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1 Introduction

Model comparison by hypothesis testing is a tool in inverse or parameter estimation problems to distinguish
mathematically relevant features in a biological or physical system under study. Consider that one has some
dynamical system which describes a biological process

dy

dx
= g(x, y(x; q), q) (1)

y(0) = y0.

Given a set of observations of some component(s) of the system under study at various instances in time, it is a
standard inverse problem to determine the value of the model parameter q, out of a set Q of admissible parameters,
which best describes the observed data. But an equally important problem is to establish, on a quantitative basis,
that the biophysical mechanisms represented in the mathematical model are necessary to describe the observed
data, and that no extraneous mechanisms have been included. This is the role of model comparison tests.

For certain classes of models, potentially extraneous mechanisms can be eliminated from the model by a
simple restriction on the underlying parameter space, while the form of the mathematical model (1) remains
unchanged. For instance, consider the convection-diffusion model

∂u

∂t
+ V ∂u

∂x
= D∂

2u

∂x2
,

where D is the diffusion coefficient and V is the bulk velocity of a transporting fluid. Such a model has been
used to describe the transport of labeled sucrose in the brain tissue of cats [4]. Yet if the cerebral transport of
sucrose is primarily driven by diffusion, then the convection term in the model above is extraneous. Given data
involving the transport of labeled sucrose, one would like to compare the accuracy of two mathematical models.
In the first, both convection and diffusion play a role and one must estimate the parameters V and D in an
inverse problem. In the second, it is assumed that convection is not present (V = 0), and only the coefficient of
diffusion D is estimated. Thus, in effect one has two mathematical models which must be compared in terms of
how accurately and parsimoniously they describe an available data set. Equivalently, this problem can be cast in
the form of a hypothesis test: one would like to test the null hypothesis V = 0, against the alternative hypothesis
that V 6= 0. Under the null hypothesis, the restricted mathematical model is contained within the mathematical
model subject to the unconstrained parameter space (in the sense that estimating both V and D simultaneously
includes the possibility that V = 0). For this reason, the unconstrained model must necessarily fit the data (in an
appropriate sense) at least as accurately as the constrained model. The role of the hypothesis test is to compare
these two models on a quantitative basis to investigate whether the model with V 6= 0 provides a significantly (in
some sense) better fit to the data.

As the above example makes clear, there is some similarity between model comparison testing and hypothesis
testing for a set of mathematical models which have the same mathematical form but differ in the restrictions
placed on the underlying parameter space. In such a case, one may resort to hypothesis testing as a technique
for model comparison. In this note, we are interested in the situation where the parameter set for the restricted
model, QH , can be identified as a linear subset of the admissible parameter set of the unrestricted model, Q (this
notation will be defined explicitly in Section 3). In addition to the study of convective mechanisms in models
of fluid transport in cat brains [4], hypothesis tests have also been used to investigate mortality and anemotaxis
in models of insect dispersal [5, 6]. These examples are summarized (focusing on the role of hypothesis testing)
in [2, 8]. More recently, model comparison by hypothesis testing has been conducted to investigate the division
dependence of death rates in a model of a dividing cell population [10], to evaluate the necessity of components
in viscoelastic stenosis models [26], and to serve as the basis for developing a methodology to determine if a
stenosis is present in a vessel based on input amplitude [3]. Thus the discussions and methods presented here
have widespread applications in biological modeling as well as in more general scientific modeling efforts.

While a number of techniques for quantitative model comparison exist, many of these rely upon assumptions
which are highly restrictive or can be hard to verify in practice. For instance, one can use likelihood ratio tests
(e.g., [16]) in order to evaluate the relative likelihoods of any pair of mathematical models. However, these tests
require the existence and complete mathematical specification of probability density functions describing the

2



likelihood of a set of observations. Alternatively, one can use information theoretic model comparison tests such
as Akaike’s Information Criterion (AIC) or similar tests (BIC, TIC, etc.) [14]. Still, such tests typically require
a complete likelihood specification. Though a least squares analog of the AIC test exists, it is only valid if all
observations are considered to be sampled from identical normal distributions with a constant variance (i.e., i.i.d.
normal).

Unlike likelihood estimation, least squares estimation generally requires only the first two statistical moments
of the observations to be specified [13, Ch. 3]. Additionally, the mathematical formulation is intuitive, and the
resulting estimates are more robust to error misspecification (when compared to likelihood estimation) [17, Ch.
2]. As such, there is an obvious appeal for model comparison tests which are easy to apply in a least squares
framework. Given the above discussion regarding the relationship between model comparison and hypothesis
testing for certain classes of problems, we focus our attention on model comparison in a least squares framework.

Hypothesis testing for least squares problems was considered at length by Gallant [19]. Subsequently, these
results were reconsidered by Banks and Fitzpatrick [2] under a slightly different set of assumptions to develop a
hypothesis test which could be computed from the residual sum of squares (RSS) after fitting the models to a data
set in a least squares framework. Unfortunately, this work was limited to cases in which the observations were
assumed to be characterized by constant variance. Both the works of Gallant as well as Banks and Fitzpatrick
rely upon an asymptotic theory for nonlinear least squares to demonstrate their results.

In this presentation we begin by defining a general least squares estimation problem. Next, we review
features of the asymptotic theory relevant to model comparison by hypothesis testing. Finally, we further extend
the results of Banks and Fitzpatrick (in a manner suggested possible by Gallant) to a more general variance
model. An example involving cell proliferation models with nonconstant variance in the experimental data is
used to illustrate application of the new model comparison techniques.

2 Least Squares Estimation

We begin with the dynamical system (1) above, which describes some hypothesized mathematical relationship
between an observed process y ∈ R

k, an independent variable (covariate) x ∈ R
m, and a set of parameters q ∈ Q.

