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ABSTRACT 

Virtualization is the use of a software application to emulate the physical 

performance of a computer, including the central processing unit (CPU), storage, 

network device, random access memory (RAM), and operating system (OS) through 

executable data files. The virtualization software application allows for multiple 

virtual machines to exist on a single set of physical hardware. This technology can 

increase the flexibility of the hardware while reducing hardware configuration time. 

Virtualization technology will improve the Department of Defense (DoD) system of 

systems (SoS) test and evaluation (T&E) process. The implementation of virtualized 

systems within SoS will create three primary benefits. First, test personnel can 

improve configuration management for all component systems. Second, test 

personnel can reduce test environment setup time. Third, test personnel can 

improve the scalability of SoS architectures. The success of a DoD information 

system depends on its ability to meet the established criteria of cost, schedule, and 

performance. By appropriately integrating virtualization technology into the SoS T&E 

process, system program managers can improve the likelihood of meeting these 

criteria.
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I. INTRODUCTION  

A. BACKGROUND AND HYPOTHESES 

An information technology (IT) or command and control (C2) system’s 

performance in the test and evaluation (T&E) phase of a program’s life cycle will 

impact its success or failure. Program managers (PM) must choose wisely where 

to distribute their budget in order to control development costs and program 

schedules. To maximize limited budgets, it is a manager’s duty to find improved 

productivity in business processes and ensure the effective use of IT 

infrastructure. One technology designed to achieve both efficient business 

processes and the efficient use of infrastructure is virtualization. Virtualization 

software decomposes the physical elements of a computer into a set of 

executable software files. This transformation allows for the emulation of a 

physical computer through software, which provides administrators with improved 

process efficiencies throughout the IT infrastructure. The implementation of 

virtualization technology in T&E can reduce hardware and manpower costs while 

decreasing lab configuration schedules. This increase in productivity reduces 

schedule time and cost, thus managers can apply resources to other critical 

areas of the program.   

To realize the efficiencies gained by virtualization in T&E, the test 

environment should ideally mimic a large system of systems (SoS) setting. 

System of systems architectures incorporate multiple IT systems working 

together either in sequence or in parallel to produce some output. For example, 

the Department of Defense (DoD) intelligence community relies on multiple 

intelligence surveillance and reconnaissance (ISR) platforms such as unmanned 

aerial vehicles (UAVs) or manned fixed-wing aircraft to collect data on a given 

target. The collection data must be processed by unique systems and then 

transmitted to analysts for further study. These disparate inputs will eventually 

come together within a single system to provide a cohesive understanding of a 

given target. To ensure each of these systems work together, they must be 
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tested together in an environment closely matching the operational setting. By 

creating SoS architectures in virtualization, administrators can create functional 

models of systems, which allow for new software updates or patches to be easily 

integrated or new products to be tested without adjusting the existing system 

connections. 

To demonstrate the benefits of virtualization in the test environment, a 

study was completed of the Distributed Global Information Grid (GIG) Intelligence 

Automation System (DGIAS). The DGIAS laboratory combined numerous 

systems working together to connect several collection platforms and database 

systems. To validate the hypothesis, a hardware consolidation plan and a 

process model of the system were developed to verify a reduction of hardware 

requirements and configuration time.  

B. BENEFITS OF STUDY 

With this thesis, I seek to identify the efficiencies gained from the use of 

virtualization in system of systems test and evaluation. Given the large scale of 

most SoS environments, a solution must be developed which combines IT 

flexibility and scalability without increasing manpower. In this thesis, I outline for 

system testers the benefits and limitations of implementing virtualization 

technology in an SoS T&E setting. 

C. RESEARCH QUESTIONS 

1. What are the ideal system traits for implementing virtualized system of 

systems test and evaluation? 

2. What type of virtualization environment should be created to benefit 

the system of systems test and evaluation process? 

3. What are the efficiencies achieved through the use of virtualization in 

system of systems test and evaluation? 
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4. What are the limitations of using virtualization in a system of systems 

test and evaluation environment? 

D. THESIS ORGANIZATION 

Following the current chapter’s introduction to virtualization and SoS T&E, 

in Chapter II, I introduce some important concepts in the field of virtualization. 

Then I discuss the concept of cloud computing, including the different service 

and deployment models. Finally, I review the limitations of the virtualization 

technology. 

In Chapter III, I discuss the fundamentals of system of systems T&E in the 

DoD acquisition process as well as T&E methodologies. Although numerous T&E 

methodologies exist, I only discuss the most accepted and practiced techniques. 

Next, I introduce the DoD SoS initiatives as a framework for DoD acquisition T&E. 

Following the presentation of the background information, in Chapter IV I 

examine in detail the Distributed Global Information Grid (GIG) Intelligence 

Automation System (DGIAS). This chapter explores the physical hardware, 

software, and processes of the DGIAS. Then I propose a virtualized architecture 

for the DGIAS to determine the differences between a fully physical 

implementation and a hybrid (physical and virtualized) architecture. Finally, I 

present a process model of the system to identify efficiencies achieved by a 

virtualization implementation in a T&E environment.  

In Chapter V, I summarize the findings of this thesis and suggest several 

opportunities for future research at the intersection of virtualization or cloud 

computing and SoS T&E. 
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II. VIRTUALIZATION AND CLOUD COMPUTING 

A. BACKGROUND 

1. Early Virtualization 

Throughout their history, virtual machines (VMs) have sought to divide the 

computing components of hard disk storage, random access memory (RAM), 

and central processing unit (CPU) of a single large computer into several smaller 

computers for use by multiple users. The separation of components is achieved 

through virtualization software. Virtualization software has matured since its first 

introduction in the late 1960s at IBM® (International Business Machine). The 

production of the CP-40 (Control Program-40), developed in concert with the IBM 

System/360 Model 40 (Adair, Bayles, Comeau, & Creasy, 1966), was the first 

system to host multiple operating systems (OSs) on a shared platform and 

provided the foundation for virtualization (Varian, 1991). Current computer 

capabilities and network throughput have completed the original vision of 

virtualization. Today, organizations can operate the equivalent of a historic 

mainframe on a single rack of servers. This is made possible by continued 

miniaturization and commoditization of computer components. Computers in the 

form of blade servers now contain multi-terabyte internal storage, hundreds of 

gigabytes of RAM, and multi-core processors. This computing power is 

equivalent to seven to ten desktop computers and is the primary enabler for 

virtualization. 

2. Virtualization System Elements 

Parmalee, Peterson, Tillman, & Hatfield (1972) outlined the capabilities of 

virtualization in the early days of VM with some guiding principles. The following 

four principles define the VM tenets and have influenced current virtualization 

software: 

 Concurrent running of dissimilar operating systems by 
different users. While one virtual machine is used to develop 
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and test code for the current release level of an operating 
system, another virtual machine can be using a back-level 
release of the same system. 

 Both system and application programs may be developed 
and debugged for machine configurations that are different 
from that of the host machine. Thus, a host machine with a 
modest amount of main storage can provide the environment 
for development and testing of a system to run on a machine 
with a large amount of main storage. 

 One virtual machine is totally insulated from the effects of 
software failures occurring in other virtual machines.  

 The host machine can aid in the measurement of hardware 
and software usage by the various virtual machines. Specific 
virtual machines built for monitoring can communicate 
directly with the host without impacting the machines being 
monitored. (Parmalee et al.,1972, p. 109) 

It should be intuitive that a single powerful set of hardware or platform 

could perform the work of several smaller sets of hardware. This is what 

virtualization seeks to achieve. As the age of mainframes in the 1960s and 1970s 

gave way to the personal computer (PC) in the 1980s, the need to develop large 

powerful systems diminished. Only major corporations, universities, and 

governmental agencies continued to maintain and operate large mainframes. 

The business world’s focus on the PC reduced the need for virtualization as a 

means to service multiple VMs and multiple users. Today, consumers can 

purchase small, high-performance computers as commodities, thus removing the 

size and cost barriers of the past. The industry’s current emphasis on cloud-

based architectures will further push the IT market to a greater reliance on a 

centralized server-based model. 

3. Virtualization Architecture 

The application of virtualization to SoS architectures will provide a platform 

for multiple system designers to share a common infrastructure. “This leads to 

ease of use and optimal product design and testing, which decreases costs and 
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lead times” (Swaminathan & Murthy, 2006, p. 67). Swaminathan and Murthy 

used the concept of virtualization to develop the representation shown in Figure 

1. The architecture as depicted allows VMs to communicate with each other, 

much like hosting an entire network from a single computer. The structure 

illustrated represents an ideal environment for testing complex network 

topologies given the multiple possibilities for VM connectivity. The authors also 

acknowledge a possible work around to traditional virtualization architectures by 

adding non-virtual machine entities into the environment to help simulate a piece 

of hardware that is not easily virtualized, seen in Figure 2 as a stub. 

 

Figure 1.   Four VMs on a Single Set of Hardware  
(Swaminathan & Murthy, 2006) 

 

 
 

Figure 2.   Six VMs on Two Sets of Hardware  
(Swaminathan & Murthy, 2006) 

 

The stub represents a physical component such as a switch or a network 

device that allows communication between two virtualization environments that 

normally would not have the capability to organically communicate. For example, 

a stub would provide the necessary interface for a system hosted in a virtual 

environment that requires a satellite communication link. The stub would be 
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physically connected to the server to translate the message into the appropriate 

format for transmission. Because many components of a system cannot be 

virtualized, it is important to understand how alternatives can be developed to 

simulate or replicate interactions from end-to-end of the system. This is 

specifically important for testing of systems given the need for operationally 

accurate and repeatable test conditions. 

B. COMPONENTS OF VIRTUALIZATION  

1. Hardware 

a. Server 

The server provides the processing power necessary to begin a 

virtual environment. Servers have replaced the mainframes of previous 

generations. For the purposes of this thesis, a server is defined as a set of 

hardware components (CPU and RAM) that perform the tasks of a given set of 

software. The term server can also be associated with a type of software such as 

an email server, which performs the function of organizing and distributing emails 

to a group of users. Throughout this thesis, the term server refers to the 

hardware, unless explicitly stated. Servers are traditionally housed in racks with 

multiple servers per rack. This configuration allows for the centralized access to 

electricity, air conditioning, and high bandwidth networking necessary for 

maximum performance. Today’s servers can contain multiple CPUs and 

hundreds of gigabytes of RAM.  

The continued improvement of the hardware components has 

enhanced the types of functions performed by servers. With the improved 

performance many servers are capable of hosting a virtual environment with 

dozens of VMs. By hosting multiple VMs on a single set of hardware, 

administrators gain efficiency in power consumption, physical footprint of 

computing devices, and ease of management of the hosted VMs. 
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b. Client 

In a traditional client–server architecture, the workstation or client is 

a desktop or laptop computer. A client may also be known as a node in a network 

architecture. A network in the physical world is comprised of multiple nodes or 

clients. In a virtual environment, the client can take many forms such as a thin-

client, thick-client, zero-client, or web-client. Each type provides characteristics 

specific for a given environment. The administrator of the network must 

determine which types of clients provide users with the required functionality. All 

clients offer a user the requisite keyboard, video display, and input options such 

as a Universal Serial Bus (USB) or Digital Video Disc (DVD) drive. 

