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SUBPROJECT 3 

 

Oxidative damage and inflammation in the brains of autistic subjects:                          

Correlation with severity and phenotypes. 

 

PI: Abha Chauhan, Ph.D. 

 

INTRODUCTION 

 

Autism is a heterogeneous, behaviorally defined neurodevelopmental disorder. There is 

limited knowledge of the causative factors and secondary abnormalities in biochemical pathways 

in autism. While the cause of autism remains elusive, autism is considered a multifactorial 

disorder that is influenced by genetic and environmental factors. Accumulating evidence 

suggests that oxidative stress may provide a link between susceptibility genes and pre- and post-

natal environmental risk agents in the pathophysiology of autism [1-3]. Under normal conditions, 

a dynamic equilibrium exists between the production of free radicals, i.e. reactive oxygen species 

(ROS) and the anti-oxidant capacity of the cell. These ROS are highly toxic, and if not removed 

or neutralized, they react with lipids, proteins and nucleic acids and damage membrane 

properties and cellular functions. Glutathione (GSH) is the most important endogenous 

antioxidant in human tissues, which neutralizes ROS, and participates in detoxification and 

elimination of environmental toxins. Due to the lack of glutathione-producing capacity by 

neurons, the brain has a limited capacity to detoxify ROS.  Therefore, neurons are the first cells 

to be affected by the increase in ROS and shortage of antioxidants and, as a result, they are most 

susceptible to oxidative stress. Oxidative stress is known to be associated with premature aging 

of cells and can lead to inflammation, damaged cell membranes, autoimmunity and cell death. 

The brain is highly vulnerable to oxidative stress due to its limited antioxidant capacity, higher 

energy requirement and high amounts of unsaturated lipids and iron [4]. The brain makes up 

about 2% of body mass but consumes 20% of metabolic oxygen. The vast majority of energy is 

used by the neurons [5].  

 Extensive evidence suggests the presence of oxidative stress in peripheral tissues in 

children with autism [1, 3].  We have reported that levels of malonyldialdehyde, a marker of 

lipid peroxidation, are increased in the plasma from children with autism [6]. Other studies on 

erythrocytes and urine samples have also indicated increased levels of lipid peroxidation markers 

in autism, thus confirming an increased oxidative stress in autism [7, 8].  Brain tissue is highly 

heterogeneous with specific functions localized in specific areas of brain.  The studies in this 

project with postmortem brain tissues have shown elevated levels of markers of oxidative 

damage, coupled with reduced antioxidant status in the cerebellum, frontal and temporal cortex 

of the brain of individuals with autism as compared to age-matched control subjects [9-12].   

  Mitochondria are the primary source of free radicals, and are central to many cellular 

functions including the generation of ATP (energy). They also trigger apoptosis, i.e. cell death. 

Neurons in particular rely on mitochondria because of their high levels of activity and 

subsequent need for energy. The free radicals are generated endogenously during oxidative 

metabolism and energy production by mitochondria [13]. Electron transport chain (ETC) in 

mitochondrion is a prime site for free radicals generation.  Mitochondria generate ATP by 

generation of protons gradient (membrane potential) with the help of five ETC complexes. The 

changes in the mitochondrial ETC have been reported in several neurodegenerative disorders. 
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Recent evidence also suggests increased prevalence of mitochondrial dysfunction in autism [3, 

14]. Our studies in this project have indicated brain region-specific deficit of mitochondrial ETC 

complexes in autism [9]. 

Protein kinases are known to play important roles in cellular signaling pathways and are 

involved in brain development. Protein kinase A (PKA) is a cyclic adenosine monophosphate 

(cAMP)–dependent protein kinase that is involved in cognitive functions and memory formation. 

Protein Kinase C (PKC), a ubiquitous phospholipid-dependent serine/threonine kinase, is another 

G-protein-coupled receptor-mediated kinase. PKC is known to be involved in signal transduction 

associated with the control of brain functions, such as ion channel regulation, receptor 

modulation, neurotransmitters release, synaptic potentiation/depression, and neuronal survival.  

It also plays crucial roles in cell proliferation, differentiation and apoptosis.  In this project, we 

have examined the activities of PKA and PKC in the brain samples from autism and control 

subjects [15, 16]. 

 

BODY 

 

In our study, the postmortem frozen brain samples from the cerebellum and frontal, temporal, 

parietal and occipital cortex from autistic subjects with age range of 4 to 39 yrs from subjects 

with autism and age-matched control subjects were obtained from the National Institute of Child 

Health and Human Development (NICHD) Brain and Tissue Bank for Developmental Disorders 

at the University of Maryland.  