For notational convenience, we assume without loss of generality that k = 1. Let f(x; q) be the solution to (or
observation for) the dynamical system. Suppose also that observations of the underlying process are noisy (that
is, subject to random error and/or fluctuations). Following standard inverse problem procedures [13, 15, 17, 24],
we may relate the mathematical model to the noisy data via a statistical model,

Yk = f(xk; q
∗) + Ek. (2)

Here, {Ek}nk=1 are random variables which account for any error (measurement error, modeling error, microfluctu-
ations, etc.) between the mathematical model and the recorded observations at values {xk}nk=1 of the independent
variable. Hence the {Yk}nk=1 are also random variables. It is assumed here that the values {xk} are known exactly.
The parameter q∗ is the hypothetical ‘true’ parameter which is assumed to generate the data for the observed
process. It has been tacitly assumed that the underlying biological or physical system is perfectly represented by
the mathematical model. (In fact, any mathematical model is only an approximation to reality. For the sake of
argument, one can assume that the mathematical model is sufficiently accurate so that any modeling error is sub-
sumed within the error random variables Ek. One can relax this assumption, though doing so greatly complicates
[18, 19] the analysis presented below.) It is further assumed that the error random variables are independent,
though not necessarily identically distributed, with central moments

E[Ek] = 0, 1 ≤ k ≤ n,

V ar(Ek) = σ2w(xk)
2, 1 ≤ k ≤ n.

With the assumptions and definitions above, we may define the weighted least squares cost function,

JWLS
n (q) =

1

n

n
∑

k=1

(

Yk − f(xk; q)

w(xk)

)2

. (3)
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The weighted least squares estimator is defined to be the random variable qWLS
n which minimizes the weighted

least squares cost function for a given set of random variables {Yk}, that is,

qWLS
n = arg min

q∈Qad

JWLS
n (q), (4)

where Qad ⊂ Q is the set of admissible values for the parameter q. We remark that qWLS
n is a random variable

which is dependent upon the random variables {Yk} (and hence the error random variables {Ek}). This dependence
is suppressed in the notation above (with the exception of the subscript n) for simplicity and clarity, although
we can write qWLS

n = qWLS
n ({Yk}) when necessary. In the event w(xk) = 1 for all 1 ≤ k ≤ n, the formulas above

reduce down to the familiar ordinary least squares formulae

JOLS
n (q) =

1

n

n
∑

k=1

(Yk − f(xk; q))
2
, (5)

qOLS
n = arg min

q∈Qad

JOLS
n (q). (6)

Finally, we remark that it is often convenient to use a vectorized notation for the least squares problems. Define
~f(q) = (f(x1; q), . . . , f(xn; q))

T . Then the statistical model (2) may be rewritten as

~Y = ~f(q) + ~E (7)

where

E[~E ] = ~0

Cov(~E) = σ2diag(w(x1)
2, . . . , w(xn)

2)

= σ2W.

Then clearly we can rewrite

JWLS
n (q) =

1

n

(

~Y − ~f(q)
)T

W−1
(

~Y − ~f(q)
)

(8)

JOLS
n (q) =

1

n

(

~Y − ~f(q)
)T (

~Y − ~f(q)
)

. (9)

The goal of an inverse or parameter estimation problem is to use a set of observations {yk} (realizations of the
random variables {Yk}) in order to determine an estimate of the true underlying parameter q∗. Intuitively, since
E[Yk] = f(xk; q

∗) for all 1 ≤ k ≤ n, we would expect the least squares estimator (either qWLS
n or qOLS

n ) to be
‘close’ to q∗ in an appropriate sense. In practice, one uses the realized data {yk} to determine an estimate q̂WLS

n

or q̂OLS
n which is a realization of the appropriate least squares estimator. In this paper, we are less interested in

the computational issues associated with finding an estimate and more interested in characterizing the statistical
properties of the estimator itself. Since the estimator is a random variable, it is described not by a numerical
value but rather by a probability distribution, and we may use results from asymptotic theory to characterize the
distribution of the estimator.

Going forward, for notational simplicity the dependence of the estimators and cost functions on n may be
suppressed (e.g., using JOLS(q) instead of JOLS

n (q)). This is the case particularly during the discussions of the
cell proliferation example in Section 5.

3 Asymptotic Theory and Model Comparison for Ordinary Least

Squares

We now review some existing results on the asymptotic properties of nonlinear ordinary least squares estimators,
particularly those relevant to hypothesis testing. The notation and organization of this section closely follows that
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of Banks and Fitzpatrick [2]. As mentioned previously, the work of Banks and Fitzpatrick was partially inspired
by the work of Gallant [19], and many of their results and assumptions are similar. In the discussion that follows,
we comment on any differences between the two approaches that we feel are noteworthy. While Gallant’s work
is remarkably general, allowing for a misspecified model and a general estimation procedure (both least mean
distance estimators and method of moments estimators are included), we do not consider such generalities here.
The comments below are limited to least squares estimation with a correctly specified model (recall the discussion
following Equation (2) above).

In this section we follow [2] in focusing exclusively on asymptotic properties and model comparison for
i.i.d. (absolute) error models. The theoretical results of Gallant similarly focus on i.i.d. errors, though some
mathematical tools are discussed which help to address more general error models [19, Ch. 2; pgs. 156–157]. In
fact, these tools are used in a rigorous fashion in the next Section to extend the results of [2].

We begin by establishing some notation and precisely defining the hypothesis testing problem. It is assumed
that the error random variables are defined on some probability triple (Ω,F , P ) and take their values in a space E.
By construction, it follows that the data {Yk} as well as the estimators qWLS

n and qOLS
n are also random variables

defined on this probability triple, and hence are functions of ω ∈ Ω so that we may write Yk(ω), q
OLS
n (ω), etc.,

as necessary.
As in the discussion of Section 2, we consider parameters q ∈ Qad ⊂ Q for a topological space Q. Given the

model f(x; q) defined above, it is assumed that the sampled values of the independent variables satisfy xk ∈ X
for all k, and for some metric space X . Moreover, if the set X is totally ordered (see Assumption (A3) below),
then one can define the empirical distribution function,

µn(x) =
1

n

n
∑

k=1

∆xk
(x)

where

∆xk
(x) =

{

0, x ≤ xk
1, otherwise

.