A thin-client contains a specially designed client software with 

minimal functionality required to perform hardware interface and to communicate 

with the server. The use of a thin-client requires a specially designed hardware 

device with onboard processing, memory, and networking. These devices 

contain the minimal components necessary to provide an operative user 

experience. A thin-client is normally housed in a device approximately 6” x 6” x 2”. 

The small size and onboard processing is ideal for organizations looking to 

reduce the physical footprint and power consumption, without sacrificing 

computing performance.  

A thick-client is a traditional desktop with an additional virtualization 

software application installed to enable communication with the server. The 

desktop does not perform any application instructions, but it does provide video 

display and network messaging, much like that of a thin-client. The thick-client 

initiative is an attempt to repurpose or reuse existing desktops within an 

organization without having to dispose of desktops or purchase new hardware. 

Although physical footprint and power consumption efficiencies are not achieved 

with a thick-client, it does give access to multi-core processing, increased 

memory, and storage from the existing desktop. 
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The zero-client is a form of a virtual client that makes use of the 

PCoIP (personal computer over Internet protocol), discussed later in this chapter, 

to stream images of the VM state from the server to a device that does not 

contain any internal processing, memory, or storage capacity. The device does 

not record any portion of a virtual session; it displays images or screenshots of 

the VM hosted on the server. This type of device is the smallest in scale of all 

clients and the most secure of the options available to administrators. 

A virtualized web-client allows a VM to be accessed through an 

Internet web browser. Any computer with access to the network can operate a 

VM through the host-based OS remote protocol made available through a 

browser plug-in. Remote protocols are discussed later in this chapter. The web-

client provides the greatest degree of flexibility for a user. However, because the 

hardware and software were not designed specifically for the purpose of web-

based virtualization, some performance is degraded due to latency. 

c. Storage Area Network (SAN) 

All servers are designed with some amount of storage available to 

them, usually on the scale of multiple terabytes per server. However, in a virtual 

environment, it may become necessary to make additional storage available, 

such as for the purposes of maintaining VMs or creating snapshots of VMs in a 

test environment. Given reduced costs and greater accessibility to storage, 

administrators have employed racks of storage and allocated them to the virtual 

environment. These dedicated storage devices, called storage area networks 

(SAN), contain multiple terabytes of data and can be shared by several servers, 

thus increasing the flexibility of the resources available through virtualization. 

Servers can be assigned a specific LUN (logical unit number) or memory address 

on a SAN, or the storage can be dynamically assigned according to the need of a 

given VM. Not all VMs perform the same functions or execute the same 

applications; therefore, the architecture should offer flexible storage options 

based on user needs. 
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2. Software Architecture 

Three specific types of software enable a virtual environment, as depicted 

in Figure 3. These software allocate the physical hardware among the VMs, 

provide OS platforms, and manage the entire VM architecture. The first type, 

known as the virtual machine monitor (VMM), or hypervisor, is installed upon a 

set of hardware, much like an OS is installed upon a traditional desktop computer. 

The VMM does not perform all of the traditional OS functions; instead, it controls 

access to the CPU, RAM, network interface card (NIC), and storage between the 

VMs. Next is the VM OS, such as Microsoft® Windows, Ubuntu Linux, or Red 

Hat Linux. The VM OS sends requests to the VMM for central processing, 

memory usage, storage, and network access. Finally, to manage the 

configuration of the VMs, management software is installed on a specific VM 

within the environment. This management software, such as VMWare’s VCenter 

Server, provides several functions including software application access and 

update support to the entire group of VMs. 

a. x86 Platforms 

Today, virtualization, in its most developed form, has remained 

within the x86 platform. The x86 platform includes the traditional Microsoft® 

Windows–based OS family in its many versions (XP, Windows 7, Windows 8) 

and Ubuntu with its Linux OS. The platform, created by the chipset technology of 

Intel and AMD Corporations, allows software that resides three layers above the 

hardware to have direct access to the hardware. In 2006, Intel and AMD modified 

the CPU instructions to allow virtualization to occur more easily, thus reducing 

the need for software workarounds to achieve the resource sharing (Neiger, 

Santoni, Leung, Rodgers, & Uhlig, 2006; AMD, n.d.). The VT-x technology by 

Intel (Neiger et al., 2006) and AMD-V by AMD (AMD, n.d.) provide the 

virtualization chipset instructions necessary to enable resource sharing. Figure 3 

illustrates the concept of a bare metal or full virtualization implementation, in 

which the VMM is installed directly on top of the x86 platform or server. 
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Figure 3.   Depiction of x86 Platform Hosting Windows- and Linux-Based 
OS 

(Smith & Nair, 2005) 

b. Virtual Machine Monitor or Hypervisor 

The VMM performs a central role in a virtualization environment. It 

is a small encapsulated piece software that may appear to perform as an OS; 

however, its functionality is more limited. The VMM is able to control the 

hardware, that is, make calls to the CPU, RAM, and storage, like an OS, but it 

does this in support of the VMs installed upon it. A bare metal VMM configuration, 

as seen in Figure 3, is known to be the most efficient means of allowing VMs 

access to the physical hardware. This configuration reduces the software calls, or 

messages, transmitted between a VMM and the platform for the purposes of 

providing resources to the VMs. In a typical server rack, multiple servers would 

be mounted, each with a VMM installed. The mix of two or more servers is known 

as a cluster. These clusters provide one of the unique benefits of virtualization, 

which is the ability to share resources based on CPU and RAM demand. As the 

workload of a group of VMs increases, the VMM can allocate more resources to 

the VMs in need to provide the most efficient instruction execution. 

c. Virtual Machine Operating System 

The OS installed on a VM is the software component most familiar 

to users. It is the family of Microsoft® or Ubuntu OSs most often used in a 

traditional desktop or laptop environment. The OS in a virtual environment 

executes the same functions performed in a traditional user environment, such 
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as running applications, controlling access to the network, managing system 

attributes, and performing basic calls to the CPU, RAM, and storage. Within a 

virtual environment, the performance of an OS and its associated applications 

remains the same as it would if it existed in a physical machine. 

d. Virtual Machine Configuration Management  

To manage the VMs hosted upon a VMM, server configuration 

management software has been developed to manage the VMs hosted in an 

environment. This software allows for the creation of new VMs from a template or 

by copying an existing VM. The software also provides the ability to take 

snapshots or back-ups of a system state of a VM in a certain state or 

configuration. These snapshots allow a VM to be restored in the case of file 

corruption or a system conflict with the integration of new software. One 

efficiency provided through VM management software is the ability to roll back or 

revert to a previous system state. In the case of a disaster, the management 

software can recognize if a VM or a cluster of VMs has shut down unexpectedly 

and quickly boot up a new cluster of VMs to compensate. This type of 

administrator control cannot be easily duplicated with physical machines.  

3. Network 

a. Components 

In a virtual environment, the network is the heart of the architecture. 

It provides the connectivity necessary for both the physical components (e.g., 

fiber, cables, wireless, backplane, switch, router) and the virtual components 

(e.g., virtual LAN, virtual switch). Although it is not the purpose of this thesis to 

discuss all of the detailed components of the network and their functionality, it is 

necessary to mention two basic ideas that impact a virtual environment, 

specifically in a virtual desktop infrastructure (VDI) implementation: latency and 

protocol. With the following discussions, I explore the impact these ideas have on 

virtual environment. 
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b. Latency 

The metric of latency, often used within the field of IT, and 

specifically virtualization, “can be measured one-way, from source to destination, 

or two-way round-trip, from source to destination and back to source (usually 

excluding the processing time at the destination to generate the response)” 

(Fehse, 2011, p. 12). For virtual systems, which interact with a server and a 

possible VDI client, the latency can determine the success of a virtual 

environment. Given that processing occurs at the server, a user must rely on a 

high-speed transmission of an input, the processing of that input, and the 

retransmission of the output. If this process exceeds 20 milliseconds (ms), the 

user is delayed in performing any other action until the last request has been 

completed. For multi-step processes, this interaction can inhibit user productivity 

if the delay becomes significant. Therefore, networks must minimize latency to 

improve user experience.  

c. Protocols 

To address latency and the communication between the server and 

the client, three types of protocols are widely accepted as standards. These 

standards facilitate the server–client communication necessary to perform any 

set of instructions. The Remote Desktop Protocol (RDP), developed by the 

Microsoft® Corporation, is designed to create remote displays and application 

support for users operating a Microsoft® OS. The protocol contains a “bandwidth 

reduction feature comprised of data compression, caching of graphical elements, 

and network load balancing” (Fehse, 2011, p. 16). These features reduce latency 

while improving the user experience and enhancing screen refresh rates. 

The PCoIP technology, developed by the Teradaci™ Corporation 

for use by VMWare, focuses on bandwidth reduction through pixel transmission 

to reduce latency. This type of protocol streams the video of the user’s screen to 

the client. No data transmission occurs between the server and the client, which 

removes the need to have any client-side processing or storage capability. The 



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 15 -=
k^s^i=mlpqdo^ar^qb=p`elli 

technology uses a series of video codecs to encode and decode the video 

stream at real-time speeds (Teradaci, n.d.). 

The HDX™ (High Definition User Experience), developed by Citrix, 

relies on server, network, and client processing to effectively transmit data 

according to network congestion and available bandwidth (Citrix, n.d.). HDX’s 

dynamic adjustments to network latency by the VMM, VMs, and network devices 

suggest that users will experience improved VM performance.  

4. Server Virtualization 

Server virtualization has been the focus for most businesses seeking to 

adopt virtualization technology. Server virtualization makes use of the position 

that any server that consistently operates below 50% of capacity is wasting 

capacity. To remove the waste, additional services must be hosted on the 

hardware. Virtualization provides the means for multiple server-based 

applications such as a web or email server to be hosted on separate VMs within 

a single set of hardware, as seen in Figure 4. 

 

Figure 4.   Depiction of Server Application Virtualization 

5. Virtual Desktop Infrastructure 

The VDI initiative has recently grown into a significant portion of the 

virtualization movement. In its purest form, VDI is a return to the server-terminal 

architecture of the 1960s and 1970s. Within VDI, the application hosting, 

processing, and networking all occurs at the server with a user interface in the 
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form of a thin-client or thick-client. The clients are connected to the server via a 

switch/router, Ethernet cable, or wirelessly. This type of implementation is ideal 

for established environments with high bandwidth.  

