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1. Introduction

These notes are arranged in the following manner. In the introduction section, we

use several examples to illustrate some of the issues that must be addressed when we

model hypersonic flows. This leads to a discussion of what types of computational fluid

dynamics methods are suitable for these flows. Then the conservation equations for a

mixture of chemically reacting and weakly ionized gases is developed. We discuss the

thermochemistry models and the relevant boundary conditions for these flows. Then in

the third section, computational fluid dynamics methods for these flows are discussed. We

analyze the conservation equations, and discuss an upwind method. Then, the integration

of the source terms is discussed. In the fourth section we discuss several advanced topics

in the modeling of hypersonic flows.

1.1 Examples of Hypersonic Flows

In this subsection, we discuss a few external hypersonic flows to illustrate some of the

issues that we must address when the flow field is chemically reacting. These examples

show that aerothermochemistry can have a major impact on aerodynamic coefficients, heat

transfer rates, and radiative emission from hypersonic flows.

1.1.1 Hypersonic Double-Cone Flow

An interesting flow field is created by a double-cone geometry. Figure 1.1 plots a

schematic of this flow field for an approximately Mach 12 free-stream condition. Note the

attached shock wave that originates at the first cone tip, the detached shock wave formed

by the second cone, and the resulting shock triple point. The transmitted shock impinges

on the second cone surface, which separates the flow and produces a large localized increase
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in the pressure and heat transfer rate. This pressure rise causes the flow to separate, and

also produces a supersonic under-expanded jet that flows downstream near the second cone

surface. The size of the separation zone depends strongly on the location and strength of

the shock impingement. This flow field is very sensitive to the wind tunnel conditions, the

physical models used in the CFD code, and the quality of the numerical methods used to

predict the flow (Ref. 40).
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M>>1

Contact surface
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Sonic line

Separation shock
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Fig. 1.1 – Schematic of the hypersonic double-cone flow field.

Experiments on the double-cone have been performed at hypersonic conditions in

the CUBRC Large Energy National Shock Tunnel (LENS). These experiments used a

large model with many surface-mounted heat flux and pressure transducers (Ref. 22).

Nitrogen was used as the test gas to minimize the effects of chemical reactions, and the

experiments were done at low density to ensure laminar boundary layers and shear layers.

This dataset was the subject of a blind code validation study. In general, the comparison

between simulation and experiment was shown to be quite good, however there were several

important differences. Interestingly, the simulations performed with high-quality numerical

methods on the finest grids slightly over-predicted the size of the separation zone, and all

simulations predicted excessive heating in the attached region prior to separation (Ref. 22).

This is shown in Fig. 1.2, which presents typical results for two double-cone cases. The

error on the first cone is as much as 20%, which is particularly puzzling because the

pressure is accurately predicted in this region. Many attempts were made to explain this

difference by running CFD cases with extreme grid resolution, finite nose-tip bluntness,
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model misalignment, and uncertainties in reaction rates. None of these effects was found

to explain the differences shown in Fig. 1.2.
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Fig. 1.2 – Comparison of predicted and measured surface pressure and heat flux on the

double cone model. Ref. 22.
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Fig. 1.3 – Comparison of measured double cone heat flux and different models for the

effects of nonequilibrium vibrational energy. ’Nominal’ is the baseline model (Fig. 1.2);

’Noneq.’ is accounting for vibrational nonequilibrium in the free-stream; and ’Noneq. Slip’

also includes the effect of imperfect accommodation of vibrational energy to the surface.
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The specification of the free-stream conditions in a hypersonic shock tunnel can be

difficult because these facilities may be subject to non-ideal effects in the nozzle. Namely,

a reflected shock wave is used to heat and compress the test gas to extremely high pressure

and temperature, which results in vibrational excitation and chemical reaction. Then the

test gas rapidly expands through the nozzle, and its internal energy state may not fully

de-excite during the expansion. As a result, the gas flowing over the model may be in

a non-ideal thermo-chemical state. The double-cone experiments were run with nitrogen

at moderate enthalpy (h0 < 4 MJ/kg); this results in virtually no chemical reaction, but

vibrational excitation of the gas in the reflected shock region. Nitrogen vibrational modes

relax very slowly, and for these test conditions this results in elevated vibrational energy

in the wind-tunnel test section. A vibrational finite-rate simulation of the nozzle flow

shows that the vibrational energy modes are frozen near the throat temperature (Tv =

2560 K). This has two major effects: the kinetic energy flux is reduced by about 10%,

and because nitrogen vibrational energy modes are inefficient at accommodating to most

metallic surfaces, they do not transfer their energy to the model. These two effects reduce

the heat flux by about 20%, and significantly improve the comparison between CFD and

experiment; this is shown in Fig. 1.3 (Ref. 40).

1.1.2 Mars Science Laboratory Entry

During the past 20 years or so, great strides have been made in the simulation of

atmospheric entry flows. In part, this is a result of increases in computer power and the

development of efficient parallel codes for solving the governing equations. Recently, un-

structured grids have begun to be used for difficult aerothermodynamics problems. Inter-

estingly, however almost no research has been done on improving the governing equations

used in these simulations. Thus, we are solving essentially the same equations now as when

the first CFD simulations of nonequilibrium atmospheric entry flows were performed. Fur-

thermore, current codes are often used far beyond the range of conditions for which they

have been validated.1

Figure 1.4 illustrates a recent simulation of the flow over the Mars Science Laboratory

(MSL) capsule at Mach 18.1 (Ref. 53), with the flow in the wake region represented by

the detached eddy simulation (DES) approach (Ref. 59) with the Spalart-Allmaras one-

equation turbulence model (Ref. 58) and the Catris and Aupoix (Ref. 7) compressibility

correction. This simulation used finite-rate kinetics to represent the Mars atmosphere

1 The issue of code validation is beyond the scope of these notes, but it is particularly difficult for
hypersonic flows because it is very difficult to isolate specific elements of the physical models in
well-controlled experiments.
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and was performed on 16 million element hybrid unstructured grid. Not shown in this

image is that the operation of the reaction control system thrusters is also modeled in this

simulation. With current parallel clusters, such a calculation can be performed at useful

turn-around times. (The base flow is established in about half a day, and the operation of

the RCS thrusters is computed and averaged over an additional two days on 240 cores of

an SGI Altix SE 1300 cluster.)

Fig. 1.4 – Temperature contours in the flow field of the MSL capsule at Mach 18.1 condi-

tions.

1.2 Important Effects

1.2.1 Thermochemical Nonequilibrium

A gas is in thermal nonequilibrium if its internal energy cannot be characterized by

a single temperature, and it is in chemical nonequilibrium if its chemical state does not

satisfy chemical equilibrium conditions. Portions of many external hypersonic flows are in

thermal and chemical nonequilibrium. This occurs because as the gas passes through the

bow shock wave, much of its kinetic energy is converted to random translational motion.

Then, collisions transfer translational energy to rotational, vibrational, electronic, and
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chemical energy. This energy transfer takes a certain number of collisions, during which

time the gas moves to a new location where the temperature and density may be different.

Thus, the internal energy modes and chemical composition of the gas lag the changes in

the translational temperature. We can determine if a flow will be in thermal or chemical

nonequilibrium by constructing the Dahmköhler number, Da, which is the ratio of the

fluid motion time scale to the internal energy relaxation or chemical reaction time scale.

Consider the steady-state mass conservation equation for species s

∂

∂xj

(
ρsuj

)
= ws, (1.1)

where ρs is the mass density of species s, uj is the gas velocity in the xj direction, and ws

is the rate of production of species s per unit volume due to chemical reactions. We can

non-dimensionalize this equation using the total density, ρ, the speed, V , and a relevant

length scale such as the nose radius, rn. Then

∂

∂x̄j

(
ρ̄sūj

)
=

rnws

ρV
=

τf

τc
= Da. (1.2)

Thus, Da represents the ratio of the fluid motion time scale, τf , to the chemical reaction

time scale, τc; or it is the ratio of the chemical reaction rate to the fluid motion rate. A

similar expression can be derived to describe the relative rate of internal energy relaxation.

When Da → ∞, the internal energy relaxation or chemical reaction time scale ap-

proaches zero (becomes infinitely fast), and the gas is in equilibrium. That is, its thermal

or chemical state adjusts instantaneously to changes in the flow. When Da → 0, the reac-

tion time scale approaches infinity, the gas is frozen and does not adjust to changes in the

flow. The Dahmköhler number is useful for determining how reactive the gas is, and what

type of analysis is appropriate for given flow conditions.

When the chemical source term, ws, is proportional to the density squared (as it is for

dissociation reactions), the binary scaling law can be derived from the above expression.

Let us write ws = Cρ2kf , where kf is a temperature-dependent reaction rate, and C is a

constant. Then we have

Da = ρ rn
Ckf

V
. (1.3)

Thus, the reaction rate is proportional to the density-length scale product. kf depends

exponentially on temperature, which for hypersonic flows depends on the free-stream ki-

netic energy 1
2V 2

∞. Therefore, for a dissociation-dominated flow, the Dahmköhler number

depends on the binary scaling parameter, ρ rn, and the free-stream kinetic energy.

Computational Fluid Dynamics for Atmospheric Entry 
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1.2.2 Vibration-Dissociation Coupling

When a gas becomes vibrationally excited, the population of the excited vibrational

states increases. As shown in Fig. 1.5, this decreases the energy required to dissociate the

molecule. Therefore, the vibrational state of a molecule affects its dissociation rate. This

process is not fully understood, and simple models that can be implemented in computa-

tional methods are largely unvalidated. Even small changes in the dissociation rate can

change the flow field considerably and can lead to uncertainties in the trim angle of attack

of hypersonic vehicles.

There are many models available for the vibration-dissociation process, and we will

discuss the most popular models in these notes.
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Fig. 1.5 – Schematic of the vibrational state of a molecule and the energy required for

dissociation.

1.2.3 Finite-Rate Wall Catalysis

One of the most important parameters that determines the convective heat transfer

rate for hypersonic vehicles is the surface catalytic efficiency. Fay and Riddell (Ref. 11)

used a self-similar stagnation point boundary layer analysis to show that depending on the

Computational Fluid Dynamics for Atmospheric Entry 
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reactivity (Dahmköhler number) of the boundary layer and the catalytic efficiency of the

surface, the heat transfer rate is dramatically changed. As seen in Fig. 1.6, if the boundary

layer is frozen (Da → 0) and the body surface is noncatalytic, the heat transfer rate may

be reduced by 50% or more, depending on the fraction of energy tied up in the chemical

energy modes.