Clearly, µn ∈ P(X), the space of probability measures on X .
Finally, we return to the original goal of model comparison by hypothesis testing. For now, we use the notation

of ordinary least squares estimation, in keeping with the results presented in [2]. We have already defined above
the standard ordinary least squares estimator

qOLS
n = arg min

q∈Qad

JOLS
n (q).

As alluded to in the introduction, we might also consider a restricted version of the mathematical model in which
the unknown true parameter is assumed to lie in a subset QH ⊂ Qad ⊂ Q of the admissible parameter space. We
assume this restriction can be written as a linear constraint, Hq∗ = h, where H is a known linear function and h
is a known vector. Thus the restricted parameter space is

QH = {q ∈ Qad : Hq = h} .

Then the null and alternative hypotheses are

H0 : q∗ ∈ QH

HA : q∗ 6∈ QH .

We may define the restricted estimator

qOLS
n,H = arg min

q∈QH

JOLS
n (q), (10)

and the corresponding estimate q̂OLS
n,H . It is clear that JOLS

n (q̂OLS
n ) ≤ JOLS

n (q̂OLS
n,H ), since QH ⊂ Qad. This fact

forms the basis for a model comparison test based upon the residual sum of squares.
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With these definitions, attention can now be directed toward establishing a quantitative basis upon which
the null hypothesis H0 should either be accepted or rejected. Again, the results presented below are paraphrased
from [2], and comments have been included to indicate the alternative approach due to [19]. No proofs are given
here, though the interested reader can find a complete set of proofs in [2] and [19]. First, we consider the following
set of assumptions:

(A1) The error random variables {Ek} are independent and identically distributed random variables with distri-

bution function P (E). Moreover, E[~E ] = ~0 and Cov(~E) = σ2In where In is the n× n identity matrix.

(A2) Q is a separable, finite-dimensional topological space (i.e., Q ⊂ R
p), and Qad is a compact subspace of Q

with q∗ ∈ int(Qad).

(A3) X is a compact subset of Rm.

(A4) The function f(·; ·) ∈ C2(Q,C(X)).

(A5) There exists a finite measure µ on X such that

1

n

n
∑

k=1

g(xk) =

∫

X

g(x)dµn(x) →
∫

X

g(x)dµ(x)

for all continuous functions g. That is, the probability distributions µn converge weakly to µ, or µn converges
to µ in the weak ∗ topology (when P (X) is viewed as a subset of C∗(X), the dual of the space of continuous
functions).

(A6) The functional

J∗(q) = σ2 +

∫

X

(f(x; q∗)− f(x; q))
2
dµ(x)

has a unique minimizer at q∗ ∈ Qad.

(A7) The matrix

J =
∂2J∗(q∗)

∂q2

= 2

∫

X

(

∂f(x; q∗)

∂q

∂f(x; q∗)T

∂q
+
∂2f(x; q∗)

∂q2
(f(x; q∗)− f(x; q∗))

)

dµ(x)

= 2

∫

X

(

∂f(x; q∗)

∂q

∂f(x; q∗)T

∂q

)

dµ(x)

is positive definite.

(A8) The matrix H , of dimension r × p, has full rank r.

The most notable difference between the assumptions above (which are those of [2]) and those of [19] is
assumption (A5). In its place, Gallant states the following.

(A5′) Define the probability measure

ν(S) =

∫

X

∫

E

IS(E , x)dP (E)dµ(x)

for a set S ⊂ E × X and µ defined as above. Then almost every realized pair (ǫk, xk) is a Cesaro sum
generator with respect to ν and a dominating function b(E , x) satisfying

∫

X×E
bdν <∞. That is,

lim
n→∞

1

n

n
∑

k=1

g(ǫk, xk) =

∫

X

∫

E

g(E , x)dν(E , x)
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almost always, for all continuous functions g such that |g(E , x)| < b(E , x). Moreover, it is assumed that for
each x ∈ X , there exists a neighborhood Nx such that

∫

E

sup
Nx

b(E , x)dP (E) <∞.

The assumption (A5 ′) is stronger than the assumption (A5) as it supposes not only the existence of a
dominating function, but also involves the behavior of the probability distribution P , which is generally unknown
in practice. The practical importance of the dominating function b arises in the proof of consistency for the
least squares estimator (see Theorem 3.1 below). As has been noted elsewhere (see, e.g., [1], [24, Ch. 12]), the
strong consistency of the estimator is proved by arguing that J∗(q) is the almost sure limit of JOLS

n (q). Thus,
if JOLS

n (q) is ‘close’ to J∗(q) and J∗(q) is uniquely minimized by q∗, it makes intuitive sense that qOLS
n , which

minimizes JOLS
n (q), should be close to q∗. This task is made difficult by the fact that the null set (from the

‘almost sure’ statement) may depend on the parameter q. In [2], the almost sure convergence of JOLS
n (q) to J∗(q)

is demonstrated constructively; that is, by building a set A ∈ F (which does not depend on q) with P (A) = 1
such that JOLS

n (q) → J∗(q) for each ω ∈ A and for each q ∈ Q. This construction relies upon the separability
of the parameter space Q (assumption (A2)) as well as the compactness of the space X (assumption (A3)). The
alternative approach of Gallant uses a consequence of the Glivenko-Cantelli theorem [19, pg. 158] to demonstrate
a uniform (with respect to q) strong law of large numbers. The proof relies upon the dominated convergence
theorem, and hence the dominating function b. As a result, Gallant does not need the space Q to be separable
or the space X to be compact. It should be noted, however, that in most practical applications of interest Q and
X are compact subsets of Euclidean space so that relaxing these assumptions provides little advantage.

The choice of dominating function b(E , x) deserves further comment. Define the functional h : E ×X → R

by
h(E , x) = (E + f(x, q∗)− f(x, q))

2
.

Then b(E , x) is chosen so that h, as well as its derivatives ∂h
∂qi

, ∂2h
∂qi∂qj

and the product terms ∂h
∂qi

∂h
∂qj

(for all

combinations of 1 ≤ i, j ≤ p), are dominated by b for all q ∈ Q [19, pg. 256]. The domination of the function h by
the ν-integrable function b can be used to obtain a number of desirable results, including uniform convergence and
the interchange of differentiation and integration [19, Lemma 3]. As a result, one does not need a positive definite
hessian matrix J to prove the asymptotic normality of scores [19, Thm. 4] (contra. [2, Thm. 4.1]). Rather, one
only needs J to be nonsingular in order for the conclusion of Theorem 3.2 below to be well-defined.