C. VIRTUALIZATION: THE BUILDING BLOCK OF THE CLOUD  

From virtualization has emerged the concept of cloud computing. The 

National Institute of Standards and Technology (NIST; 2011) offers the following 

definition for cloud computing: “a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources 

(e.g., networks, servers, storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort or service provider 

interaction” (NIST, 2011, p. 2). This definition shares those early ideas of 

virtualization by allocating the computer resources across multiple VMs. By 

understanding the different service models available, the DoD can implement the 

appropriate model to assist in the T&E process. The services maintain a great 

deal of server and workstation hardware that can, in effect, be repurposed to 

implement private clouds in the T&E environment. 

1. Cloud Service Models 

The cloud service models provide a road map for future virtualization 

implementations. Figure 5 depicts the three enterprise service models: software 

as a service (SaaS), platform as a service (Paas), and infrastructure as a service 

(IaaS). Figure 5 distinguishes between a cloud service provider’s control 

(highlighted in gray) and consumer’s control (highlighted in white) for each type 

of service. Each model provides an enterprise different levels of control for the 

key elements of an IT infrastructure. SaaS limits a user to only minor application 

configuration settings without providing full access to the OS. This differs from 

PaaS, where consumers are authorized full application permissions, that is, they 

can install, uninstall, and manage applications through the OS. The IaaS model 

provides a consumer the option to create unique VMs or platforms, install specific 

OSs, and manage all applications. 
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Figure 5.   Cloud Service Models 

An organization’s ability to manage its own infrastructure determines the 

appropriate service model. Virtualization enables SaaS, PaaS, and IaaS to fulfill 

the desired user functionality. Virtualization provides the organization the ability 

to create a variety of VMs tailored to their needs. For example, if a developer 

requires a Windows-based x86 platform on which to test a specific application’s 

performance, in an IaaS agreement, the developer can specify that requirement 

and build a VM to those criteria. The developer can then execute the testing in 

the Windows environment. Once complete, if he or she desires to test in a Linux 

environment, a new environment can be established all from the same client. 

2. Cloud Deployment Models 

a. Private Cloud 

The private cloud model, depicted in Figure 6, limits access of the 

computing resources to consumers of a specific organization (NIST, 2011). This 

is the most secure form of the cloud deployment models and is ideal for test 
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activities or system development, because it provides the best possible 

computing resources with little risk of compromise. Test environments could be 

quickly established, employed, and saved for future use in this type of model. 

The private cloud gives an administrator the maximum amount of control, while 

providing consumers with the available computer resources on request.  

 

Figure 6.   Private Cloud Model 

b. Community Cloud 

In a community cloud, the computing resources are shared among 

a community of consumers with mutual interests. A community of interest (COI) 

could leverage a community cloud to share limited applications or to give access 

to a common set of tools for consumers with a specific skill set. This type of cloud 

also allows for common concerns such as security issues, policy compliance, or 

mission accomplishment (NIST, 2011). For example, TopCoder Inc. has 

established a community of software developers and provided them with the 

necessary software development kit (SDK) through their community cloud 

(TopCoder, n.d.). As stated by NIST, a community cloud “may be owned, 

managed, and operated by one or more of the organizations in the community, a 

third party, or some combination of them, and it may exist on or off premises” 

(NIST, 2011, p. 3). Figure 7 depicts how three disparate organizations share the 

same resources to accomplish common goals. 
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Figure 7.   Community Cloud Model 

c. Public Cloud  

The public cloud model, depicted in Figure 8, permits open use by 

the public (NIST, 2011). The cloud provider enforces the goals or purposes of the 

architecture. The figure illustrates how non-governmental organizations (NGOs), 

small businesses, individuals, academic institutions, governmental agencies, and 

major corporations can all work together to achieve a common goal. An example 

of this coordination is evident in organizations such as InRelief.org, which 

provides improved response time for “Humanitarian Assistance and Disaster 

Relief (HADR) events by connecting military/civilian organizations” (InRelief, 

n.d.). 

 

Figure 8.   Public Cloud Model 
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d. Hybrid Cloud 

The hybrid cloud permits the combination of two or more 

established clouds. The independent cloud architectures remain private objects, 

but allow for sharing of resources to accommodate load-balancing, fail-over 

protection, and application sharing (NIST, 2011). The hybrid cloud represented in 

Figure 9 portrays the combination of three unique clouds connected via common 

standards for the purposes of shared interests. This type of model represents the 

greatest degree of collaboration, because the communication standards 

established within an individual cloud must be duplicated across multiple cloud 

providers. 

 

Figure 9.   Hybrid Cloud Model 

D. DEPARTMENT OF DEFENSE VIRTUALIZATION INITIATIVES 

The DoD, in an attempt to adopt virtualization, has released service-based 

IT strategies that reflect the capabilities gained by implementing the technology. 

Each department has unique virtualization goals that focus on primary missions 

and existing IT platforms. For the focus of this thesis, I discuss the United States 

Marine Corps’, the United States Navy’s, and the United States Army’s 

virtualization and cloud strategies.   
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1. United States Marine Corps  

The Marine Corps operational forces were early adopters of virtualization 

technology. During the 2005 tsunami in South East Asia, the Marine 

Expeditionary Unit used server virtualization to consolidate the host nation’s 

critical systems by partitioning the blade server hardware for multiple applications 

(Brodhun, 2008). In 2008, the information architect for Product Group–10 at 

Marine Corps Systems Command outlined a goal of 98% server virtualization. 

The objective was to achieve this goal in a three-phase process, as outlined in 

Figure 10. At the completion of the Marine Corps’ implementation, the VM to 

physical server consolidation should be 2:1. 

 

Figure 10.   Marine Corps Virtualization Strategy  
(Brodhun, 2008) 

2. United States Navy 

In NAVADMIN 008/11 (U.S. Navy, 2011), VADM Dorsett, Deputy Chief of 

Naval Operations for Information Dominance, outlined several future Navy 

initiatives that focus on virtualization. The first step outlined the requirement to 

reduce the number of data centers operated by the Navy. To achieve a goal of a 
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25% reduction, the Navy would need to leverage server virtualization: “Maximum 

effort should be applied to reduce the IT footprint and infrastructure in an effort to 

save Navy resources in hardware, software, manpower and to promote Navy 

green IT efforts” (U.S. Navy, 2011). To find this reduction, the Navy must 

consolidate server-based applications to “increase server utilization by 40 

percent or more (not to exceed 80 percent utilization) and increase server 

virtualization by 50 percent” (U.S. Navy, 2011). 

In addition to server virtualization, the Navy will also begin a thin-client 

pilot program: “DDCIO [Department of Navy Deputy Chief Information Officer], in 

coordination with the Navy Technical Authority, will lead a thin-client initiative, 

replacing traditional computing desktops with less expensive, mobile hardware 

that is engineered to support migration to a mobile workforce environment” (U.S. 

Navy, 2011). The Navy’s stated virtualization goals exhibit the impact of the 

technology in increasing IT efficiency and flexibility. By entering the early 

adoption phase of VDI, the Navy can eliminate the excess hardware associated 

with traditional desktops and shift to the PaaS, IaaS, and SaaS service models 

(U.S. Navy, 2011). 

3. United States Army  

As part of the Army Data Center Consolidation Plan (ADCCP), the Army 

will replace data centers with a unified cloud-computing architecture (U.S. Army, 

2011). The U.S. Army plans will “reduce expenses associated with data center 

hardware, software and operations, and will be able to shift IT investments to 

more efficient computing technologies” (U.S. Army, 2011). The Army, like the 

aforementioned Marine Corps and Navy, must adhere to the DoD mandate to 

accommodate a reduction of data centers and a move to more energy-efficient IT 

solutions. This requirement paves the way for technologies like virtualization to 

play a greater role in IT strategies. 
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E. LIMITATIONS 

1. Hardware 

The principles of virtualization allow hardware to be allocated easily to the 

required virtual environment. However, it does not adequately allow for the 

hardware to simulate a system of greater capability than the existing hardware. 

For example, if the hardware contains a single dual-core processor and 100 

megabytes of RAM, the hardware cannot host VMs emulating computers with 

quad-core processors and 200 megabytes of RAM. Virtualization can only divide 

the existing hardware into smaller elements. If a user were to allocate the 

hardware in excess of the system specifications, the system would stop 

functioning and crash. Therefore, when designing virtual environments, it is 

critical to match the existing hardware to the expected VM architecture. 

2. Software 

Virtualization software requires several components to achieve full 

functionality. The functions of the VMM, environment management software, and 

client-side software must all work together. This requirement limits the options 

that administrators can take to implement a virtualization environment. Once a 

vendor of the virtualization software is selected, the remainder of the architecture 

must, in most situations, remain with that vendor. The different elements of the 

virtualization hierarchy do not work well with different developer models. This 

realization can create problems for administrators who are trying to find a hybrid 

solution for each element of the environment. For example, if Citrix is selected for 

the client-side software, the client software must work with the management 

software, which must work with the VMM. This requirement often limits 

architectures to a single vendor based on interface requirements. 

3. Network 

To sufficiently host a virtual environment, the organizational network must 

be robust. The data rate required to host server-side VMs without a client does 
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not require a network at all, given that all communication between the VMs 

occurs at the backplane of the server rack. However, if the VMs require a VDI 

implementation, then the throughput requirement increases substantially. Each 

VDI client requires a connection of 25 megabits per second (Mbit/sec). This type 

of connection ensures that the latency of the server to client communication is 

minimized to 20 ms. When the network is unable to sustain the 25 Mbit/sec level, 

the client-side interface can slow to an unusable level, limiting the user’s ability to 

perform any functions. Therefore, the network must account for the number of 

VMs hosted by the server and prepare for high throughput requirements both in 

wireless and cabled environments. 

4. Real-Time Systems 

Real-time systems do not perform well in virtualization environments due 

to the problem of time drift or clock drift. Computers account for time traditionally 

with a physical clock in the hardware known as the real-time clock or RTC (the 

term internal clock or IC has also been used). However, in virtualization, no 

physical RTC exists inside the VM and the RTC must be replaced through 

methods of time correction such as a Network Time Protocol server. Although the 

software shows promise in the scalability and management of virtual 

environments, it does not satisfactorily handle requirements for precise timing. 

The concept of time keeping or time synchronization is important to computers 

because it provides a system with an understanding of how it relates to other 

systems. If a system or application requires precision timing, such as those found 

in track-based systems which use a GPS (Global Positioning System) to indicate 

the time, the system could be at a disadvantage given the time drift induced 

between the hardware and the VMs. 

F. CONCLUSION 

Virtualization has evolved significantly in the decades since the CP-40. 