Recombination Rate Parameter

C
o
n

v
e
c
t
iv

e
 H

e
a
t
 T

r
a
n

s
fe

r
 R

a
t
e

Fully Catalytic Wall

Noncatalytic
Wall

(equilibrium)(frozen)

Fig. 1.6 – Effect of wall catalysis on convective heat transfer rate at a stagnation point.

(After Fay and Riddell (Ref. 11).)

When the wall is noncatalytic, it does not promote recombination at the surface. Thus,

if the reaction rate is slow near the surface, a fraction of the total energy of the gas remains

in the form of chemical energy. Thus, it does not contribute the convective heating. If,

on the other hand, the surface is catalytic or the boundary layer is near equilibrium, the

chemical energy is released at the vehicle surface, and the heat transfer increases.

It is important to note how the chemical reactions scale with density. As we saw in

the previous section, dissociation scales with the binary scaling parameter, ρ rn. However,

recombination is a three-body process, and as a result scales with ρ2. Thus, in typical

low-density atmospheric entry conditions, recombination may be very slow relative to

dissociation. The surface reactions typically scale differently because they are usually

diffusion limited and depend strongly on the surface material properties.

1.2.4 Nonequilibrium Thermal Radiation

The modeling of thermal radiation from the flow field remains a major challenge. The

difficulty arises because the radiative emission from the gas depends very strongly on its

internal energy. For example, immediately behind the bow shock wave in the stagnation

region of a vehicle, the vibrational temperature may overshoot the equilibrium post-shock

temperature. Then, if the population of the excited electronic states of the gas is governed

Computational Fluid Dynamics for Atmospheric Entry 
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by the vibrational temperature, there is a dramatic super-equilibrium population of the

excited electronic states. The excited electronic states decay to the ground state, and the

electronic energy is emitted as photons (thermal radiation), many of which are absorbed by

the body surface. Thus, for high-energy flows where radiative heating is important, there

may be a significant increase in the heat transfer rate due to nonequilibrium. This process

is very difficult to model because there are many complicated rate-dependent processes

competing for the thermal energy produced by the shock wave.

1.2.5 Low Density Effects

During re-entry many hypersonic vehicles spend a significant time at high altitude

where the gas dynamics are poorly understood. In this high Knudsen number regime, the

bow shock wave thickness becomes an appreciable fraction of the shock standoff distance,

none of the internal energy modes are in equilibrium with the translational modes, and

there is velocity and temperature slip at the body surface. Also, the chemical reactions

may not conform to standard reaction rate models and the vibration-dissociation coupling

effects are very important. Reasonable progress has been made in the modeling of each

these effects (Refs. 5, 14, 32). However, in extremely low density flows, the continuum

formulation completely breaks down and a particle based simulation method must be used

(such as the direct simulation Monte Carlo method (Ref. 2)).

1.2.6 Other Effects

Many other complicated phenomena may occur in hypersonic external flows. For ex-

ample, at low-earth-orbit re-entry speeds and above, the flow field becomes ionized and

the radio frequency transmissions may be blacked out. At higher speeds, the vehicle sur-

face must be ablative to protect the vehicle from heating. In this case, foreign species

are injected into the flow field, where they react with the air species to form other chem-

ical species. Thirdly, shock-wave boundary layer interactions are very complicated and

intense at hypersonic conditions. Finally, of course, there is the question of transition to

turbulence. If the boundary layer is turbulent, the convective heat transfer rate to small-

angle bodies (blunted cones, for example) increases by a factor of between three and eight.

There are no reliable models for transition at hypersonic Mach numbers, and the effect of

boundary layer chemical reactions on transition is poorly understood. However, it has been

shown experimentally and with stability theory that endothermic (energy absorbing) reac-

tions tend to delay transition in hypersonic boundary layers (Ref. 23). Reynolds-averaged

Navier-Stokes (RANS) models are largely unproven at hypersonic conditions.

Computational Fluid Dynamics for Atmospheric Entry 
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1.3 Computational Methods

From the previous discussion, it is clear that there are many difficult issues that must

be addressed. Hypersonic flows may have one or more of the following features:

1. A large number of chemical species reacting with one another at a wide range of relative

time scales.

2. Complicated interactions between the fluid motion, internal energy state, and the

chemical composition of the gas.

3. Length scales ranging from the characteristic length of the body down to the shock

wave thickness.

4. Complex gas-surface interactions, including slip at the wall, foreign species injection,

and finite-rate catalysis of reactions at the surface.

5. Transitional and turbulent boundary layers.

A numerical method that can solve the equations that describe these flows must have

certain qualities. Generally, we are interested in steady-state flows. Also, many flows have

regions of very high reaction rate, making the range of time and length scales very large.

Thus, it is essential to use an implicit method for at least the chemical reaction terms.

Also, the computational and memory costs of the method should not increase too quickly

with the number of chemical species being considered. Finally, to solve very large and

difficult problems, it is mandatory that the method run efficiently on parallel computers.

Computational Fluid Dynamics for Atmospheric Entry 
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2. Conservation Equations

2.1 Assumptions

We assume that the gas is described by the Navier-Stokes equations extended to

account for the presence of chemical reactions and internal energy relaxation. For these

equations to be valid, the flow must satisfy the following criteria:

1. The gas must be a continuum. If we relate the mean-free-path, λ, to a local length scale

that is determined by the normalized density gradient, we can form the gradient-length-

local Knudsen number as (Ref. 4):

(Kn)GLL =
λ

ρ

∣∣∣∣
dρ

dℓ

∣∣∣∣ , (2.1)

where ℓ is in the direction of the steepest density gradient. Boyd, et. al (Ref. 4) showed

that when (Kn)GLL > 0.05 the Navier-Stokes formulation fails.2 This typically occurs in

shock waves and near the body surface in low density flows. Also, the wake region of

blunt bodies may have regions of continuum formulation failure. In these regions, either a

higher-order continuum formulation must be used (Refs. 32, 71) or a particle-based method

such as the direct simulation Monte Carlo (DSMC) method is required.

2. The mass diffusion fluxes, shear stresses, and heat fluxes must be proportional to the

first derivatives of the flow quantities. If not, a non-continuum approach, such as the direct

simulation Monte Carlo (DSMC) method must be used.3

3. The internal energy modes must be separable. That is, we can describe each energy

mode by its own temperature. For example, the energy contained within the vibrational

modes cannot be a function of the rotational energy state.

4. Finally, the flow is only weakly ionized. In this case, the Coulomb cross-section is small

relative to the electron-neutral collision cross-section.

2 In this work, failure was defined to occur when the Navier-Stokes solution differs by 5% from the
results obtained using the direct simulation Monte Carlo method.

3 Some authors advocate the use of higher-order continuum equations such as the Burnett equations
(Ref. 6). However, there is an inherent problem with using this approach. The continuum equations
fail because the velocity distribution function becomes highly non-Maxwellian, or even a bi-modal
mixture of perturbed Maxwellians. No perturbation to a single Maxwellian can represent such a
bi-modal velocity distribution function. Thus, an approach based on higher-order perturbations to a
single equilibrium velocity distribution function cannot work.

Computational Fluid Dynamics for Atmospheric Entry 
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2.2 Governing Equations

In this section the governing equations are given; further information on their deriva-

tion can be found in Refs. 13 and 29. We will discuss the derivation of the vibrational

energy equation in some detail because it provides a good example of how to derive con-

servation equations for nonequilibrium flows. Also this derivation will show the strong

interaction between the vibrational state and the chemical reactions in a nonequilibrium

gas.

2.2.1 Mass Conservation

The mass conservation equation for species s is:

∂ρs

∂t
+

∂

∂xj

(
ρsuj + ρsvsj

)
= ws, (2.2)

where again, ρs is the species density and ws is the chemical source term. The mass-

averaged velocity is uj and the diffusion velocity of species s is vsj in the xj direction. The

mass-averaged velocity is obtained using:

uj =
ns∑

s=1

ρs

ρ
usj , ρ =

ns∑

s=1

ρs, (2.3)

where ns is the number of chemical species. The diffusion velocity is the velocity of species

s, usj , relative to the mass-averaged velocity:

vsj = usj − uj . (2.4)

2.2.2 Momentum Conservation

The momentum equation has the familiar form except for the presence of the electric

field, Ẽi:

∂

∂t

(
ρui

)
+

∂

∂xj

(
ρuiuj + pδij − τij

)
=

ns∑

s=1

eZsNsẼi, (2.5)

where eZs is the charge of species s and Ns is the species number density. The pressure p

is the sum of the partial pressures:

p =
ns∑

s=1

ps =
ns∑

s=1

ρs
R

Ms
T, (2.6)

where R is the universal gas constant and Ms is the molecular weight of species s. T is

the translational temperature of the gas mixture. The expression for the shear stress will

be given below.

Computational Fluid Dynamics for Atmospheric Entry 
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2.2.3 Total Energy Conservation

The total energy conservation equation has the form:

∂E

∂t
+

∂

∂xj

(
(E + p)uj − τijui + qj +

ns∑

s=1

ρsvsjhs

)
=

ns∑

s=1

eNsZsẼiui, (2.7)

where E is the total energy per unit volume, qj is the total heat flux vector, and hs is the

species s specific enthalpy. These quantities will be discussed in more detail below.

2.2.4 Vibrational Energy Conservation

The derivation of the vibrational energy conservation equation is non-trivial because

the vibrational state is coupled to the chemical state. As we discussed in Section 1.2.2,

molecules that are highly vibrationally excited are more likely to dissociate than the average

molecule. Thus, when dissociation occurs, the process removes more than the average

vibrational energy from the vibrational energy pool. Likewise, when recombination occurs

the newly formed molecule may be formed at an elevated vibrational level. A complete

derivation of this equation is available in Ref. 41.

We assume that there is a single diatomic species in a multi-species gas mixture. In a

manner similar to Clarke and McChesney (Ref. 8), we let fsα
(xi, vsα

, t) dx dvsα
represent

the number of particles in vibrational level α of species s in a volume dx ≡ dx1 dx2 dx3

and dvsα
≡ dvsα1

dv2α2
dvsα3

. The velocity distribution function fsα
is defined such that

∫ +∞

−∞

fsα
dvsα

= nsα
, (2.8)

where nsα
is the number density of molecules in level α of species s.