While the list of assumptions above is extensive, we remark that the set is not overly restrictive. Assumptions
(A2) and (A3) are naturally satisfied for most problem formulations (although the requirement q∗ ∈ int(Qad) may
be occasionally problematic [2, Remark 4.4]). Assumptions (A4) and (A8) are easily checked. Though assumption
(A1) may be difficult to verify, it is much less restrictive than, say, a complete likelihood specification. Moreover,
residual plots [13, Ch. 3] can aid in assessing the reliability of the assumption.

Assumption (A5) is more difficult to check in practice as one does not know the limiting distribution µ.
Of course, this is simply an assumption regarding the manner in which data is sampled (in the independent
variable space X)–namely, that it must be taken in a way that ‘fills up the space’ in an appropriate sense.
Similarly, assumptions (A6) and (A7) cannot be verified directly as one knows neither µ nor q∗. In many
practical applications of interest, µ is Lebesgue measure, and one can assess the assumptions at qOLS

n (which is
hopefully close to q∗). Of course, if assumption (A7) holds, then assumption (A6) must hold at least for a small
region around q∗, though possibly not on all of Qad.

As noted above, assumption (A7) is not strictly necessary if one uses assumption (A5 ′) in the place of (A5).
Given assumptions (A2)–(A4), it follows that the function h (and its relevant derivatives; see above) is bounded
(and hence dominated by a ν-measurable function) provided the space E in which the random variables Ek take
their values is bounded. On one hand, this has the desirable effect of weakening the assumptions placed on the
Hessian matrix J . Yet the assumption that E is bounded precludes certain error models, in particular normally
distributed errors.

Finally, we remark that while we only consider the linear restriction Hq∗ = h, it is possible to extend the
results above to include nonlinear restrictions of the form H̃(q∗) = h̃ [19, pg. 47ff]. In such a case, one is interested

7



in the restricted parameter space

Q̃H =
{

q ∈ Qad : H̃(q) = h̃
}

.

Assuming the null hypothesis is true, one can construct the linearization

L(q) = H̃(q∗) +
∂H̃(q∗)

∂q
(q − q∗)

= h̃+
∂H̃(q∗)

∂q
(q − q∗).

Then
Q̃H ≈

{

q ∈ Qad : L(q) = h̃
}

.

But the condition L(q) = h̃ is equivalent to the condition that

∂H̃(q∗)

∂q
q =

∂H̃(q∗)

∂q
q∗.

Thus, under the null hypothesis, the nonlinear restriction H̃(q∗) = h̃ is asymptotically locally equivalent to the

linear restriction of assumption (A8) with H = ∂H̃(q∗)
∂q and h = ∂H̃(q∗)

∂q q∗. As such, we only consider the problem
of testing a linear hypothesis. For nonlinear hypotheses, the results presented here are accurate to the order of
the linear approximations above.

We now give several results which summarize the asymptotic properties of the ordinary least squares estimator.

Theorem 3.1. Given assumptions (A1)–(A6), qOLS
n → q∗ with probability one. That is,

P
({

ω ∈ Ω
∣

∣

∣
qOLS
n (ω) → q∗

})

= 1.

This theorem states that the ordinary least squares estimator is consistent. We remark that the finite dimen-
sionality of the parameter space Q (see assumption (A2)) is not necessary in the proof of this theorem, and it is
sufficient for the function f to be continuous from Q into C(X) rather than having two continuous derivatives.

Given Theorem 3.1, the following theorems may also be proven.

Theorem 3.2. Given assumptions (A1)–(A7), as n→ ∞
√
n
(

qOLS
n − q∗

) D−→ N
(

0, 2σ2J −1
)

,

where the convergence is in distribution, and occurs with probability one.

Theorem 3.3. Given assumptions (A1)–(A8) and assuming H0 is true, then as n→ ∞
√
n
(

qOLS
n,H − qOLS

n

) D−→ N
(

0,J−1V J −1
)

where
V = 2σ2HT (HJ −1HT )−1H.

Again, the convergence occurs with probability one.

In effect, Theorem 3.3 states that the restricted and unrestricted OLS estimators will converge to one another
provided H0 is true. Now we can turn to the main result of interest. Define

UOLS
n =

n
(

JOLS
n (qOLS

n,H )− JOLS
n (qOLS

n )
)

JOLS
n (qOLS

n )
.

8



Theorem 3.4. Under assumptions (A1)–(A8) and assuming H0 is true, then as n→ ∞

UOLS
n

D−→ χ2(r)

with probability one, where χ2(r) is a Chi-square distributed with r degrees of freedom.

Proofs of Theorems 3.1–3.4 can be found in [2]. We remark again that very similar results (under slightly
differing assumptions) can be found in [19] where it is shown that the statistic

ŨOLS
n =

(n− p)
(

JOLS
n (qOLS

n,H )− JOLS
n (qOLS

n )
)

JOLS
n (qOLS

n )

is asymptotically distributed as χ2(r) [19, pg. 236]. The two model comparison statistics UOLS
n and ŨOLS

n are
asymptotically equivalent, the difference in scaling factors amounting to a bias correction in the estimation of the
variance parameter σ2. See [2, Thm. 4.6] and [19, pg. 236] for details.

The practical importance of this theorem is that one has a quantitative basis upon which to assess the
null hypothesis. Because the unrestricted model contains the restricted model as a special case, we must have
JOLS
n (q̂OLS

n,H ) ≥ JOLS
n (q̂OLS

n ) and thus ûOLS
n ≥ 0 where ûOLS

n is a realization of UOLS
n . Heuristically, UOLS

n is used
to indicate the relative likelihood that the results obtained from a given realization of the data are the result of
random chance. A full discussion of the use and interpretation of the test statistic is given in [2, pg. 518–519]
and [13, Sec. 3.5.1]. Significantly, the terms JOLS

n (q̂OLS
n ) and JOLS

n (q̂OLS
n,H ) used to compute ûOLS

n are a natural
byproduct of the optimizations (6) and (10) and can be returned directly by most optimization software. It should
also be noted that the limiting distribution for UOLS

n is independent of the model parameterization. As such, the
results are robust to any reparameterization or change of variables in the mathematical model f(x; q).

