIAS Systems 47
Figure 21. Kiosk System Physical Architecture .. 48
Figure 22. Kiosk System’s Dell Latitude™ D820 Hardware Specifications 49
Figure 23. Kiosk System’s Dell D820 Latitudes .. 49
Figure 24. Fixed Camera System Physical Architecture ... 51

Figure 25. Fixed Camera System’s Dell Precision™ 490 Desktop Hardware
Specifications ... 52

Figure 26. Fixed Camera System’s Dell Precision™ 490 Desktop 52
Figure 27. Middleware System (Geospatial Hub) Server Physical Architecture 54
Figure 28. Watchman Viewer System Physical Architecture 55
Figure 29. Watchman Viewer System Virtualization Architecture 55
Figure 30. Watchman System’s Mac Pro Hardware Specifications 56
Figure 31. Watchman System’s Mac Pro Server .. 56
Figure 32. Proposed Physical Architecture of DGIAS ... 57
Figure 33. Virtualization Architecture of vAlpha & vBeta .. 58
Figure 34. Core Model .. 59
Figure 35. DGIAS ECO Implementation Model .. 62
Figure 36. System Build Times ... 65

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xii -=
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xiii -=
k^s^i=mlpqdo^ar^qb=p`elli

LIST OF TABLES

Table 1. DGIAS ECO Integration With Core Model Hours Breakdown for 40-
Hour Period .. 60

Table 2. DGIAS ECO Integration Participants ... 61
Table 3. Activity Times .. 63
Table 4. DGIAS ECO Integration Phase C—Process Tasks 66

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xiv -=
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xv -=
k^s^i=mlpqdo^ar^qb=p`elli

LIST OF ACRONYMS AND ABBREVIATIONS

ADCCP Army Data Center Consolidation Plan

AFATDS Advanced Field Artillery Tactical Data System

C2 Command and Control

C4I Command, Control, Communication, Computers, and Intelligence

CAC2S Common Aviation Command and Control System

CoC Combat Operation Center

COI Community of Interest

COTS Commercial Off-the-Shelf

CPOF Command Post of the Future

CPU Central Processing Unit

DAS Defense Acquisition System

DCGS Digital Common Ground System

DDR Double Data Rate

DGIAS Distributed Global Information Grid (GIG) Intelligence Automation
System

DIPR Detect–Identify–Predict–React

DoD Department of Defense

DVD Digital Video Disc

E2E End to End

ECO Engineering Change Order

EMD Engineering and Manufacturing and Development

FCS Fixed Camera System

FoS Family of Systems

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xvi -=
k^s^i=mlpqdo^ar^qb=p`elli

GB Gigabyte

GHub Geospatial Hub

GHz Gigahertz

GPS Global Positioning System

GUI Graphical User Interface

HDX High Definition User Experience

IaaS Infrastructure as a Service

IBM International Business Machine

IC Internal Clock

IP Internet Protocol

ISR Intelligence Surveillance and Reconnaissance

IT Information Technology

JCIDS Joint Capabilities Integration Development System

LUN Logical Unit Number

Mbit/sec Megabit Per Second

MAGTF Marine Air Ground Task Force

MC3T MAGTF C4I Capability and Certification Test

MCIC MAGTF C4I Integration and Certification

MCTSSA Marine Corps Tactical Systems Support Activity

MHz Megahertz

ms Millisecond

NGO Non-Governmental Organization

NIC Network Interface Card

NIST National Institute of Standards and Technology

ODBC Open Database Connectivity

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xvii -=
k^s^i=mlpqdo^ar^qb=p`elli

OS Operating System

PaaS Platform as a Service

PC Personal Computer

PCoIP Personal Computer over Internet Protocol

PM Program Manager

PoE Power over Ethernet

PPBE Planning, Programming, Budgeting, and Execution

QFD Quality Function Deployment

R&D Research and Development

RAM Random Access Memory

RDP Remote Desktop Protocol

RTC Real Time Clock

SaaS Software as a Service

SAN Storage Area Network

SDK Software Development Kit

SoS System of Systems

SQL Standard Query Language

T&E Test and Evaluation

TB Terabyte

TD Test Director

TEMP Test and Evaluation Master Plan

TES Test and Evaluation Strategy

UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

VDI Virtual Desktop Infrastructure

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xviii -=
k^s^i=mlpqdo^ar^qb=p`elli

VM Virtual Machine

VMM Virtual Machine Monitor

VV&T Validation, Verification, and Testing

WIPT Working-Level Integrated Product Team

Y2K Year 2000

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 1 -=
k^s^i=mlpqdo^ar^qb=p`elli

I. INTRODUCTION

A. BACKGROUND AND HYPOTHESES

An information technology (IT) or command and control (C2) system’s

performance in the test and evaluation (T&E) phase of a program’s life cycle will

impact its success or failure. Program managers (PM) must choose wisely where

to distribute their budget in order to control development costs and program

schedules. To maximize limited budgets, it is a manager’s duty to find improved

productivity in business processes and ensure the effective use of IT

infrastructure. One technology designed to achieve both efficient business

processes and the efficient use of infrastructure is virtualization. Virtualization

software decomposes the physical elements of a computer into a set of

executable software files. This transformation allows for the emulation of a

physical computer through software, which provides administrators with improved

process efficiencies throughout the IT infrastructure. The implementation of

virtualization technology in T&E can reduce hardware and manpower costs while

decreasing lab configuration schedules. This increase in productivity reduces

schedule time and cost, thus managers can apply resources to other critical

areas of the program.

To realize the efficiencies gained by virtualization in T&E, the test

environment should ideally mimic a large system of systems (SoS) setting.

System of systems architectures incorporate multiple IT systems working

together either in sequence or in parallel to produce some output. For example,

the Department of Defense (DoD) intelligence community relies on multiple

intelligence surveillance and reconnaissance (ISR) platforms such as unmanned

aerial vehicles (UAVs) or manned fixed-wing aircraft to collect data on a given

target. The collection data must be processed by unique systems and then

transmitted to analysts for further study. These disparate inputs will eventually

come together within a single system to provide a cohesive understanding of a

given target. To ensure each of these systems work together, they must be

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 2 -=
k^s^i=mlpqdo^ar^qb=p`elli

tested together in an environment closely matching the operational setting. By

creating SoS architectures in virtualization, administrators can create functional

models of systems, which allow for new software updates or patches to be easily

integrated or new products to be tested without adjusting the existing system

connections.

To demonstrate the benefits of virtualization in the test environment, a

study was completed of the Distributed Global Information Grid (GIG) Intelligence

Automation System (DGIAS). The DGIAS laboratory combined numerous

systems working together to connect several collection platforms and database

systems. To validate the hypothesis, a hardware consolidation plan and a

process model of the system were developed to verify a reduction of hardware

requirements and configuration time.

B. BENEFITS OF STUDY

With this thesis, I seek to identify the efficiencies gained from the use of

virtualization in system of systems test and evaluation. Given the large scale of

most SoS environments, a solution must be developed which combines IT

flexibility and scalability without increasing manpower. In this thesis, I outline for

system testers the benefits and limitations of implementing virtualization

technology in an SoS T&E setting.

C. RESEARCH QUESTIONS

1. What are the ideal system traits for implementing virtualized system of

systems test and evaluation?

2. What type of virtualization environment should be created to benefit

the system of systems test and evaluation process?

3. What are the efficiencies achieved through the use of virtualization in

system of systems test and evaluation?

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 3 -=
k^s^i=mlpqdo^ar^qb=p`elli

4. What are the limitations of using virtualization in a system of systems

test and evaluation environment?

D. THESIS ORGANIZATION

Following the current chapter’s introduction to virtualization and SoS T&E,

in Chapter II, I introduce some important concepts in the field of virtualization.

Then I discuss the concept of cloud computing, including the different service

and deployment models. Finally, I review the limitations of the virtualization

technology.

In Chapter III, I discuss the fundamentals of system of systems T&E in the

DoD acquisition process as well as T&E methodologies. Although numerous T&E

methodologies exist, I only discuss the most accepted and practiced techniques.

Next, I introduce the DoD SoS initiatives as a framework for DoD acquisition T&E.

Following the presentation of the background information, in Chapter IV I

examine in detail the Distributed Global Information Grid (GIG) Intelligence

Automation System (DGIAS). This chapter explores the physical hardware,

software, and processes of the DGIAS. Then I propose a virtualized architecture

for the DGIAS to determine the differences between a fully physical

implementation and a hybrid (physical and virtualized) architecture. Finally, I

present a process model of the system to identify efficiencies achieved by a

virtualization implementation in a T&E environment.

In Chapter V, I summarize the findings of this thesis and suggest several

opportunities for future research at the intersection of virtualization or cloud

computing and SoS T&E.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 4 -=
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 5 -=
k^s^i=mlpqdo^ar^qb=p`elli

II. VIRTUALIZATION AND CLOUD COMPUTING

A. BACKGROUND

1. Early Virtualization

Throughout their history, virtual machines (VMs) have sought to divide the

computing components of hard disk storage, random access memory (RAM),

and central processing unit (CPU) of a single large computer into several smaller

computers for use by multiple users. The separation of components is achieved

through virtualization software. Virtualization software has matured since its first

introduction in the late 1960s at IBM® (International Business Machine). The

production of the CP-40 (Control Program-40), developed in concert with the IBM

System/360 Model 40 (Adair, Bayles, Comeau, & Creasy, 1966), was the first

system to host multiple operating systems (OSs) on a shared platform and

provided the foundation for virtualization (Varian, 1991). Current computer

capabilities and network throughput have completed the original vision of

virtualization. Today, organizations can operate the equivalent of a historic

mainframe on a single rack of servers. This is made possible by continued

miniaturization and commoditization of computer components. Computers in the

form of blade servers now contain multi-terabyte internal storage, hundreds of

gigabytes of RAM, and multi-core processors. This computing power is

equivalent to seven to ten desktop computers and is the primary enabler for

virtualization.

2. Virtualization System Elements

Parmalee, Peterson, Tillman, & Hatfield (1972) outlined the capabilities of

virtualization in the early days of VM with some guiding principles. The following

four principles define the VM tenets and have influenced current virtualization

software:

 Concurrent running of dissimilar operating systems by
different users. While one virtual machine is used to develop

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 6 -=
k^s^i=mlpqdo^ar^qb=p`elli

and test code for the current release level of an operating
system, another virtual machine can be using a back-level
release of the same system.

 Both system and application programs may be developed
and debugged for machine configurations that are different
from that of the host machine. Thus, a host machine with a
modest amount of main storage can provide the environment
for development and testing of a system to run on a machine
with a large amount of main storage.

 One virtual machine is totally insulated from the effects of
software failures occurring in other virtual machines.

 The host machine can aid in the measurement of hardware
and software usage by the various virtual machines. Specific
virtual machines built for monitoring can communicate
directly with the host without impacting the machines being
monitored. (Parmalee et al.,1972, p. 109)

It should be intuitive that a single powerful set of hardware or platform

could perform the work of several smaller sets of hardware. This is what

virtualization seeks to achieve. As the age of mainframes in the 1960s and 1970s

gave way to the personal computer (PC) in the 1980s, the need to develop large

powerful systems diminished. Only major corporations, universities, and

governmental agencies continued to maintain and operate large mainframes.

The business world’s focus on the PC reduced the need for virtualization as a

means to service multiple VMs and multiple users. Today, consumers can

purchase small, high-performance computers as commodities, thus removing the

size and cost barriers of the past. The industry’s current emphasis on cloud-

based architectures will further push the IT market to a greater reliance on a

centralized server-based model.

3. Virtualization Architecture

The application of virtualization to SoS architectures will provide a platform

for multiple system designers to share a common infrastructure. “This leads to

ease of use and optimal product design and testing, which decreases costs and

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 7 -=
k^s^i=mlpqdo^ar^qb=p`elli

lead times” (Swaminathan & Murthy, 2006, p. 67). Swaminathan and Murthy

used the concept of virtualization to develop the representation shown in Figure

1. The architecture as depicted allows VMs to communicate with each other,

much like hosting an entire network from a single computer. The structure

illustrated represents an ideal environment for testing complex network

topologies given the multiple possibilities for VM connectivity. The authors also

acknowledge a possible work around to traditional virtualization architectures by

adding non-virtual machine entities into the environment to help simulate a piece

of hardware that is not easily virtualized, seen in Figure 2 as a stub.