Under the assumption that the translational energy is a classical energy mode and

that all velocities in the range −∞ to +∞ are allowed, we can show that fsα
obeys the

Boltzmann equation:

∂fsα

∂t
+ vsαi

∂fsα

∂xi
+ Fsαi

∂fsα

∂vsαi

= C+
sα

− C−
sα

, (2.9)

where Fsαi
is the external force per unit mass acting in the i direction on the particles,

and C+
sα

and C−
sα

represent the number of particles created and destroyed due to collisions

of species s in level α per unit time and per unit phase space volume. These terms, C+
sα

and C−
sα

, are the collision integrals.

Computational Fluid Dynamics for Atmospheric Entry 
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The conservation of vibrational energy equation for species s is found by taking the

moment of the Boltzmann equation with respect to ǫsα
and summing over all vibrational

energy levels α. This yields

∑

α

∫ ∞

−∞

ǫsα

∂fsα

∂t
dvsα

+
∑

α

∫ ∞

−∞

ǫsα
vsαi

∂fsα

∂xi
dvsα

+
∑

α

∫ ∞

−∞

ǫsα
Fsαi

∂fsα

∂vsαi

dvsα
=

∑

α

∫ ∞

−∞

ǫsα
(C+

sα
− C−

sα
) dvsα

.

(2.10)

where ǫsα
is the amount of vibrational energy per molecule of species s in level α.

The convection term on the left hand side of (2.10) can be manipulated to yield

∑

α

∞∫

−∞

ǫsα
vsαi

∂fsα

∂xi
dvsα

=
∂qvsi

∂xi
+

∂

∂xi

(
Evs(vsi + ui)

)
, (2.11)

where Evs =
∑

α nsα
ǫsα

is the vibrational energy per unit volume, and qvsi =∑
α nsα

ǫsα
usαi

is the vibrational heat flux in the xi direction. If the external forces Fsαi

are independent of the velocity, then the force term in (2.10) is identically zero as it as-

sumed that the distribution function fsα
vanishes at infinity. The source term on the right

hand side of (2.10) represents the rate of change of the number of molecules in level α in

species s. This can be written as

∑

α

∫ ∞

−∞

ǫsα
(C+

sα
− C−

sα
) dvsα

=
∑

α

ǫsα

(∂nsα

∂t

)
coll

. (2.12)

Combining the above expressions we have

∂Evs

∂t
+

∂

∂xi

(
Evs ui + Evs vsi + qvsi

)
=

∑

α

ǫsα

(∂nsα

∂t

)
coll

= QV ib. (2.13)

To find an expression for QV ib we formally need to make the following assumptions:

1. The system of interest is a dilute mixture of vibrating-dissociating molecules and atoms

weakly interacting with an infinite heat bath.

2. The Born-Oppenheimer approximation holds so that the vibrational states are uncou-

pled from the rotational and electronic states of the molecule.

3. The interaction Hamiltonian which causes transition between vibrational levels can

be treated as a perturbation on the energy of the vibrating molecules. Thus, quantum

mechanical perturbation theory can be used to derive the master relaxation equation.
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Under these assumptions Heims (Ref. 21) showed

∂nsα

∂t
= νsα

(Ns − 2 ns)
2 − µsα

nsα
+

∑

i

(
asiα

nsi
− asαi

nsα

)
, (2.14)

where Ns is the number of s atoms, ns is the number molecules of species s, aslk
is the

transition probability per unit time from vibrational level l to k, νsα
is the recombination

rate of atoms to molecules in level α, and µsα
is the dissociation rate from level α.

Evaluating the source term QV ib yields

QV ib =
∑

α

ǫsα

[
νsα

(Ns − 2 ns)
2 − µsα

nsα
+

∑

i

(
asiα

nsi
− asαi

nsα

)]
, (2.15)

The first two terms of (2.15) are respectively the gain and loss of vibrational energy due

to chemical reactions. The last two terms of (2.15) account for the exchange of vibrational

and translational energy due to collisions. At the microscopic level, these two processes

are not linked and can be treated independently. Thus we define

QChem =
∑

α

ǫsα

(
νsα

(Ns − 2 ns)
2 − µsα

nsα

)
(2.16)

and

QV −T =
∑

α

ǫsα

∑

i

(
asiα

nsi
− asαi

nsα

)
. (2.17)

To find an expression for QChem we sum (2.14) over all α levels and define

γs =
∑

α

νsα
, µs =

∑

α

µsα
nsα

ns
, (2.18)

where γs is the recombination rate and µs is the dissociation rate of s molecules. This

gives (∂ns

∂t

)
coll

= γs (Ns − 2 ns)
2 − µs ns, (2.19)

where γs (Ns − 2ns)
2 and ns µs represent the rate of change of the number of molecules

of species s per unit time and unit volume due to the forward and backward chemical

reactions, respectively. In (2.2), let ws = wfs
+ wbs

so that wfs
and wbs

are the rates of

change of the mass of species s per unit time and unit volume due to the forward and

backward chemical reactions, respectively. This implies

γs (Ns − 2ns)
2 =

wbs

ms
ns µs = −wfs

ms
. (2.20)
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The average vibrational energy gained during recombination and the average vibra-

tional energy lost during dissociation are the weighted averages of the level-specific disso-

ciation rates multiplied by the vibrational energy of each level. They are respectively:

G =

∑
α ǫsα

νsα∑
α νsα

=

∑
α ǫsα

νsα

γs

E =

∑
α µsα

nsα
ǫsα∑

α µsα
nsα

=

∑
α µsα

nsα
ǫsα

ns µs
.

(2.21)

In general, the nsα
in the above equations are functions of T and Tv. However at

equilibrium T = Tv, and we can define n∗
sα

as the number density at equilibrium. Thus

we have

νsα
(Ns − 2 n∗

s)
2 − µsα

n∗
sα

+
∑

i

(
asiα

n∗
si
− asαi

n∗
sα

)
= 0. (2.22)

Now we make the assumption that at equilibrium each process must be in equilibrium

independent of the other process. This is consistent with the fact that we are treating

QChem and QV −T as independent on a microscopic level. This gives

νsα
(Ns − 2 n∗

s)
2 − µsα

n∗
sα

= 0. (2.23)

If the transition probabilities are independent of time, (2.22) must hold for all time. If

we substitute the expressions for νsα
from the above equation into (2.16), after some

manipulation we find

E =

∑
α µsα

n∗
sα

ǫsα∑
α µsα

n∗
sα

. (2.24)

If we write E = E(T, Tv), we immediately see that G = E(T, T ).

Therefore, any physically consistent model for the vibrational energy source term due

to chemical reactions must be of the form

QChem =
1

ms

(
E(T, Tv)wfs

+ E(T, T )wbs

)
. (2.25)

An expression for QV −T was originally derived by Landau and Teller (Ref. 28) for

simple harmonic oscillators not undergoing dissociation. They found

QV −T =
Evs

(T ) − Evs
(Tv)

τvib
, (2.26)

where τvib is the vibrational relaxation time, and is given by a theoretically determined

expression as a function of the local thermodynamic state of the gas. Under more general
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conditions, QV −T will have the above form, but τvib will be different and will also depend

on the oscillator model used.

The equation for the conservation of vibrational energy of species s has the final form:

∂Evs

∂t
+

∂

∂xi

(
Evs ui + Evs vsi + qvsi

)
= QV −T + QChem. (2.27)

For the case where there is more than one vibrationally excited species, an additional term

must be included to account for the rate of vibrational energy transfer to species s from

the other vibrationally excited species (Ref. 50).

If the vibrational energy modes are tightly coupled, then there will be a single vibra-

tional temperature Tv, and the total vibrational energy equation is:

∂Ev

∂t
+

∂

∂xi

(
Ev ui +

∑

s

Evsvsi +
∑

s

qvsi

)
=

∑

s

QV −Ts +
∑

s

QChems. (2.28)

where Ev =
∑

s Evs.

2.2.5 Additional Internal Energy Conservation Equations

In a similar fashion, conservation expressions for the other internal energy modes

(rotational and electronic) may be derived. In practice, unless the conditions of interest are

at very low density, the rotational and translational energies are usually considered to be in

equilibrium. This obviates the need for a separate rotational conservation equation. Also,

if there is appreciable population of the excited electronic states, it is often assumed that

the temperatures that characterize the free electron translational energy and the bound

excited electronic energy are the same. That leads to a single electron-electronic energy

conservation equation. In many cases, it is valid to assume that the vibrational modes

are also in equilibrium with the electron-electronic energy (because of resonant coupling

between the N2 vibration and free electrons (Refs. 30, 50)). Then, the vibrational energy

equation (2.13) is extended to include these effects.

There is uncertainty about how to model the energy in the free electron and electronic

energy modes. We favor the approach of Gnoffo et al. (Ref. 13) in which it is assumed

that Tv = Te = Teℓ. Namely, that because of the strong electron-vibration coupling in

high temperature air, we typically have Tv = Te. It is probably reasonable to assume that

Te = Teℓ. (There really is no other alternative, in any case.) The other approach is to

assume that T = Te = Teℓ.
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2.3 Electric Field

An expression for the electric field Ẽi may be derived using the electron momentum

conservation equation:

∂

∂t

(
ρeui

)
+

∂

∂xj

(
ρeuiuj + peδij

)
= −eNeẼi + Pei, (2.29)

where we have neglected the mass diffusion and shear stress terms. Pei represents the

momentum transfer between the electrons and the heavy particles due to collisions. For

weakly ionized flows, this term is small relative to the electric field term. Then, if we take

the ratio of the dynamic pressure of the electron gas to the electron pressure and assume

that the electron speed and temperature are about the same as the bulk gas, we have

ρeV
2
e

pe
=

MeV
2
e

RTe
≃ MeV

2

RT
≃ Me

M
M2. (2.30)

Where M is the Mach number, and M is the average molecular weight of the mixture.

The ratio Me/M is of the order of 10−6, and for conditions of interest the square of the

Mach number will be of the order of 103 at most. Therefore, we can neglect the electron

dynamic pressure relative to the electron pressure, and the steady-state electric field may

be expressed as

Ẽi ≃ − 1

Nee

∂pe

∂xi
. (2.31)

This expression for the electric field may be inserted in the momentum equation, (2.5),

and the total energy equation, (2.7). Generally, this term has little effect on the flow field

of atmospheric entry vehicles and is often neglected.
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2.4 Equations of State

The relationship between the conserved quantities and the non-conserved quantities

such as pressure and temperature are discussed in this section. The total energy, E, is

made up of the separate components of energy:

E =
ns∑

s6=e

Ets +
ns∑

s6=e

Ers +
ns∑

s6=e

Evs + Ee +
ns∑

s6=e

Eeℓ s + 1
2ρuiui +

n∑

s6=e

ρsh
◦
s, (2.32)

which are the translational, rotational, vibrational, electron translational, electronic, ki-

netic, and chemical energies, respectively. The heavy particle translational energy is

Ets = ρscvtsT , where cvst = 3

2
R/Ms and T is the translational temperature. The ro-

tational energy is Ers = ρscvrsTr, and cvrs = R/Ms if the particle has two degrees of

rotational freedom; Tr is the rotational temperature. As discussed above, for the case

where the rotational energy modes relax quickly, we can assume that the rotational en-

ergy modes are equilibrated with the translational energy modes. Then, we can write

Ets + Ers = ρscvsT , where cvs and T are the translational-rotational specific heat and

temperature, respectively.

