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 The treatment of  combustion and flow processes in a liquid-propellant rocket  

engine as a complex system  using  a confluence  of advanced mathematical  
methods is aimed to understand and characterize nonlinear triggering, transient  
oscillations, and  limit-cycle oscillations at supercritical pressures. 
• Complex systems involve stochastic behaviors of semi-autonomous  
      components networked in a way that allows emergent behavior to develop. 
• Our complex system components will include combustion chamber,  
      convergent nozzle, propellant injectors, and all flow and thermal structures. 
• Uncertainties that justify stochastic approach relate to magnitude, duration, and  
       location of triggering disturbances; property values in supercritical domain. 
• Stochastic processes may apply to fluctuations  in propellant flow rates,  
      fluctuations in fluid properties, and flow turbulence.  
• Emergent structures of interest include large-amplitude acoustic oscillation. 
• Stochastic terms may enter analysis as initial conditions, boundary conditions,  
       or directly into differential equations as forcing functions or coefficients. 
• Reduced Basis Modeling (RBM) coupled with LES will provide a rapid,  
     efficient, and accurate analysis for the intensive stochastic computations. 
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     TEAM APPROACH 
 
• UCI (Sirignano, Sideris, and Popov) will develop stochastic framework. They 

will formulate stochastic partial differential equations in coordination with 
Georgia Tech and Hypercomp. 

• Georgia Tech (Menon and postdoc) will develop Large-eddy Simulation (LES) 
approach and make computations for specified realizations in the stochastic 
behavior. 

• Hypercomp (Munipalli and Ota) will develop reduced basis models fitting the 
LES results. These RBMs will allow inexpensive computations of many 
realizations for the stochastic analysis. 

• KISS (Kassoy) will develop and propose thermoacoustic and 
thermomechanical models to describe relevant combustion phenomena. Some 
of this modelling will also be done at UCI (Sirignano). 

• Continuing communication and iteration amongst team members will occur. 
• The approach and integration of contributions from team members will be 

tested on model equations as well as with full Navier-Stokes, multicomponent-
flow based equations. 

• The approach introduces and integrates various advanced mathematical and 
computational method:  stochastic processes; asymptotic analysis; large-eddy 
simulation; reduced-basis modelling. 
 



Stochastic modeling-Uncertainty quantification 
 
• General stochastic PDE:  ℒ 𝒙, 𝑡, 𝜔; 𝒖 = 𝒇(𝒙, 𝑡, 𝜔) with 𝒖(𝒙, 𝑡, 𝜔) the 

solution, 𝒇(𝒙, 𝑡, 𝜔)  a forcing function, ℒ  a (possibly) nonlinear differential 
operator, 𝑡 ∈ [0 𝑇] the time variable, 𝒙 ∈ 𝐷 spatial variables, and 𝜔 ∈ Ω 
signifying dependence on random quantities. 

•  Polynomial Chaos Expansion (PCE) approximation:  𝒖 𝒙, 𝑡, 𝜔 ≅
∑ 𝒖𝒊 𝒙, 𝑡 𝛷𝑖 𝑍 𝜔𝑁
𝑖=0 , with 𝑍 = (𝑍1, … , 𝑍𝑑) orthornormal RV’s, and the Φ𝑖 

‘s multi-dimensional orthogonal polynomials.  
• Stochastic Galerkin (SG) approach: 𝒖𝒊(𝒙, 𝑡), are obtained by requiring  
     < ℒ 𝒙, 𝑡, 𝜔; ∑ 𝒖𝒊𝛷𝑖𝑁

𝑖=0 , Φ𝑘 > = < 𝒇 𝒙, 𝑡, 𝜔 ,Φ𝑘 >, 𝑘 = 0,1, … ,𝑁,  
      which is a system of coupled deterministic PDE's in the  𝒖𝒊 𝒙, 𝑡 ’s.  
• Stochastic Collocation (SC) approach: 

  𝒖𝒊 𝒙, 𝑡  =  1
𝛾𝑖 

< 𝒖 𝒙, 𝑡, 𝜔 ,Φ𝑖 𝑍(𝜔)  > ≅  1
𝛾𝑖
∑ 𝒖 𝒙, 𝑡, 𝜔 𝑗  Φ𝑖 𝑧 𝑗  𝑤 𝑗𝑁
𝑖=1 , (with 

𝑧 𝑗 , 𝑗 = 1, … ,𝑀 samples (quadrature nodes)) are obtained from the deterministic 
PDE’s: ℒ 𝒙, 𝑡, 𝜔 𝑗 ; 𝒖 𝑗 = 𝒇(𝒙, 𝑡, 𝜔 𝑗 ). 