However, from the early days at IBM to the cutting edge developments today with 

companies such as Citrix and VMWare, the tenets have remained the same. 
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Developers and users have sought to find efficiency in maximizing computer 

resources across multiple users. Virtualization does not represent a single 

solution for all the technological challenges of today’s IT environment. Yet, it 

does provide a specific set of ideal capabilities for establishing large computer 

environments quickly and completely. 
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III. TEST AND EVALUATION IN SYSTEM OF SYSTEMS 
ARCHITECTURES 

A. TEST AND EVALUATION 

1. Overview 

The test and evaluation aspect of a system’s development is a small piece 

of three larger DoD support systems: the Defense Acquisition System (DAS), the 

Joint Capabilities Integrated Development System (JCIDS), and the Planning 

Programming, Budgeting, and Execution (PPBE) Process. Figure 11 illustrates 

how the three separate processes mutually support and overlap to form a system 

of checks and balances. The DAS provides the specific management of the T&E 

processes, with JCIDS providing program oversight, and PPBE providing the 

program funding. 

 

Figure 11.   DoD Decision Support Systems  
(DoD, 2012, p. 6) 
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2. Purpose 

The purpose of T&E is to provide information to help mitigate the risks 

involved in developing systems and capabilities (Under Secretary of Defense for 

Acquisition, Technology, & Logistics [USD(AT&L)], 2008). A system’s test and 

evaluation methodology is developed based on the system’s requirements. To 

understand the methodology, it is necessary to discuss the elements of test and 

evaluation. The test is an action to verify operability, supportability, or 

performance of an item by subjecting it to real or simulated conditions with 

special test equipment or tools to obtain measurements or data for analysis 

(Blanchard, 2011). The test is designed to measure a specific system objective 

or requirement. An evaluation is a continuous iterative process to examine and 

assess a system or an element of a system with regard to relative worth, quality 

of performance, degrees of effectiveness, and anticipated cost (Blanchard, 2011). 

T&E standards are initially defined during the conceptual design period of a 

system by translating user needs into formal statements. Subsequently, specific 

test methods are established to determine the system’s performance against the 

requirements. 

Test and evaluation gauges the progress of a system and its capabilities 

throughout development. It provides awareness of system capabilities and 

limitations to the DAS for use in improving performance. To be effective, T&E 

must be integrated at the beginning of the system development to identify system 

strengths and weaknesses. The objective is to recognize system defects so 

components or processes can be retooled prior to system release (USD[AT&L], 

2008). Figure 12 depicts the multiple test activities that are required throughout a 

system life cycle. Two key documents that inform the test processes are the Test 

and Evaluation Strategy (TES, or Eval Strategy) and the Test and Evaluation 

Master Plan (TEMP). 
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Figure 12.   Test and Evaluation Framework  
(Naegle, 2011) 

3. Test and Evaluation Strategy (TES) 

The TES describes the concept for tests and evaluations throughout the 

program life cycle, starting with technology development and continuing through 

engineering and manufacturing development (EMD) into production and 

deployment. The TES requires approval prior to Milestone A. The TES informs 

the TEMP at Milestone B, which becomes the primary source of guidance for all 

test activities. Development of a TES involves testers, evaluators, and program 

managers to ensure buy-in and suitability of the test procedures and timeline. 

These personnel specify the technical, functional, and operational test details to 

ensure the TES meets the established criteria (DoD, 2012). 
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4. Test and Evaluation Master Plan (TEMP) 

The TEMP describes the total T&E planning from component development 

through operational T&E into production and acceptance. The T&E Working-level 

Integrated Product Team (WIPT) provides input for the TEMP to the PM 

regarding each test event. The TEMP identifies the T&E activities and the 

personnel and infrastructure requirements. The TEMP is reevaluated throughout 

the production phase to adapt to changes to system requirements (DoD, 2012).  

B. SYSTEMS BACKGROUND 

1. Systems Science 

In the physical world, systems can exist as organic or human-made 

systems. In both types of systems, the elements of components, attributes, and 

relationships define the system and its purpose. In the sphere of IT, systems 

predominantly take the form of some combination of computer hardware or 

software. Therefore in IT, the components traditionally define the parts of a 

system, whether defined in software or hardware. The attributes are the 

characteristics which describe the components, such as the speed of the CPU or 

the type of user interface. The relationships or connecting medium of IT systems 

would be the physical cable lines or the protocol used to transmit data between 

components. These components work together to achieve a common purpose or 

goal and the system components depend on each other to achieve the purpose 

(Blanchard & Fabrycky, 2011). 

2. Systems Engineering 

The discipline of systems engineering has become a core piece of the 

DoD acquisition process. The DoD Instruction 5000.02 defines it as 

An approach to translate operational needs and requirements into 
operationally suitable blocks of systems. The approach shall 
consist of a top-down, iterative process of requirements analysis, 
functional analysis, and allocation, design synthesis and 
verification, and system analysis and control. Systems engineering 
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shall permeate design, manufacturing, test and evaluation, and 
support of the product. Systems engineering principles shall 
influence the balance between performance, risk, cost and 
schedule. (USD[AT&L], 2008) 

The system purpose drives the design, development, and T&E of a 

systems engineering approach. In turn, requirements determine the system 

components, attributes, and relationships. Systems engineers use a top-down 

approach to verify the interfaces of the system components by observing the 

interactions. Then as part of the systems engineering process, system 

components and relationships are analyzed from a life-cycle perspective from the 

system’s first operational use to its retirement. By completing this analysis, 

system upgrades and future changes can be anticipated and built-in to the 

system design. To achieve these varied tasks, system engineers use 

interdisciplinary teams to meet technical demands and management to ensure 

that each design discipline is represented and that their methods, techniques, 

and tools are integrated in the development of the system (Blanchard & Fabrycky, 

2011).  

3. Systems Framework 

The emergence of SoS engineering, integration, and testing has given rise 

to several theories or frameworks to understand the complexities of working 

within SoS or FoS architectures. For this thesis, the work of Goshorn (2010) 

provides a fundamental structure to categorize both system and SoS engineering. 

Figure 13 lists the Systems Engineering Core model phases from (X)—The Need, 

to J—Disposal. The eleven phases of the Core model denote the processes of 

the systems engineering life cycle. The Core model and other systems 

engineering activities begin with an operational need. This need determines the 

form, function, and technical specifications of the system to be developed. 
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Figure 13.   Overview of Phases in the Systems Engineering Core Model 
(Goshorn, 2010) 

After the customer’s operational need has been defined, the Core model 

phase of Conceptual Design (A) begins. This phase mirrors the work of Boehm’s 

nine-level waterfall life cycle (1981) and allows designers to determine the 

technical feasibility of a system for a given need. In Phase A, a top-down 

approach to the system design is started and a refinement of the customer needs 

is completed. The refined customer needs ensure a thorough understanding of 

the problem by the engineers and the customer, much like that of a quality 

function deployment (QFD; Yang, 2008). Phase B, Detailed Design, follows the 

conceptual design as the big picture architecture is decomposed into functional 

diagrams (Goshorn, 2010). The design plans should include the system 

description, components, and technical specifications. The Implementation 

process of Phase C enacts the detailed designs of Phase B. System components 

are built to specifications. System domain activities work largely independently as 

they prepare their component or subsystem for integration testing. Phase D, 

termed Bring all parts together, integrates the components for test and evaluation 
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and debugging. This phase is a targeted phase of this thesis, given the focus on 

T&E. Phase D requires a fast-paced tempo relative to the other aspects of the life 

cycle (Goshorn, 2007). The dimension of pace becomes more important given 

the impending end of the Core model. The speed of the decision-making and 

autonomy of the system integrators create a more compressed schedule to 

deliver the system to the customer on time (Goshorn, 2007). Following the T&E 

and the approval of the system by the customer is the Clean-up phase (E). This 

phase is marked by the creation of operating and training manuals, as well as the 

necessary instructions to manufacture or change the system. The subsequent 

phases of F through J do not apply specifically to this thesis. Although they do 

play an important role in the life cycle of a system, they are not relevant to the 

discussion of system development and system testing. 

Figure 14 depicts the phases on an x-y axis to demonstrate the linear 

progression of the phases through time and their relative cost per unit. The 

proportions indicate approximations of where designers and engineers spend 

their time and resources for a given phase of the system development. The Core 

model, in Figure 14, is carried forward as a basic framework for how all systems 

and subsystems progress through the development cycle.  

 

Figure 14.   Systems Engineering Core Model  
(Goshorn, 2010) 
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As a system is developed, multiple components and subsystems are 

created in support of the larger system. A system or SoS upgrade is completed 

by an engineering change order (ECO). As ECOs are implemented and changes 

are made to the system, new versions of the system are created as indicated by 

the Version 2.0 or V2 classification. Throughout the upgrade or ECO process, it 

is essential for system developers to deliver a functional system or SoS to 

complete the testing process. To meet the system availability requirement, 

developers should ensure that ECOs meet the necessary design traits prior to 

integration. Figure 15 helps show the relationship between subsystems and a 

higher level system. 

 
 

Figure 15.   Systems Engineering of a System  
(Goshorn, 2010) 

A system or SoS hierarchy is depicted in Figure 16, which reveals the 

relationship of changes for systems and SoS. This overall picture of the SoS 

helps a test director (TD) or program manager see the progression of an SoS 

and the component systems that constitute the SoS.  
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Figure 16.   Applied Methodology for Systems Engineering of Systems of 
Systems  

(Goshorn, 2010) 

4. System of Systems 

The DoD established a systems engineering methodology for program 

development, which required a modular open-systems approach for systems 

development. This vision for component-based systems gave way to the system 

of systems and family of systems (FoS) framework. The SoS or FoS approach is 

applied throughout the DAS. The DoD defines SoS design as the following: 

A set or arrangement of interdependent systems that are related or 
connected to provide a given capability. The loss of any part of the 
system could significantly degrade the performance or capabilities 
of the whole. The development of an SoS solution will involve trade 
space between the systems as well as within an individual system 
performance. (Chairman of the Joint Chiefs of Staff [CJCS], 2007) 

The purpose of system of systems (SoS) testing is to integrate multiple 

component systems into a single TEMP. Each system tested within an SoS 

architecture may prove operational in a stand-alone environment, but may fail 

when combined with other component systems. Given that most command, 

control, communication, computers, and intelligence (C4I) systems were 

developed and fielded independently, SoS testers attempt to link the systems 
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together into a single network to measure the combined performance, or the 

overall SoS functionality. 

5. System of Systems in the Department of Defense 

There have been several initiatives within the DoD which have sought to 

develop SoS engineering methodologies and integrate them into the field of T&E. 

This SoS method sprung from the increased complexity and individuality of our 

systems. As stated by Miller (2008), “early C4I systems were designed, acquired, 

and fielded independently. Each addressed a single warfighting function, such as 

logistics, fire support, or intelligence” (Miller, 2008, p. 1). Programs such as the 

Marine Air Ground Task Force (MAGTF), Command Control Communication 

Computer (C4I) Capability and Certification Test (MC3T) sought to integrate 

several Marine Corps programs of records, such as the Combat Operation 

Center (CoC) Digital Common Ground System (DCGS; Marine Corps Tactical 

System Support Activity [MCTSSA], 2010). MC3T fulfilled the requirement for a 

metric to compare SoS performance to the needs of a warfighter (Miller, 2008). 