4 Extension to Weighted Least Squares

The results presented above are quite useful, but they only apply to the class of problems in which the error
random variables are independent and identically distributed with constant variance σ2. While the assumption
of independence is common, there are many practical cases of interest in which these random variables are not
identically distributed. As discussed in Section 2, one may encounter a weighted least squares problem in which
E[Ek] = 0 for all k but V ar(Ek) = σ2w(xk)

2. In such a case, the results above (namely, assumption (A1)) fail to
apply directly. See, e.g., [7, Sec. 2] and references therein as well as [13] for more information on the development
of error models.

In order to extend the results presented above to independent, heteroscedastic error models (and hence, to
weighted least squares problems), we turn to a technique suggested by Gallant [19, pg. 124] in which one defines a
change of variables in an attempt to normalize the heteroscedasticity of the random variables. As has been noted
previously, Gallant used this technique under a different set of assumptions in order to obtain results similar to
those presented above. This change of variables technique will allow us to extend the results above, originally
from [2], in a rigorous fashion.

Consider the following assumptions.

(A1′a) The error random variables {Ek} are independent and have central moments which satisfy E[~E ] = ~0,

Cov(~E) = σ2W = σ2diag(w(x1)
2, . . . , w(xn)

2).

(A1′b) The distributions of the random variables {Ek} are completely determined by the first two central moments.

(A1′c) The function w : X → R
+ is continuous.

(A7′) The matrix

J̃ = 2

∫

X

1

w(x)2

(

∂f(x; q∗)

∂q

∂f(x; q∗)T

∂q

)

dµ(x)

is positive definite.

9



Theorem 4.1. Under assumptions (A1′a)–(A1′c), (A2)–(A6), (A7′), and (A8),

1. qWLS
n → q∗ with probability one, and

2.
√
n
(

qWLS
n − q∗

) D−→ N
(

0, 2σ2J̃−1
)

.

Assuming further that H0 is true,

3.
√
n
(

qWLS
n,H − qWLS

n

) D−→ N
(

0, J̃−1Ṽ J̃ −1
)

where
Ṽ = 2σ2HT (HJ̃ −1HT )−1H.

Again, the convergence occurs with probability one. Finally, defining

UWLS
n =

n
(

JWLS
n (qWLS

n,H )− JWLS
n (qWLS

n )
)

JWLS
n (qWLS

n )
,

4. UWLS
n

D−→ χ2(r) with probability one.

Proof. We first recall the statistical model (2)

Yk = f(xk; q
∗) + Ek,

which can be written in vector form (7) as
~Y = ~f(q∗) + ~E ,

where now E[~E ] = ~0 and Cov(~E) = σ2W . Define L = diag(w(x1), . . . , w(xn)). It follows that LL
T = L2 =W (L

is the Cholesky decomposition of W ). Also, L−1 exists and can be applied to both sides of (7) to obtain

L−1~Y = L−1 ~f(q∗) + L−1~E
or

~Z = ~h(q∗) + ~η, (11)

where ~Z, ~h and ~η have the obvious definitions. The OLS cost functional for the transformed model and data (11)
is

JOLS
n (q) =

1

n

(

~Z − ~h(q)
)T (

~Z − ~h(q)
)

=
1

n

(

L−1~Y − L−1 ~f(q)
)T (

L−1~Y − L−1 ~f(q)
)

=
1

n

(

~Y − ~f(q)
)T

L−1L−1
(

~Y − ~f(q)
)

=
1

n

(

~Y − ~f(q)
)T

W−1
(

~Y − ~f(q)
)

.

In other words, the ordinary least squares cost function with respect to the transformed model and data (11)
is exactly the weighted least squares cost function (8) for the original model and data. Thus, in order to prove
Theorem 4.1, we will show that the rescaled model (11) satisfies the assumptions of Theorems 3.1–3.4.

Clearly, E[~η] = ~0 and Cov(~η) = σ2L−1WL−1 = σ2In. Thus the random variables ηk (the components of ~η)
are independent and identically distributed (by assumption (A1′b)) with constant variance, and thus assumption
(A1) is satisfied. Assumptions (A2), (A3), (A5), and (A8) are unchanged. For assumption (A4), we must show

10



that the function h(x; q) = f(x; q)/w(x) ∈ C2(Q,C(X)). This follows from assumption (A1′c) and the fact that
w(x) does not depend on q. For assumption (A6), we must show

J̃∗(q) = σ2 +

∫

X

(h(x; q∗)− h(x; q))
2
dµ(x)

= σ2 +

∫

X

(

f(x; q∗)− f(x; q)

w(x)

)2

dµ(x)

has a unique minimum at q = q∗. Clearly, J̃∗(q∗) = σ2. Since the function J∗(q) (see assumption (A6)) has
a unique minimum at q = q∗ and w(x) > 0, it follows immediately that J̃∗(q∗) > σ2 if q 6= q∗ so that J̃∗(q)
has a unique minimum at q = q∗. Assumption (A7) is satisfied for the formulation (11) directly by assumption
(A7′).

In fact, the proof of Theorem 4.1 applies to any set of observations in which a change of variables can be
used to produce a set of error random variables which are independent and identically distributed. The weighted
least squares problem addressed in the above discussion arises from an observation process in which the errors
are assumed to be independent but are not necessarily identically distributed. By rescaling the observations
in accordance with their variance (which is assumed to be known) one obtains error random variables which
are identically distributed as well as independent. Even more generally, it is not strictly necessary that the
observations be independent. For instance, one might have observations generated by an autoregressive process
of order r. Then, by definition, some linear combination of r observational errors will give rise to errors which
are independent and identically distributed. This linear combination is exactly the change of variables necessary
to obtain a model which is suitable for ordinary least squares. Thus, even in the most general situation, when
one has Cov(~E) = R, one may still use the Cholesky decomposition in the manner discussed above, provided one
has sufficient assumptions regarding the underlying error process. See [19, Ch. 2] for details.