 

Increased oxidative damage in the frontal cortex, temporal cortex and cerebellum in 

autism. We observed brain region-specific increased levels of lipid hydroperoxide [9], a product 

of fatty acid oxidation; of malonyldialdehyde [10], an end-product of lipid peroxidation; of 8-

hydroxy-2
’
-deoxyguanosine (8-OH-dG) [11], a marker of oxidative DNA damage; and of protein 

carbonyl [12], a marker of protein oxidation in autism. Other groups have also reported elevated 

expression of carboxyethyl pyrrole [17], a marker of lipid-derived oxidative protein 

modification, and of 3-nitrotyrosine [18], a marker of protein nitration, in postmortem brain 

samples from autistic subjects.  

 

 

Reduced antioxidant capacity in the brain of autistic subjects. In order to study antioxidant 

status of brain in autism, we examined the concentrations of glutathione (GSH, reduced form; 

and GSSG, oxidized form) and the redox ratio of GSH to GSSG (marker of oxidative stress) in 

different regions of brains from autistic subjects and age-matched control subjects [19, Appendix 

1 ]. We have recently reported a decrease in GSH, an increase in its oxidized disulfide form 

(GSSG) and a decrease in the redox ratio of GSH/GSSG in the cerebellum and temporal cortex 

of individuals with autism, suggesting a glutathione redox imbalance in autism [19, Appendix 1]. 

These findings indicate that autism is associated with deficits in glutathione antioxidant defense 

in selective regions of the brain.  

 

 Mitochondrial dysfunction in autism. Since mitochondria play important roles in the 

generation of free radicals and ATP formation, we studied the levels of mitochondrial ETC 

complexes, i.e., complexes I, II, III, IV, and V, in brain tissue samples from the cerebellum and 

the frontal, parietal, occipital, and temporal cortices of autism and age-matched control subjects 
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[9]. We have reported brain region-specific deficit in mitochondrial ETC complexes in autism 

[9]. 

  
Increased activities of Na

+
/K

+
-ATPase and Ca

2+
/Mg

2+
-ATPase. Since increased oxidative 

stress in autism can affect the activities of membrane-bound enzymes, such as Na
+
/K

+
-ATPase 

and Ca
2+

/Mg
2+

-ATPase that are known to maintain intracellular gradients of ions essential for 

signal transduction, we also studied whether oxidative stress can affect the activities of these 

enzymes in different brain regions of autistic subjects. In the cerebellum and frontal cortex of 

individuals with autism, we reported increased activities of Na
+
/K

+
- ATPase and Ca

2+
 /Mg

2+
-

ATPase [20]. 

 

Reduced activity of protein kinases  in the frontal cortex of subjects with regressive autism: 

Relationship with developmental abnormalities. In regressive autism, affected children first 

show signs of normal social and language development but eventually lose these skills and 

develop autistic behavior. The underlying mechanism for regression in autism is not known. 

Protein kinases are essential for G-protein-coupled receptor-mediated signal transduction, and 

are involved in neuronal functions, gene expression, memory, and cell differentiation.   Recently, 

we reported decreased activity of protein kinase A (PKA) in the frontal cortex of subjects with 

regressive autism [15, Appendix 2].   In the present study, we analyzed the activity of protein 

kinase C (PKC) in the cerebellum and different regions of cerebral cortex from subjects with 

regressive autism, autistic subjects without clinical history of regression, and age-matched 

control subjects [16, Appendix 3]. In the frontal cortex of subjects with regressive autism, PKC 

activity was significantly decreased by 57.1% as compared to age-matched control subjects (p = 

0.0085), and by 65.8% as compared to non-regressed autistic subjects (p = 0.0048) (Fig. 1).  

PKC activity was unaffected in the temporal, parietal and occipital cortices, and in the 

cerebellum in both autism groups, i.e., regressive and non-regressed autism as compared to 

control subjects (Fig. 1,2).  These results suggest brain region-specific alteration of PKC activity 

in the frontal cortex of subjects with regressive autism.  Further studies showed a negative 

correlation between PKC activity and restrictive, repetitive and stereotyped pattern of behavior 