Figure 1. Four VMs on a Single Set of Hardware
(Swaminathan & Murthy, 2006)

Figure 2. Six VMs on Two Sets of Hardware
(Swaminathan & Murthy, 2006)

The stub represents a physical component such as a switch or a network

device that allows communication between two virtualization environments that

normally would not have the capability to organically communicate. For example,

a stub would provide the necessary interface for a system hosted in a virtual

environment that requires a satellite communication link. The stub would be

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 8 -=
k^s^i=mlpqdo^ar^qb=p`elli

physically connected to the server to translate the message into the appropriate

format for transmission. Because many components of a system cannot be

virtualized, it is important to understand how alternatives can be developed to

simulate or replicate interactions from end-to-end of the system. This is

specifically important for testing of systems given the need for operationally

accurate and repeatable test conditions.

B. COMPONENTS OF VIRTUALIZATION

1. Hardware

a. Server

The server provides the processing power necessary to begin a

virtual environment. Servers have replaced the mainframes of previous

generations. For the purposes of this thesis, a server is defined as a set of

hardware components (CPU and RAM) that perform the tasks of a given set of

software. The term server can also be associated with a type of software such as

an email server, which performs the function of organizing and distributing emails

to a group of users. Throughout this thesis, the term server refers to the

hardware, unless explicitly stated. Servers are traditionally housed in racks with

multiple servers per rack. This configuration allows for the centralized access to

electricity, air conditioning, and high bandwidth networking necessary for

maximum performance. Today’s servers can contain multiple CPUs and

hundreds of gigabytes of RAM.

The continued improvement of the hardware components has

enhanced the types of functions performed by servers. With the improved

performance many servers are capable of hosting a virtual environment with

dozens of VMs. By hosting multiple VMs on a single set of hardware,

administrators gain efficiency in power consumption, physical footprint of

computing devices, and ease of management of the hosted VMs.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 9 -=
k^s^i=mlpqdo^ar^qb=p`elli

b. Client

In a traditional client–server architecture, the workstation or client is

a desktop or laptop computer. A client may also be known as a node in a network

architecture. A network in the physical world is comprised of multiple nodes or

clients. In a virtual environment, the client can take many forms such as a thin-

client, thick-client, zero-client, or web-client. Each type provides characteristics

specific for a given environment. The administrator of the network must

determine which types of clients provide users with the required functionality. All

clients offer a user the requisite keyboard, video display, and input options such

as a Universal Serial Bus (USB) or Digital Video Disc (DVD) drive.

A thin-client contains a specially designed client software with

minimal functionality required to perform hardware interface and to communicate

with the server. The use of a thin-client requires a specially designed hardware

device with onboard processing, memory, and networking. These devices

contain the minimal components necessary to provide an operative user

experience. A thin-client is normally housed in a device approximately 6” x 6” x 2”.

The small size and onboard processing is ideal for organizations looking to

reduce the physical footprint and power consumption, without sacrificing

computing performance.

A thick-client is a traditional desktop with an additional virtualization

software application installed to enable communication with the server. The

desktop does not perform any application instructions, but it does provide video

display and network messaging, much like that of a thin-client. The thick-client

initiative is an attempt to repurpose or reuse existing desktops within an

organization without having to dispose of desktops or purchase new hardware.

Although physical footprint and power consumption efficiencies are not achieved

with a thick-client, it does give access to multi-core processing, increased

memory, and storage from the existing desktop.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 10 -=
k^s^i=mlpqdo^ar^qb=p`elli

The zero-client is a form of a virtual client that makes use of the

PCoIP (personal computer over Internet protocol), discussed later in this chapter,

to stream images of the VM state from the server to a device that does not

contain any internal processing, memory, or storage capacity. The device does

not record any portion of a virtual session; it displays images or screenshots of

the VM hosted on the server. This type of device is the smallest in scale of all

clients and the most secure of the options available to administrators.

A virtualized web-client allows a VM to be accessed through an

Internet web browser. Any computer with access to the network can operate a

VM through the host-based OS remote protocol made available through a

browser plug-in. Remote protocols are discussed later in this chapter. The web-

client provides the greatest degree of flexibility for a user. However, because the

hardware and software were not designed specifically for the purpose of web-

based virtualization, some performance is degraded due to latency.

c. Storage Area Network (SAN)

All servers are designed with some amount of storage available to

them, usually on the scale of multiple terabytes per server. However, in a virtual

environment, it may become necessary to make additional storage available,

such as for the purposes of maintaining VMs or creating snapshots of VMs in a

test environment. Given reduced costs and greater accessibility to storage,

administrators have employed racks of storage and allocated them to the virtual

environment. These dedicated storage devices, called storage area networks

(SAN), contain multiple terabytes of data and can be shared by several servers,

thus increasing the flexibility of the resources available through virtualization.

Servers can be assigned a specific LUN (logical unit number) or memory address

on a SAN, or the storage can be dynamically assigned according to the need of a

given VM. Not all VMs perform the same functions or execute the same

applications; therefore, the architecture should offer flexible storage options

based on user needs.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 11 -=
k^s^i=mlpqdo^ar^qb=p`elli

2. Software Architecture

Three specific types of software enable a virtual environment, as depicted

in Figure 3. These software allocate the physical hardware among the VMs,

provide OS platforms, and manage the entire VM architecture. The first type,

known as the virtual machine monitor (VMM), or hypervisor, is installed upon a

set of hardware, much like an OS is installed upon a traditional desktop computer.

The VMM does not perform all of the traditional OS functions; instead, it controls

access to the CPU, RAM, network interface card (NIC), and storage between the

VMs. Next is the VM OS, such as Microsoft® Windows, Ubuntu Linux, or Red

Hat Linux. The VM OS sends requests to the VMM for central processing,

memory usage, storage, and network access. Finally, to manage the

configuration of the VMs, management software is installed on a specific VM

within the environment. This management software, such as VMWare’s VCenter

Server, provides several functions including software application access and

update support to the entire group of VMs.

a. x86 Platforms

Today, virtualization, in its most developed form, has remained

within the x86 platform. The x86 platform includes the traditional Microsoft®

Windows–based OS family in its many versions (XP, Windows 7, Windows 8)

and Ubuntu with its Linux OS. The platform, created by the chipset technology of

Intel and AMD Corporations, allows software that resides three layers above the

hardware to have direct access to the hardware. In 2006, Intel and AMD modified

the CPU instructions to allow virtualization to occur more easily, thus reducing

the need for software workarounds to achieve the resource sharing (Neiger,

Santoni, Leung, Rodgers, & Uhlig, 2006; AMD, n.d.). The VT-x technology by

Intel (Neiger et al., 2006) and AMD-V by AMD (AMD, n.d.) provide the

virtualization chipset instructions necessary to enable resource sharing. Figure 3

illustrates the concept of a bare metal or full virtualization implementation, in

which the VMM is installed directly on top of the x86 platform or server.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 12 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 3. Depiction of x86 Platform Hosting Windows- and Linux-Based
OS

(Smith & Nair, 2005)

b. Virtual Machine Monitor or Hypervisor

The VMM performs a central role in a virtualization environment. It

is a small encapsulated piece software that may appear to perform as an OS;

however, its functionality is more limited. The VMM is able to control the

hardware, that is, make calls to the CPU, RAM, and storage, like an OS, but it

does this in support of the VMs installed upon it. A bare metal VMM configuration,

as seen in Figure 3, is known to be the most efficient means of allowing VMs

access to the physical hardware. This configuration reduces the software calls, or

messages, transmitted between a VMM and the platform for the purposes of

providing resources to the VMs. In a typical server rack, multiple servers would

be mounted, each with a VMM installed. The mix of two or more servers is known

as a cluster. These clusters provide one of the unique benefits of virtualization,

which is the ability to share resources based on CPU and RAM demand. As the

workload of a group of VMs increases, the VMM can allocate more resources to

the VMs in need to provide the most efficient instruction execution.

c. Virtual Machine Operating System

The OS installed on a VM is the software component most familiar

to users. It is the family of Microsoft® or Ubuntu OSs most often used in a

traditional desktop or laptop environment. The OS in a virtual environment

executes the same functions performed in a traditional user environment, such

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 13 -=
k^s^i=mlpqdo^ar^qb=p`elli

as running applications, controlling access to the network, managing system

attributes, and performing basic calls to the CPU, RAM, and storage. Within a

virtual environment, the performance of an OS and its associated applications

remains the same as it would if it existed in a physical machine.

d. Virtual Machine Configuration Management

To manage the VMs hosted upon a VMM, server configuration

management software has been developed to manage the VMs hosted in an

environment. This software allows for the creation of new VMs from a template or

by copying an existing VM. The software also provides the ability to take

snapshots or back-ups of a system state of a VM in a certain state or

configuration. These snapshots allow a VM to be restored in the case of file

corruption or a system conflict with the integration of new software. One

efficiency provided through VM management software is the ability to roll back or

revert to a previous system state. In the case of a disaster, the management

software can recognize if a VM or a cluster of VMs has shut down unexpectedly

and quickly boot up a new cluster of VMs to compensate. This type of

administrator control cannot be easily duplicated with physical machines.

3. Network

a. Components

In a virtual environment, the network is the heart of the architecture.

It provides the connectivity necessary for both the physical components (e.g.,

fiber, cables, wireless, backplane, switch, router) and the virtual components

(e.g., virtual LAN, virtual switch). Although it is not the purpose of this thesis to

discuss all of the detailed components of the network and their functionality, it is

necessary to mention two basic ideas that impact a virtual environment,

specifically in a virtual desktop infrastructure (VDI) implementation: latency and

protocol. With the following discussions, I explore the impact these ideas have on

virtual environment.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 14 -=
k^s^i=mlpqdo^ar^qb=p`elli

b. Latency

The metric of latency, often used within the field of IT, and

specifically virtualization, “can be measured one-way, from source to destination,

or two-way round-trip, from source to destination and back to source (usually

excluding the processing time at the destination to generate the response)”

(Fehse, 2011, p. 12). For virtual systems, which interact with a server and a

possible VDI client, the latency can determine the success of a virtual

environment. Given that processing occurs at the server, a user must rely on a

high-speed transmission of an input, the processing of that input, and the

retransmission of the output. If this process exceeds 20 milliseconds (ms), the

user is delayed in performing any other action until the last request has been

completed. For multi-step processes, this interaction can inhibit user productivity

if the delay becomes significant. Therefore, networks must minimize latency to

improve user experience.

c. Protocols

To address latency and the communication between the server and

the client, three types of protocols are widely accepted as standards. These

standards facilitate the server–client communication necessary to perform any

set of instructions. The Remote Desktop Protocol (RDP), developed by the

Microsoft® Corporation, is designed to create remote displays and application

support for users operating a Microsoft® OS. The protocol contains a “bandwidth

reduction feature comprised of data compression, caching of graphical elements,

and network load balancing” (Fehse, 2011, p. 16). These features reduce latency

while improving the user experience and enhancing screen refresh rates.

The PCoIP technology, developed by the Teradaci™ Corporation

for use by VMWare, focuses on bandwidth reduction through pixel transmission

to reduce latency. This type of protocol streams the video of the user’s screen to

the client. No data transmission occurs between the server and the client, which

removes the need to have any client-side processing or storage capability. The

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 15 -=
k^s^i=mlpqdo^ar^qb=p`elli

technology uses a series of video codecs to encode and decode the video

stream at real-time speeds (Teradaci, n.d.).

The HDX™ (High Definition User Experience), developed by Citrix,

relies on server, network, and client processing to effectively transmit data

according to network congestion and available bandwidth (Citrix, n.d.). HDX’s

dynamic adjustments to network latency by the VMM, VMs, and network devices

suggest that users will experience improved VM performance.

4. Server Virtualization

Server virtualization has been the focus for most businesses seeking to

adopt virtualization technology. Server virtualization makes use of the position

that any server that consistently operates below 50% of capacity is wasting

capacity. To remove the waste, additional services must be hosted on the

hardware. Virtualization provides the means for multiple server-based

applications such as a web or email server to be hosted on separate VMs within

a single set of hardware, as seen in Figure 4.

Figure 4. Depiction of Server Application Virtualization

5. Virtual Desktop Infrastructure

The VDI initiative has recently grown into a significant portion of the

virtualization movement. In its purest form, VDI is a return to the server-terminal

architecture of the 1960s and 1970s. Within VDI, the application hosting,

processing, and networking all occurs at the server with a user interface in the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 16 -=
k^s^i=mlpqdo^ar^qb=p`elli

form of a thin-client or thick-client. The clients are connected to the server via a

switch/router, Ethernet cable, or wirelessly. This type of implementation is ideal

for established environments with high bandwidth.