The follow-on program to MC3T, known as MCIC (MAGTF C4I integration and 

certification), seeks to continue the goal of linking multiple systems such as the 

Advanced Field Artillery Tactical Data System (AFATDS), Common Aviation 

Command and Control System (CAC2S), and the Command Post of the Future 

(CPOF) to verify that the system of systems integration performs as expected. 

The MC3T and MCIC SoS events provide end-to-end thread-based or task-

based mission simulations which link forward-deployed systems to rear-echelon 

systems via a direct link or intermediary systems. By recreating these operational 

architectures in test environments, MCTSSA strives to improve the integration of 

these systems when they are fielded.  

C. SYSTEM TEST METHODOLOGIES 

The testing methodologies discussed in this section all have origins in 

software developmental testing. The methods contain testing elements unique to 

the field of software design. In the work of Abu-Taieh & El Sheikh (2007), the 
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authors consider several test methods, from cursory to detailed, such as audit, 

inspections, face validity, structured walkthrough, syntax analysis, Turing tests, 

bottom-up, top-down, black-box (functional), white-box (structural), regression, 

and thread-based testing. The work of Abu-Taieh and El Sheikh, based on the 

work of Balci (1994, 1995), and Balci et al. (1996), seeks to organize types of 

tests and to align requirements to the appropriate type of test.  

Test methodologies also make use of what is known in the software 

domain as validation, verification, and testing (VV&T). These processes are akin 

to the T&E processes that focus on software stability, functionality, and security. 

The field of VV&T as organized by Balci (1995) includes the following types of 

techniques: informal, static, dynamic, symbolic, and formal (depicted in Figure 

17). Each category of technique has a stylistic approach suited for testing the 

different states of a system. In the following section of this chapter, I review the 

techniques most suited for SoS testing. 
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Figure 17.   VV&T Techniques  
(Balci, 1995, p. 152) 

1. Bottom-Up Testing 

In bottom-up testing, the lowest level of a system’s components are tested 

first, with subsequent testing building on the successful tests of these 

components. The lowest level components contribute to subsystem testing, 

which leads to overall system testing. This type of methodology can be applied at 
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any level of T&E, both in the system development phase and the operational test 

phase. Bottom-up testing produces benefits such as the following: 

 assessment of the lowest level components first, 

 future testing built upon verified components, and 

 reduced complexity at initial stages of testing. 

2. Top-Down Testing 

In top-down testing, high-level components are tested followed by lower 

level components. This type of testing relies on substitute components, also 

known as stubs, to perform in place of lower level components to mimic 

functionality to be developed later. This type of testing requires an understanding 

of the high-level architecture to account for all the primary systems.  

3. Black-Box Testing (Functional) 

The focus of black-box testing is the output of the test. The test originates 

with some input, and the resultant output is measured against some existing 

criteria. The test does not explicitly examine if the system is performing the tasks 

properly; instead, it determines if the results of the process produce the expected 

values. This type of testing is a more pragmatic approach to system development 

and is most likely performed by users or higher level operators who do not have 

the knowledge base to understand the interworkings of a given system (Abu-

Taieh & El Sheikh, 2007). 

4. White-Box Testing (Structural) 

White-box testing examines the internal systems and subsystems of a 

given application to determine if the precise tasks are being executed in the 

manner in which they were designed. This form of testing requires a detailed 

understanding of each module and how each module handles a given piece of 

information. This type of testing can become complex and, therefore, should be 

performed with low-level components with few processes (Abu-Taieh & El Sheikh, 

2007).  
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5. Regression Testing 

In order to perform regression testing, an administrator must understand 

the previous states of the system. The system tester regresses, or returns to, a 

previous system state to understand how a modification, in the form of an update 

or engineering change order (ECO), may have led to a system failure or 

undesired state (Abu-Taieh & El Sheikh, 2007). This type of testing is preferred 

within a virtual environment given the ease of system state snapshots and 

rollbacks.  

6. Mission Thread Based Testing 

Mission thread based testing is the evolution of thin thread based testing 

first used by the DoD for end-to-end (E2E) Year 2000 (Y2K) testing. Thin-thread 

testing executed a software macro that would link multiple systems to determine 

the integration of the systems (Pham, 2006). The value in thread testing is the 

ability to use small amounts of software to link several systems. The code was 

easily understood by the systems integrators of the multiple systems and the 

threads did not rely on a single programming language to achieve their goals. 

The threads did have weaknesses; for example, several threads were required to 

determine the functionality of the system, and they often required manual 

development and verification (Pham, 2006). These weaknesses were addressed 

with scenario based or mission thread based testing. Mission thread based 

testing identifies the critical processes that must work and exercises them across 

multiple systems. By using mission thread testing, the SoS performs as a single 

system, thus verifying the interconnections between component systems and 

component system performance. 

D. CONCLUSION 

The test and evaluation of a system of systems architecture is a 

complicated endeavor requiring a detailed understanding of the system 

capabilities, technologies involved, program costs, and program timelines. The 
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process is driven by system requirements and stakeholder input into the Test and 

Evaluation Master Plan to achieve the desired system performance at the time of 

delivery to the customer. To assist in the process, systems engineering provides 

a repeatable framework to address many of the difficulties encountered during 

T&E. The Core model (Goshorn, 2010) offers one approach for how to view 

system and SoS development. With a structure in place, specific testing of the 

system performance can be completed using many of the methods outlined by 

Abu-Taieh & El Sheikh (2007). To achieve thorough and efficient T&E for an SoS, 

engineers and test officers must understand the processes to complete the tests 

and they must have the environment capable of performing the tests.
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IV. CASE STUDY OF THE DISTRIBUTED GLOBAL 
INFORMATION GRID (GIG) INTELLIGENCE AUTOMATION 

SYSTEM 

A. INTRODUCTION 

The purpose for this chapter is to use as a case study the application of 

virtualization to an SoS T&E environment. In this chapter, I seek to answer 

proposed research questions as they apply to the Distributed Global Information 

Grid (GIG) Intelligence Automation System (DGIAS). The work of Goshorn 

(2010) provides the necessary information about the component systems of the 

DGIAS including the architecture of the system, the physical hardware, and the 

software components. Then, I provide an analysis of the suitability of the current 

system for virtualization. Next, I discuss a proposed virtualized architecture of the 

DGIAS. Following that, I introduce a process model incorporating the Core model 

to determine the efficiencies gained through virtualization in the test and 

evaluation of a new engineering change order. Finally, I discuss the limitations of 

virtualization as they apply to the DGIAS.  

B. DGIAS SUITABILITY ANALYSIS 

As one of the guiding principle of this thesis, the research question, what 

are the ideal system traits for implementing virtualized system of systems test 

and evaluation?, helped to shape a series of questions for assessing a system’s 

suitability for virtualization. Given that not every system is right for virtualization, 

these questions help determine the qualities of the system that need to be 

assessed to determine whether the system fits into a virtualization environment. 

The questions were designed around the operating systems of the clients, the 

processor requirements of the operating systems and applications, and the 

storage requirements of the data. These constraints are the minimum to consider 

and do not fully account for every possibility but they provide a guideline for 

system designers. As a note, the system processor and storage specifications of 

the clients and servers were compared against the capabilities of the Dell 
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PowerEdge R610 Server (Dell, 2010) with two six-core processors and the 

Hewlett-Packard P4300 G2 SAS Starter SAN Solution (Hewlett-Packard [HP], 

2012) with 20 terabytes (TB) of available capacity. The following are the 

questions I developed to assess a system’s suitability for virtualization: 

 Are the system nodes or clients comprised of Windows or Linux 
x86 operating systems? Answer: Yes, the clients use the Windows 
XP operating system and the servers use Windows Server 2004. 

 Can the number of CPU cores currently used by the system clients 
be hosted by the available server? Answer: Yes, the minimum 
number of CPU cores employed throughout the system is 16. The 
hardware available can support up to 24 CPU cores. 

 Can the storage requirement of the system clients be stored on the 
available Storage Area Network? Answer: Yes, the maximum 
amount of storage required by all the clients and servers is 16,240 
GBs or less than 17 TBs of storage. The storage available can 
support up to 20 TBs. 

Affirmative answers to all three of these questions indicate that the system 

would likely be suited for virtualization. A negative response to any one of the 

three questions indicates that a system would not support using the technology. 

C. DGIAS SYSTEM COMPOSITION 

1. Description 

The DGIAS demonstrates the capability of an SoS that integrates multiple 

ISR assets for the purpose of fusing video collection with real-time facial analysis. 

The DGIAS uses commercial off-the-shelf (COTS) products in the design and 

development of the system. The DGIAS is a proof-of-concept SoS which 

combines top-down, bottom-up systems, and middleware to Detect–Identify–

Predict–React (DIPR) to a set of inputs and provides cueing to higher level 

intelligence systems. Figure 18 depicts the original DGIAS high-level architecture 

with the component systems and their relationships. 

The bottom-up systems are the Fixed Camera System, a Kiosk System, 

Unmanned Ground Vehicle System, Unmanned Aerial Vehicle System, and 

Cyber System. The middleware system is made of service-oriented architecture 
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which supports smart “push/pull” of sensor data and intelligence products 

between GIG-nodes. The top-down systems are the Command and Control 

System for supporting viewers for commanding officers, intelligence analysts, 

and tactical operators of sensors (Goshorn, 2012). 

 

Figure 18.   System View Diagram for DGIAS  
(Goshorn, 2010) 

 

As part of this research, I discuss four of the 12 component systems: the 

Kiosk System, Fixed Camera System, Middleware, and Watchman Viewer 

System. These systems are representative of the entire top-down and bottom-up 

system functionality. Figure 19 highlights the systems of the DGIAS to be 

analyzed.  
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Figure 19.   Selected DGIAS Systems  
(Goshorn, 2010) 

Figure 20 illustrates the DGIAS physical architecture of the selected Kiosk 

System, Fixed Camera System, Middleware System (Geospatial Hub [GHub]), 

and Watchman Server System.  



=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 47 -=
k^s^i=mlpqdo^ar^qb=p`elli 

 

Figure 20.   Physical Architecture of Selected DGIAS Systems 

2. Component Systems of DGIAS 

a. Kiosk System 

The Kiosk System is an assemblage of multiple hardware 

components including two Dell D820 Latitude™ laptop computers with the 

Windows XP OS, two Sony pan tilt zoom (PTZ) cameras, a network switch, one 

wireless microphone system, seven microphones, two speakers, an audio mixer, 

and cabling. The system’s purpose is to act as a component system in the larger 

DGIAS architecture by providing “interactive facial recognition, audio recording, 

and analysis” (Goshorn, 2010, p. 303). Figure 21 represents the Kiosk System 

architecture.  
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Figure 21.   Kiosk System Physical Architecture 

The visual and auditory data collected by the two Kiosk laptops is 

sent to the Watchman Server for further analysis and integration with other 

component system data. The Video Kiosk laptop uses MATLAB software to 

detect known faces through a detection algorithm. The MATLAB writes facial 

recognition data to the Watchman Server in SQL (Standard Query Language) 

format to the Watchman database. This database messaging is completed using 

Open Database Connectivity (ODBC) standards across each node and server. 