The vibrational temperature of species s is determined by inverting the expression for

the vibrational energy contained in a simple harmonic oscillator at the temperature Tvs:

Evs
= ρsevs = ρs

R

Ms

θvs

eθvs/Tvs − 1
, (2.33)

where θvs is the characteristic temperature of vibration. If we assume that there is a single

vibrational temperature, we must invert a more complicated expression for Tv

Ev =
∑

s

ρs
R

Ms

θvs

eθvs/Tv − 1
. (2.34)

The free electron translational energy is given by Ee = ρecveTe, where cve = 3

2
R/Me.

In cases where the electron energy is assumed to be in equilibrium with another energy

mode, a different temperature is used in the above expression.

As discussed above, the total pressure is the sum of the partial pressures,

p =
ns∑

s6=e

ρs
R

Ms
T + pe, (2.35)

and the electron pressure is given by

pe = ρe
R

Me
Te. (2.36)
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The enthalpy per unit mass, hs, is defined to be

hs = cvtsT + cvrsTr + evs + eeℓ s + h◦
s +

ps

ρs
. (2.37)

The expression for the energy contained in the excited electron states comes from the

assumption that they are populated according to a Boltzmann distribution governed by

the electronic temperature, Teℓ. This yields

eeℓ s =
R

Ms

∑∞
i=1 gisθeℓ is exp(−θeℓ is/Teℓ)∑∞

i=0 gis exp(−θeℓ is/Teℓ)
, (2.38)

where gis is the degeneracy of the excited electronic state i and θeℓ is is the excitation

energy of that state (Ref. 50). Usually only the first several terms in these summations

are required for hypersonic applications.

Another approach is to use the fits for pure species thermodynamics data from Gordon

and McBride (Ref. 15). With this approach, the species translational-rotational energy and

chemical energy can be subtracted from the total species energy to obtain the vibrational-

electronic energy. These curve-fits are valid to high temperature (20, 000 K) and result in

a more accurate characterization of the internal energy.

2.5 Diffusion Velocity, Shear Stress, and Heat Flux

The shear stresses are assumed to be proportional to the first derivative of the mass-

averaged velocities, and the Stokes assumption for the bulk viscosity is made.4

Therefore the expression for the shear stress tensor is

τij = µ
( ∂ui

∂xj
+

∂uj

∂xi

)
+ λ

∂uk

∂xk
δij , λ = −2

3
µ. (2.39)

And the heat conduction vectors are assumed to be given by the Fourier heat law

qtrj = −κ
∂T

∂xj
, qvsj = −κvs

∂Tvs

∂xj
. (2.40)

4 The subject of bulk viscosity is interesting. It has long been recognized that the internal energy
modes of a gas may affect the speed of sound (Refs. 18, 28, 57). This is commonly attributed to the
bulk viscosity because sound propagation is a dilatational process, and the bulk viscosity provides
a means of changing the speed of sound due to non-zero dilatation. However, this is not physically
consistent. Instead, the proper finite-rate internal energy relaxation equations should be used to
obtain the correct speed of sound.
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In some cases, it is preferable to represent the vibrational energy conduction with the

gradient of the specific vibrational energy.

qvsj = −κ̃vs
∂evs

∂xj
. (2.41)

Except at very high enthalpy, we find that the vibrational energy gradients give more

robust results.

A viscosity model for reacting air developed by Blottner et al (Ref. 3) may be used to

determine the species viscosity, µs. This work uses kinetic theory to find curve-fit expres-

sions for the viscosity of each species. Another source of expressions for nonequilibrium

calculations may be found in the work of Gupta et al. (Ref. 19). This information is too

extensive to include in these notes. Excellent reviews of the calculation of species transport

properties are given by Palmer and Wright (Refs. 43, 44).

The approximate conductivity of the translational-rotational and vibrational temper-

atures for each species may be derived from an Eucken relation (Ref. 62). With this

approach, it is assumed that the transport of translational energy involves correlation

with the velocity, but the transport of internal energy (rotational and vibrational) has no

correlation. The result is that

κs = µs

(5

2
cvts + cvrs

)
, κvs = ηvµscvvs, (2.42)

where ηv = 1.2 is derived from kinetic theory (Ref. 42), and cvvs is the species s vibra-

tional specific heat. When vibrational energy derivatives are used, the transport coefficient

becomes:

κ̃vs = ηvµs. (2.43)

This approach based on the Eucken relation is approximate and is only valid up to about

6000 K for air; at higher temperatures a more sophisticated approach must be used. Palmer

and Wright (Refs. 43, 44) provide a quantitative assessment of the available approaches.

Once the pure species viscosity and conductivity have been computed, the mixture

properties must be obtained. This is often done with the Wilke semi-empirical mixing rule

(Ref. 63), however Palmer and Wright show that this approach is subject to serious error.

They recommend the use of the Armaly-Sutton (Ref. 1) mixing rule because it is more

accurate and less costly than the solution of the full multi-component diffusion equations.

However, the parameters in the Armaly-Sutton model may need to be tuned for particular

gas mixtures and conditions (Refs. 43, 44).
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If we assume that the diffusive fluxes due to pressure and temperature gradients are

negligible, then the diffusion velocity of each component of the gas mixture is proportional

to the gradient of the mass fraction. With the additional assumption of binary diffusion

where species s diffuses into a mixture of similar particles, we have

ρsvsj = −ρDs
∂cs

∂xj
. (2.44)

The diffusion coefficient, Ds, is derived by assuming a constant Lewis number, Le, which

by definition is given by

Le =
ρDcp

κ
. (2.45)

For air, Le is typically taken to have a value of 1.4, and thus the uncharged particles

all have the same D, but the diffusion coefficient for ions is assumed to be doubled (the

ambipolar diffusion assumption holds) because of the existence of an electric field.

A much more accurate approach for computing diffusion in a gas mixture is the self-

consistent effective binary diffusion (SCEBD) approach of Ramshaw and Chang (Refs. 54,

55) and the extension of the method to multi-temperature plasmas (Ref. 56). This ap-

proach has been shown to yield accurate results for high-enthalpy atmospheric entry flows

(Ref. 16). At atmospheric entry conditions (particularly when the gas is ionized), the

constant Lewis number approximation is not valid, and the SCEBD approach should be

used.

2.6 Internal Energy Relaxation Rates

The rate of energy exchange between vibrational and translational modes has been

discussed extensively (Ref. 28). The rate of change in the population of the vibrational

states at low temperatures is described well by the Landau-Teller formulation where it is

assumed that the vibrational level of a molecule can change by only one quantum level at

a time. The resulting energy exchange rate is

QV −Ts = ρs
e∗vs(T ) − evs

<τsL−T
>

. (2.46)

Where e∗vs(T ) is the vibrational energy per unit mass of species s evaluated at the local

translational temperature and < τsL−T
> is the molar averaged Landau-Teller relaxation

time

<τsL−T
>=

∑
r Xr∑

r Xr/τsrL−T

, for r 6= e. (2.47)
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An expression developed by Millikan and White (Ref. 39) yields the Landau-Teller inter-

species relaxation times, τsrL−T
, in seconds using the function

τsrL−T
=

1

p
exp

[
Asr(T

−1/3 − 0.015µ1/4
sr ) − 18.42

]
, p in atm,

Asr = 1.16 × 10−3µ1/2
sr θ4/3

vs ,

µsr = MsMr/(Ms + Mr).

(2.48)

There are notable exceptions to the Millikan-White formula, particularly for N2 and

O2 vibration-translation relaxation involving atomic oxygen, and the relaxation of CO2

(Ref. 50).

A modification to the translational-vibrational relaxation rate is made to account for

the limiting collision cross-section at high temperatures. The Landau-Teller rate expres-

sion from Millikan and White yields a relaxation rate that is unrealistically large at high

temperatures due to an overprediction of the collision cross-section. The addition of the

limiting cross-section rate corrects this inaccuracy. As suggested by Park (Ref. 50), a new

relaxation time, τvs, that is the sum of the Landau-Teller relaxation time and the collision-

limited relaxation time, τcs, corrects this inadequacy. Thus if we use (2.46) with this new

rate, we have the final form of the translational-vibrational energy exchange rate:

QV −T s
= ρs

e∗vs(T ) − evs

τvs
,

τvs =<τsL−T
> +τcs,

(2.47)

where

τcs =
1

c̄sσvNs
. (2.49)

c̄s is the average molecular speed of species s, c̄s =
√

8RT/πMs, and Ns is the number

density of the colliding particles. The expression for the limiting collision cross-section,

σv, is assumed to be as given by Ref. 50:

σv = 10−17(50, 000/T )2 cm2, (2.51)

where T is in K. This expression was originally developed for nitrogen, but has been applied

to the other diatomic molecules.

2.7 Chemical Source Terms

The source term for each chemical species may be constructed using the law of mass

action (Ref. 62) and a given set of chemical reactions. In this section, we develop the
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chemical source terms for a simple chemical kinetics model; it is easy to generalize this

discussion to other models.

For high temperature non-ionized air there are five primary components, which may

be ordered as follows, N2, O2, NO, N, and O. The most important chemical reactions

between these species are

N2 + M ⇀↽ 2N + M

O2 + M ⇀↽ 2O + M

NO + M ⇀↽ N + O + M

N2 + O ⇀↽ NO + N

NO + O ⇀↽ O2 + N,

(2.52)

where M represents any particle that acts as a collision partner in the reaction. The

first three are dissociation reactions and the remaining two are exchange reactions. Each

reaction is governed by forward and backward reaction rate coefficients, kfm
and kbm

,

respectively. These five reactions may be written in order in terms of the reaction rates as

R1 =
∑

m

[
−kf1m

ρN2

MN2

ρm

Mm
+ kb1m

ρN

MN

ρN

MN

ρm

Mm

]

R2 =
∑

m

[
−kf2m

ρO2

MO2

ρm

Mm
+ kb2m

ρO

MO

ρO

MO

ρm

Mm

]

R3 =
∑

m

[
−kf3m

ρNO

MNO

ρm

Mm
+ kb3m

ρN

MN

ρO

MO

ρm

Mm

]

R4 = −kf4

ρN2

MN2

ρO

MO
+ kb4

ρNO

MNO

ρN

MN

R5 = −kf5

ρNO

MNO

ρO

MO
+ kb5

ρO2

MO2

ρN

MN
.