C. VIRTUALIZATION: THE BUILDING BLOCK OF THE CLOUD

From virtualization has emerged the concept of cloud computing. The

National Institute of Standards and Technology (NIST; 2011) offers the following

definition for cloud computing: “a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

interaction” (NIST, 2011, p. 2). This definition shares those early ideas of

virtualization by allocating the computer resources across multiple VMs. By

understanding the different service models available, the DoD can implement the

appropriate model to assist in the T&E process. The services maintain a great

deal of server and workstation hardware that can, in effect, be repurposed to

implement private clouds in the T&E environment.

1. Cloud Service Models

The cloud service models provide a road map for future virtualization

implementations. Figure 5 depicts the three enterprise service models: software

as a service (SaaS), platform as a service (Paas), and infrastructure as a service

(IaaS). Figure 5 distinguishes between a cloud service provider’s control

(highlighted in gray) and consumer’s control (highlighted in white) for each type

of service. Each model provides an enterprise different levels of control for the

key elements of an IT infrastructure. SaaS limits a user to only minor application

configuration settings without providing full access to the OS. This differs from

PaaS, where consumers are authorized full application permissions, that is, they

can install, uninstall, and manage applications through the OS. The IaaS model

provides a consumer the option to create unique VMs or platforms, install specific

OSs, and manage all applications.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 17 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 5. Cloud Service Models

An organization’s ability to manage its own infrastructure determines the

appropriate service model. Virtualization enables SaaS, PaaS, and IaaS to fulfill

the desired user functionality. Virtualization provides the organization the ability

to create a variety of VMs tailored to their needs. For example, if a developer

requires a Windows-based x86 platform on which to test a specific application’s

performance, in an IaaS agreement, the developer can specify that requirement

and build a VM to those criteria. The developer can then execute the testing in

the Windows environment. Once complete, if he or she desires to test in a Linux

environment, a new environment can be established all from the same client.

2. Cloud Deployment Models

a. Private Cloud

The private cloud model, depicted in Figure 6, limits access of the

computing resources to consumers of a specific organization (NIST, 2011). This

is the most secure form of the cloud deployment models and is ideal for test

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 18 -=
k^s^i=mlpqdo^ar^qb=p`elli

activities or system development, because it provides the best possible

computing resources with little risk of compromise. Test environments could be

quickly established, employed, and saved for future use in this type of model.

The private cloud gives an administrator the maximum amount of control, while

providing consumers with the available computer resources on request.

Figure 6. Private Cloud Model

b. Community Cloud

In a community cloud, the computing resources are shared among

a community of consumers with mutual interests. A community of interest (COI)

could leverage a community cloud to share limited applications or to give access

to a common set of tools for consumers with a specific skill set. This type of cloud

also allows for common concerns such as security issues, policy compliance, or

mission accomplishment (NIST, 2011). For example, TopCoder Inc. has

established a community of software developers and provided them with the

necessary software development kit (SDK) through their community cloud

(TopCoder, n.d.). As stated by NIST, a community cloud “may be owned,

managed, and operated by one or more of the organizations in the community, a

third party, or some combination of them, and it may exist on or off premises”

(NIST, 2011, p. 3). Figure 7 depicts how three disparate organizations share the

same resources to accomplish common goals.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 19 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 7. Community Cloud Model

c. Public Cloud

The public cloud model, depicted in Figure 8, permits open use by

the public (NIST, 2011). The cloud provider enforces the goals or purposes of the

architecture. The figure illustrates how non-governmental organizations (NGOs),

small businesses, individuals, academic institutions, governmental agencies, and

major corporations can all work together to achieve a common goal. An example

of this coordination is evident in organizations such as InRelief.org, which

provides improved response time for “Humanitarian Assistance and Disaster

Relief (HADR) events by connecting military/civilian organizations” (InRelief,

n.d.).

Figure 8. Public Cloud Model

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 20 -=
k^s^i=mlpqdo^ar^qb=p`elli

d. Hybrid Cloud

The hybrid cloud permits the combination of two or more

established clouds. The independent cloud architectures remain private objects,

but allow for sharing of resources to accommodate load-balancing, fail-over

protection, and application sharing (NIST, 2011). The hybrid cloud represented in

Figure 9 portrays the combination of three unique clouds connected via common

standards for the purposes of shared interests. This type of model represents the

greatest degree of collaboration, because the communication standards

established within an individual cloud must be duplicated across multiple cloud

providers.

Figure 9. Hybrid Cloud Model

D. DEPARTMENT OF DEFENSE VIRTUALIZATION INITIATIVES

The DoD, in an attempt to adopt virtualization, has released service-based

IT strategies that reflect the capabilities gained by implementing the technology.

Each department has unique virtualization goals that focus on primary missions

and existing IT platforms. For the focus of this thesis, I discuss the United States

Marine Corps’, the United States Navy’s, and the United States Army’s

virtualization and cloud strategies.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 21 -=
k^s^i=mlpqdo^ar^qb=p`elli

1. United States Marine Corps

The Marine Corps operational forces were early adopters of virtualization

technology. During the 2005 tsunami in South East Asia, the Marine

Expeditionary Unit used server virtualization to consolidate the host nation’s

critical systems by partitioning the blade server hardware for multiple applications

(Brodhun, 2008). In 2008, the information architect for Product Group–10 at

Marine Corps Systems Command outlined a goal of 98% server virtualization.

The objective was to achieve this goal in a three-phase process, as outlined in

Figure 10. At the completion of the Marine Corps’ implementation, the VM to

physical server consolidation should be 2:1.

Figure 10. Marine Corps Virtualization Strategy
(Brodhun, 2008)

2. United States Navy

In NAVADMIN 008/11 (U.S. Navy, 2011), VADM Dorsett, Deputy Chief of

Naval Operations for Information Dominance, outlined several future Navy

initiatives that focus on virtualization. The first step outlined the requirement to

reduce the number of data centers operated by the Navy. To achieve a goal of a

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 22 -=
k^s^i=mlpqdo^ar^qb=p`elli

25% reduction, the Navy would need to leverage server virtualization: “Maximum

effort should be applied to reduce the IT footprint and infrastructure in an effort to

save Navy resources in hardware, software, manpower and to promote Navy

green IT efforts” (U.S. Navy, 2011). To find this reduction, the Navy must

consolidate server-based applications to “increase server utilization by 40

percent or more (not to exceed 80 percent utilization) and increase server

virtualization by 50 percent” (U.S. Navy, 2011).

In addition to server virtualization, the Navy will also begin a thin-client

pilot program: “DDCIO [Department of Navy Deputy Chief Information Officer], in

coordination with the Navy Technical Authority, will lead a thin-client initiative,

replacing traditional computing desktops with less expensive, mobile hardware

that is engineered to support migration to a mobile workforce environment” (U.S.

Navy, 2011). The Navy’s stated virtualization goals exhibit the impact of the

technology in increasing IT efficiency and flexibility. By entering the early

adoption phase of VDI, the Navy can eliminate the excess hardware associated

with traditional desktops and shift to the PaaS, IaaS, and SaaS service models

(U.S. Navy, 2011).

3. United States Army

As part of the Army Data Center Consolidation Plan (ADCCP), the Army

will replace data centers with a unified cloud-computing architecture (U.S. Army,

2011). The U.S. Army plans will “reduce expenses associated with data center

hardware, software and operations, and will be able to shift IT investments to

more efficient computing technologies” (U.S. Army, 2011). The Army, like the

aforementioned Marine Corps and Navy, must adhere to the DoD mandate to

accommodate a reduction of data centers and a move to more energy-efficient IT

solutions. This requirement paves the way for technologies like virtualization to

play a greater role in IT strategies.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 23 -=
k^s^i=mlpqdo^ar^qb=p`elli

E. LIMITATIONS

1. Hardware

The principles of virtualization allow hardware to be allocated easily to the

required virtual environment. However, it does not adequately allow for the

hardware to simulate a system of greater capability than the existing hardware.

For example, if the hardware contains a single dual-core processor and 100

megabytes of RAM, the hardware cannot host VMs emulating computers with

quad-core processors and 200 megabytes of RAM. Virtualization can only divide

the existing hardware into smaller elements. If a user were to allocate the

hardware in excess of the system specifications, the system would stop

functioning and crash. Therefore, when designing virtual environments, it is

critical to match the existing hardware to the expected VM architecture.

2. Software

Virtualization software requires several components to achieve full

functionality. The functions of the VMM, environment management software, and

client-side software must all work together. This requirement limits the options

that administrators can take to implement a virtualization environment. Once a

vendor of the virtualization software is selected, the remainder of the architecture

must, in most situations, remain with that vendor. The different elements of the

virtualization hierarchy do not work well with different developer models. This

realization can create problems for administrators who are trying to find a hybrid

solution for each element of the environment. For example, if Citrix is selected for

the client-side software, the client software must work with the management

software, which must work with the VMM. This requirement often limits

architectures to a single vendor based on interface requirements.

3. Network

To sufficiently host a virtual environment, the organizational network must

be robust. The data rate required to host server-side VMs without a client does

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 24 -=
k^s^i=mlpqdo^ar^qb=p`elli

not require a network at all, given that all communication between the VMs

occurs at the backplane of the server rack. However, if the VMs require a VDI

implementation, then the throughput requirement increases substantially. Each

VDI client requires a connection of 25 megabits per second (Mbit/sec). This type

of connection ensures that the latency of the server to client communication is

minimized to 20 ms. When the network is unable to sustain the 25 Mbit/sec level,

the client-side interface can slow to an unusable level, limiting the user’s ability to

perform any functions. Therefore, the network must account for the number of

VMs hosted by the server and prepare for high throughput requirements both in

wireless and cabled environments.

4. Real-Time Systems

Real-time systems do not perform well in virtualization environments due

to the problem of time drift or clock drift. Computers account for time traditionally

with a physical clock in the hardware known as the real-time clock or RTC (the

term internal clock or IC has also been used). However, in virtualization, no

physical RTC exists inside the VM and the RTC must be replaced through

methods of time correction such as a Network Time Protocol server. Although the

software shows promise in the scalability and management of virtual

environments, it does not satisfactorily handle requirements for precise timing.

The concept of time keeping or time synchronization is important to computers

because it provides a system with an understanding of how it relates to other

systems. If a system or application requires precision timing, such as those found

in track-based systems which use a GPS (Global Positioning System) to indicate

the time, the system could be at a disadvantage given the time drift induced

between the hardware and the VMs.

F. CONCLUSION

Virtualization has evolved significantly in the decades since the CP-40.

However, from the early days at IBM to the cutting edge developments today with

companies such as Citrix and VMWare, the tenets have remained the same.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 25 -=
k^s^i=mlpqdo^ar^qb=p`elli

Developers and users have sought to find efficiency in maximizing computer

resources across multiple users. Virtualization does not represent a single

solution for all the technological challenges of today’s IT environment. Yet, it

does provide a specific set of ideal capabilities for establishing large computer

environments quickly and completely.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 26 -=
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 27 -=
k^s^i=mlpqdo^ar^qb=p`elli

III. TEST AND EVALUATION IN SYSTEM OF SYSTEMS
ARCHITECTURES

A. TEST AND EVALUATION

1. Overview

The test and evaluation aspect of a system’s development is a small piece

of three larger DoD support systems: the Defense Acquisition System (DAS), the

Joint Capabilities Integrated Development System (JCIDS), and the Planning

Programming, Budgeting, and Execution (PPBE) Process. Figure 11 illustrates

how the three separate processes mutually support and overlap to form a system

of checks and balances. The DAS provides the specific management of the T&E

processes, with JCIDS providing program oversight, and PPBE providing the

program funding.

Figure 11. DoD Decision Support Systems
(DoD, 2012, p. 6)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 28 -=
k^s^i=mlpqdo^ar^qb=p`elli

2. Purpose

The purpose of T&E is to provide information to help mitigate the risks

involved in developing systems and capabilities (Under Secretary of Defense for

Acquisition, Technology, & Logistics [USD(AT&L)], 2008). A system’s test and

evaluation methodology is developed based on the system’s requirements. To

understand the methodology, it is necessary to discuss the elements of test and

evaluation. The test is an action to verify operability, supportability, or

performance of an item by subjecting it to real or simulated conditions with

special test equipment or tools to obtain measurements or data for analysis

(Blanchard, 2011). The test is designed to measure a specific system objective

or requirement. An evaluation is a continuous iterative process to examine and

assess a system or an element of a system with regard to relative worth, quality

of performance, degrees of effectiveness, and anticipated cost (Blanchard, 2011).

T&E standards are initially defined during the conceptual design period of a

system by translating user needs into formal statements. Subsequently, specific

test methods are established to determine the system’s performance against the

requirements.