The Audio Kiosk laptop uses Audacity software to provide spectral analysis of 

collected audio data. Both laptops have the following software installed: Mozilla 

Firefox, Filezilla FTP Server, and Wireshark. As part of the network plan, each 

Kiosk laptop was assigned a unique IP address for deconfliction (Goshorn, 2010). 

Figure 22 lists the hardware specifications of the Dell Latitude™ D820 laptops, 

and Figure 23 is a photo of the laptops in the Kiosk System.  
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Figure 22.   Kiosk System’s Dell Latitude™ D820 Hardware Specifications 
(Dell, 2005a) 

 

Figure 23.   Kiosk System’s Dell D820 Latitudes 
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b. Fixed Camera System 

The Fixed Camera System (FCS), like the Kiosk System, is a mix of 

multiple hardware components, primarily a series of cameras and laptop 

computers. The system hosts 36 WiLife cameras which are controlled by a 

correlating laptop computer. The laptops are connected via cabling to a switch 

that also links the Watchman Server where data is stored and facial recognition 

analysis applications are hosted. The system’s purpose is to provide persistent 

observation of the second floor of Bullard Hall at the Naval Postgraduate School. 

To ensure maximum coverage, the 36 cameras were distributed between the 

major corridors of the building and select rooms.  

The WiLife Logitech cameras used for the system provide an 

onboard 400 Megahertz (MHz) processor with 24 bits per pixel and 8-bit color 

data. The camera resolution of 320 x 240 or 640 x 480 pixels may be selected, 

as well as frame rates of 5, 10, or 15 frames per second. The cameras are 

connected by Power over Ethernet (PoE) cabling into a PoE injector to provide 

continuous 48-VDC power to the camera as well as connectivity for data 

transmission (Goshorn, 2010). The PoE injectors then connect to a switch which 

links the camera data to the controller laptop. Given a software constraint of the 

WiLife Command Center application, only six cameras can be paired with a 

single laptop. This requirement dictated the need to operate and maintain six 

laptops as part of the system function. Figure 24 depicts the physical architecture 

of the Fixed Camera System. 
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Figure 24.   Fixed Camera System Physical Architecture 

The six desktops used for the Fixed Camera System are Dell 

Precision™ 490 Desktops. The desktops use the Windows XP OS and 17-inch 

monitors to perform the functions of the system. Figure 25 lists the hardware 

specifications for the desktops and Figure 26 is an image of the computer 

chassis.  
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Figure 25.   Fixed Camera System’s Dell Precision™ 490 Desktop Hardware 
Specifications  

(Dell, 2005b) 

 

Figure 26.   Fixed Camera System’s Dell Precision™ 490 Desktop  
(ImageShack, n.d.) 
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The six desktops use the WiLife Command Center software to 

control the cameras assigned to the individual computers. Video and images 

from the cameras are transmitted to the desktops and managed by the vendor 

software. The Command Center software controls the functions of the cameras 

and provides motion detection criteria. Additionally, the software auto-generates 

and organizes video files in the Windows Media Video format or .wmv. The 

raw .wmv files are then analyzed by MATLAB Simulink software as part of the 

system Detect function. The Detect function searches the raw video for human 

forms based on established criteria written into the MATLAB software. Videos 

containing positively identified human forms are sent to the Watchman Server for 

further analysis. Finally, MATLAB writes data regarding an observed instance to 

the Watchman Server in SQL format using ODBC to the Watchman database. 

c. Middleware System 

The Middleware System enabling interoperability standards are the 

Geospatial Hub (GHub) system and the database system created for the DGIAS. 

The GHub is a geospatially conscious content management system that 

classifies and distributes information developed by users, analysts, or sensor 

platforms (Sample & Ioup, 2010). The middleware is made up of two instances of 

GHub (one to emulate an Unclassified instance and one to emulate a Classified 

instance). The outside systems’ interfaces are a subsystem within GHub that 

allows for the middleware to connect to other services outside of the Naval 

Postgraduate School. Figure 27 represents the physical architecture of the 

Middleware System. 
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Figure 27.   Middleware System (Geospatial Hub) Server Physical 
Architecture 

d. Watchman Viewer System 

The Watchman Viewer acts as the Command and Control center 

for the DGIAS system. It is the central component system of the DGIAS where 

high-level analysis is performed. The Watchman System is hosted on an Apple 

Mac Pro computer with the Mac OS X hosting a VMWare VM of Windows Server 

2004. The system requires a VM to permit the applications of SQL Server, 

Microsoft Access, and WiLife Command Center to run in their native Windows 

environment. To run the Windows Server 2004, a minimum number of two CPU 

cores must exist. The Mac Pro more than meets this need with its two 3.2 GHz, 

Quad Core Intel Xeon processors (or eight cores), and 32 GBs of double data 

rate (DDR) RAM. Through two monitors the system offers a user the choice 

between viewing the Mac OS X display or the Windows Server 2004 display. As 

in the Kiosk and Fixed Camera systems, the MATLAB software writes facial 

recognition data to the Watchman Server in SQL format to the Watchman 

database. Once data is recorded in the Watchman database, it can be retrieved 

through the Microsoft Access GUI (graphical user interface) available through the 
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Windows Server display. Figures 28 and 29 depict the physical and virtualization 

architectures of the Watchman Viewer System respectively. 

 

Figure 28.   Watchman Viewer System Physical Architecture 

 

Figure 29.   Watchman Viewer System Virtualization Architecture 

Figures 30 and 31 identify the hardware specifications of the Mac 

Pro and its appearance.  
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Figure 30.   Watchman System’s Mac Pro Hardware Specifications  
(Apple, 2012) 

 

Figure 31.   Watchman System’s Mac Pro Server  
(Apple, 2012) 

D. PROPOSED DGIAS VIRTUALIZATION  

1. Description 

The purpose of the proposed DGIAS is to model how the system would be 

architected if it were migrated to a virtualization environment. Not all systems can 
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function with a virtualization layer of software. For example, the camera system’s 

PoE injectors do not have the possibility of being virtualized given their distinctive 

function. However, a significant number of the components, specifically the 

laptops and desktops, can all be consolidated to two blade servers. Figure 32 

depicts the new physical architecture. In this diagram, the two Kiosk System 

laptops are replaced by two thin-clients, and the six FCS desktops are eliminated 

from the system. The server systems of Watchman and GHub now share the 

same hardware as the Kiosk System (vAlpha), and the FCS is self-contained on 

a single server (vBeta). 

 

Figure 32.   Proposed Physical Architecture of DGIAS  

The architecture also accounts for the addition of the Configuration 

Management software required to manage the environment. The Configuration 

Management software, as discussed in Chapter II, provides an administrator the 

management tools necessary to create, replicate, and control all VMs in an 

environment. Figure 33 represents the virtualization architecture of the proposed 

DGIAS system consolidated to vAlpha and vBeta. 
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Figure 33.   Virtualization Architecture of vAlpha & vBeta 

A consolidation rate of six VMs to one server is conceivable given that 

most of the systems require only a single core processor to run the Windows XP 

OS, as is the case with all of the FCS VMs. For the systems which require 

multicore processors to run the Windows Server 2004, their workloads are more 

infrequent given that only higher level analysis is performed and therefore will not 

overload the system hardware. However, if the systems hosted on vAlpha do 

require more resources, then vBeta, as part of a system preference, could 

automatically accept the Kiosk systems’ VMs to balance the processor and 

memory requirements across both sets of the hardware. The movement of VMs 

across hardware is a process available for most virtualization vendor platforms. If 

all the DGIAS systems were to be virtualized, two more blade servers, at a 

minimum, would be required to accommodate the 12 other systems. This would 

provide the minimum resources necessary while maintaining a 20% reserve 

capacity.  
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E. DGIAS TEST AND EVALUATION PROCESS MODEL 

To identify some of the efficiencies gained by using virtualization, a 

process model was created to simulate a generic test and evaluation process. To 

model the T&E process for an SoS, I again reference the work of Goshorn (2010) 

to provide the necessary framework. Recall from Chapter III the Core model, as 

seen in Figure 34; it provides the empirical data of a system’s development cycle, 

but also the development cycle of a new ECO as it is integrated across the 

component systems of an SoS or FoS. To provide the necessary context, I 

assumed that a probable ECO would be a modification to the face detection 

algorithm of the DGIAS. An ECO of this type would require the change to be 

enacted across multiple computers. For simplicity, the period of a 40-hour week 

was selected as a realistic and manageable time frame across which to distribute 

the Core model for the purposes of modeling.  

 

Figure 34.   Core Model  
(Goshorn, 2010) 

Table 1 lists the distribution of the 40 hours across the phases of the Core 

model. Additionally, the calculations in the model account for the different types 

of testing to be completed throughout the ECO integration. The different types of 

testing that were selected are titled Functional, Low-level thread, Medium-level 

thread, and High-level thread. The thread based testing categories and related 

time requirements are all assumptions necessary to account for the varying types 
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of tests that occur, while meeting the precise percentages suggested by the Core 

model. An example of a Low-level thread might be requiring the system to 

observe, detect, and react to a single individual. An example of a Medium-level 

thread would be requiring the system to respond to a group of three to five 

people. A High-level thread would require the system to respond to 10 to 20 

people.  

Table 1.   DGIAS ECO Integration With Core Model Hours Breakdown for 
40-Hour Period 

Core 
Model Process Time % Functional Low Med High Report Cumulative 
A Concept 10% 1.75 0 0 0 0 1.75 
B Detail 10% 1.75 1.5 1.5 1.5 0 6.25 
C Build 65% 13 6.5 3.25 3.25 0 26 
D Test 7.50% 1 1 0.5 0.5 0 3 
E Document 7.50%     3 3 
   Total 40 
Note. All units are in hours. 