(2.53)

Thus, the source terms that represent the inter-species mass transfer rates may be con-

structed as

wN2
= MN2

(R1 + R4)

wO2
= MO2

(R2 −R5)

wNO = MNO(R3 −R4 + R5)

wN = MN(−2R1 −R3 −R4 −R5)

wO = MO(−2R2 −R3 + R4 + R5).

(2.54)

We should note that the sum of the mass transfer rates is identically zero and that elemental

conservation holds, as required.
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In equilibrium, the forward and backward reaction rates of reaction m have the func-

tional form:
kfm

(T ) = Cfm
T ηm exp(−θm/T ),

kbm
(T ) =

kfm
(T )

Keq
m
(T )

,
(2.55)

where the constants Cfm
, ηm, and θm are experimentally determined (e.g. Refs. 51, 52)

or computed using computational chemistry, and Keq
m

is computed from first principles

using thermodynamic data (Ref. 15). However as discussed by many authors and as shown

in Sec. 2.2.4, the vibrational state of the gas affects the dissociation rate. Many models for

the vibration-dissociation coupling process have been proposed. We will discuss the most

widely used of these models here.

The most widely used, because of its simplicity, is the Park TTv model, in which the

temperature that governs the forward reaction rate is replaced by an effective or average

temperature, Ta. Park originally proposed that Ta =
√

TTv, however a more appropriate

expression is

Ta = TφT 1−φ
v , (2.56)

where φ is usually taken as 0.7. This model is based on some more-or-less heuristic reason-

ing, but it seems to work well and gives reasonable results. However as we saw during the

derivation of the vibrational energy conservation equation, the chemical reaction rate im-

plies a certain rate of vibrational energy removal due to the reactions. This energy removal

rate is state-specific, so unless the reaction rate model is state specific, it is impossible to

derive an appropriate QChem (see (2.25)). Typically, it is assumed that QChem = 0.3De,

where De is the dissociation energy.

Other authors have used a more detailed derivation of the vibration-dissociation cou-

pling process. For example, the CVDV (coupled vibration-dissociation-vibration) model of

Marrone and Treanor (Refs. 37, 61) assumes a Boltzmann distribution of the vibrational

states, and allows preferential removal due to dissociation from the upper states. This re-

sults in an effective dissociation rate that is a function of the vibrational and translational

temperatures and the parameter U :

kf =
Q(T )Q(TF )

Q(Tv)Q(−U)
Cf T η e−θ/T , (2.57)

where Q(T ) is the vibrational partition function evaluated at temperature T and is defined

as

Q(T ) =
N∑

α=0

e−ǫα/k T . (2.58)
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In (2.57) TF represents a modified temperature and is given by

1

TF

=
1

Tv
− 1

T
− 1

U
. (2.59)

For U = ∞ there is an equal probability of dissociation from all levels, and as U decreases,

the probability increases that a dissociating molecule comes from an upper vibrational

energy level. U = 1/3 is typically used.

The CVDV model naturally results in an expression for QChem. The expressions for

the energy removed and gained during reactions found in (2.25) are:

E(T, Tv) =
1

Q(TF )

N∑

α=0

ǫα e−ǫα/kTF ,

E(T, T ) =
1

Q(−U)

N∑

α=0

ǫα eǫα/kU .

(2.60)

Knab, Frühauf et al. (Refs. 25-27) developed the CVCV (coupled vibration-chemistry-

vibration) model that generalizes the approach of Marrone and Treanor. This leads to

expressions for the effective reaction rate and the vibrational energy loss terms that are

similar to the CVDV results.

The Macheret and Rich (Ref. 36) model takes a classical approach to the coupling

problem. As opposed to the discrete energy levels of the real oscillator, Macheret and Rich

assume that the vibrational energy distribution function can be approximated by

f(ǫv) =
1

kTv
e−ǫv/kTv if ǫv ≤ ǫ1

=
1

kTv
e−

ǫ1

kTv
−

ǫv−ǫ1

kT if ǫv > ǫ1,

(2.61)

where ǫ1 is approximately one half of the dissociation energy.

This distribution function is an attempt to take into account the fact that the vibra-

tional energy mode does not relax through a series of Boltzmann distributions. Macheret

and Rich assume that the nonequilibrium distribution function can be characterized by

a Boltzmann distribution at temperature Tv for the lower levels and another Boltzmann

distribution at temperature T for the upper levels. The expression for vibrational energy

becomes

Ev(Tv, T ) =
ρN2

mN2

∫
De

0
ǫv f(ǫv) dǫv∫

De

0
f(ǫv) dǫv

, (2.62)
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where De is the dissociation energy of the molecule. The vibrational energy is now a weak

function of the translational-rotational temperature.

Macheret and Rich generalize the Arrhenius formula for vibrational nonequilibrium

by considering a threshold energy function which determines the minimum total energy

in a collision necessary for dissociation. The concept of preferential removal is built into

this method by the theoretically determined threshold function. This method also ac-

counts for the rotational state of the molecule and can be used for flows with rotational

nonequilibrium.

The nonequilibrium dissociation rate is found to be

kf = ko

(
kℓ + ki + kh

)
, (2.63)

where kℓ, ki, and kh are the rates from the low, intermediate, and high vibrational levels.

These expressions are complicated and will not be repeated here (Ref. 36). This approach

also yields an expression for QChem in terms of the parameters of the model and the

vibrational and translational temperatures.

There is one critical issue associated with the use of these vibration-dissociation mod-

els. It is sometimes difficult to interpret the experimental data used to derive the constants

in the Arrhenius expression for the forward reaction rate (2.55). In many cases the reac-

tion rates were measured in shock-heated gas when the gas may be in thermo-chemical

nonequilibrium. In this case, it is important to interpret the experimental data in a man-

ner that is consistent with the vibration-dissociation model being used. For example, Park

(Refs. 48, 49) made an extensive study of air reaction rates in the light of the TTv model.

The modeling of vibration-dissociation coupling is still an open issue, and virtually no

work has been done in this area in the past 15 years. It may be that with recent results

from computational chemistry, it will be possible to study the dissociation process in much

greater detail and many of these issues will be resolved.

2.8 Boundary Conditions

The boundary conditions for hypersonic flows can range from very simple (isothermal,

non-catalytic surface) to extremely complicated (mass injection with in-depth material

response). In this section, we cover only a few of the simpler boundary conditions.

Usually it is appropriate to assume that there is no slip at the body surface, and

therefore the velocity on the surface is zero. Often, the wall temperature is either specified

due to material properties or the mode of operation of a particular test facility. Seldom
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is an adiabatic wall condition used because at hypervelocity conditions this results in

unrealistically high surface temperatures. There are several situations that require more

complicated surface boundary conditions.

At low densities, there may be velocity and temperature slip at the wall. That is, if

the Knudsen layer at the wall has appreciable thickness, the velocity at the vehicle surface

may not approach zero. Gökçen (Ref. 14) and others have developed expressions that may

be used to calculate the velocity and temperature/energy slip.

When the surface promotes recombination of the gas, a finite-rate wall catalysis model

must be used. Typically, the wall catalysis is expressed as a catalytic efficiency of a surface

reaction, αr, in the expression:

kr = αr

√
RTw

2πMs
, (2.64)

where Ms is the molecular weight of the species that is recombining at the wall, and

Tw is the wall temperature. αr is measured experimentally, and is often a function of

temperature. Then, the mass flux of the recombined species at the surface is ρskr. The

relevant boundary condition for the surface state can be obtained by equating this mass

flux to the diffusive mass flux of the species given by:

ṁs = (ρDs)w
∂cs

∂n

∣∣∣
w

= αr(ρs)w

√
RTw

2πMs
, (2.65)

Using the assumption that the normal-direction pressure gradient is zero and the boundary

condition for temperature, the state of the gas on the wall may be computed using an

iteration scheme.

In some cases, the vehicle may fly at a free-stream condition for long enough that

the surface reaches a locally-constant temperature. When there is no re-radiation from

the surface, this is the adiabatic wall condition. However, in cases where there is a high

surface temperature, surface re-radiation is important. Then, the convective heat transfer

to the surface is balanced by the black-body re-radiation heat transfer rate, qrad = σεT 4
w.

At very high heating rates, the surface may ablate. Then, the processes of oxidation,

sublimation, and spallation must be considered. These processes are complicated and are

beyond the scope of these notes.
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3. Numerical Methods for Hypersonic Flows

In this section we discuss numerical methods that are appropriate for solving the

governing equations discussed above. We will focus on one method, data-parallel line-

relaxation (DPLR) (Ref. 67) with modified Steger-Warming flux vector splitting (Ref. 60).

This approach has direct connection to other more modern upwind methods, and has been

shown to be reliable for a wide range of applications. As we described above, the method

used must be parallelizable and implicit so that solutions may be obtained in a reasonable

amount of time.

We consider a gas composed of ns species whose translational and rotational modes

are in equilibrium. We assume that the vibrational state is characterized by a single

vibrational temperature because of strong vibration-vibration coupling. Also, there is no

ionization. This gas model can be generalized to include other effects.