(r= 0.084, p = 0.0363) in autistic individuals, suggesting involvement of PKC in behavioral 

abnormalities in autism (Fig. 3).  These findings suggest that regression in autism may be 

attributed, in part, to alterations in G-protein-coupled receptor-mediated signal transduction 

involving PKA and PKC in the frontal cortex. 
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Fig. 1. Protein kinase C activity in different regions of cerebral cortex, i.e., frontal, temporal, 

occipital and parietal cortex from subjects with regressive autism, non-regressed autism and their 

age-matched controls.  The mean absorbance (x10
3
) of samples was divided by the quantity of 

total protein (μg) used per assay, and the data is represented as relative PKC activity.   **p < 

0.01 as compared to control and non-regressed autism groups. 
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Fig. 2. Protein kinase C activity in the cerebellum from subjects with regressive autism, non-

regressed autism and their age-matched control subjects. The mean absorbance (x10
3
) of samples 

was divided by the quantity of total protein (μg) used per assay, and the data is represented as 

relative PKC activity. 
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Fig. 3. Relationship between PKC activity of frontal cortex and Autism Diagnostic Interview 

Revised (ADI-R) test scores in subjects with autism. PKC activity was plotted against individual 

ADI-R scores for (a) restricted, repetitive and stereotyped patterns of behavior, and (b) 

abnormalities of development evident before the age of 36 months.  R represents subjects with 

regressive autism. 
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KEY RESEARCH ACCOMPLISHMENTS 
 

 

1. There is increased oxidative damage as evidenced by increase in lipid peroxidation, protein 

oxidation and DNA oxidation in the cerebellum, frontal cortex and temporal cortex of the brain 

in autism [9-12].  Oxidative stress is brain region-specific in autism, and was not observed in 

occipital and parietal cortex. 

 

2. Glutathione antioxidant capacity is reduced in the cerebellum and temporal cortex in autism 

[19, Appendix 1]. 

 

3.  There is a brain region–specific decrease in the levels of mitochondrial electron transport 

chain complexes in the cerebellum and in the frontal and temporal cortices but not in the parietal 

and occipital cortices of subjects with autism [9]. These mitochondrial abnormalities are 

observed only in young children with autism but not in adults with autism. The abnormalities in 

the mitochondrial ETC complex levels resulting in disruption of mitochondrial function may be 

one of the factors in the etiology of autism.  This will lead to increased free radical generation, 

oxidative stress and abnormal energy metabolism in autism. 

 

4. The activities of both Na
+
/K

+
-ATPase and Ca

2+
/Mg

2+
-ATPase (membrane-bound enzymes) 

were significantly increased in the cerebellum in the autistic samples compared with their age-

matched controls.  The activity of Na
+
/K

+
-ATPase but not Ca

2+
/Mg

2+
-ATPase was also 

significantly increased in the frontal cortex of the autistic samples as compared to the age-

matched controls [20].  In contrast, in other regions, i.e., the temporal, parietal and occipital 

cortices, the activities of these enzymes were similar in autism and control groups. 

 

5. Individuals with regressive autism have decreased activities of PKA and PKC in the frontal 

cortex of the brain [15, Appendix 2; 16, Appendix 3].  Such changes were not observed in other 

brain regions of individuals with regressive autism, or in the frontal cortex and other brain 

regions of individuals with non-regressive autism.  These results suggest that alterations in PKA 

activity and PKA expression are specific to the frontal lobe in regressive autism.  

 

Our results suggest mitochondrial dysfunction, increased oxidative damage coupled with 

reduced antioxidant status in the specific regions of brain i.e., cerebellum, frontal and temporal 

cortex of autistic individuals compared with brain samples from age-matched control subjects.  

Our results also suggest altered activities of enzymes involved in cellular signaling such as 

Na
+
/K

+
-ATPase, Ca

2+
/Mg

2+
-ATPase, PKA and PKC in specific brain regions in autism Frontal 

cortex may be the region of the brain involved in regressive autism, where abnormalities such as 

decreased activity of PKA and PKC can affect the signal transduction. 
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REPORTABLE OUTCOMES 

 

Abstracts 

 

1. Chauhan, A. (Keynote Speaker). Oxidative stress and mitochondrial dysfunction in 

autism: Impact of genetic and environmental factors. International Conference on 

Neurology and Therapeutics. J. Neurol. Neurophysiol. 3(2): 27 (May 14
-16

, 2012). 

2.  Chauhan, V., Ji. L., and Chauhan, A. Brain region-specific changes in activities of protein 

kinase A, protein kinase C and MAP kinases in regressive autism. J. Neurochem. 118 

(Suppl.1), 217-218 (2011). 

3.  Chauhan, A.,  Audhya,T.  and Chauhan, V.. Glutathione redox imbalance and increased 

DNA oxidation in specific brain regions in autism. J. Neurochem. 118 (Suppl.1), 217 

(2011). 