Test and evaluation gauges the progress of a system and its capabilities

throughout development. It provides awareness of system capabilities and

limitations to the DAS for use in improving performance. To be effective, T&E

must be integrated at the beginning of the system development to identify system

strengths and weaknesses. The objective is to recognize system defects so

components or processes can be retooled prior to system release (USD[AT&L],

2008). Figure 12 depicts the multiple test activities that are required throughout a

system life cycle. Two key documents that inform the test processes are the Test

and Evaluation Strategy (TES, or Eval Strategy) and the Test and Evaluation

Master Plan (TEMP).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 29 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 12. Test and Evaluation Framework
(Naegle, 2011)

3. Test and Evaluation Strategy (TES)

The TES describes the concept for tests and evaluations throughout the

program life cycle, starting with technology development and continuing through

engineering and manufacturing development (EMD) into production and

deployment. The TES requires approval prior to Milestone A. The TES informs

the TEMP at Milestone B, which becomes the primary source of guidance for all

test activities. Development of a TES involves testers, evaluators, and program

managers to ensure buy-in and suitability of the test procedures and timeline.

These personnel specify the technical, functional, and operational test details to

ensure the TES meets the established criteria (DoD, 2012).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 30 -=
k^s^i=mlpqdo^ar^qb=p`elli

4. Test and Evaluation Master Plan (TEMP)

The TEMP describes the total T&E planning from component development

through operational T&E into production and acceptance. The T&E Working-level

Integrated Product Team (WIPT) provides input for the TEMP to the PM

regarding each test event. The TEMP identifies the T&E activities and the

personnel and infrastructure requirements. The TEMP is reevaluated throughout

the production phase to adapt to changes to system requirements (DoD, 2012).

B. SYSTEMS BACKGROUND

1. Systems Science

In the physical world, systems can exist as organic or human-made

systems. In both types of systems, the elements of components, attributes, and

relationships define the system and its purpose. In the sphere of IT, systems

predominantly take the form of some combination of computer hardware or

software. Therefore in IT, the components traditionally define the parts of a

system, whether defined in software or hardware. The attributes are the

characteristics which describe the components, such as the speed of the CPU or

the type of user interface. The relationships or connecting medium of IT systems

would be the physical cable lines or the protocol used to transmit data between

components. These components work together to achieve a common purpose or

goal and the system components depend on each other to achieve the purpose

(Blanchard & Fabrycky, 2011).

2. Systems Engineering

The discipline of systems engineering has become a core piece of the

DoD acquisition process. The DoD Instruction 5000.02 defines it as

An approach to translate operational needs and requirements into
operationally suitable blocks of systems. The approach shall
consist of a top-down, iterative process of requirements analysis,
functional analysis, and allocation, design synthesis and
verification, and system analysis and control. Systems engineering

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 31 -=
k^s^i=mlpqdo^ar^qb=p`elli

shall permeate design, manufacturing, test and evaluation, and
support of the product. Systems engineering principles shall
influence the balance between performance, risk, cost and
schedule. (USD[AT&L], 2008)

The system purpose drives the design, development, and T&E of a

systems engineering approach. In turn, requirements determine the system

components, attributes, and relationships. Systems engineers use a top-down

approach to verify the interfaces of the system components by observing the

interactions. Then as part of the systems engineering process, system

components and relationships are analyzed from a life-cycle perspective from the

system’s first operational use to its retirement. By completing this analysis,

system upgrades and future changes can be anticipated and built-in to the

system design. To achieve these varied tasks, system engineers use

interdisciplinary teams to meet technical demands and management to ensure

that each design discipline is represented and that their methods, techniques,

and tools are integrated in the development of the system (Blanchard & Fabrycky,

2011).

3. Systems Framework

The emergence of SoS engineering, integration, and testing has given rise

to several theories or frameworks to understand the complexities of working

within SoS or FoS architectures. For this thesis, the work of Goshorn (2010)

provides a fundamental structure to categorize both system and SoS engineering.

Figure 13 lists the Systems Engineering Core model phases from (X)—The Need,

to J—Disposal. The eleven phases of the Core model denote the processes of

the systems engineering life cycle. The Core model and other systems

engineering activities begin with an operational need. This need determines the

form, function, and technical specifications of the system to be developed.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 32 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 13. Overview of Phases in the Systems Engineering Core Model
(Goshorn, 2010)

After the customer’s operational need has been defined, the Core model

phase of Conceptual Design (A) begins. This phase mirrors the work of Boehm’s

nine-level waterfall life cycle (1981) and allows designers to determine the

technical feasibility of a system for a given need. In Phase A, a top-down

approach to the system design is started and a refinement of the customer needs

is completed. The refined customer needs ensure a thorough understanding of

the problem by the engineers and the customer, much like that of a quality

function deployment (QFD; Yang, 2008). Phase B, Detailed Design, follows the

conceptual design as the big picture architecture is decomposed into functional

diagrams (Goshorn, 2010). The design plans should include the system

description, components, and technical specifications. The Implementation

process of Phase C enacts the detailed designs of Phase B. System components

are built to specifications. System domain activities work largely independently as

they prepare their component or subsystem for integration testing. Phase D,

termed Bring all parts together, integrates the components for test and evaluation

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 33 -=
k^s^i=mlpqdo^ar^qb=p`elli

and debugging. This phase is a targeted phase of this thesis, given the focus on

T&E. Phase D requires a fast-paced tempo relative to the other aspects of the life

cycle (Goshorn, 2007). The dimension of pace becomes more important given

the impending end of the Core model. The speed of the decision-making and

autonomy of the system integrators create a more compressed schedule to

deliver the system to the customer on time (Goshorn, 2007). Following the T&E

and the approval of the system by the customer is the Clean-up phase (E). This

phase is marked by the creation of operating and training manuals, as well as the

necessary instructions to manufacture or change the system. The subsequent

phases of F through J do not apply specifically to this thesis. Although they do

play an important role in the life cycle of a system, they are not relevant to the

discussion of system development and system testing.

Figure 14 depicts the phases on an x-y axis to demonstrate the linear

progression of the phases through time and their relative cost per unit. The

proportions indicate approximations of where designers and engineers spend

their time and resources for a given phase of the system development. The Core

model, in Figure 14, is carried forward as a basic framework for how all systems

and subsystems progress through the development cycle.

Figure 14. Systems Engineering Core Model
(Goshorn, 2010)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 34 -=
k^s^i=mlpqdo^ar^qb=p`elli

As a system is developed, multiple components and subsystems are

created in support of the larger system. A system or SoS upgrade is completed

by an engineering change order (ECO). As ECOs are implemented and changes

are made to the system, new versions of the system are created as indicated by

the Version 2.0 or V2 classification. Throughout the upgrade or ECO process, it

is essential for system developers to deliver a functional system or SoS to

complete the testing process. To meet the system availability requirement,

developers should ensure that ECOs meet the necessary design traits prior to

integration. Figure 15 helps show the relationship between subsystems and a

higher level system.

Figure 15. Systems Engineering of a System
(Goshorn, 2010)

A system or SoS hierarchy is depicted in Figure 16, which reveals the

relationship of changes for systems and SoS. This overall picture of the SoS

helps a test director (TD) or program manager see the progression of an SoS

and the component systems that constitute the SoS.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 35 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 16. Applied Methodology for Systems Engineering of Systems of
Systems

(Goshorn, 2010)

4. System of Systems

The DoD established a systems engineering methodology for program

development, which required a modular open-systems approach for systems

development. This vision for component-based systems gave way to the system

of systems and family of systems (FoS) framework. The SoS or FoS approach is

applied throughout the DAS. The DoD defines SoS design as the following:

A set or arrangement of interdependent systems that are related or
connected to provide a given capability. The loss of any part of the
system could significantly degrade the performance or capabilities
of the whole. The development of an SoS solution will involve trade
space between the systems as well as within an individual system
performance. (Chairman of the Joint Chiefs of Staff [CJCS], 2007)

The purpose of system of systems (SoS) testing is to integrate multiple

component systems into a single TEMP. Each system tested within an SoS

architecture may prove operational in a stand-alone environment, but may fail

when combined with other component systems. Given that most command,

control, communication, computers, and intelligence (C4I) systems were

developed and fielded independently, SoS testers attempt to link the systems

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 36 -=
k^s^i=mlpqdo^ar^qb=p`elli

together into a single network to measure the combined performance, or the

overall SoS functionality.

5. System of Systems in the Department of Defense

There have been several initiatives within the DoD which have sought to

develop SoS engineering methodologies and integrate them into the field of T&E.

This SoS method sprung from the increased complexity and individuality of our

systems. As stated by Miller (2008), “early C4I systems were designed, acquired,

and fielded independently. Each addressed a single warfighting function, such as

logistics, fire support, or intelligence” (Miller, 2008, p. 1). Programs such as the

Marine Air Ground Task Force (MAGTF), Command Control Communication

Computer (C4I) Capability and Certification Test (MC3T) sought to integrate

several Marine Corps programs of records, such as the Combat Operation

Center (CoC) Digital Common Ground System (DCGS; Marine Corps Tactical

System Support Activity [MCTSSA], 2010). MC3T fulfilled the requirement for a

metric to compare SoS performance to the needs of a warfighter (Miller, 2008).

The follow-on program to MC3T, known as MCIC (MAGTF C4I integration and

certification), seeks to continue the goal of linking multiple systems such as the

Advanced Field Artillery Tactical Data System (AFATDS), Common Aviation

Command and Control System (CAC2S), and the Command Post of the Future

(CPOF) to verify that the system of systems integration performs as expected.

The MC3T and MCIC SoS events provide end-to-end thread-based or task-

based mission simulations which link forward-deployed systems to rear-echelon

systems via a direct link or intermediary systems. By recreating these operational

architectures in test environments, MCTSSA strives to improve the integration of

these systems when they are fielded.

C. SYSTEM TEST METHODOLOGIES

The testing methodologies discussed in this section all have origins in

software developmental testing. The methods contain testing elements unique to

the field of software design. In the work of Abu-Taieh & El Sheikh (2007), the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 37 -=
k^s^i=mlpqdo^ar^qb=p`elli

authors consider several test methods, from cursory to detailed, such as audit,

inspections, face validity, structured walkthrough, syntax analysis, Turing tests,

bottom-up, top-down, black-box (functional), white-box (structural), regression,

and thread-based testing. The work of Abu-Taieh and El Sheikh, based on the

work of Balci (1994, 1995), and Balci et al. (1996), seeks to organize types of

tests and to align requirements to the appropriate type of test.

Test methodologies also make use of what is known in the software

domain as validation, verification, and testing (VV&T). These processes are akin

to the T&E processes that focus on software stability, functionality, and security.

The field of VV&T as organized by Balci (1995) includes the following types of

techniques: informal, static, dynamic, symbolic, and formal (depicted in Figure

17). Each category of technique has a stylistic approach suited for testing the

different states of a system. In the following section of this chapter, I review the

techniques most suited for SoS testing.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 38 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 17. VV&T Techniques
(Balci, 1995, p. 152)

1. Bottom-Up Testing

In bottom-up testing, the lowest level of a system’s components are tested

first, with subsequent testing building on the successful tests of these

components. The lowest level components contribute to subsystem testing,

which leads to overall system testing. This type of methodology can be applied at

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 39 -=
k^s^i=mlpqdo^ar^qb=p`elli

any level of T&E, both in the system development phase and the operational test

phase. Bottom-up testing produces benefits such as the following:

 assessment of the lowest level components first,

 future testing built upon verified components, and

 reduced complexity at initial stages of testing.

2. Top-Down Testing

In top-down testing, high-level components are tested followed by lower

level components. This type of testing relies on substitute components, also

known as stubs, to perform in place of lower level components to mimic

functionality to be developed later. This type of testing requires an understanding

of the high-level architecture to account for all the primary systems.

3. Black-Box Testing (Functional)

The focus of black-box testing is the output of the test. The test originates

with some input, and the resultant output is measured against some existing

criteria. The test does not explicitly examine if the system is performing the tasks

properly; instead, it determines if the results of the process produce the expected

values. This type of testing is a more pragmatic approach to system development

and is most likely performed by users or higher level operators who do not have

the knowledge base to understand the interworkings of a given system (Abu-

Taieh & El Sheikh, 2007).