3.1 Conservation-Law Form of the Governing Equations

The governing equations for the nonequilibrium flow that were presented in the pre-

vious section may be written in a form that is more suitable for the derivation of the

numerical method. This is the conservation-law form of the differential equations where

the time rate of change of the vector of conserved quantities is balanced by the gradients in

the flux vectors and the source vector. In two dimensions the governing equations written

in this form are
∂U

∂t
+

∂F

∂x
+

∂G

∂y
= W, (3.1)

where the vector of conserved quantities, U , is given by

U =
(
ρ1, ρ2, . . . , ρns, ρu, ρv, Ev, E

)T
. (3.2)

The quantities u and v are the mass-averaged velocity components in the x and y directions

respectively. The x and y direction fluxes are written as

F =




ρ1(u + u1)
ρ2(u + u2)

...
ρns(u + uns)
ρu2 + p − τxx

ρuv − τxy

Evu +
∑

s usEvs + qvx

(E + p − τxx)u − τxyv + qtrx + qvx +
∑

s ρshsus




(3.3)
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G =




ρ1(v + v1)
ρ2(v + v2)

...
ρns(v + vns)
ρuv − τyx

ρv2 + p − τyy

Evv +
∑

s vsEvs + qvy

(E + p − τyy)v − τyxu + qtry + qvy +
∑

s ρshsvs




(3.4)

where the quantities us and vs are the x and y components of the diffusion velocity of

species s. The source vector is made up of terms that represent the mass, momentum, and

energy transfer rates, and may be written as:

W =




w1

w2
...

wns

0
0∑

s QV −Ts +
∑

s Qchems

0




(3.5)

3.2 An Implicit Finite-Volume Method

In two dimensions, the finite-volume approach discretizes the flowfield on a grid of

triangular or quadrilateral elements. The x and y locations of the volume corners (nodes)

are stored, and the state of the gas is represented with volume-averaged quantities stored

at the centroids of the elements. Each face has an outward-pointing surface normal vector,
~S, and the volume of each element is given by V. Figure 3.1 gives a graphical representation

of this scheme. It is easy to extend this representation to three dimensions.
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Fig. 3.1 – Numbering scheme for the two-dimensional finite-volume method.

If we integrate the conservation equations over a finite volume cell, V, we obtain:

∂

∂t

∫

V

U dV +

∫

V

∇ · ~F dV =

∫

V

W dV (3.6)

∂Ū

∂t
+

1

V

∫

S

~F · d~S = W̄ (3.7)

Where ~F = F~ı + G~, and ~S is the cell surface-normal vector. For a finite volume, we can

then interpret this expression as

∂U

∂t
+

1

V
∑

faces

~F · ~S = W, (3.8)

where we have dropped the bars, and we sum the fluxes across the faces of the finite

volume.

Now, we can obtain a fully implicit method by evaluating the fluxes and the source

vector at the future time level, n + 1:

Un+1 − Un +
∆t

V
∑

faces

~Fn+1 · ~S = ∆tWn+1. (3.9)

And then we can linearize the fluxes and source vector as:

~Fn+1 ≃ ~Fn +
∂ ~F

∂U

(
Un+1 − Un

)
= ~Fn + ~An

(
Un+1 − Un

)

Wn+1 ≃ Wn +
∂W

∂U

(
Un+1 − Un

)
= Wn + Cn

(
Un+1 − Un

) (3.10)
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Where ~A = ∂F
∂U~ı+ ∂G

∂U ~ = A~ı+B~. If we define δUn = Un+1−Un, we obtain the expression:

δUn +
∆t

V
∑

faces

~AnδUn · ~S − ∆t CnδUn = −∆t

V
∑

faces

~Fn · ~S + ∆tWn (3.11)

We need to determine how to evaluate the fluxes at the cell surfaces, given the flow

quantities at the cell centroids.

3.2.1 Flux-Vector Splitting

Consider only the inviscid portion of the fluxes; the viscous fluxes are diffusive and

it is relatively straight-forward to evaluate them. First, let’s derive a simple first-order

accurate method developed by Steger and Warming (Ref. 60). For convenience, define a

rotated flux vector F ′ such that

F ′ = Fsx + Gsy (3.12)

where sx and sy are the direction cosines of the surface normal vector, ~S.

We recognize that the inviscid part of F ′ is homogeneous in U , and therefore F ′ = A′U .

We can diagonalize A′ and split the eigenvalues into those that are positive and those that

are negative:
F = A′U = X−1ΛA′X U

= X−1Λ+
A′X U + X−1Λ−

A′X U

= A′+U + A′−U = F ′+ + F ′−

(3.13)

Where Λ+
A′ is the diagonal matrix of the eigenvalues that are positive, and Λ−

A′ contains

the negative eigenvalues. Physically, F ′+ represents the flux moving in the surface-normal

direction, and F ′− is the flux moving in the opposite direction. Therefore, when we evaluate

the fluxes at a cell face, we should use information taken from the appropriate location, as

seen in Fig. 3.2.

Fig. 3.2 – Illustration of fluxes across a surface.
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Thus, to compute F ′ at the surface shown above, we use

F ′
i+ 1

2
,j = A′+

i Un
i + A′−

i+1Ui+1. (3.14)

In this expression, Steger and Warming evaluated the Jacobians at the same location as

the solution vector; however this leads to a very dissipative method (Ref. 34). Instead, it

is much better to average across the face to evaluate the Jacobians using:

F ′
i+ 1

2
,j = A′+

i+ 1

2

Un
i + A′−

i+ 1

2

Ui+1. (3.15)

where

A′±

i+ 1

2

= A′±
(

1
2 (Ui + Ui+1)

)
, (3.16)

that is, we use the average of the flow quantities on either side of the cell surface to evaluate

the Jacobian. This results in much less dissipation than the original Steger-Warming

method.

Interestingly, the above approximation for the flux can be written in a different form

by combining the flux components:

F ′
i+ 1

2

= F ′
(

1
2 (Ui + Ui+1)

)
− 1

2

(
X−1|ΛA′ |X

)
(Ui+1 − Ui) (3.17)

where the first term is an unbiased average of the flux at the surface, and the second term

is an upwind-biased dissipative flux. This is the familiar Roe form of the flux.

This expression can be used to obtain a first-order accurate approximation to the flux

at each face of the element. However, for strong shock waves and other discontinuities,

the unbiased averaging across the face will produce aphysical results (negative densities

and energies). Therefore, a sensor must be used to smoothly switch back to the more

dissipative form of the flux in regions of strong pressure gradient. We use a weight of the

form:

w = 1 − 1

2

1

(σg p̃)2 + 1
, p̃ =

pi − pi+1

min(pi, pi+1)
(3.18)

Where w and 1 − w are used to weight Ui and Ui+1 so that the flux is given by (3.14) for

p̃ → ∞ and by (3.15) for p̃ = 0. The quantity σg can be chosen to increase the sensitivity

of the sensor to the pressure gradient (a reasonable value for ǫg is 5). Crucially, this sensor

will not switch on in boundary layers where the pressure gradients are weak.

An additional modification to the flux evaluation method is required for hypersonic

flows. In the stagnation region of blunt bodies, the convection speeds are small relative
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to the sound speed. In addition, if there is minor misalignment of the grid with the bow

shock wave, there can be error generated by the bow shock. This error can become trapped

in the stagnation region, resulting in the “carbuncle” phenomenon. In this situation, the

error overwhelms the actual flow physics and causes the bow shock to lens upstream in

an aphysical manner. There are various ways to prevent the formation of the carbuncle –

the best approach is to carefully align the grid with the bow shock wave. However, this is

not always possible, and an eigenvalue limiter is commonly applied. Here, the eigenvalues

appearing in (3.13) are modified to prevent them from going to zero as Mach number

approaches zero. For example, let:

λ± =
1

2

(
λ± ±

√
(λ±)2 + (ǫea)2

)
(3.19)

Where ǫe is often taken to be about 0.3. This eigenvalue limiter reduces the build-up

of error in the stagnation region and helps prevent (but does not always eliminate) the

carbuncle from forming. It is important to make ǫe = 0 in the wall-normal direction

because it can cause artificial diffusion of the boundary layer.

This approximation to the flux is only first-order accurate in space and is essentially

worthless for predicting heat transfer rates for hypersonic aerothermodynamics simulations.

There are many approaches to obtaining higher-order accuracy for conservation laws. In

these notes, we discuss one such approach that has been shown to be effective for a wide

range of hypersonic flows. It compares favorably with other popular upwind approaches

(Ref. 10), and its form is easy to linearize for use in implicit methods.

The key issue associated with obtaining second-order accuracy is how to accurately

project the cell-centered data to the faces without introducing numerical problems. In the

approach above, the upwind cell-centroid value of U is taken as the element face value for

use in the flux expression. To obtain second-order accuracy, we require a linear fit to U

for a more accurate value for Ui+ 1

2

.

We use the MUSCL approach developed by van Leer (Ref. 65) as our primary approach

for approximating U at the element face. A simple upwind extrapolation of the conserved

variables to the face on a uniform grid would result in a flux of the form:

UL
i+ 1

2

=
3

2
Ui −

1

2
Ui−1

UR
i+ 1

2

=
3

2
Ui+1 −

1

2
Ui+2

(3.20)

and

F ′
i+ 1

2

= A′+
i+ 1

2

UL
i+ 1

2

+ A′−

i+ 1

2

UR
i+ 1

2

(3.21)
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Where UL and UR represent the approximations to Ui+ 1

2

using left- and right-biased data.

(For simplicity we have assumed a uniformly spaced grid indexed by i.)

This approach yields a formally second-order accurate flux. However, it will cause

problems near strong gradient regions because the extrapolation can result in aphysical flow

states. Therefore, these gradients must be sensed and the extrapolation reduced or caused

to revert to the first-order flux above. With the MUSCL (monotone upwind schemes for

conservation laws) approach, the extrapolations are limited to prevent spurious oscillations

near large gradients. For example, the extrapolation of each variable in U could be “slope

limited.” For example, consider limiting the variables φL and φR with:

φL
i+ 1

2

= φi +
1

2
lim

(
φi+1 − φi, φi − φi−1

)

φR
i+ 1

2

= φi+1 −
1

2
lim

(
φi+2 − φi+1, φi+1 − φi

) (3.22)

where the limiter function can take many forms. We use a minmod limiter that takes

the minimum (in magnitude) of the two arguments if they have the same sign; otherwise

its value is zero. Note that this approach takes the smaller of the two possible changes

to φ when the sign of the slopes is the same, and uses no second-order correction when

the slopes are of different sign. Such an approach can be shown to be total variation

diminishing (TVD) for the linear wave equation.

The most obvious method would be to use the MUSCL approach on each of the

conserved variables. Thus, each conserved variable is slope-limited and extrapolated as

above. However, we have found that a more robust and accurate second-order extrapolation

method can be obtained by applying the MUSCL approach to the primitive variables and

then constructing the conserved variables from those quantities. With this approach,

we compute ρL,R
s , uL,R, vL,R, eL,R

v , and pL,R using the above expressions and form UL,R

from these quantities. This form of second-order fluxes is recommended. It gives more

accurate results, and is significantly more robust for large time steps than the simple

upwind extrapolation (3.19) or the MUSCL-based conserved variable extrapolation.