 

 

 

Publications 

 

1. Ji, L., Chauhan, A., W. Ted Brown and Chauhan, V. Increased activities of Na/K-

ATPase and Ca/Mg-ATPase in the frontal cortex and cerebellum of autistic 

individuals. Life Sci. 85: 788-793 (2009). 

2. Wegiel, J., Kuchna, I., Nowicki, K., Imaki, H., Wegiel, J., Marchi, E., Ma, S.Y., 

Chauhan, A., Chauhan, V., Bobrowicz, T. W., Leon, M. de, Louis, L.A.S., Cohen, I.L., 

London, E., Brown,W.T. and Wisniewski,T.  The neuropathology of autism: Defects 

of neurogenesis and neuronal migration and dysplastic changes. Acta Neuropathol. 

119: 755-770 (2010). 

3. Chauhan, A., Gu, F., Essa,M.M., Wegiel,J., Kaur, K., Brown, W. T. and Chauhan, V. 

Brain region–specific deficit in mitochondrial electron transport chain complexes in 

children with autism. J. Neurochem. 117: 209-220 (2011). 

4.  Ji, L., Chauhan, V., Flory, M.J. and Chauhan, A.  Brain region–specific decrease in 

the activity and expression of protein kinase A in the frontal cortex of regressive 

autism. PLoS ONE 6: e23751 (2011). 

5. Wegiel, J., N., Schanen, N.C., Cook, E.H., Sigman, M., Brown, W.T., Kuchna, I., 

Nowicki, K., Wegiel, J., Imaki, H., Ma, S.Y., Marchi, E., Wierzba-Bobrowicz, T., 

Chauhan, A., Chauhan, V., Cohen, I.L., London, E.,, Flory, M., Lach, B., and 

Wisniewski, T. Differences between the pattern of developmental abnormalities in 

autism associated with duplications 15q11.2q13 and idiopathic autism. J. Neuropathol. 

Exp. Neurol. 71: 382-397 (2012). 

6.  Wegiel, J., Frackowiak, J., Kolecka,B.M., Schanen,N.C., Cook, Jr.,E.H.,  Sigman, M., 

Brown, W.T., Kuchna, I., Wegiel, J., Nowicki,K., Imaki, H., Ma,S.Y., Chauhan,A., 

Chauhan,V., Miller,D.L., Mehta,P.D.,Cohen, I.L., London, E., Reisberg, de Leon, 

M.J., and  Wisniewski, T. Abnormal intracellular accumulation and extracellular Aβ 

deposition in idiopathic and dup 15 autism. PLos One 7: e35414 (2012). 

7.   Chauhan, A, Audhya, T., and Chauhan, V. Brain region-specific glutathione redox 

imbalance in autism. Neurochem. Res. 37: 1681-1689 (2012). 
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8.  Ji, L., Chauhan, A. and Chauhan, V. Reduced activity of protein kinase C in the 

frontal cortex of subjects with regressive autism: Relationship with developmental 

abnormalities. Int. J. Biol. Sci. 8: 1075-1084 (2012). 

9. Chauhan, A. and Chauhan, V. Brain Oxidative Stress and Mitochondrial 

Abnormalities in Autism (Review). In:  Consensus Paper: Pathological role of the 

cerebellum in autism  (Fatemi S.H. et al.). Cerebellum 11: 777-807 (2012). 

10. Chauhan, A., Gu, F. and Chauhan, V. Mitochondrial respiratory chain defects in 

autism and other neurodevelopmental disorders  Special Issue: Mitochondrial 

dysfunction associated with neurodevelopmental disorders. J. Pediatric Biochem. 

(review; in press) 

 

 

 

News Release of above publications # 3 and 4 

 

1. News release of our publication in J. Neurochemistry (Chauhan et al. Brain region–

specific deficit in mitochondrial electron transport chain complexes in children with 

autism). by Simons Foundation Autism Research Initiative (March 17, 2011)    

 

     https://sfari.org/news-and-commentary/open-article/-

/asset_publisher/6Tog/content/mitochondrial-function-disrupted-in-children-with-

autism?redirect=%2Fnews-and-commentary%2Fall 

 

2. Our article in J. Neurochemistry (Chauhan et al. Brain region–specific deficit in 

mitochondrial electron transport chain complexes in children with autism) was featured 

as key scientific article by Global Medical Discovery 

 

http://globalmedicaldiscovery.com/key-scientific-articles/brain-region-specific-deficit-

in-mitochondrial-electron-transport-chain-complexes-in-children-with-autism/. 