4. White-Box Testing (Structural)

White-box testing examines the internal systems and subsystems of a

given application to determine if the precise tasks are being executed in the

manner in which they were designed. This form of testing requires a detailed

understanding of each module and how each module handles a given piece of

information. This type of testing can become complex and, therefore, should be

performed with low-level components with few processes (Abu-Taieh & El Sheikh,

2007).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 40 -=
k^s^i=mlpqdo^ar^qb=p`elli

5. Regression Testing

In order to perform regression testing, an administrator must understand

the previous states of the system. The system tester regresses, or returns to, a

previous system state to understand how a modification, in the form of an update

or engineering change order (ECO), may have led to a system failure or

undesired state (Abu-Taieh & El Sheikh, 2007). This type of testing is preferred

within a virtual environment given the ease of system state snapshots and

rollbacks.

6. Mission Thread Based Testing

Mission thread based testing is the evolution of thin thread based testing

first used by the DoD for end-to-end (E2E) Year 2000 (Y2K) testing. Thin-thread

testing executed a software macro that would link multiple systems to determine

the integration of the systems (Pham, 2006). The value in thread testing is the

ability to use small amounts of software to link several systems. The code was

easily understood by the systems integrators of the multiple systems and the

threads did not rely on a single programming language to achieve their goals.

The threads did have weaknesses; for example, several threads were required to

determine the functionality of the system, and they often required manual

development and verification (Pham, 2006). These weaknesses were addressed

with scenario based or mission thread based testing. Mission thread based

testing identifies the critical processes that must work and exercises them across

multiple systems. By using mission thread testing, the SoS performs as a single

system, thus verifying the interconnections between component systems and

component system performance.

D. CONCLUSION

The test and evaluation of a system of systems architecture is a

complicated endeavor requiring a detailed understanding of the system

capabilities, technologies involved, program costs, and program timelines. The

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 41 -=
k^s^i=mlpqdo^ar^qb=p`elli

process is driven by system requirements and stakeholder input into the Test and

Evaluation Master Plan to achieve the desired system performance at the time of

delivery to the customer. To assist in the process, systems engineering provides

a repeatable framework to address many of the difficulties encountered during

T&E. The Core model (Goshorn, 2010) offers one approach for how to view

system and SoS development. With a structure in place, specific testing of the

system performance can be completed using many of the methods outlined by

Abu-Taieh & El Sheikh (2007). To achieve thorough and efficient T&E for an SoS,

engineers and test officers must understand the processes to complete the tests

and they must have the environment capable of performing the tests.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 42 -=
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 43 -=
k^s^i=mlpqdo^ar^qb=p`elli

IV. CASE STUDY OF THE DISTRIBUTED GLOBAL
INFORMATION GRID (GIG) INTELLIGENCE AUTOMATION

SYSTEM

A. INTRODUCTION

The purpose for this chapter is to use as a case study the application of

virtualization to an SoS T&E environment. In this chapter, I seek to answer

proposed research questions as they apply to the Distributed Global Information

Grid (GIG) Intelligence Automation System (DGIAS). The work of Goshorn

(2010) provides the necessary information about the component systems of the

DGIAS including the architecture of the system, the physical hardware, and the

software components. Then, I provide an analysis of the suitability of the current

system for virtualization. Next, I discuss a proposed virtualized architecture of the

DGIAS. Following that, I introduce a process model incorporating the Core model

to determine the efficiencies gained through virtualization in the test and

evaluation of a new engineering change order. Finally, I discuss the limitations of

virtualization as they apply to the DGIAS.

B. DGIAS SUITABILITY ANALYSIS

As one of the guiding principle of this thesis, the research question, what

are the ideal system traits for implementing virtualized system of systems test

and evaluation?, helped to shape a series of questions for assessing a system’s

suitability for virtualization. Given that not every system is right for virtualization,

these questions help determine the qualities of the system that need to be

assessed to determine whether the system fits into a virtualization environment.

The questions were designed around the operating systems of the clients, the

processor requirements of the operating systems and applications, and the

storage requirements of the data. These constraints are the minimum to consider

and do not fully account for every possibility but they provide a guideline for

system designers. As a note, the system processor and storage specifications of

the clients and servers were compared against the capabilities of the Dell

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 44 -=
k^s^i=mlpqdo^ar^qb=p`elli

PowerEdge R610 Server (Dell, 2010) with two six-core processors and the

Hewlett-Packard P4300 G2 SAS Starter SAN Solution (Hewlett-Packard [HP],

2012) with 20 terabytes (TB) of available capacity. The following are the

questions I developed to assess a system’s suitability for virtualization:

 Are the system nodes or clients comprised of Windows or Linux
x86 operating systems? Answer: Yes, the clients use the Windows
XP operating system and the servers use Windows Server 2004.

 Can the number of CPU cores currently used by the system clients
be hosted by the available server? Answer: Yes, the minimum
number of CPU cores employed throughout the system is 16. The
hardware available can support up to 24 CPU cores.

 Can the storage requirement of the system clients be stored on the
available Storage Area Network? Answer: Yes, the maximum
amount of storage required by all the clients and servers is 16,240
GBs or less than 17 TBs of storage. The storage available can
support up to 20 TBs.

Affirmative answers to all three of these questions indicate that the system

would likely be suited for virtualization. A negative response to any one of the

three questions indicates that a system would not support using the technology.

C. DGIAS SYSTEM COMPOSITION

1. Description

The DGIAS demonstrates the capability of an SoS that integrates multiple

ISR assets for the purpose of fusing video collection with real-time facial analysis.

The DGIAS uses commercial off-the-shelf (COTS) products in the design and

development of the system. The DGIAS is a proof-of-concept SoS which

combines top-down, bottom-up systems, and middleware to Detect–Identify–

Predict–React (DIPR) to a set of inputs and provides cueing to higher level

intelligence systems. Figure 18 depicts the original DGIAS high-level architecture

with the component systems and their relationships.

The bottom-up systems are the Fixed Camera System, a Kiosk System,

Unmanned Ground Vehicle System, Unmanned Aerial Vehicle System, and

Cyber System. The middleware system is made of service-oriented architecture

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 45 -=
k^s^i=mlpqdo^ar^qb=p`elli

which supports smart “push/pull” of sensor data and intelligence products

between GIG-nodes. The top-down systems are the Command and Control

System for supporting viewers for commanding officers, intelligence analysts,

and tactical operators of sensors (Goshorn, 2012).

Figure 18. System View Diagram for DGIAS
(Goshorn, 2010)

As part of this research, I discuss four of the 12 component systems: the

Kiosk System, Fixed Camera System, Middleware, and Watchman Viewer

System. These systems are representative of the entire top-down and bottom-up

system functionality. Figure 19 highlights the systems of the DGIAS to be

analyzed.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 46 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 19. Selected DGIAS Systems
(Goshorn, 2010)

Figure 20 illustrates the DGIAS physical architecture of the selected Kiosk

System, Fixed Camera System, Middleware System (Geospatial Hub [GHub]),

and Watchman Server System.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 47 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 20. Physical Architecture of Selected DGIAS Systems

2. Component Systems of DGIAS

a. Kiosk System

The Kiosk System is an assemblage of multiple hardware

components including two Dell D820 Latitude™ laptop computers with the

Windows XP OS, two Sony pan tilt zoom (PTZ) cameras, a network switch, one

wireless microphone system, seven microphones, two speakers, an audio mixer,

and cabling. The system’s purpose is to act as a component system in the larger

DGIAS architecture by providing “interactive facial recognition, audio recording,

and analysis” (Goshorn, 2010, p. 303). Figure 21 represents the Kiosk System

architecture.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 48 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 21. Kiosk System Physical Architecture

The visual and auditory data collected by the two Kiosk laptops is

sent to the Watchman Server for further analysis and integration with other

component system data. The Video Kiosk laptop uses MATLAB software to

detect known faces through a detection algorithm. The MATLAB writes facial

recognition data to the Watchman Server in SQL (Standard Query Language)

format to the Watchman database. This database messaging is completed using

Open Database Connectivity (ODBC) standards across each node and server.

The Audio Kiosk laptop uses Audacity software to provide spectral analysis of

collected audio data. Both laptops have the following software installed: Mozilla

Firefox, Filezilla FTP Server, and Wireshark. As part of the network plan, each

Kiosk laptop was assigned a unique IP address for deconfliction (Goshorn, 2010).

Figure 22 lists the hardware specifications of the Dell Latitude™ D820 laptops,

and Figure 23 is a photo of the laptops in the Kiosk System.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 49 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 22. Kiosk System’s Dell Latitude™ D820 Hardware Specifications
(Dell, 2005a)

Figure 23. Kiosk System’s Dell D820 Latitudes

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 50 -=
k^s^i=mlpqdo^ar^qb=p`elli

b. Fixed Camera System

The Fixed Camera System (FCS), like the Kiosk System, is a mix of

multiple hardware components, primarily a series of cameras and laptop

computers. The system hosts 36 WiLife cameras which are controlled by a

correlating laptop computer. The laptops are connected via cabling to a switch

that also links the Watchman Server where data is stored and facial recognition

analysis applications are hosted. The system’s purpose is to provide persistent

observation of the second floor of Bullard Hall at the Naval Postgraduate School.

To ensure maximum coverage, the 36 cameras were distributed between the

major corridors of the building and select rooms.

The WiLife Logitech cameras used for the system provide an

onboard 400 Megahertz (MHz) processor with 24 bits per pixel and 8-bit color

data. The camera resolution of 320 x 240 or 640 x 480 pixels may be selected,

as well as frame rates of 5, 10, or 15 frames per second. The cameras are

connected by Power over Ethernet (PoE) cabling into a PoE injector to provide

continuous 48-VDC power to the camera as well as connectivity for data

transmission (Goshorn, 2010). The PoE injectors then connect to a switch which

links the camera data to the controller laptop. Given a software constraint of the

WiLife Command Center application, only six cameras can be paired with a

single laptop. This requirement dictated the need to operate and maintain six

laptops as part of the system function. Figure 24 depicts the physical architecture

of the Fixed Camera System.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 51 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 24. Fixed Camera System Physical Architecture

The six desktops used for the Fixed Camera System are Dell

Precision™ 490 Desktops. The desktops use the Windows XP OS and 17-inch

monitors to perform the functions of the system. Figure 25 lists the hardware

specifications for the desktops and Figure 26 is an image of the computer

chassis.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 52 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 25. Fixed Camera System’s Dell Precision™ 490 Desktop Hardware
Specifications

(Dell, 2005b)

Figure 26. Fixed Camera System’s Dell Precision™ 490 Desktop
(ImageShack, n.d.)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 53 -=
k^s^i=mlpqdo^ar^qb=p`elli

The six desktops use the WiLife Command Center software to

control the cameras assigned to the individual computers. Video and images

from the cameras are transmitted to the desktops and managed by the vendor

software. The Command Center software controls the functions of the cameras

and provides motion detection criteria. Additionally, the software auto-generates

and organizes video files in the Windows Media Video format or .wmv. The

raw .wmv files are then analyzed by MATLAB Simulink software as part of the

system Detect function. The Detect function searches the raw video for human

forms based on established criteria written into the MATLAB software. Videos

containing positively identified human forms are sent to the Watchman Server for

further analysis. Finally, MATLAB writes data regarding an observed instance to

the Watchman Server in SQL format using ODBC to the Watchman database.

c. Middleware System

The Middleware System enabling interoperability standards are the

Geospatial Hub (GHub) system and the database system created for the DGIAS.

The GHub is a geospatially conscious content management system that

classifies and distributes information developed by users, analysts, or sensor

platforms (Sample & Ioup, 2010). The middleware is made up of two instances of

GHub (one to emulate an Unclassified instance and one to emulate a Classified

instance). The outside systems’ interfaces are a subsystem within GHub that

allows for the middleware to connect to other services outside of the Naval

Postgraduate School. Figure 27 represents the physical architecture of the

Middleware System.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 54 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 27. Middleware System (Geospatial Hub) Server Physical
Architecture

d. Watchman Viewer System

The Watchman Viewer acts as the Command and Control center

for the DGIAS system. It is the central component system of the DGIAS where

high-level analysis is performed. The Watchman System is hosted on an Apple

Mac Pro computer with the Mac OS X hosting a VMWare VM of Windows Server

2004. The system requires a VM to permit the applications of SQL Server,

Microsoft Access, and WiLife Command Center to run in their native Windows

environment. To run the Windows Server 2004, a minimum number of two CPU

cores must exist. The Mac Pro more than meets this need with its two 3.2 GHz,

Quad Core Intel Xeon processors (or eight cores), and 32 GBs of double data

rate (DDR) RAM. Through two monitors the system offers a user the choice

between viewing the Mac OS X display or the Windows Server 2004 display. As

in the Kiosk and Fixed Camera systems, the MATLAB software writes facial

recognition data to the Watchman Server in SQL format to the Watchman

database. Once data is recorded in the Watchman database, it can be retrieved

through the Microsoft Access GUI (graphical user interface) available through the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 55 -=
k^s^i=mlpqdo^ar^qb=p`elli

Windows Server display. Figures 28 and 29 depict the physical and virtualization

architectures of the Watchman Viewer System respectively.