• Remarks:  
– In both the SG and SC methods, the simulation approach of Georgia Tech 

and HyPerComp can essentially be used. 
– From the  PCE expansion, statistics for the solution and machine learning 

tools for the detection of triggered instabilities will be developed. 



ROM/RBM-LES Strategy  
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Previous Experience and  Year 1 -Work Plan @ GT 
• POD/ROM analysis of existing LES data underway 

– LOX-GH2 supercritical jet mixing (PSU) 
– GH2-GOX subcritical instability (Purdue) 
– LOX-GCH4 supercritical combustion (CNRS) 
 

 
 

                    LES 
 
 
 

• LES test case for transverse instability to be defined. 
• Injector flow field characterization for RBM analysis 
• Develop post processing tools for on-line and off-line analysis of the LES data  
• Team collaboration to provide  inputs for stochastic and RBM modelling. 

 

Experiments (CVRC-Purdue) 

Some velocity POD  
modes for CVRC 

Longitudinal mode  
in CVRC Combustor 



The Reduced Basis Method (RBM) – Scope  

The goal of RBM is to generate accurate models of the full governing equations 
with far fewer unknowns – without linearization or other approximations. We are 
planning for the following uses for RBM in liquid rocket combustion dynamics: 
 
   Parametric calculations, control, optimization: RBM can be used to span a 
large parameter space efficiently in large scale computations (e.g., Re, mass flow 
rate, perturbation frequency…)  This can be used in designing control laws, and 
automatic optimization. Due to the averaging property, POD is inefficient in 
multiparameter systems. 
 
   Geometric similarity: To use the RBM with parameterized geometries to 
model topologically similar domains efficiently  
 
   Surrogate models in complex systems: RBMs can be used to represent 
subsystems such as injectors when interfacing with more complex combustor 
models - a network of interoperating RBMs may be used. 



Brief Description of the RBM Method 
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The full system of Favre filtered NS equations in LES: 
 
Expand Q (Galerkin technique) in terms of modes       : 
 
The modes        (usually orthogonal, but not necessarily) 
are obtained such that this approximation minimizes  
solution error (defined appropriately) : 
 
The coefficients QR are obtained  
as solutions to 1st order ODEs:  
(A and P are pre-computed matrices)  
 
Calculation is done in two parts – the first, “offline” procedure constructs a set of basis 
functions which provide the best representation of computed data.  
 
Next, a set of ODEs are solved “online” where the system is modeled from N unknown modal 
coefficients QR – note the full CFD solution computes O(K) unknown values where K is the 
number of cells.  

Model reduction implies N << K  
Challenges: Determine appropriate modes; Stable, efficient computation of nonlinear fluxes. 
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KISS Asymptotic Analysis 

1. Thermomechanics: Spatially distributed, transient, energy deposition [Q(x,t)] into an 
isolated volume (hot spot length scale L and acoustic time scale tA=L/a, a=local 
acoustic speed) at a specific rate (heating time scale tH).  When tH << tA , there must 
be a very low Peclet number and is not interesting here (unless radiation dominates). 
Much slower energy addition      (tH >> tA) occurs at nearly constant pressure.  
Density decrease causes a small expansion Mach number driving relatively weak 
mechanical disturbances into the unheated environment. Conceptual outcome:  
System conversion of thermal to kinetic energy provides a source for mechanical 
disturbances. 

 
2.  Thermoacoustics:  Linear 1st and 2nd order, 2D, nonhomogeneous wave equations 

describe the response of a confined gas to Q(x,t) when tH=O(tA). Longitudinal and 
transverse disturbances can be generated; solutions include a forced response and all 
the eigenmodes excited by the heat input. Potential nonlinearization can be derived 
analytically from the 2nd order, nonhomogeneous wave equation. Some modes can be 
immediately unstable.  Conceptual outcome: Thermoacoustic modeling, describing 
hyperbolic phenomena is valid when the heating and the acoustic time scales are 
commensurate. 



SUMMARY 
- Innovative approach  to explore the triggering mechanism 

of the instability and the driving mechanism for the 
nonlinear oscillation. 

- Address the multi-injector rocket combustion chamber as 
a complex system with many semi-autonomous 
components that affect the nonlinear oscillatory macro-
behavior.  

- Establish key relations amongst the initiation process, 
nonlinear resonant oscillation growth, and transient to 
limit-cycle.   

- The combination of new and emerging methodologies 
may not only aid in addressing the liquid-propellant 
rocket instability but can have other broader applications.  
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