 

3. News release (Molecular mechanisms: Pathway linked to regressive autism) by Simons 

Foundation Autism Research Initiative (Oct 12, 2011) for our publication in PLoS 

One (Brain region–specific decrease in the activity and expression of protein kinase A 

in the frontal cortex of regressive autism). 

  

              http://sfari.org/news-and-opinion/in-brief/2011/molecular-mechanisms-pathway-linked-

to-  regressive-autism 

 

4.  Above article was also covered in the press release (New biochemical findings might 

explain why children with regressive autism lose skills) by Decoded Science (Oct 21, 

2011).  

http://www.decodedscience.com 

 

 

 

 

https://sfari.org/news-and-commentary/open-article/-/asset_publisher/6Tog/content/mitochondrial-function-disrupted-in-children-with-autism?redirect=%2Fnews-and-commentary%2Fall
https://sfari.org/news-and-commentary/open-article/-/asset_publisher/6Tog/content/mitochondrial-function-disrupted-in-children-with-autism?redirect=%2Fnews-and-commentary%2Fall
https://sfari.org/news-and-commentary/open-article/-/asset_publisher/6Tog/content/mitochondrial-function-disrupted-in-children-with-autism?redirect=%2Fnews-and-commentary%2Fall
http://sfari.org/news-and-opinion/in-brief/2011/molecular-mechanisms-pathway-linked-to-%20%20regressive-autism
http://sfari.org/news-and-opinion/in-brief/2011/molecular-mechanisms-pathway-linked-to-%20%20regressive-autism
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CONCLUSIONS 

 

Brain is a heterogeneous organ where specific functions are attributed to specific regions. Our 

results suggest that autism is associated with mitochondrial dysfunction and increased oxidative 

stress in the brain, which differentially affects selective regions of the brain, i.e. cerebellum, 

frontal cortex and temporal cortex in autism. We have also reported brain region-specific 

increased activities of membrane-bound enzymes, such as Na
+
/K

+
-ATPase and Ca

2+
/Mg

2+
-

ATPase that are known to maintain intracellular gradients of ions essential for signal 

transduction Our results also suggest lower activities of PKA and PKC in the frontal lobe of 

subjects with regressive autism, which will lead to abnormal cellular signaling. Increased 

oxidative damage may also lead to inflammation because oxidative stress serves as a major 

upstream component in the signaling cascade involved in activation of redox-sensitive 

transcription factors and pro-inflammatory gene expression resulting in an inflammatory 

response.  
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Abstract Autism is a heterogeneous, behaviorally

defined neurodevelopmental disorder. Recently, we repor-

ted a brain region–specific increase in lipid peroxidation,

and deficits in mitochondrial electron transport chain

complexes in autism, suggesting the role of oxidative stress

and mitochondrial dysfunction in the pathophysiology of

autism. However, the antioxidant status of the brain is not

known in autism. Glutathione is a major endogenous

antioxidant that plays a crucial role in protecting cells from

exogenous and endogenous toxins, particularly in the

central nervous system. The present study examines the

concentrations of glutathione (GSH, reduced form; and

GSSG, oxidized form) and the redox ratio of GSH to GSSG

(marker of oxidative stress) in different regions of brains

from autistic subjects and age-matched control subjects. In

the cerebellum and temporal cortex from subjects with

autism, GSH levels were significantly decreased by 34.2

and 44.6 %, with a concomitant increase in the levels of

GSSG by 38.2 and 45.5 %, respectively, as compared to

the control group. There was also a significant decrease in

the levels of total GSH (tGSH) by 32.9 % in the cerebel-

lum, and by 43.1 % in the temporal cortex of subjects with

autism. In contrast, there was no significant change in

GSH, GSSG and tGSH levels in the frontal, parietal and

occipital cortices in autism versus control group. The redox

ratio of GSH to GSSG was also significantly decreased by

52.8 % in the cerebellum and by 60.8 % in the temporal

cortex of subjects with autism, suggesting glutathione

redox imbalance in the brain of individuals with autism.

These findings indicate that autism is associated with def-

icits in glutathione antioxidant defense in selective regions

of the brain. We suggest that disturbances in brain gluta-

thione homeostasis may contribute to oxidative stress,

immune dysfunction and apoptosis, particularly in the

cerebellum and temporal lobe, and may lead to neurode-

velopmental abnormalities in autism.