Figure 28. Watchman Viewer System Physical Architecture

Figure 29. Watchman Viewer System Virtualization Architecture

Figures 30 and 31 identify the hardware specifications of the Mac

Pro and its appearance.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 56 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 30. Watchman System’s Mac Pro Hardware Specifications
(Apple, 2012)

Figure 31. Watchman System’s Mac Pro Server
(Apple, 2012)

D. PROPOSED DGIAS VIRTUALIZATION

1. Description

The purpose of the proposed DGIAS is to model how the system would be

architected if it were migrated to a virtualization environment. Not all systems can

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 57 -=
k^s^i=mlpqdo^ar^qb=p`elli

function with a virtualization layer of software. For example, the camera system’s

PoE injectors do not have the possibility of being virtualized given their distinctive

function. However, a significant number of the components, specifically the

laptops and desktops, can all be consolidated to two blade servers. Figure 32

depicts the new physical architecture. In this diagram, the two Kiosk System

laptops are replaced by two thin-clients, and the six FCS desktops are eliminated

from the system. The server systems of Watchman and GHub now share the

same hardware as the Kiosk System (vAlpha), and the FCS is self-contained on

a single server (vBeta).

Figure 32. Proposed Physical Architecture of DGIAS

The architecture also accounts for the addition of the Configuration

Management software required to manage the environment. The Configuration

Management software, as discussed in Chapter II, provides an administrator the

management tools necessary to create, replicate, and control all VMs in an

environment. Figure 33 represents the virtualization architecture of the proposed

DGIAS system consolidated to vAlpha and vBeta.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 58 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 33. Virtualization Architecture of vAlpha & vBeta

A consolidation rate of six VMs to one server is conceivable given that

most of the systems require only a single core processor to run the Windows XP

OS, as is the case with all of the FCS VMs. For the systems which require

multicore processors to run the Windows Server 2004, their workloads are more

infrequent given that only higher level analysis is performed and therefore will not

overload the system hardware. However, if the systems hosted on vAlpha do

require more resources, then vBeta, as part of a system preference, could

automatically accept the Kiosk systems’ VMs to balance the processor and

memory requirements across both sets of the hardware. The movement of VMs

across hardware is a process available for most virtualization vendor platforms. If

all the DGIAS systems were to be virtualized, two more blade servers, at a

minimum, would be required to accommodate the 12 other systems. This would

provide the minimum resources necessary while maintaining a 20% reserve

capacity.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 59 -=
k^s^i=mlpqdo^ar^qb=p`elli

E. DGIAS TEST AND EVALUATION PROCESS MODEL

To identify some of the efficiencies gained by using virtualization, a

process model was created to simulate a generic test and evaluation process. To

model the T&E process for an SoS, I again reference the work of Goshorn (2010)

to provide the necessary framework. Recall from Chapter III the Core model, as

seen in Figure 34; it provides the empirical data of a system’s development cycle,

but also the development cycle of a new ECO as it is integrated across the

component systems of an SoS or FoS. To provide the necessary context, I

assumed that a probable ECO would be a modification to the face detection

algorithm of the DGIAS. An ECO of this type would require the change to be

enacted across multiple computers. For simplicity, the period of a 40-hour week

was selected as a realistic and manageable time frame across which to distribute

the Core model for the purposes of modeling.

Figure 34. Core Model
(Goshorn, 2010)

Table 1 lists the distribution of the 40 hours across the phases of the Core

model. Additionally, the calculations in the model account for the different types

of testing to be completed throughout the ECO integration. The different types of

testing that were selected are titled Functional, Low-level thread, Medium-level

thread, and High-level thread. The thread based testing categories and related

time requirements are all assumptions necessary to account for the varying types

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 60 -=
k^s^i=mlpqdo^ar^qb=p`elli

of tests that occur, while meeting the precise percentages suggested by the Core

model. An example of a Low-level thread might be requiring the system to

observe, detect, and react to a single individual. An example of a Medium-level

thread would be requiring the system to respond to a group of three to five

people. A High-level thread would require the system to respond to 10 to 20

people.

Table 1. DGIAS ECO Integration With Core Model Hours Breakdown for
40-Hour Period

Core
Model Process Time % Functional Low Med High Report Cumulative
A Concept 10% 1.75 0 0 0 0 1.75
B Detail 10% 1.75 1.5 1.5 1.5 0 6.25
C Build 65% 13 6.5 3.25 3.25 0 26
D Test 7.50% 1 1 0.5 0.5 0 3
E Document 7.50% 3 3
 Total 40
Note. All units are in hours.

The DGIAS ECO T&E process model begins with the issuing of an ECO

requirement by the lead systems engineer. The ECO is simultaneously passed to

the three component system teams of Kiosk, Fixed Camera, and the combined

GHub and Watchman System Team. Once the teams have completed the

conceptual and detailed design for the Functional test, the designs are passed to

the T&E Environment Team to allocate the appropriate hardware and software

and then configure the environment correctly. Following a complete system build,

the SoS Integration Test Team conducts a functional test. The results are

recorded and sent to the component system teams again for a subsequent

period of detailed design. The designs are again sent to the T&E Environment

Team, which modifies the hardware and software and configures the SoS. Once

complete, the SoS Integration Test Team conducts a Low-level thread test. The

processes completed for the Low-level thread test are repeated for the Medium-

and High-level thread tests. After the completion of the High-level thread test, the

SoS Integration Team prepares the documentation and submits the report to end

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 61 -=
k^s^i=mlpqdo^ar^qb=p`elli

the process model. Table 2 outlines the participants of the model and their full-

time equivalent wage per hour. Figure 35 depicts the implementation of the

model; each swim lane represents a participant. Appendix A contains the data

output from the model with 100% of the Phase C activities occurring with physical

machines. As a parameter for the model, 10 ECOs were simulated arriving every

40 hours for a total of 400 hours’ worth of work completed. The costs accrued

totaled $17,773.60 for the work completed.

Table 2. DGIAS ECO Integration Participants

Participant Process Wage per hour

Lead Systems Engineer Issue ECO NA

Kiosk System Team Conceptual Design and Detailed Design $39.48

Fixed Camera System

Team

Conceptual Design and Detailed Design $39.48

GHub and Watchman

System Team

Conceptual Design and Detailed Design $39.48

T&E Environment Team Implement designs through a mix of hardware,

software, and virtualization.

$24.14

SoS Integration Test

Team

Conduct Functional and Low, Med, and High-

level thread based tests. Produce

documentation for final report.

$33.70

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 62 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 35. DGIAS ECO Implementation Model

To achieve virtualization, efficiencies in the process Phase C, the Build

and Implementation processes, must be addressed. The first detail that I had to

determine in my research was the ratio of building physical machines compared

to virtual machines. Table 3 establishes the baseline times for the activities

normally performed in a T&E computer environment. In the first column of the

table are the activities connected with building a physical machine. Next, in the

center are the actions related to building a VM. Finally, on the right are the

activities required for copying a VM from a known good copy. While all the times

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 63 -=
k^s^i=mlpqdo^ar^qb=p`elli

in this table are not universal, they demonstrate the time efficiency that is gained

by using virtualization.

Table 3. Activity Times

Physical Machine Build Virtual Machine Build Virtual Machine Copy
Activity Time Activity Time Activity Time
Build Physical Computer 29 Build Virtual Machine 1 Copy Virtual Machine 1
Install OS 20 Install OS 20 Install Applications 9
Install Applications 9 Install Applications 9 Configure for network 2
Configure for network 2 Configure for network 2

Total 60 32 12

Note. All units are in minutes.

It should be clear from Table 3 that there are significant time savings when

building a VM compared to a physical machine. There are still fixed periods in the

process, such as installing an OS, installing applications, and configuring the

client for the network. The difference between building a complete physical

machine compared to building a complete VM is approximately 28 minutes, or a

savings of 47%. Once a VM is built, it can be copied and pasted in the

environment, thereby eliminating the need to install an OS. The difference

between copying a VM and building a physical machine is approximately 48

minutes, or a savings of 80%. To help an engineer determine some of the

efficiencies gained by using virtualization, the following calculation was

developed: 32 minutes multiplied by x, where x equals the number of unique

systems in the SoS, plus 12 minutes times y, where y equals the number of

clients or instantiations of the different types of systems (see Equation 1).

32 12x y VirtualizationEnvBuildTime (1)

For example, the DGIAS has four different types of systems: Kiosk, FCS,

Watchman, and GHub and seven copies. Following the calculation (32*4) +

(12*7), it takes 212 minutes to create a suitable virtualization environment. The

ratio of the time it would take to create the environment with VMs compared to

physical machines is approximately 1:3. This efficiency is created simply by

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 64 -=
k^s^i=mlpqdo^ar^qb=p`elli

building the SoS with VMs. By consolidating the system to two blade servers and

a SAN storage array, the system can rapidly be updated or altered should a new

ECO be required. For example, if a change needed to be completed to the

MATLAB Simulink Detect algorithm in the FCS, six separate actions would be

required by the T&E Environment Team responsible for the modification.

Likewise, if the algorithm change created an error or changed the system stability,

it would have to be removed six separate times. In the proposed system, a

change to a single FCS VM could be replicated across the system in a single

process, thereby reducing the amount of work significantly. Additionally, the

Environment Team could record the entire system state to the SAN array prior to

the integration of the ECO. The captures or snapshots of the system state before

the integration would allow a quick rollback to the previous system configuration.

Figure 36 shows the delineation between build times of physical machines and

virtual machines. The Virt (Worst) line, which is still considerably faster than

building a physical machine, is calculated by only using unique system types with

no additional copies. The Virt (Worst) calculation would be (32*11) + (12*0) = 352

minutes. The Virt (Best) was calculated using (32*1) + (12*10) = 152 minutes.

This would be a system in which all the clients are copies of the original system.

The DGIAS is plotted between the best and the worst given its mix of systems

and copies.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 65 -=
k^s^i=mlpqdo^ar^qb=p`elli

Figure 36. System Build Times

The more common the systems are and the more VMs that are created, the

greater the time savings. The configuration time between two VMs and two

physical machines is not as significant as the configuration time between 11 VMs

and 11 physical machines.

Finally, Table 4 lists the different tasks of Phase C in the Core model. The

following information was used in part to generate Appendix B data, which is a

full virtualization environment. Although it may be unlikely to convert 100% of the

system to virtualization, it is important to understand the limitations of the

technology as it applies to the process. An 11% reduction could be achieved

from the overall Core model process as it applies to the DGIAS. Not all systems

will be as suited as the DGIAS; therefore, the savings will be some number less

than 11%. Table 4 highlights the shift from 65% to 54% when comparing C1+3 to

C2+3. Appendix B also shows the reduction in overall cost from $17,773.60 in the

original model to $16,705.00.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 66 -=
k^s^i=mlpqdo^ar^qb=p`elli

Table 4. DGIAS ECO Integration Phase C—Process Tasks

Core
Model Task

Time % Functional Low Med High Report Cumulative

C1 Obtain HW SW 16% 3.25 1.63 .81 .81 0 6.5

C2 Virtualization 5% 1.04 .52 .26 .26 0 2.08

C3 Configure Env 49% 9.75 4.88 2.44 2.44 0 19.50

C1+3 Obtain HW SW 65% 13 6.5 3.25 3.25 0 26
 Configure Env

C2+3 Virtualization 54% 10.79 5.40 2.7 2.7 0 21.58
 Configure

Note. All units are in hours.

F. CONCLUSION

The DGIAS is an SoS that suits the virtualization platform given its

Windows-based OSs and standard desktop, laptop, and server hardware. The

migration to virtualization will improve the engineering team’s abilities to integrate

and test new ECOs. The system combined with the Core model is an ideal case

study for the strengths of virtualization. By centralizing the computing to two

capable servers, the configuration management of the system will be significantly

improved.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 67 -=
k^s^i=mlpqdo^ar^qb=p`elli

V. CONCLUSION

A. SUMMARY

Virtualization, when matched with a compatible technology, offers

immense benefits to the test and evaluation phase of an IT project. Virtualization

can improve efficiencies in time including reduced labor hours, elimination of

redundant tasks, easy rollback to previous system states, and reduced labor

expenses. Within the case study of the DGIAS system of systems testing,

virtualization resulted in an 11% reduction in time spent for each integrated

engineering change order. Although virtualization is not ideal in all

circumstances, it has shown great promise as a way to improve the T&E process

within SoS.