A further issue involves how to extrapolate fluxes on non-regular grids. The pre-

ceding discussion assumes that the data are available from regularly spaced neighboring

elements so that the extrapolations can be performed. However, on a general triangu-

lar/quadrilateral grid (tetrahedral/prism/pyramid/hexahedral grid in three dimensions)

this is not the case, and there is not a single neighboring element in a sensible upwind

direction. In this situation, it is necessary to perform a more sophisticated gradient cal-

culation using a cloud of neighboring points. There are many possible ways to form this
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gradient (Ref. 38), but we have found that a weighted least-squares approach gives the

most accurate results. Here planes (hyperplanes in three-dimensions) are fitted through a

relevant cloud of nearby data points, and the slope of each variable is computed from the

slope of the plane. This slope is then used in the MUSCL limiter function shown above.

To be specific, consider Figure 3.3 which shows an example for which there is sufficient

information to form the gradients with element-centroid data. Thus, the expressions above

are used to construct the fluxes for this case. Figure 3.4 shows an example in which three

cell-centered values are available to construct the gradients used in the MUSCL slope lim-

iter. In this case, the weighted least-squares approach is used to evaluate the gradient at

the left-side element centroid. Then the extrapolated variable in this case is:

φL = φi + ∇φi · d~r (3.23)

where φi is the variable in the left face neighbor element, ∇φi is its gradient there, and ~r

is the face-to-centroid vector.

Fig. 3.3 – Example showing how element-centered data are used to construct the flux at the

highlighted face.
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Fig. 3.4 – Example showing how three element-centered values and one weighted least-

squares gradient are used to construct the flux at the highlighted face.

3.2.2 Evaluation of the Diffusive Fluxes

For a structured grid with ordered i, j elements (or i, j, k in three dimensions), it

is possible to use grid metrics to evaluate the viscous fluxes. This is straight-forward,

and simply involves computing unbiased gradients of the relevant variables. For a general

unstructured grid, a different approach must be used. Two approaches are commonly

used in the literature: either the Green-Gauss theorem is used to evaluate a gradient by

summing around the surface of the element, or a weighted least-squares approach is used.

We favor the latter approach, though both are inaccurate in regions of large grid stretching

(which is precisely where accurate gradients are required). This problem is particularly

severe in regions of high cell-aspect-ratio (CAR), which is the ratio of the longest element

side to its shortest side. For this reason, we use a deferred correction approach (Ref. 24)

that corrects the gradient estimate using the data nearest to each face.

At an element face, the gradient of some variable φ can be written as

∇φ =
(
∇φ · n̂

)
n̂ +

(
∇φ −

(
∇φ · n̂

)
n̂
)

(3.24)

Now, using the terminology illustrated in Fig. 3.5, we can correct the face gradient estimate

using the values of φL,R

∇̃φ =
φR − φL

∆ℓ
(ê · n̂)n̂ +

1

2

(
I − n̂ ⊗ n̂

)(
(∇φ)L + (∇φ)R

)
(3.25)

where (∇φ)L,R are the weighted-least squares gradient estimates at the left and right cell

centers. This approach significantly improves the gradient values in high CAR regions.
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Fig. 3.5 – Deferred correction nomenclature.

3.2.3 Diagonalization of the Flux Jacobian

Now, let us discuss how to diagonalize the Jacobian matrix, A. (Here we use A

for simplicity; the diagonalization of A′ follows trivially.) The straight-forward approach

would be to form A and then find the eigenvalues and eigenvectors. This is complicated

and difficult to do. It is easier to diagonalize A using a different set of variables and then

transform back to the conserved variables. A good choice is the vector of “primitive”

variables

V =
(
ρ1, ρ2, . . . , ρns, u, v, ev, p

)T
, (3.26)

where ev = Ev/ρ. Then, we can write

A =
∂F

∂U
=

∂U

∂V

∂V

∂U

∂F

∂V

∂V

∂U
(3.27)

It turns out that it is easier to diagonalize the matrix ∂V
∂U

∂F
∂V than A itself.

We can compute these matrices, but we need some intermediate results, namely deriva-

tives of p with respect to the conserved variables, and derivatives of E with respect to the

primitive variables. We can write p in terms of U as:

p =

∑
s ρs

R
Ms∑

s ρscvs

[
E − Ev − 1

2

1∑
s ρs

(
(ρu)2 + (ρv)2

)]
, (3.28)

and therefore,
∂p

∂ρs
=

( R

Ms
− R̄cvs

cv

)
T +

R̄

cv

(
1
2 (u2 + v2) − h◦

s

)
,

∂p

∂ρu
= −u

R̄

cv
,

∂p

∂ρv
= −v

R̄

cv
,

∂p

∂Ev
= − R̄

cv
,

∂p

∂E
=

R̄

cv
.

(3.29)
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Where we have defined

cv =
∑

s

ρs

ρ
cvs, R̄ =

∑

s

ρsR

ρMs
. (3.30)

The derivatives of E with respect to the non-conserved variables are computed by

writing E in terms of these variables as

E =

∑
s ρscvs∑
s ρs

R
Ms

p +
∑

s

ρsev + 1
2

∑

s

ρs(u
2 + v2) +

∑

s

ρsh
◦
s. (3.31)

The derivatives that result are

∂E

∂ρs
=

(
cvs −

cvR

MsR̄

)
T + ev + 1

2 (u2 + v2) + h◦
s,

∂E

∂u
= ρu,

∂E

∂v
= ρv,

∂E

∂ev
= ρ,

∂E

∂p
=

cv

R̄
.

(3.32)

The Jacobian matrix, ∂V
∂U

∂F
∂V , that appears in (3.27) may be constructed from these

derivatives:

∂V

∂U

∂F

∂V
=




u 0 . . . 0 ρ1

0 u . . . 0 ρ2
...

...
. . .

...
...

0 0 . . . u ρns

u 0 0 1/ρ
0 u 0 0
0 0 u 0

ρa2 0 0 u




(3.33)

The speed of sound, a, has been defined such that

ρa2 =
∑

s

ρs
∂p

∂ρs
+ ρu

∂p

∂ρu
+ ρv

∂p

∂ρv
+ Ev

∂p

∂Ev
+

(
E + p

) ∂p

∂E
, (3.34)

which may be simplified using the derivatives given above to the expression

a2 =
(
1 +

R̄

cv

)
R̄T

= γ̄R̄T.

(3.35)

Where we have defined γ̄ to be the ratio of the frozen translational-rotational specific heats

of the gas mixture.
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It is straight-forward to diagonalize the Jacobian (3.27). If we write

∂V

∂U

∂F

∂V
= C−1

A ΛA CA, (3.36)

the eigenvalues are:

ΛA = diag
(
u, u, . . . , u︸ ︷︷ ︸

ns elements

, u + a, u, u, u − a
)T

, (3.37)

and with this ordering of the eigenvalues, the matrix CA is

CA =




1 0 . . . 0 ρ1/a2 0 0 −c1/a2

0 1 . . . 0 ρ2/a2 0 0 −c2/a2

...
...

. . .
...

...
...

...
...

0 0 . . . 1 ρns/a2 0 0 −cns/a2

ρa 0 0 1
0 1 0 0
0 0 1 0

−ρa 0 0 1




(3.38)

Where cs = ρs/ρ is the mass fraction of species s.

Note that since the equations that describe the reacting flow have the same features

as the perfect gas equations, all of the modern upwind flux evaluation methods may be

used.

3.2.4 Jacobian of the Source Vector

To achieve good convergence rates, it is necessary to exactly evaluate the Jacobian of

the source vector, C = ∂W/∂U . In my experience, every quantity that appears in W must

be differentiated exactly. In many cases, neglecting a seemingly small term can change the

sign of some elements of C, making the method converge slowly.

There are many different approaches that may be taken to reduce the difficulty of

the algebra. For example, Gökçen (Ref. 14) explicitly expresses W as a function of the

temperatures

W (U) = W̃
(
U, T (U), Tv(U)

)
, (3.39)

then he computes

C =
∂W̃

∂U
+

∂W̃

∂T

∂T

∂U
+

∂W̃

∂Tv

∂Tv

∂U
. (3.40)

The need for the correct linearization of the source term cannot be understated. Even

small algebra or coding errors or simplifications to the linearization can cause severe prob-

lems with numerical stability. Thus, this part of the code must be rigorously checked.
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3.2.5 Implicit Treatment of the Boundary Conditions

We have not discussed the treatment of the boundary conditions. During the forma-

tion of right-hand side of (3.11), the appropriate conditions at the boundaries must be

used. For example, at surfaces there must be no slip at the surface, the temperatures must

either be given by the isothermal wall condition or set by the adiabatic wall condition,

and the normal pressure gradient must be zero or determined from the normal momentum

equation. The chemical state of the gas at the wall is found by the catalytic efficiency of

the surface.

The implicit treatment of the boundary conditions is just as important, and is less

straight-forward. Consider a surface i + 1
2 such that the element i is used to specify the

boundary condition for the flux into element i + 1. Then we must express the change in

the solution within the boundary cell, δUi, in terms of the change in the solution within

the flow field, δUi+1. This can be done for any boundary condition if we construct a

matrix E such that δUi = EδUi+1. Then we can absorb the boundary condition into

the block-tridiagonal solution, and we can include the exact boundary conditions in the

implicit method, resulting in much improved convergence. For some boundary conditions,

it may be difficult or impossible to find an analytic form for E. In that case, E can be

constructed from numerical derivatives of the wall flux.

3.2.6 Implicit Viscous Terms

The evaluation of the viscous fluxes was discussed in section 3.2.2 above. We need to

linearize the viscous fluxes, Fv, for use in the implicit method. We can write this flux at

the unknown time level as:

Fn+1
v = Fn

v + δFn
v (3.41)

We do not have to have a perfect linearization of Fv, just the largest terms need to be

represented. In most flows, there is a direction in which the viscous fluxes dominate. For

example, in high Reynolds number flows the viscous terms are large in the boundary layer,

and the grid must be stretched close to the surface to resolve the near-wall gradients. In this

region the surface-normal viscous fluxes are orders of magnitude larger than the streamwise

or spanwise viscous fluxes. Therefore, we need only linearize the normal-direction Fv. This

drastically simplifies the problem, and it becomes possible to write δFv in the form:

δFv ≃ Mv
∂

∂n

(
NvδU

)
(3.42)

where n is the wall-normal direction.
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In practice, for general unstructured grids it is difficult to identify the wall-normal

direction. Rather, we simply linearize the flux due to gradients of the face’s nearest-

neighbor data.

3.2.7 Data-Parallel Line Relaxation

Let us return to the fully implicit method that we developed above in (3.11):

δUn +
∆t

V
∑

sides

~AnδUn · ~S − ∆t CnδUn = −∆t

V
∑

sides

~Fn · ~S + ∆tWn

Substituting the expressions developed above for ~A and ~F , results in a large linear system

of equations for δUn. Because we have used an upwind method, the resulting system of

equations is diagonally dominant, making it amenable to solution with iterative methods.