    

 

The DGIAS ECO T&E process model begins with the issuing of an ECO 

requirement by the lead systems engineer. The ECO is simultaneously passed to 

the three component system teams of Kiosk, Fixed Camera, and the combined 

GHub and Watchman System Team. Once the teams have completed the 

conceptual and detailed design for the Functional test, the designs are passed to 

the T&E Environment Team to allocate the appropriate hardware and software 

and then configure the environment correctly. Following a complete system build, 

the SoS Integration Test Team conducts a functional test. The results are 

recorded and sent to the component system teams again for a subsequent 

period of detailed design. The designs are again sent to the T&E Environment 

Team, which modifies the hardware and software and configures the SoS. Once 

complete, the SoS Integration Test Team conducts a Low-level thread test. The 

processes completed for the Low-level thread test are repeated for the Medium- 

and High-level thread tests. After the completion of the High-level thread test, the 

SoS Integration Team prepares the documentation and submits the report to end 
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the process model. Table 2 outlines the participants of the model and their full-

time equivalent wage per hour. Figure 35 depicts the implementation of the 

model; each swim lane represents a participant. Appendix A contains the data 

output from the model with 100% of the Phase C activities occurring with physical 

machines. As a parameter for the model, 10 ECOs were simulated arriving every 

40 hours for a total of 400 hours’ worth of work completed. The costs accrued 

totaled $17,773.60 for the work completed.  

Table 2.   DGIAS ECO Integration Participants 

Participant Process Wage per hour 

Lead Systems Engineer Issue ECO NA 

Kiosk System Team Conceptual Design and Detailed Design $39.48 

Fixed Camera System 

Team 

Conceptual Design and Detailed Design $39.48 

GHub and Watchman 

System Team 

Conceptual Design and Detailed Design $39.48 

T&E Environment Team Implement designs through a mix of hardware, 

software, and virtualization. 

$24.14 

SoS Integration Test 

Team 

Conduct Functional and Low, Med, and High-

level thread based tests. Produce 

documentation for final report. 

$33.70 
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Figure 35.   DGIAS ECO Implementation Model 

To achieve virtualization, efficiencies in the process Phase C, the Build 

and Implementation processes, must be addressed. The first detail that I had to 

determine in my research was the ratio of building physical machines compared 

to virtual machines. Table 3 establishes the baseline times for the activities 

normally performed in a T&E computer environment. In the first column of the 

table are the activities connected with building a physical machine. Next, in the 

center are the actions related to building a VM. Finally, on the right are the 

activities required for copying a VM from a known good copy. While all the times 
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in this table are not universal, they demonstrate the time efficiency that is gained 

by using virtualization.  

Table 3.   Activity Times 

Physical Machine Build  Virtual Machine Build  Virtual Machine Copy  
Activity Time Activity Time Activity Time
Build Physical Computer 29 Build Virtual Machine 1 Copy Virtual Machine 1 
Install OS 20 Install OS 20 Install Applications 9 
Install Applications 9 Install Applications 9 Configure for network 2 
Configure for network 2 Configure for network 2   
      
Total 60  32  12 
      
Note. All units are in minutes.     

It should be clear from Table 3 that there are significant time savings when 

building a VM compared to a physical machine. There are still fixed periods in the 

process, such as installing an OS, installing applications, and configuring the 

client for the network. The difference between building a complete physical 

machine compared to building a complete VM is approximately 28 minutes, or a 

savings of 47%. Once a VM is built, it can be copied and pasted in the 

environment, thereby eliminating the need to install an OS. The difference 

between copying a VM and building a physical machine is approximately 48 

minutes, or a savings of 80%. To help an engineer determine some of the 

efficiencies gained by using virtualization, the following calculation was 

developed: 32 minutes multiplied by x, where x equals the number of unique 

systems in the SoS, plus 12 minutes times y, where y equals the number of 

clients or instantiations of the different types of systems (see Equation 1).  

32 12x y VirtualizationEnvBuildTime                                   (1) 

For example, the DGIAS has four different types of systems: Kiosk, FCS, 

Watchman, and GHub and seven copies. Following the calculation (32*4) + 

(12*7), it takes 212 minutes to create a suitable virtualization environment. The 

ratio of the time it would take to create the environment with VMs compared to 

physical machines is approximately 1:3. This efficiency is created simply by 
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building the SoS with VMs. By consolidating the system to two blade servers and 

a SAN storage array, the system can rapidly be updated or altered should a new 

ECO be required. For example, if a change needed to be completed to the 

MATLAB Simulink Detect algorithm in the FCS, six separate actions would be 

required by the T&E Environment Team responsible for the modification. 

Likewise, if the algorithm change created an error or changed the system stability, 

it would have to be removed six separate times. In the proposed system, a 

change to a single FCS VM could be replicated across the system in a single 

process, thereby reducing the amount of work significantly. Additionally, the 

Environment Team could record the entire system state to the SAN array prior to 

the integration of the ECO. The captures or snapshots of the system state before 

the integration would allow a quick rollback to the previous system configuration. 

Figure 36 shows the delineation between build times of physical machines and 

virtual machines. The Virt (Worst) line, which is still considerably faster than 

building a physical machine, is calculated by only using unique system types with 

no additional copies. The Virt (Worst) calculation would be (32*11) + (12*0) = 352 

minutes. The Virt (Best) was calculated using (32*1) + (12*10) = 152 minutes. 

This would be a system in which all the clients are copies of the original system. 

The DGIAS is plotted between the best and the worst given its mix of systems 

and copies. 
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Figure 36.   System Build Times  

The more common the systems are and the more VMs that are created, the 

greater the time savings. The configuration time between two VMs and two 

physical machines is not as significant as the configuration time between 11 VMs 

and 11 physical machines. 

Finally, Table 4 lists the different tasks of Phase C in the Core model. The 

following information was used in part to generate Appendix B data, which is a 

full virtualization environment. Although it may be unlikely to convert 100% of the 

system to virtualization, it is important to understand the limitations of the 

technology as it applies to the process. An 11% reduction could be achieved 

from the overall Core model process as it applies to the DGIAS. Not all systems 

will be as suited as the DGIAS; therefore, the savings will be some number less 

than 11%. Table 4 highlights the shift from 65% to 54% when comparing C1+3 to 

C2+3. Appendix B also shows the reduction in overall cost from $17,773.60 in the 

original model to $16,705.00. 
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Table 4.   DGIAS ECO Integration Phase C—Process Tasks  

Core 
Model Task 

Time % Functional Low Med High Report Cumulative

C1 Obtain HW SW 16% 3.25 1.63 .81 .81 0 6.5 
         
C2 Virtualization 5% 1.04 .52 .26 .26 0 2.08 
         
C3 Configure Env 49% 9.75 4.88 2.44 2.44 0 19.50 
         
C1+3 Obtain HW SW 65% 13 6.5 3.25 3.25 0 26 
 Configure Env        
         
C2+3 Virtualization 54% 10.79 5.40 2.7 2.7 0 21.58 
 Configure        
       
Note. All units are in hours.       

 

F. CONCLUSION 

The DGIAS is an SoS that suits the virtualization platform given its 

Windows-based OSs and standard desktop, laptop, and server hardware. The 

migration to virtualization will improve the engineering team’s abilities to integrate 

and test new ECOs. The system combined with the Core model is an ideal case 

study for the strengths of virtualization. By centralizing the computing to two 

capable servers, the configuration management of the system will be significantly 

improved. 
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V. CONCLUSION 

A. SUMMARY 

Virtualization, when matched with a compatible technology, offers 

immense benefits to the test and evaluation phase of an IT project. Virtualization 

can improve efficiencies in time including reduced labor hours, elimination of 

redundant tasks, easy rollback to previous system states, and reduced labor 

expenses. Within the case study of the DGIAS system of systems testing, 

virtualization resulted in an 11% reduction in time spent for each integrated 

engineering change order. Although virtualization is not ideal in all 

circumstances, it has shown great promise as a way to improve the T&E process 

within SoS.  

For virtualization to be a viable option, several conditions must be met. 

First, the system nodes must be comprised of Windows or Linux x86 operating 

systems. Second, the existing servers or prospective servers must be capable of 

managing the system’s workloads or user demands. Lastly, the storage 

requirement of the system clients must be less than the available SAN storage 

array of the test environment. If a system meets all of these requirements, then 

migration to virtualization is a possible option for the IT environment. 

DGIAS is a candidate for virtualization because several of its component 

systems meet the three key requirements described in this summary. The DGIAS 

uses the Windows XP and Windows Server OSs, can be consolidated to two 

servers, and requires less than 17 TBs of storage. Also, because it is such a 

complex system of systems, there are likely to be many software-based ECOs 

within the test and evaluation process. By implementing virtualization, time 

savings can be gained with each ECO. 

By involving virtualization in the ECO process, system developers can 

save an average of 11% time savings over the life cycle of the testing process. 

As shown in Chapter IV, the average time saved is four hours per ECO. 
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Assuming the number of ECOs per system is 10 with virtualization of the DGIAS, 

the system could save over $1,000 and several hours. These data were 

substantiated with a simple formula (see Equation 2) developed to account for 

the time savings achieved when incorporating virtualization into the system 

architecture.  

32 12x y VirtulizationEnvironmentTime         (2) 

This formula helps to account for the variety of systems and the number of clients 

or copies the system hosts. It is not meant to replace a detailed modeling and 

simulation process, but rather to be used for high-level analysis when deciding 

between virtualization and physical machines. Virtualization is not for every 

system and it requires specific types of system traits to provide efficiencies. But 

when it is paired with the right type of system architecture, it quickly can provide 

dividends to the system engineers and designers who leverage it. 

B. FURTHER RESEARCH AND RECOMMENDATIONS 

1. Limits of Virtualization 

While virtualization is a useful tool, it does have its limitations. 

Virtualization is susceptible to a time drift problem, which is more likely during 

times of high workloads. This causes VMs to lose time which may impact the 

performance of a given application or system. Engineers should consider the 

importance of time to the overall system performance before implementing a 

virtualization environment. If time is critical to the system performance, then 

virtualization should be avoided. Methods do exist to minimize the impact of time 

drift on VMs, but they must be built into the system design. Further research and 

adaptation is needed to solve this problem of time drift. A solution would allow 

projects susceptible to time to be able to utilize virtualization when currently they 

cannot. 
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2. Improved Capabilities 

Currently virtualization can only operate with Windows and Linux 

operating systems. If it could be expanded to include Apple OS, it would open 

even more projects and systems to virtualization. Another improvement would be 

to allow for mobile devices to be easily integrated into the virtual environment . 

3. Further Case Studies 

Extensive research into the field of virtualization has shown very little 

empirical data qualifying or quantifying the validity of the process. It is difficult to 

determine through statistical means the actual efficiencies gained from 

virtualizing the test and evaluation process because there are no specific 

reference case studies to turn to. As more companies adopt virtualization as a 

valid tool, there needs to be more literature on the process outcomes to guide 

future decision-makers. There needs to be more cooperation within the growing 

IT business market to share the virtues of virtualization. If there is a wide 

spectrum of outcomes after virtualization, then upgrades can be made to the 

software to try and ensure that it leads to future efficiency gains. However, until 

the benefits and limitations of virtualization are studied on a grander scale, then a 

system developer must make utilization decisions based solely on assumptions 

and trial and error.  