For virtualization to be a viable option, several conditions must be met.

First, the system nodes must be comprised of Windows or Linux x86 operating

systems. Second, the existing servers or prospective servers must be capable of

managing the system’s workloads or user demands. Lastly, the storage

requirement of the system clients must be less than the available SAN storage

array of the test environment. If a system meets all of these requirements, then

migration to virtualization is a possible option for the IT environment.

DGIAS is a candidate for virtualization because several of its component

systems meet the three key requirements described in this summary. The DGIAS

uses the Windows XP and Windows Server OSs, can be consolidated to two

servers, and requires less than 17 TBs of storage. Also, because it is such a

complex system of systems, there are likely to be many software-based ECOs

within the test and evaluation process. By implementing virtualization, time

savings can be gained with each ECO.

By involving virtualization in the ECO process, system developers can

save an average of 11% time savings over the life cycle of the testing process.

As shown in Chapter IV, the average time saved is four hours per ECO.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 68 -=
k^s^i=mlpqdo^ar^qb=p`elli

Assuming the number of ECOs per system is 10 with virtualization of the DGIAS,

the system could save over $1,000 and several hours. These data were

substantiated with a simple formula (see Equation 2) developed to account for

the time savings achieved when incorporating virtualization into the system

architecture.

32 12x y VirtulizationEnvironmentTime (2)

This formula helps to account for the variety of systems and the number of clients

or copies the system hosts. It is not meant to replace a detailed modeling and

simulation process, but rather to be used for high-level analysis when deciding

between virtualization and physical machines. Virtualization is not for every

system and it requires specific types of system traits to provide efficiencies. But

when it is paired with the right type of system architecture, it quickly can provide

dividends to the system engineers and designers who leverage it.

B. FURTHER RESEARCH AND RECOMMENDATIONS

1. Limits of Virtualization

While virtualization is a useful tool, it does have its limitations.

Virtualization is susceptible to a time drift problem, which is more likely during

times of high workloads. This causes VMs to lose time which may impact the

performance of a given application or system. Engineers should consider the

importance of time to the overall system performance before implementing a

virtualization environment. If time is critical to the system performance, then

virtualization should be avoided. Methods do exist to minimize the impact of time

drift on VMs, but they must be built into the system design. Further research and

adaptation is needed to solve this problem of time drift. A solution would allow

projects susceptible to time to be able to utilize virtualization when currently they

cannot.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 69 -=
k^s^i=mlpqdo^ar^qb=p`elli

2. Improved Capabilities

Currently virtualization can only operate with Windows and Linux

operating systems. If it could be expanded to include Apple OS, it would open

even more projects and systems to virtualization. Another improvement would be

to allow for mobile devices to be easily integrated into the virtual environment .

3. Further Case Studies

Extensive research into the field of virtualization has shown very little

empirical data qualifying or quantifying the validity of the process. It is difficult to

determine through statistical means the actual efficiencies gained from

virtualizing the test and evaluation process because there are no specific

reference case studies to turn to. As more companies adopt virtualization as a

valid tool, there needs to be more literature on the process outcomes to guide

future decision-makers. There needs to be more cooperation within the growing

IT business market to share the virtues of virtualization. If there is a wide

spectrum of outcomes after virtualization, then upgrades can be made to the

software to try and ensure that it leads to future efficiency gains. However, until

the benefits and limitations of virtualization are studied on a grander scale, then a

system developer must make utilization decisions based solely on assumptions

and trial and error.

4. Specific Measuring Tool

Another recommendation for advancing and improving virtualization is to

create a specific, universal formula for determining time-efficiencies using

virtualization. This mathematically based formula would work for all projects

universally and would aid process managers in deciding whether virtualizing all

or some of their test and evaluation will result in improved efficiencies and thus

cost savings. This would require further study of the specific components of

virtualization as well as the study of other cases where it was implemented to

determine if a standard of measure can be created.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 70 -=
k^s^i=mlpqdo^ar^qb=p`elli

Virtualization, when compatible within a given technology, offers immense

benefits to the test and evaluation phase of an IT project. It can improve

efficiencies in time including labor hours, reduce redundancy in effort, eliminate

potential loss of test results, and save money on hardware expenses. Within the

case study of DGIAS system of systems testing, virtualization has shown a 20%

reduction in time spend for each ECO ordered. Although virtualization is not ideal

in all circumstances, it has shown great promise as a way to improve the T&E

process within system of systems.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 71 -=
k^s^i=mlpqdo^ar^qb=p`elli

APPENDIX A

The data in this appendix is the result of modeling 10 ECOs introduced at

an interval of one every 40 hours through the Core model within the DGIAS. This

report represents the current system T&E environment.

Simulation Results

Duration 400:00:00 Time

Process Time And Cost

Process Scenario
Instanc

es
Total
Cost

Waiting
Time

(Time)

Total
Time

(Time)

DGIAS_Virtualization (default) 10 17773.6 0:00:00
400:00:

00

DGIAS_Virtualization

Instances 10

Activity Performer Occurs
Waiting

Time
(Time)

Time To
Complet
e (Time)

Total
Time

(Time)

Configure Environment
Any member of T&E Environment
Team 10 0:00:00 97:30:00

97:30:0
0

FCS Conceptual Design
Any member of Fixed Camera
System Team 10 0:00:00 17:30:00

17:30:0
0

FCS Detailed Design
Any member of Fixed Camera
System Team 10 0:00:00 17:30:00

17:30:0
0

FCS Detailed Design High
Any member of Fixed Camera
System Team 10 0:00:00 15:00:00

15:00:0
0

FCS Detailed Design Low
Any member of Fixed Camera
System Team 10 0:00:00 15:00:00

15:00:0
0

FCS Detailed Design Med
Any member of Fixed Camera
System Team 10 0:00:00 15:00:00

15:00:0
0

GHub Conceptual Design
Any member of GHub System
Team 10 0:00:00 17:30:00

17:30:0
0

GHub Detailed Design
Any member of GHub System
Team 10 0:00:00 17:30:00

17:30:0
0

GHub Detailed Design High
Any member of GHub System
Team 10 0:00:00 15:00:00

15:00:0
0

GHub Detailed Design Low
Any member of GHub System
Team 10 0:00:00 15:00:00

15:00:0
0

GHub Detailed Design Med
Any member of GHub System
Team 10 0:00:00 15:00:00

15:00:0
0

High Configure Environment
Any member of T&E Environment
Team 10 0:00:00 24:22:30

24:22:3
0

High Obtain HW and SW
Any member of T&E Environment
Team 10 0:00:00 8:07:30 8:07:30

Kiosk Conceptual Design
Any member of Kiosk System
Team 10 0:00:00 17:30:00

17:30:0
0

Kiosk Detailed Design
Any member of Kiosk System
Team 10 0:00:00 17:30:00

17:30:0
0

Kiosk Detailed Design High
Any member of Kiosk System
Team 10 0:00:00 15:00:00

15:00:0
0

Kiosk Detailed Design Low
Any member of Kiosk System
Team 10 0:00:00 15:00:00

15:00:0
0

Kiosk Detailed Design Med
Any member of Kiosk System
Team 10 0:00:00 15:00:00

15:00:0
0

Low Configure Environment Any member of T&E Environment 10 0:00:00 48:45:00 48:45:0

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 72 -=
k^s^i=mlpqdo^ar^qb=p`elli

Team 0

Low Obtain HW and SW
Any member of T&E Environment
Team 10 0:00:00 16:15:00

16:15:0
0

Med Configure Environment
Any member of T&E Environment
Team 10 0:00:00 24:22:30

24:22:3
0

Med Obtain HW and SW
Any member of T&E Environment
Team 10 0:00:00 8:07:30 8:07:30

Obtain HW and SW
Any member of T&E Environment
Team 10 0:00:00 32:30:00

32:30:0
0

Perform Functional Test
Any member of SoS Integration
Test Team 10 0:00:00 10:00:00

10:00:0
0

Perform High Thread Test
Any member of SoS Integration
Test Team 10 0:00:00 5:00:00 5:00:00

Perform Low Thread Test
Any member of SoS Integration
Test Team 10 0:00:00 10:00:00

10:00:0
0

Perform Med Thread Test
Any member of SoS Integration
Test Team 10 0:00:00 5:00:00 5:00:00

Produce Test Assessment Report
Any member of SoS Integration
Test Team 10 0:00:00 30:00:00

30:00:0
0

Resource Unit
Cost/U

nit
Thresh

old
Usage Cost

Any member of T&E Environment
Team Hour 24.14 0 260

$6,276.
40

Any member of SoS Integration
Test Team Hour 33.7 0 60

$2,022.
00

Any member of Kiosk System
Team Hour 39.48 0 80

$3,158.
40

Any member of GHub System
Team Hour 39.48 0 80

$3,158.
40

Any member of Fixed Camera
System Team Hour 39.48 0 80

$3,158.
40

Performers Queue Length and Utilization

Name Average Min Max
Utilized(

%)
Idle(%)

Any member of T&E Environment
Team 0 0 0 65 35
Any member of SoS Integration
Test Team 0 0 0 15 85

Lead Systems Engineer 0 0 0 0 100
Any member of Kiosk System
Team 0 0 0 20 80
Any member of GHub System
Team 0 0 0 20 80

Value of 'Creator' 0 0 0 0 100

Generic 0 0 0 0 100
Any member of Fixed Camera
System Team 0 0 0 20 80

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 73 -=
k^s^i=mlpqdo^ar^qb=p`elli

APPENDIX B

The data in this appendix is the result of modeling 10 ECOs introduced at

an interval of one every 40 hours through the Core model within the DGIAS. This

report represents the proposed virtualization system T&E environment.

Simulation
Results

Duration 395:34:24 Time

Process Time And Cost

Process Scenario
Instanc

es
Total
Cost

Waiting
Time

(Time)

Total
Time

(Time)

DGIAS_Virtualization (default) 10 16705 0:00:00
355:44:

00

DGIAS_Virtualization

Instances 10

Activity Performer Occurs
Waiting

Time
(Time)

Time To
Complet
e (Time)

Total
Time

(Time)

Configure Environment
Any member of T&E Environment
Team 10 0:00:00 97:30:00

97:30:0
0

FCS Conceptual Design
Any member of Fixed Camera
System Team 10 0:00:00 17:30:00

17:30:0
0

FCS Detailed Design
Any member of Fixed Camera
System Team 10 0:00:00 17:30:00

17:30:0
0

FCS Detailed Design High
Any member of Fixed Camera
System Team 10 0:00:00 15:00:00

15:00:0
0

FCS Detailed Design Low
Any member of Fixed Camera
System Team 10 0:00:00 15:00:00

15:00:0
0

FCS Detailed Design Med
Any member of Fixed Camera
System Team 10 0:00:00 15:00:00

15:00:0
0

GHub Conceptual Design
Any member of GHub System
Team 10 0:00:00 17:30:00

17:30:0
0

GHub Detailed Design
Any member of GHub System
Team 10 0:00:00 17:30:00

17:30:0
0

GHub Detailed Design High
Any member of GHub System
Team 10 0:00:00 15:00:00

15:00:0
0

GHub Detailed Design Low
Any member of GHub System
Team 10 0:00:00 15:00:00

15:00:0
0

GHub Detailed Design Med
Any member of GHub System
Team 10 0:00:00 15:00:00

15:00:0
0

High Configure Environment
Any member of T&E Environment
Team 10 0:00:00 24:22:30

24:22:3
0

High Virtualization
Any member of T&E Environment
Team 10 0:00:00 2:36:00 2:36:00

Kiosk Conceptual Design
Any member of Kiosk System
Team 10 0:00:00 17:30:00

17:30:0
0

Kiosk Detailed Design
Any member of Kiosk System
Team 10 0:00:00 17:30:00

17:30:0
0

Kiosk Detailed Design High
Any member of Kiosk System
Team 10 0:00:00 15:00:00

15:00:0
0

Kiosk Detailed Design Low
Any member of Kiosk System
Team 10 0:00:00 15:00:00

15:00:0
0

Kiosk Detailed Design Med
Any member of Kiosk System
Team 10 0:00:00 15:00:00

15:00:0
0

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 74 -=
k^s^i=mlpqdo^ar^qb=p`elli

Low Configure Environment
Any member of T&E Environment
Team 10 0:00:00 48:45:00

48:45:0
0

Low Virtualization
Any member of T&E Environment
Team 10 0:00:00 5:12:00 5:12:00

Med Configure Environment
Any member of T&E Environment
Team 10 0:00:00 24:22:30

24:22:3
0

Med Virtualization
Any member of T&E Environment
Team 10 0:00:00 2:36:00 2:36:00

Perform Functional Test
Any member of SoS Integration
Test Team 10 0:00:00 10:00:00