Keywords Autism � Brain � Glutathione �
Neurodevelopment � Oxidative stress � Redox

Introduction

Autism is a severe neurodevelopmental disorder charac-

terized by deficits in social interaction; impairments in

verbal and nonverbal communication; and restricted,

repetitive and stereotyped patterns of behavior [1]. Autism

belongs to a group of neurodevelopmental disorders known

as autism spectrum disorders (ASDs), which include per-

vasive developmental disorder—not otherwise specified

(PPD-NOS) and Asperger disorder. According to the

Centers for Disease Control and Prevention, 1 in 110

children in the United States is diagnosed with ASDs [2].

Autism is a heterogeneous disorder, both etiologically

and phenotypically. While the cause of autism remains

elusive, autism is considered a multi-factorial disorder that

is influenced by genetic, epigenetic, environmental and

immunological factors [3, 4]. Accumulating evidence

suggests that oxidative stress may be a common feature in
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autism through which environmental factors exert their

deleterious effects, which may be further exacerbated by

the interaction of genetically susceptible alleles [3–6].

Several studies suggest that inflammatory phenomena,

immune dysregulation and certain autoimmune risk factors

may also contribute to the development and pathogenesis

of autism [3, 7–9].

The brain is highly vulnerable to oxidative stress as a

result of its limited antioxidant capacity, high energy

requirement and high amounts of unsaturated lipids and

iron [10]. Antioxidants, particularly glutathione, are

essential for neuronal survival during the early critical

period [11, 12]. Glutathione exists in the thiol-reduced

form (GSH) and disulfide-oxidized form (GSSG). GSH is

the most important endogenous antioxidant for detoxifica-

tion and elimination of environmental toxins and free

radicals, i.e., reactive oxygen species (ROS) that cause

damage to cellular functions by oxidizing lipids, proteins

and DNA. In addition to serving as an antioxidant, GSH

plays an important role in cell differentiation, proliferation

and apoptosis [11, 13–15]. There is also ample evidence on

the role of glutathione in both innate and adaptive immune

functions and on its anti-inflammatory role [13, 16–18].

Some studies provide evidence of the prenatal and

perinatal onset for developmental abnormalities that lead to

autism [19–21]. Children are more vulnerable than adults

to oxidative stress, because of their low GSH levels [22,

23]. The risk from deficits in detoxification capacity in

infants is higher because some environmental factors that

induce oxidative stress accumulate in the placenta, and are

found at higher concentrations in developing infants than in

their mothers.

The biological activity of GSH resides in the sulfhydryl

(thiol) group (SH) of cysteine. It acts as a reducing agent,

and protects the cells from the deleterious effects of ROS

by neutralizing them. In this process, GSH is oxidized to

GSSG by glutathione peroxidase (GPx). GSSG can be

recycled back to GSH by NADPH-dependent glutathione

reductase (GR). In healthy cells and tissues, most of the

total glutathione (tGSH) pool is in the GSH form, and less

than 1 % [24] or 1.2 % [25] exists in the GSSG form. GSH

and GSSG are the primary determinants of redox status in

all human cells. A decrease in GSH-to-GSSG redox ratio is

a marker of oxidative stress.

Extensive evidence from our and other groups suggests

a role of oxidative stress in the development and clinical

manifestation of autism. The levels of oxidative stress

markers for lipid peroxidation, protein oxidation and/or

DNA oxidation are increased in the blood [3, 5, 26–28],

urine [29] and brains [3, 30–34] of autistic subjects as

compared with control subjects. In addition, the activities

of antioxidant enzymes and the levels of antioxidant pro-

teins, namely transferrin (iron-binding protein) and

ceruloplasmin (copper-binding protein) are decreased in

the blood samples from autistic subjects [26–28, 35].

Several clinical studies have reported lower GSH levels

and GSH/GSSG ratio in the plasma of individuals with

autism [36–40]. However, the status of antioxidant capac-

ity in the brains of individuals with autism has not been

studied previously.

Brain tissue is highly heterogeneous, with specific

functions localized in specific areas of the brain. The

majority of free radicals, i.e., ROS, are produced in the

mitochondria during oxidative metabolism and energy

production, and the electron transport chain (ETC) in

mitochondria is a prime source of ROS generation [41, 42].

We recently reported brain region–specific deficits in

expression levels of mitochondrial ETC complexes in the

cerebellum and the frontal and temporal cortices of chil-

dren with autism [30]. Interestingly, the levels of ETC

complexes were unaffected in the parietal and occipital

cortices in autistic subjects compared to control subjects. In

addition, increased lipid peroxidation was observed in the

cerebellum and temporal cortex of autistic subjects, but not

in other brain regions [30]. In view of the brain region–

specific oxidative damage and mitochondrial ETC defects

in autism, it was of interest to examine glutathione redox

status in different brain regions (cerebellum and frontal,

temporal, occipital and parietal cortices) from autism and

age-matched control subjects.