As in Section 3, the assumption (A7′) is the most problematic to verify in practice. In the proof above for
the weighted least squares problem, the assumption (A1) has been replaced with assumptions (A1′a)–(A1′c), a
change which merely accounts for the heteroscedastic statistical model. Then the assumptions (A2)–(A6) and
(A8) for the rescaled model (11) can be verified directly from the original assumptions (A2)–(A6) and (A8) for
the ordinary least squares formulation, as shown above. The only exception is the assumption (A7), which cannot
be established directly from the ordinary least squares assumptions, hence the need for assumption (A7′). On
one hand, the existence of a unique minimum (assumption (A6)) is sufficient to prove that the matrix J or J̃
must be positive semi-definite, so that the assumption (A7) or (A7′) may not be overly restrictive. Alternatively,
as has been noted before, one can relax the assumptions (A7) or (A7′) by assuming the existence of a dominating
function b. Moreover, provided the weights w(x) satisfy the slightly stronger requirement w(x) ≥ δ > 0 for all
x ∈ X , then one can use the dominating function b (from the ordinary least squares problem) to obtain a new
dominating function b̃(E , x) = δ−1b(E , x) which is also ν-integrable. Even in this case, though, one must still
make the additional assumption that J̃ is invertible.

All of the results above also readily extend to systems governed by partial differential equations; the essential
elements of the theory are the form of the discrete observation operator for the dynamical system and the statistical
model as given in (2).

5 Example: Hypothesis Testing in Models of Cell Proliferation

We now consider a practical application of model comparison for a weighted least squares problem. We consider the
problem of modeling flow cytometry data for a dividing population of lymphocytes labeled with the intracellular
dye CFSE. As cells divide, the highly fluorescent intracellular CFSE is partitioned evenly between two daughter
cells. A flow cytometer measures the fluorescence intensity of labeled cells as a surrogate for the mass of CFSE
within a cell, thus providing an indication of the number of times a cell has divided. Most commonly, the
data is presented in histograms showing the distribution of CFSE in the measured population of cells at each
measurement time. A sample data set is shown in Figure 1. See [12, 25] and the references therein for a detailed
overview of the experimental procedure.
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Figure 1: Typical histogram data for a CFSE-based proliferation assay showing cell count vs. log fluorescence
intensity; originally from [22].

The mathematical modeling problem is to develop a system of equations which accounts for the manner in
the population distribution of CFSE evolves as cells divide, die, and slowly lose fluorescence intensity as a result
of protein turnover. In doing so, one must account for not only the division and death dynamics of the population
of cells, but also how these processes relate to the observed distribution of fluorescence intensities. Let ñi(t, x̃)
represent the label-structured density (cells per unity of intensity, cells/UI) of cells at time t having completed i
divisions and having fluorescence intensity x̃ from intracellular CFSE (that is, not including the contribution of
cellular autofluorescence). Then it can be shown that this density can be modeled in terms of two independently
functioning components, one accounting for the division dynamics of the population of cells, and one accounting
for the intracellular processing of CFSE [20, 23]. It has been shown that the slow loss of fluorescence intensity as
a result of intracellular protein turnover can be well-modeled by a Gompertz growth/decay process [9, 25]. It has
also been shown that the highly flexible cyton model [21] can very accurately describe the evolving generation
structure (cells per number of divisions undergone) [12]. Thus we consider the model

ñ(t, x̃) = Ni(t)n̄i(t, x̃) (12)

The functions n̄i(t, x̃) each satisfy the partial differential equation

∂n̄i(t, x̃)

∂t
− ce−kt ∂[x̃n̄i(t, x̃)]

∂x̃
= 0 (13)

with initial condition

n̄i(0, x̃) =
2iΦ(2ix̃)

N0
,

where Φ(x) is the label-structured density of the cells at t = 0, and N0 is the number of cells in the population
at t = 0, all of which are assumed to be undivided. The functions Ni(t) are described by the cyton model,

N0(t) = N0 −
∫ t

0

(

ndiv
0 (s)− ndie

0 (s)
)

ds

Ni(t) =

∫ t

0

(

2ndiv
i−1(s)− ndiv

i (s)− ndie
i (s)

)

ds, (14)
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where ndiv
i (t) and ndie

i (t) indicate the numbers per unit time of cells having undergone i divisions that divide
and die, respectively, at time t. In this regard, the cyton model (and hence, the mathematical model as a whole)
can be considered as a large class of models differentiated by the mechanisms one uses to describe the terms
ndiv
i (t) and ndie

i (t), which we consider in more detail below. We remark that the mathematical model (12) can
be equivalently characterized by the system of partial differential equations

∂ñ0

∂t
− ce−kt ∂x̃ñ0

∂x̃
=
(

ndiv
0 (t)− ndie

0 (t)
)

n̄0(t, x̃)

∂ñ1

∂t
− ce−kt ∂x̃ñ1

∂x̃
=
(

2ndiv
0 (t)− ndiv

1 (t)− ndie
1 (t)

)

n̄1(t, x̃)

...