4. Specific Measuring Tool 

Another recommendation for advancing and improving virtualization is to 

create a specific, universal formula for determining time-efficiencies using 

virtualization. This mathematically based formula would work for all projects 

universally and would aid process managers in deciding whether virtualizing all 

or some of their test and evaluation will result in improved efficiencies and thus 

cost savings. This would require further study of the specific components of 

virtualization as well as the study of other cases where it was implemented to 

determine if a standard of measure can be created. 
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Virtualization, when compatible within a given technology, offers immense 

benefits to the test and evaluation phase of an IT project. It can improve 

efficiencies in time including labor hours, reduce redundancy in effort, eliminate 

potential loss of test results, and save money on hardware expenses. Within the 

case study of DGIAS system of systems testing, virtualization has shown a 20% 

reduction in time spend for each ECO ordered. Although virtualization is not ideal 

in all circumstances, it has shown great promise as a way to improve the T&E 

process within system of systems. 
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APPENDIX A 

The data in this appendix is the result of modeling 10 ECOs introduced at 

an interval of one every 40 hours through the Core model within the DGIAS. This 

report represents the current system T&E environment. 

Simulation Results        

Duration 400:00:00 Time       

Process Time And Cost           

            

Process Scenario 
Instanc

es 
Total 
Cost 

Waiting 
Time 

(Time) 

Total 
Time 

(Time) 

DGIAS_Virtualization (default) 10 17773.6 0:00:00 
400:00:

00 

DGIAS_Virtualization           

Instances 10         

            

Activity Performer Occurs 
Waiting 

Time 
(Time) 

Time To 
Complet
e (Time) 

Total 
Time 

(Time) 

Configure Environment 
Any member of T&E Environment 
Team 10 0:00:00 97:30:00 

97:30:0
0 

FCS Conceptual Design 
Any member of Fixed Camera 
System Team 10 0:00:00 17:30:00 

17:30:0
0 

FCS Detailed Design 
Any member of Fixed Camera 
System Team 10 0:00:00 17:30:00 

17:30:0
0 

FCS Detailed Design High 
Any member of Fixed Camera 
System Team 10 0:00:00 15:00:00 

15:00:0
0 

FCS Detailed Design Low 
Any member of Fixed Camera 
System Team 10 0:00:00 15:00:00 

15:00:0
0 

FCS Detailed Design Med 
Any member of Fixed Camera 
System Team 10 0:00:00 15:00:00 

15:00:0
0 

GHub Conceptual Design 
Any member of GHub System 
Team 10 0:00:00 17:30:00 

17:30:0
0 

GHub Detailed Design 
Any member of GHub System 
Team 10 0:00:00 17:30:00 

17:30:0
0 

GHub Detailed Design High 
Any member of GHub System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

GHub Detailed Design Low 
Any member of GHub System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

GHub Detailed Design Med 
Any member of GHub System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

High Configure Environment 
Any member of T&E Environment 
Team 10 0:00:00 24:22:30 

24:22:3
0 

High Obtain HW and SW 
Any member of T&E Environment 
Team 10 0:00:00 8:07:30 8:07:30 

Kiosk Conceptual Design 
Any member of Kiosk System 
Team 10 0:00:00 17:30:00 

17:30:0
0 

Kiosk Detailed Design 
Any member of Kiosk System 
Team 10 0:00:00 17:30:00 

17:30:0
0 

Kiosk Detailed Design High 
Any member of Kiosk System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

Kiosk Detailed Design Low 
Any member of Kiosk System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

Kiosk Detailed Design Med 
Any member of Kiosk System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

Low Configure Environment Any member of T&E Environment 10 0:00:00 48:45:00 48:45:0
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Team 0 

Low Obtain HW and SW 
Any member of T&E Environment 
Team 10 0:00:00 16:15:00 

16:15:0
0 

Med Configure Environment 
Any member of T&E Environment 
Team 10 0:00:00 24:22:30 

24:22:3
0 

Med Obtain HW and SW 
Any member of T&E Environment 
Team 10 0:00:00 8:07:30 8:07:30 

Obtain HW and SW 
Any member of T&E Environment 
Team 10 0:00:00 32:30:00 

32:30:0
0 

Perform Functional Test 
Any member of SoS Integration 
Test Team 10 0:00:00 10:00:00 

10:00:0
0 

Perform High Thread Test 
Any member of SoS Integration 
Test Team 10 0:00:00 5:00:00 5:00:00 

Perform Low Thread Test 
Any member of SoS Integration 
Test Team 10 0:00:00 10:00:00 

10:00:0
0 

Perform Med Thread Test 
Any member of SoS Integration 
Test Team 10 0:00:00 5:00:00 5:00:00 

Produce Test Assessment Report 
Any member of SoS Integration 
Test Team 10 0:00:00 30:00:00 

30:00:0
0 

            

Resource Unit 
Cost/U

nit 
Thresh

old 
Usage Cost 

Any member of T&E Environment 
Team Hour 24.14 0 260 

$6,276.
40 

Any member of SoS Integration 
Test Team Hour 33.7 0 60 

$2,022.
00 

Any member of Kiosk System 
Team Hour 39.48 0 80 

$3,158.
40 

Any member of GHub System 
Team Hour 39.48 0 80 

$3,158.
40 

Any member of Fixed Camera 
System Team Hour 39.48 0 80 

$3,158.
40 

Performers Queue Length and Utilization         

            

Name Average Min Max 
Utilized(

%) 
Idle(%) 

Any member of T&E Environment 
Team 0 0 0 65 35 
Any member of SoS Integration 
Test Team 0 0 0 15 85 

Lead Systems Engineer 0 0 0 0 100 
Any member of Kiosk System 
Team 0 0 0 20 80 
Any member of GHub System 
Team 0 0 0 20 80 

Value of 'Creator' 0 0 0 0 100 

Generic 0 0 0 0 100 
Any member of Fixed Camera 
System Team 0 0 0 20 80 
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APPENDIX B 

The data in this appendix is the result of modeling 10 ECOs introduced at 

an interval of one every 40 hours through the Core model within the DGIAS. This 

report represents the proposed virtualization system T&E environment. 

    
Simulation 
Results     

Duration 395:34:24 Time       

Process Time And Cost           

            

Process Scenario 
Instanc

es 
Total 
Cost 

Waiting 
Time 

(Time) 

Total 
Time 

(Time) 

DGIAS_Virtualization (default) 10 16705 0:00:00 
355:44:

00 

DGIAS_Virtualization           

Instances 10         

            

Activity Performer Occurs 
Waiting 

Time 
(Time) 

Time To 
Complet
e (Time) 

Total 
Time 

(Time) 

Configure Environment 
Any member of T&E Environment 
Team 10 0:00:00 97:30:00 

97:30:0
0 

FCS Conceptual Design 
Any member of Fixed Camera 
System Team 10 0:00:00 17:30:00 

17:30:0
0 

FCS Detailed Design 
Any member of Fixed Camera 
System Team 10 0:00:00 17:30:00 

17:30:0
0 

FCS Detailed Design High 
Any member of Fixed Camera 
System Team 10 0:00:00 15:00:00 

15:00:0
0 

FCS Detailed Design Low 
Any member of Fixed Camera 
System Team 10 0:00:00 15:00:00 

15:00:0
0 

FCS Detailed Design Med 
Any member of Fixed Camera 
System Team 10 0:00:00 15:00:00 

15:00:0
0 

GHub Conceptual Design 
Any member of GHub System 
Team 10 0:00:00 17:30:00 

17:30:0
0 

GHub Detailed Design 
Any member of GHub System 
Team 10 0:00:00 17:30:00 

17:30:0
0 

GHub Detailed Design High 
Any member of GHub System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

GHub Detailed Design Low 
Any member of GHub System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

GHub Detailed Design Med 
Any member of GHub System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

High Configure Environment 
Any member of T&E Environment 
Team 10 0:00:00 24:22:30 

24:22:3
0 

High Virtualization 
Any member of T&E Environment 
Team 10 0:00:00 2:36:00 2:36:00 

Kiosk Conceptual Design 
Any member of Kiosk System 
Team 10 0:00:00 17:30:00 

17:30:0
0 

Kiosk Detailed Design 
Any member of Kiosk System 
Team 10 0:00:00 17:30:00 

17:30:0
0 

Kiosk Detailed Design High 
Any member of Kiosk System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

Kiosk Detailed Design Low 
Any member of Kiosk System 
Team 10 0:00:00 15:00:00 

15:00:0
0 

Kiosk Detailed Design Med 
Any member of Kiosk System 
Team 10 0:00:00 15:00:00 

15:00:0
0 
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Low Configure Environment 
Any member of T&E Environment 
Team 10 0:00:00 48:45:00 

48:45:0
0 

Low Virtualization 
Any member of T&E Environment 
Team 10 0:00:00 5:12:00 5:12:00 

Med Configure Environment 
Any member of T&E Environment 
Team 10 0:00:00 24:22:30 

24:22:3
0 

Med Virtualization 
Any member of T&E Environment 
Team 10 0:00:00 2:36:00 2:36:00 

Perform Functional Test 
Any member of SoS Integration 
Test Team 10 0:00:00 10:00:00 

10:00:0
0 

Perform High Thread Test 
Any member of SoS Integration 
Test Team 10 0:00:00 5:00:00 5:00:00 

Perform Low Thread Test 
Any member of SoS Integration 
Test Team 10 0:00:00 10:00:00 

10:00:0
0 

Perform Med Thread Test 
Any member of SoS Integration 
Test Team 10 0:00:00 5:00:00 5:00:00 

Produce Test Assessment Report 
Any member of SoS Integration 
Test Team 10 0:00:00 30:00:00 

30:00:0
0 

Virtualization 
Any member of T&E Environment 
Team 10 0:00:00 10:20:00 

10:20:0
0 

            

Resource Unit 
Cost/U

nit 
Thresh

old 
Usage Cost 

Any member of GHub System 
Team Hour 39.48 0 80 

$3,158.
40 

Any member of Fixed Camera 
System Team Hour 39.48 0 80 

$3,158.
40 

Any member of T&E Environment 
Team Hour 24.14 0 215 

$5,190.
10 

Any member of SoS Integration 
Test Team Hour 33.7 0 60 

$2,022.
00 

Any member of Kiosk System 
Team Hour 39.48 0 80 

$3,158.
40 

Performers Queue Length and Utilization         

            

Name Average Min Max 
Utilized(

%) 
Idle(%) 

Any member of GHub System 
Team 0 0 0 20.22 79.78 
Any member of Fixed Camera 
System Team 0 0 0 20.22 79.78 
Any member of T&E Environment 
Team 0 0 0 54.54 45.46 
Any member of SoS Integration 
Test Team 0 0 0 15.17 84.83 

Value of 'Creator' 0 0 0 0 100 

Generic 0 0 0 0 100 

Lead Systems Engineer 0 0 0 0 100 
Any member of Kiosk System 
Team 0 0 0 20.22 79.78 
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