10:00:0
0

Perform High Thread Test
Any member of SoS Integration
Test Team 10 0:00:00 5:00:00 5:00:00

Perform Low Thread Test
Any member of SoS Integration
Test Team 10 0:00:00 10:00:00

10:00:0
0

Perform Med Thread Test
Any member of SoS Integration
Test Team 10 0:00:00 5:00:00 5:00:00

Produce Test Assessment Report
Any member of SoS Integration
Test Team 10 0:00:00 30:00:00

30:00:0
0

Virtualization
Any member of T&E Environment
Team 10 0:00:00 10:20:00

10:20:0
0

Resource Unit
Cost/U

nit
Thresh

old
Usage Cost

Any member of GHub System
Team Hour 39.48 0 80

$3,158.
40

Any member of Fixed Camera
System Team Hour 39.48 0 80

$3,158.
40

Any member of T&E Environment
Team Hour 24.14 0 215

$5,190.
10

Any member of SoS Integration
Test Team Hour 33.7 0 60

$2,022.
00

Any member of Kiosk System
Team Hour 39.48 0 80

$3,158.
40

Performers Queue Length and Utilization

Name Average Min Max
Utilized(

%)
Idle(%)

Any member of GHub System
Team 0 0 0 20.22 79.78
Any member of Fixed Camera
System Team 0 0 0 20.22 79.78
Any member of T&E Environment
Team 0 0 0 54.54 45.46
Any member of SoS Integration
Test Team 0 0 0 15.17 84.83

Value of 'Creator' 0 0 0 0 100

Generic 0 0 0 0 100

Lead Systems Engineer 0 0 0 0 100
Any member of Kiosk System
Team 0 0 0 20.22 79.78

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 75 -=
k^s^i=mlpqdo^ar^qb=p`elli

LIST OF REFERENCES

Abu-Taieh, M. O., & El Sheikh, A. A. R. (2007). Discrete event simulation
process validation, verification, and testing. In A. Dasso & A. Funes (Eds.),
Verification, validation, and testing in software engineering (pp. 155–184).
Hershey, PA: Idea Group.

Adair, R. J., Bayles, R. U., Comeau, L. W., & Creasy, R. J. (1966). A virtual
machine for the 360/40 (Report No. 320-2007). Cambridge, MA: IBM
Cambridge Scientific Center.

Advanced Micro Design (AMD). (n.d.). AMD virtualization. Retrieved from
http://sites.amd.com/us/business/it-
solutions/virtualization/Pages/virtualization.aspx#2

Apple. (2012). Refurbished Mac Pro 3.2 GHz Quad-Core Intel Xeon. Retrieved
from http://store.apple.com/us/product/G0LF0LL/A

Balci, O. (1994). Validation, verification, and testing techniques throughout the
life cycle of a simulation study. Annals of Operations Research, 53, 215–
220.

Balci, O. (1995). Principles and techniques of simulation validation, verification,
and testing. In C. Alexopoulos, K. Kang, W. R. Lilegdon, & D. Goldsman
(Eds.), Proceedings of the 1995 Winter Simulation Conference (pp. 147–
154). New York, NY: ACM Press.

Balci, O., Glasow, P. A., Muessig, P., Page, E. H., Sikora, J., Solick, S., &
Youngblood, S. (1996). Department of Defense verification, validation and
accreditation (VV&A) recommended practices guide. Retrieved from
http://vva.msco.mil/Mini_Elabs/VVtech-dynamic.htm#dyn1

Blanchard, B. S., Fabrycky, W. J. (2011). Systems engineering and analysis.
Upper Saddle River, NJ: Prentice Hall.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, NJ:
Prentice Hall.

Brodhun, C. P., III. (2008). Virtualization: Case study of the USMC. Breakout
session PO2769 at the meeting of VMWorld 2008, Las Vegas, NV.

Chairman of the Joint Chiefs of Staff (CJCS). (2007). Joint capabilities integration
and development system (CJCS Instruction 3170.01F). Washington, DC:
Pentagon.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 76 -=
k^s^i=mlpqdo^ar^qb=p`elli

Citrix. (n.d.). Citrix HDX technology brings high-definition user experience to
virtual desktops and application. Retrieved from
http://www.citrix.com/English/ne/news/news.asp?newsID=1686302

Dell. (2005a). Dell Latitude D820. Retrieved from
http://www.dell.com/downloads/global/products/latit/en/spec_latit_d820_en
.pdf

Dell. (2005b). Dell Precision 490. Retrieved from
http://www.dell.com/downloads/global/products/precn/en/spec_precn_490
_en.pdf

Dell. (2010). Dell PowerEdge R610. Retrieved from
http://www.dell.com/downloads/global/products/pedge/en/server-
poweredge-r610-specs_en.pdf

Department of Defense (DoD). (2012). Defense acquisition guidebook (DAG).
Retrieved from http://akss.dau.mil/dag

Fehse, C. (2011). Infrastructure suitability assessment modeling for cloud
computing solutions (Master’s thesis). Monterey, CA: Naval Postgraduate
School.

Goshorn, D. (2010). The systems engineering of a network-centric distributed
intelligent system of systems for robust human behavior classifications
(Unpublished doctoral dissertation). University of California, San Diego.

Goshorn, L. (2007). Project management/engineering concepts and definitions
(Technical report). Framingham, MA: JLG Technologies.

Goshorn, R. (2012). Distributed-GIG intelligence automation systems lab for
military and homeland security. Monterey, CA: Naval Postgraduate School.

Hewlett-Packard (HP). (2012). HP P4300 G2 7.2TB SAS Starter SAN Solution
(BK716A)—Specifications and warranty. Retrieved from
http://h10010.www1.hp.com/wwpc/us/en/sm/WF06b/12169-304616-
3930449-3930449-3930449-4118659-4118705-4118707.html?dnr=1

ImageShack. (n.d.). Dell Precision 490 [Image]. Retrieved from
http://img1.imageshack.us/img1/1266/sp490chassis1wn.jpg

InRelief. (n.d.). About InRelief.org. Retrieved from http://www.inrelief.org

Marine Corps Tactical System Support Activity (MCTSSA). (2010). MAGTF C4I
capability certification test MC3T 09-01 event report version 1.0 (MCTSSA
CM MC3T-0029). Camp Pendleton, CA: MCTSSA Systems Engineering &
Integration Support Division.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 77 -=
k^s^i=mlpqdo^ar^qb=p`elli

Miller, G. (2008). Alternative designs for a joint command, control,
communications, computers and intelligence (C4I) capability certification
management. Paper presented at the meeting of the 13th International
Command and Control Research and Technology Symposia (ICCRTS),
Seattle, WA.

Naegle, B. (2011). Test planning and temp [Coursework, Class MN4602, Lesson
6]. Graduate School of Business and Public Policy, Naval Postgraduate
School, Monterey, CA.

National Institute of Standards and Technology (NIST). (2011). The NIST
definition of cloud computing (NIST Special Publication 800-145).
Retrieved from http://csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf

Neiger, G., Santoni, A., Leung, F., Rodgers, D., & Uhlig, R. (2006). Intel
virtualization technology: Hardware support for efficient processor
virtualization. Intel Technology Journal, 10(3), 167–177.
doi:101535/itj.1003

Parmalee, R. P., Peterson, T. I., Tillman, C. C., & Hatfield, D. J. (1972). Virtual
storage and virtual machine concepts. IBM Systems Journal, 11(2), 99–
130.

Pham, H. (2006). Springer handbook of engineering statistics. doi:10.1007/978-
1-84628-288-1_24

Sample, J. T., & Ioup, E. Z. (2010). Forging geospatial tools. Geospatial
Intelligence Forum. Retrieved from http://www.kmimediagroup.com/mgt-
home/248-gif-2010-volume-8-issue-4-may/2889-forging-geospatial-
tools.html

Smith, J. E., & Nair, R. (2005). Virtual machines: Versatile platforms for systems
and processes (1st ed.). San Francisco, CA: Morgan Kaufmann.

Swaminathan, S., & Murthy, K. (2006). Test optimization using software
virtualization. IEEE Software, 23(5), 66–69.

Teradici. (n.d.). PCoIP technology. Retrieved from
http://www.teradici.com/pcoip/pcoip-technology.php#PCoIP_is_a_
host_rendering_protocol

TopCoder. (n.d.). About us. Retrieved from http://www.topcoder.com/aboutus/

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 78 -=
k^s^i=mlpqdo^ar^qb=p`elli

Under Secretary of Defense for Acquisition, Technology, and Logistics
(USD[AT&L]). (2008). Operation of the defense acquisition system (DoD
Instruction 5000.02). Washington, DC: Author.

U.S. Army. (2011). Army Data Center Consolidation Plan (ADCCP). Retrieved
from http://ciog6.army.mil/LinkClick.aspx?fileticket=_knFGXDuaOI%3d&
tabid=122

U.S. Navy. (2011). Navy information management information technology
efficiencies (NAVADMIN 008/11). Retrieved from
http://www.public.navy.mil/bupers-
npc/reference/messages/Documents/NAVADMINS/NAV2011/NAV11008.t
xt

Varian, M. (1991). VM and the VM community: Past, present, and future.
Retrieved from
http://web.me.com/melinda.varian/Site/Melinda_Varians_Home_Page_file
s/neuvm.pdf

Yang, K. (2008). Voice of the customer—Capture and analysis. Retrieved from
http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPL
AY_bookid=2618&VerticalID=0

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli

2003 - 2012 SPONSORED RESEARCH TOPICS

Acquisition Management

 Acquiring Combat Capability via Public-Private Partnerships (PPPs)

 BCA: Contractor vs. Organic Growth

 Defense Industry Consolidation

 EU-US Defense Industrial Relationships

 Knowledge Value Added (KVA) + Real Options (RO) Applied to
Shipyard Planning Processes

 Managing the Services Supply Chain

 MOSA Contracting Implications

 Portfolio Optimization via KVA + RO

 Private Military Sector

 Software Requirements for OA

 Spiral Development

 Strategy for Defense Acquisition Research

 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management

 Commodity Sourcing Strategies

 Contracting Government Procurement Functions

 Contractors in 21st-century Combat Zone

 Joint Contingency Contracting

 Model for Optimizing Contingency Contracting, Planning and Execution

 Navy Contract Writing Guide

 Past Performance in Source Selection

 Strategic Contingency Contracting

 Transforming DoD Contract Closeout

 USAF Energy Savings Performance Contracts

 USAF IT Commodity Council

 USMC Contingency Contracting

Financial Management

 Acquisitions via Leasing: MPS case

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli

 Budget Scoring

 Budgeting for Capabilities-based Planning

 Capital Budgeting for the DoD

 Energy Saving Contracts/DoD Mobile Assets

 Financing DoD Budget via PPPs

 Lessons from Private Sector Capital Budgeting for DoD Acquisition
Budgeting Reform

 PPPs and Government Financing

 ROI of Information Warfare Systems

 Special Termination Liability in MDAPs

 Strategic Sourcing

 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources

 Indefinite Reenlistment

 Individual Augmentation

 Learning Management Systems

 Moral Conduct Waivers and First-term Attrition

 Retention

 The Navy’s Selective Reenlistment Bonus (SRB) Management System

 Tuition Assistance

Logistics Management

 Analysis of LAV Depot Maintenance

 Army LOG MOD

 ASDS Product Support Analysis

 Cold-chain Logistics

 Contractors Supporting Military Operations

 Diffusion/Variability on Vendor Performance Evaluation

 Evolutionary Acquisition

 Lean Six Sigma to Reduce Costs and Improve Readiness

 Naval Aviation Maintenance and Process Improvement (2)

 Optimizing CIWS Lifecycle Support (LCS)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli

 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance
Activity

 Pallet Management System

 PBL (4)

 Privatization-NOSL/NAWCI

 RFID (6)

 Risk Analysis for Performance-based Logistics

 R-TOC AEGIS Microwave Power Tubes

 Sense-and-Respond Logistics Network

 Strategic Sourcing

Program Management

 Building Collaborative Capacity

 Business Process Reengineering (BPR) for LCS Mission Module
Acquisition

 Collaborative IT Tools Leveraging Competence

 Contractor vs. Organic Support

 Knowledge, Responsibilities and Decision Rights in MDAPs

 KVA Applied to AEGIS and SSDS

 Managing the Service Supply Chain

 Measuring Uncertainty in Earned Value

 Organizational Modeling and Simulation

 Public-Private Partnership

 Terminating Your Own Program

 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.net

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.net