Given the solution ñ(t, x̃) =
∑

ñi(t, x̃) in terms of the fluorescence resulting from intracellular CFSE, one must
add in the contribution of cellular autofluorescence to obtain a population density structured by total fluorescence
intensity, which is the quantity measured by a flow cytometer. This density can be computed as

n(t, x) =

∫ ∞

0

ñ(t, x̃)p(x− x̃)dx̃,

where p(xa) is a density function describing the distribution of cellular autofluorescence [20].
Let φ0(t) and ψ0(t) be probability density functions (in units 1/hr) for the time to first division and time to

death, respectively, for an undivided cell. Let F0, the initial precursor fraction, be the fraction of undivided cells
which would hypothetically divide in the absence of any cell death. It follows that

ndiv
0 (t) = F0N0

(

1−
∫ t

0

ψ0(s)ds

)

φ0(t)

ndie
0 (t) = N0

(

1− F0

∫ t

0

φ0(s)ds

)

ψ0(t). (15)

Similarly, one can define probability density functions φi(t) and ψi(t) for times to division and death, respectively,
for cells having undergone i divisions (he cellular ‘clock’ begins at the completion of the previous division), as well
as the progressor fractions Fi of cells which would complete the ith division in the absence of cell death. Then

ndiv
i (t) = 2Fi

∫ t

0

ndiv
i−1(s)

(

1−
∫ t−s

0

ψi(ξ)dξ

)

φi(t− s)ds

ndie
i (t) = 2

∫ t

0

ndiv
i−1(s)

(

1− Fi

∫ t−s

0

φi(ξ)dξ

)

ψi(t− s)ds. (16)

It is assumed that the probability density functions for times to division are lognormal, and that undivided cells
and divided cells have two separate density functions. Similarly, it is assumed that divided cells die with a
lognormal probability density. Thus

φ0(t) =
1

tσdiv
0

√
2π

exp

(

− (log t− µdiv
0 )2

2(σdiv
0 )2

)

φi(t) =
1

tσdiv
i

√
2π

exp

(

− (log t− µdiv
i )2

2(σdiv
i )2

)

(i ≥ 1)

ψi(t) =
1

tσdie
i

√
2π

exp

(

− (log t− µdie
i )2

2(σdie
i )2

)

(i ≥ 1).

We treat cell death for undivided cells as a special case. It is assumed that the density function describing cell
death for undivided cells is

ψ0(t) =
F0

tσdie
0

√
2π

exp

(

− (log t− µdie
0 )2

2(σdie
0 )2

)

+ (1 − pidle)(1 − F0)βe
−βt, (17)
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where pidle is the fraction of cells which are will neither die nor divide over the course of the experiment. The
form of the function above arises from the assumption that progressing cells die with a lognormal probability
density. Nonprogressing cells die at an exponential rate, except for the fraction of idle cells. For the purposes of
this paper, we are interested in testing the null hypothesis pidle = 0 against the alternative hypothesis pidle 6= 0.
A more detailed discussion of the mathematical model can be found in [11].

With the mathematical model established, we now turn our attention to a statistical model of the data. Let
N j

k be a random variable representing the number of cells measured at time tj with log-fluorescence intensity in the
region [zk, zk+1). Let q be the vector of parameters of the model (12), so that we may rewrite n(t, x) = n(t, x; q).
Define the operator

I[n](tj , zk; q) =

∫ zk+1

zk

10z ln(10)n(t, 10z; q)dz,

which represents the computation of cell counts from the structured density n(t, x) transformed to the logarithmic
coordinate z = log10 x. Then a statistical model linking the random variables N j

k to the mathematical model is

N j
k = λjI[n̂](tj , z

j
k; q0) + λj

(

I[n̂](tj , z
j
k; q0)

)γ

Ekj (18)

where the λj are scaling factors [25, Ch. 4] and the random variables Ekj satisfy assumption (A1). In principle, it
is possible to use a multi-stage estimation procedure to determine the values of the statistical model parameters
λj and γ [17] but we do not consider that here. It is assumed that λj = 1 for all j.

In the case that γ = 0, one has precisely absolute error and a statistical model suitable for the ordinary least
squares cost function (5) and estimator (6) to estimate the unknown parameter q0. The results of using the OLS
estimator can be found in Figure 2 for the null and alternative hypotheses. The ordinary least squares cost of
fitting the model (12) under the null hypothesis is JOLS(q̂OLS

H ) = 4.0423× 1011. The ordinary least squares cost
under the alternative hypothesis is JOLS(q̂OLS) = 3.6228 × 1011 [11]. We would like to determine whether or
not the small decrease in cost associated with the alternative hypothesis is outweighed by the larger number of
parameters (17 versus 16) required. As seen in Figure 2, the fits of the two models to the data are very similar,
so that one cannot justify a conclusion solely on the basis of the slightly reduced cost. Rather, one should use a
model comparison test.

However, as the theory of Sections 3 and 4 suggests, one cannot rigorously apply a model comparison test
unless the underlying statistical model is accurate. It follows from the form of Equation (18) that when γ = 0 the
residuals rjk = I[n](tj , z

j
k; q̂

OLS)−nj
k (where the nj

k are realizations of the data random variables N j
k) correspond

to realizations of the error terms Ej
k. As such, these residuals should appear random when plotted as a function

of the magnitude of the model solution [13, Ch. 3]. However, we see in Figure 3 (top) that this is not the case.
There is a noticeable increase in the variance of the residuals as the magnitude of the model solution increases.
Thus we must conclude that the constant variance model γ = 0 is not correct, and that the ordinary least squares
cost function is not adequate as a basis for model comparison. A constant coefficient of variation (CCV) model
(γ = 1, usually called relative error) leading to a generalized least squares (GLS) problem formulation was also
considered in [25]. Again residual analysis suggested that this was not the correct formulation.

In fact, the most appropriate theoretical value of γ appears to be γ = 1/2 [25] so that the weighted least
squares cost function (3) and estimator (4) should be used. Because the weights must be bounded away from
zero (see assumption (A1′c)), we define the weights to be

w(tj , z
j
k) =







(

I[n](tj , z
j
k; q

∗)
)1/2

, I[n](tj , z
j
k; q

∗) > I∗

(I∗)
1/2

, I[n](tj , z
j
k; q

∗) ≤ I∗
.

The cutoff value I∗ > 0 is determined by the experimenter so that the resulting residuals appear random. In the
work that follows, I∗ = 1× 104. Because wj

k depends upon the unknown parameter q∗, an iterative optimization
scheme must be used (see [13, Ch. 3] or [17, Ch. 2] for details). Using an estimate of q∗ (say, the ordinary least
squares estimate q̂OLS), one computes the weights according to the formula above (with q∗ replaced by q̂OLS)
and then uses these (fixed) weights to compute the weighted least squares estimate q̂WLS . One can then use this
updated estimate to compute new weights, and continue the process iteratively until convergence is achieved.
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Figure 2: Left: results of fitting the model (12) under the null hypothesis using ordinary least squares. Right:
results of fitting the model (12) under the alternative hypothesis using ordinary least squares. Both fits to data
are superb, and it is difficult to distinguish between the two models from these graphics.
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Figure 3: Top: residual plots for the mathematical model under the null (left) and alternative (right) hypotheses,
showing the residuals in terms of the magnitude of the model solution. Bottom: modified residual plots for the
mathematical model under the null (left) and alternative (right) hypotheses, showing the modified residuals in
terms of the magnitude of the model solution. While the variance of the standard residuals is observed to grow
with the magnitude of the model solution, we see that the variance of the modified residuals is largely constant.