There are many such methods in the literature, and each has its pros and cons. Over

the past ten years, we have been using the data-parallel line-relaxation (DPLR) method

(Ref. 67) for the solution of this system of equations. This method is a parallelizable

variant of the Gauss-Seidel line-relaxation method of MacCormack (Ref. 33, 35), and is at

the core of the NASA DPLR multi-block structured grid code. This method is designed for

use on parallel computers, and is ideally suited to the solution of wall-bounded hypersonic

flows. Recently, we have generalized the DPLR method to a certain class of unstructured

grids.

The DPLR approach takes (3.11) and recognizes that there is strong physical coupling

in the surface-normal direction. If a grid has been generated that has lines of elements

running out from the surface (and preferably through the bow shock wave to the free-

stream), (3.11) can be modified to reduce its cost of solution. The implicit terms due to

the fluxes that are transverse to the wall-normal lines of elements can be moved to the

right-hand side and their influence included through a series of sub-iterations. This results

in a series of block-tridiagonal solutions, rather than a full matrix solve. This method has

the form:

δU (0) +
∆t

V
∑

on lines

~AnδU (0) · ~S − ∆t CnδU (0) = −∆t

V
∑

sides

~Fn · ~S + ∆tWn

Then for k = 1, kmax

δU (k) +
∆t

V
∑

on lines

~AnδU (k) · ~S − ∆t CnδU (k) = − ∆t

V
∑

sides

~Fn · ~S + ∆tWn

− ∆t

V
∑

off lines

~AnδU (k−1) · ~S

(3.43)
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And finally:

δUn = δUkmax

One detail is that we use only the nearest-neighbor data in the linearization. That

is, the terms due to the higher-order variable extrapolation are ignored (for example in

(3.21), we would not include the terms due to Ui−1 and Ui+2). This simplifies the linear

system, and (as far as we know) does not diminish the convergence rate of the method.

This method can be implemented efficiently in parallel with MPI (message passing

interface), and most, if not all, of the communication costs can be hidden through asyn-

chronous communication protocols. Excellent scaling has been obtained on a wide range

of parallel computers.

The unstructured grid implementation of this method is the same as above, but re-

quires the construction of surface-normal lines of regular elements. These elements do not

have to be regularly connected, but are simply identified as being in a wall-normal line of

either hexahedral or prismatic elements. Then the block-tridiagonal solver must be gen-

eralized to allow the solution on non-regularly connected lines. This is a straight-forward

generalization of standard block-tridiagonal solvers.
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4. Examples

4.1 Apollo Command Module Flow

The prediction of hypersonic entry flows is still a challenge for the best numerical

methods. There are a number of sources of potential problems, and these include:

• The main quantity of interest is the heat flux, which is a gradient-based quantity and

is inherently more difficult to predict than the pressure.

• Many hypersonic entry vehicles have a large stagnation region with high heat fluxes

and low convection speeds. Error can get trapped in this region and accumulate,

destroying the solution. In some cases, resulting in a so-called “carbuncle.”

• The stagnation region is bounded by a very strong shock wave that can inject large

error into the flow field.

• The solution is very sensitive to grid resolution and grid alignment with the shock

wave. All widely used methods solve the equations of gas dynamics in the grid direc-

tions. If the shock wave is not aligned with the grid, the shock will become stair-cased

across several cells and large error will be generated.

• Interestingly, solution quality and accuracy may be adversely affected by grid refine-

ment and stretching in the stagnation region.

• The solution is sensitive to the level of dissipation used in the flux evaluation and

limiters. Even subtle changes in the flux method can make large differences in the

predicted heat fluxes.

In general, great care must be taken in the grid generation, a grid topology with a patch

in the stagnation region should be used, and the grid resolution should be as uniform

as possible in the stagnation region. The solution quality will increase when the grid

is aligned with the bow shock wave. A certain amount of skepticism in the results and

patience is required to obtain reliable results for problems at high Mach number and with

large stagnation regions.

Consider for example the forebody of a re-entry vehicle similar to the Apollo Command

Module. This is a segment of a sphere, with a smaller radius on its edge. (This geometry

is a ±20◦ segment of a 10 m radius sphere, with a 0.5 m radius cylindrical leading edge

added.) Figure 4.1 shows a possible surface grid for this geometry. A two-dimensional grid

for one surface-normal slice of the domain has been rotated about the symmetry axis. This

results in pie-shaped cells with a singular axis. Such a grid may result in poor solutions
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because of the large variation in flow resolution in the subsonic region.

Figure 4.1 also plots the computed surface pressure and heat transfer rate using this

grid for the conditions: ρ∞ = 8.364×10−5 kg/m3, T∞ = 219.8 K, v∞ = 7414 m/s, α = 19◦,

and Twall = 1500 K. This calculation was performed with the minmod limiter and the

variables ρs, u, v, w, ev, and T were extrapolated and limited to obtain second-order

accuracy. Note that this is a particularly difficult condition because the angle of attack

produces a very large subsonic region where error can accumulate. This grid has 78 points

in the radial direction, 61 points in the circumferential direction, and 121 points in the

wall normal direction. No attempt has been made to align the grid with the shock wave.

Fig. 4.1 – Axisymmetric grid on surface of Apollo Command Module-like shape; surface

pressure (left) and heat flux (right).

Fig. 4.2 – Patched grid on surface of Apollo Command Module-like shape; surface pressure

(left) and heat flux (right).
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A better grid generation strategy is shown in Figure 4.2; here a patch is added at the

nose, and a C-grid is wrapped around the patch. This results in more uniform grid spacing

in the critical stagnation region. In addition, this grid has been adapted to the bow shock

so that the error produced by the shock is reduced. We are now able to obtain a reasonable

solution for this problem. Figure 4.2 plots the pressure and convective heat flux for the

free-stream conditions given above. Note that heat flux no longer has a minimum near the

stagnation point, unlike the result obtained on the previous grid.

The main conclusion to take from this brief comparison is that the solution in the

stagnation region can be extremely grid sensitive (at least using the methods discussed

here). Great care must be taken with grid generation, and for problems with large stag-

nation regions, the grid must be aligned with the shock wave to obtain reliable results.

Furthermore, it is recommended that several numerical flux methods be used to assess the

sensitivity of the results to the numerical approach.

The primary source of error is associated with how the strong bow shock crosses the

grid. If there is perfect alignment, the CFD method exactly reproduces the shock jump

conditions and there is no error. However, when the grid is not aligned with the shock,

a spurious component of velocity tangent to the shock wave is produced. This error acts

as a source of vorticity at the shock wave, which can accumulate in the stagnation region.

Clearly methods that are less sensitive to grid orientation are needed and new work in

multi-dimensional and rotated Riemann solvers may help reduce this dependence.

4.2 Double-Cone Flow

The double-cone flow field discussed in Section 1.1.1 is an interesting test case for

evaluating numerical methods. In Figure 1.1, the separation zone that forms between the

two conical sections is shown. The size of the separation zone can be detected in the heat

flux and pressure measurements, as seen in Figures 1.2 and 1.3. The computed size of this

separation zone is a direct measure of the quality of the numerical solution. Coarse grids

produce a small separation, and numerical flux functions with large dissipation also under-

predict the separation length. Thus, numerical methods can be evaluated by simulating

the double-cone flow and comparing the size of the separation zone.

Figure 4.3 plots the separation zone length as a function of the grid spacing for a

variety of numerical methods.5 This plot shows that all of the methods converge to the

5 This work was done in collaboration with Dr. Marie-Claude Druguet of IUSTI – École Polytechnique
Universitaire de Marseille.
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same separation zone length as the grid is refined. However, the rate of this convergence

varies with the method, and for a given grid size the accuracy of each method is different.

Furthermore, the effect of the slope limiter can be readily seen, with the superbee limiter

providing more accurate results than the minmod limiter, for example. Therefore, making

two simulations on different sized grids will give an immediate assessment of the accuracy

of a numerical method. It should be noted that these calculations were performed with a

perfect gas model without vibrational energy relaxation effects. Thus, the experimentally

measured separation zone is different that those plotted here. See Ref. 10 for more details.

It is important to note that these flows take a long time to evolve, and it is important

to carefully monitor the convergence to steady state. Physically, these flows take at least

150 flow times to converge, where one flow time is based on the free-stream speed and the

length of the geometry (Ref. 12). Thus, time-like simulations must be computed for at

least this length of time before the solution can be considered to be converged.
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Fig. 4.3 – Size of the separation zone versus the square of the grid spacing in the streamwise

direction (Ref. 10).
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4.3 Mach 8 Waverider Flow

A third example involves the simulation of a waverider geometry at Mach 8 conditions

to compare with experimental measurements made in the AEDC Tunnel 9 facility (Ref. 9).

These simulations were performed on three grids ranging in size from 2.5 to 8.5 million

elements. The outer domain was designed to contain the bow shock wave at all angles

of attack. Figure 4.4 shows some snapshots of the grid and waverider geometry. Two

conditions were studied: a low Reynolds number of 14.32 × 106 /m and a high Reynolds

number of 53.84 × 106 /m.

Natural transition occurs on the waverider at the lower Reynolds number condition.

We did not attempt to model the transition process, but rather ran fully laminar and fully

turbulent flows and compared those results with the experimental data. In the high Re

case, transition occurs very near the leading edge, and therefore we ran fully turbulent only.

Here, we use the Spalart-Allmaras RANS model with the Catris-Aupoix compressibility

correction (Refs. 58, 7).

To a large extent the comparisons are very favorable, with the CFD matching the

aerodynamic data across the angle of attack sweep at both conditions. For example, Fig-

ure 4.5 shows the lift and drag coefficients for the two cases. We also made comparisons

with the individual pressure and heat transfer gauges on the model. Figure 4.6 summarizes

one such comparison for the low Re condition on lower surface of the model (the windward

surface at α > −5◦). Note the excellent agreement with the data, and that the thermo-

couple near the leading edge shows laminar flow, while all other measurements indicate

turbulent flow.
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Fig. 4.4 – Medium grid (5.1 million elements) used for the waverider simulations; every

second point shown (Ref. 9).

Fig. 4.5 – Lift and drag coefficients for the waverider at the low Re (left) and high Re

(right) conditions.
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Fig. 4.6 – Heat transfer rate comparisons on the lower surface of the waverider at low Re.
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