Materials and Methods

Autism and Control Subjects

Samples of postmortem frozen brain regions, i.e., the cere-

bellum, and the cortices from the frontal, temporal, parietal

and occipital lobes from autistic (N = 7–10 for different

brain regions) and age-matched, typically developed, control

subjects (N = 9–10) were obtained from the National

Institute of Child Health and Human Development (NICHD)

Brain and Tissue Bank for Developmental Disorders at the

University of Maryland, Baltimore, MD. The age

(mean ± SE) for autistic subjects was 12.6 ± 3.2 years, and

for control subjects, 12.4 ± 3.3 years. All brain samples

were stored at -70 �C. This study was approved by the

Institutional Review Board of the New York State Institute

for Basic Research in Developmental Disabilities.

The case histories for the autistic and control subjects

are summarized in Table 1. Donors with autism had met

the diagnostic criteria of the Diagnostic and Statistical

Manual-IV (DSM-IV) for autism. The Autism Diagnostic

Interview-Revised (ADI-R) test was performed for donor

UMB #s 4671, 4849, 1174, 797, 1182, 4899 and 1638.

Each donor’s impairments in social interaction, qualitative
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abnormalities in communication, and restricted, repetitive

and stereotyped patterns of behavior were consistent with

the diagnosis of autism, according to the results of the ADI-

R diagnostic algorithm. All donors with autism exceeded

the cut-off score in these parameters. The diagnosis of

autism was assigned to donor UMB # 1349 after extensive

evaluation of behavioral tests, including the Autism

Diagnostic Observation Schedule (ADOS), Vineland

Adaptive Behavioral Scale (VABS), and Bayley Scales for

Infant Development-II (BSID-II). In addition to the ADI-R,

UMB # 4849 was also evaluated by the BSID-II and the

Childhood Autism Rating Scale (CARS), which indicated

moderate to severe autism, and autism in UMB # 4671 was

also verified by the VABS and BSID-II. Regressive autism,

in which early development is normal but it is followed by

loss of previously acquired language and/or social skills,

was suggested in five autism cases (UMBs # 1349, 4849,

1182, 4899, 1638).

Preparation of Homogenates

The coded brain tissue samples (50–60 mg each) from

autistic and control subjects were homogenized using a

Polytron Tissue Trearor homogenizer with a 7.0-mm

diameter stainless steel probe. The extraction solution

consisted of formic acid (0.1 % v/v), potassium chloride

(1.2 % w/v), EDTA (1 mM), bathophenanthroline disul-

fonic acid (2.4 mM) in serine-borate buffer (50 mM Tris–

HCl, 25 mM borate, 25 mM serine and 100 lM diethyl-

ene-triamine pentaacetic acid; pH 7.0). The volume of the

extraction solution was 750 ll (pH 2.8). The homogeni-

zation was performed twice for 30 s per sample at 4 �C,

Table 1 Case history of autism and control donors of brain tissue samples

Brain tissue

(UMB #)

Diagnosis Autism

Diagnostic tests

Age

(year)

Sex PMI

(h)