Residual plots obtained using the theoretical value of γ = 1/2 are shown in Figure 3 (bottom). (The weighted
least squares fit to data is not shown, as the results are sufficiently similar to the ordinary least squares fits of
Figure 2.) While the variance of the standard residuals is observed to increase with the magnitude of the model
solution, the variance of the modified residuals is approximately constant, providing some evidence that the
statistical model (18) (with γ = 1/2) is correct. As such, we are prepared to use the model comparison test
statistic to analyze the null hypothesis.

Under the null hypothesis, the weighted least squares cost functional is JWLS(q̂WLS
H ) = 10.3040×106. Under

the alternative hypothesis, the weighted least squares cost functional is JWLS(q̂WLS) = 8.8394 × 106. Thus
the model comparison statistic is ûWLS ≈ 711.3 (there are 4293 data points). We conclude then, that there
is overwhelming evidence to reject the null hypothesis in favor of the alternative hypothesis. In the present
application, this strongly suggests that the fraction of cells which remain idle over the course of the experiment is
a significant mathematical feature which should be included in an accurate model of proliferation assay data. As
with the cat brain diffusion-convection model discussed in the introduction, hypothesis testing has again allowed
us to better justify the use of key model components.

This example illuminates some desirable features of the model comparison statistic. The statistic is very easy
to calculate from the minimized least squares cost functionals and provides a theoretically sound basis on which to
test a hypothesis. We also see that the test statistic can provide meaningful comparisons between mathematical
models that are not easily distinguishable from the fits of those models to data (Figure 2) or from the ordinary
least squares cost functions.
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6 Concluding Remarks

In this note we have outlined how hypothesis testing can be used as a tool for model comparison for certain classes
of models. Beginning with an ordinary least squares framework, we reviewed assumptions and theorems which
form the basis for a rigorous quantitative theory of model comparison based upon the statistical properties of
least squares estimators. Two similar approaches, one from [2] and one from [19], have been considered and the
relative merits of the different assumptions involved have been reviewed. The former approach is more general
in the sense that one does not need to find a dominating function b(E , x) in order to apply the theoretical results
presented. Yet the tradeoff is that one must place a stronger (and much harder to verify in practice) assumption
on the hessian matrix J when compared to the latter approach. It appears that the most advantageous approach
will depend largely upon the specific context in which the theory is used.

It has also been shown that the techniques for model comparison by hypothesis testing can be extended
from ordinary least squares to weighted least squares through a change of variables designed to account for a
heteroscedastic error model. The result is significant as it extends the utility of the model comparison test to
include situations in which the errors characterizing the observation process are independent but not identically
distributed. As noted above, the same technique can be used to extend the result to account for non-independent
errors as well, provided one has some additional information regarding the correlation between observations.

It is reassuring that the primary result concerning the model comparison statistic (either UOLS
n or UWLS

n )
is essentially unchanged–one simply computes the relative difference between the cost functional minimized over
the admissible parameter space and the cost functional minimized over the linearly restricted parameter space.
In effect, one must only take care to properly account for the variance of the observation errors in the formulation
of the cost function, and the resulting model statistic will be Chi-square distributed. The test is similar in form
to ANOVA-type statistical tests [2] and depends only on the residual sums of squares (RSS) for the restricted and
unrestricted models. This is convenient as the test is independent of model parameterization, and the RSS can be
returned as a byproduct of optimization by most software packages. Because the test is designed for least squares
type estimation, only the first two central moments of the statistical model need to be specified, as opposed to a
conditional density function in maximum likelihood estimation procedures. The major computational drawbacks
of the method are that one must compute two separate inverse problems (as opposed to use of the Wald test
statistic [19]) and one can only compare nested models pairwise (as opposed to use of Akaike’s Information
Criterion [14]).

The unspecified form of the function w(x) is meant to indicate its wide applicability. An important subclass
of weighted least squares problems, sometimes termed generalized least squares [13, Ch. 3] occurs when the
magnitude of the observation error is assumed to be directly proportional to the magnitude of the true model value.
In that case, w(x) = f(x; q∗). As seen in the example of Section 5, this results in an interesting computational
problem. In the theory above it is tacitly assumed that the weights w(xk) are known exactly. However, one does
not know the true parameter value q∗. While computational strategies exist to handle such situations [13, 17], the
effects of this additional level of approximation are not considered in the theory presented here, and it is assumed
that the weights, even when computed iteratively, are known exactly. More generally, the weight functions may
depend upon some additional nuisance parameters, w(x) = w(x; τ) (in the example of Section 5, τ = ({λj}, γ))
which must be estimated using a multi-stage procedure [17, 19].

There are some open problems in extending this theory further. For instance, assumption (A2) effectively
limits the application of the results presented to models in which the underlying parameter space is a subset
of finite-dimensional Euclidean space. Yet in some situations, for instance the nonparametric estimation of
probability measures [7], the ‘parameters’ to be estimated are contained within an infinite-dimensional function
space. While computational methodologies have been developed for such situations, the statistical properties of
the least squares estimators have not. Thus one cannot rely upon any asymptotic results for the quantification
of uncertainty, nor can one test hypotheses in the manner demonstrated above.

It should be clear by this point that model comparison tests have immense potential for use as a key tool
when working with biological modeling applications. The results presented here and the references herein provide
a rigorous foundation for careful use of these tests in practice. The wide applicability of the results presented
here will continue to find use in biological modeling projects, as well as provide motivation for further theoretical
study and expansion of model comparison testing ideas.
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