Medications Cause of death

4671 Autism ADIR, VABS,

BSID-II

4.5 F 13 Multiple injuries from fall

1349 Autism ADOS, VABS,

BSID-II

5.6 M 39 Drowning

4849 Autism ADIR, BSID-II,

CARS

7.5 M 20 Drowning

1174 Autism ADIR, VABS 7.8 F 14 Depakote, Tegretol Multiple-system organ failure

4231 Autism 8.8 M 12 Zyprexia, Reminyl Drowning

797 Autism ADIR 9.3 M 13 Desipramine Drowning

1182 Autism ADIR 10.0 F 24 Smoke inhalation

4899 Autism ADIR 14.3 M 9 Trileptal, Zoloft, Clonidine,

Melatonin

Drowning

1638 Autism ADIR 20.8 F 50 Zoloft, Zyprexa, Mellaril,

Depoprovera

Seizure-related

5027 Autism WISC-R,

Bender-Gestalt

38.0 M 26 Respirdal, Luvox Obstruction of bowel

4670 Control 4.6 M 17 Commotio Cordis from an

accident

1185 Control 4.7 M 17 Drowning

1500 Control 6.9 M 18 Motor vehicle accident

4898 Control 7.7 M 12 Concerta, Clonidone Drowning

1708 Control 8.1 F 20 Motor vehicle accident

1706 Control 8.6 F 20 Rejection of cardiac allograft

transplantation

1407 Control 9.1 F 20 Albuterol, Zirtec, Alegra,

Rodact, Flovent, Flonase

Asthma

4722 Control 14.5 M 16 Motor vehicle accident

1846 Control 20.6 F 9 Motor vehicle accident

4645 Control 39.2 M 12 Arteriosclerotic heart disease

ADI-R Autism Diagnostic Interview Revised, ADOS Autism Diagnostic Observation Scale, VABS Vineland Adaptive Behavioral Scale, BSID-II
Bayley Scales of Infant Development-Second Edition, CARS Childhood Autism Rating Scale, WISC-R Wechsler Intelligence Scale for Children-

Revised
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followed by centrifugation at 18,0009g for 10 min at 4 �C.

The supernatants were processed for assaying GSH and

GSSG as described below.

Assay of GSH and GSSG

GSH and GSSG in brain tissues were measured using a

modification of a method described by Santori et al. [43].

100 ll of 10 mM iodoacetic acid in 10 mM aqueous

ammonium bicarbonate and 0.5 % ammonia (V/V), pH 9.5

was added to 100 ll of above brain extracts or standards

(GSH, GSSG). An aliquot of 50 ng of the internal standard

(glutathione ethyl ester, i.e. GSHee) was added to each

solution. The mixture was incubated in the dark for 1 h at

20 �C. Acetonitrile (400 ll) was added to stop the reaction

and to precipitate the proteins. The samples were centri-

fuged, and the GSH and GSSG in the supernatants were

separated by high performance liquid chromatography

(HPLC) and measured by mass spectrometry (MS), fol-

lowing the method of Loughlin et al. [44]. The GSH and

GSSG were detected in SRM (selected reaction monitor-

ing) mode with a triple quadruple MS (Sciex API 3000;

Ontario, Canada). The range of quantification for GSH was

150–150,000 nM and that of GSSG was 50.5–50,500 nM.

In each sample, total glutathione (tGSH) level was calcu-

lated as [GSH ? 2GSSG], and % GSSG was calculated as

[(GSSG/tGSSG) 9 100]. After the study was completed,

the samples were decoded, and the contents of GSH, GSSG

and tGSH, the redox ratio of GSH to GSSG, and % GSSG

of tGSH were compared in the autism and control groups

by unpaired student’s t test.

Results

The levels of GSH and GSSG in the brain tissue samples

from the cerebellum and frontal, temporal, parietal and

occipital cortices from individuals with autism and age-

matched normal subjects are represented in Fig. 1a, b,

respectively. The levels of GSH (Fig. 1a) were signifi-

cantly decreased by 34.2 % in the cerebellum (p = 0.001),

and by 44.6 % in the temporal cortex (p = 0.0008) in

autistic subjects compared to control subjects. There was

also a significant increase in the levels of GSSG (Fig. 1b)

by 38.2 % in the cerebellum (p = 0.0021) and by 45.5 %

in the temporal cortex (p = 0.0214) in autistic subjects

compared with the control group. On the other hand, the

levels of GSH and GSSG were similar in other brain

regions, i.e., frontal, parietal and occipital cortices between

the autism and control groups (Fig. 1a, b).

Table 2 represents the data for tGSH levels, GSH/GSSG

redox ratio, and % GSSG of tGSH in the cerebellum and

different regions of cerebral cortex from autism and control

subjects.

The comparison of the tGSH contents showed a signif-

icant decrease of tGSH levels by 32.9 % (p = 0.0013) in

the cerebellum, and by 43.1 % (p = 0.0011) in the tem-

poral cortex of subjects with autism as compared to control

subjects (Table 2). In the control group, percent GSSG of

tGSH was 0.97 and 0.91 in the cerebellum and temporal

cortex respectively (Table 2), which is in agreement with

the literature values of GSSG to be less than 1–1.2 % in the

human tissues under normal conditions [24, 25]. In com-

parison to the control group, GSSG % in the autism group

increased by twofold to 1.98 in the cerebellum

(p \ 0.0001), and by 2.4-fold to 2.19-fold in the temporal

cortex (p \ 0.0001) (Table 2), suggesting oxidative stress

condition in autism. The redox ratio of GSH/GSSG, an

indicator of oxidative stress was significantly reduced by

52.8 % in the cerebellum (p \ 0.0001) and by 60.8 % in
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Fig. 1 Levels of reduced form of glutathione (GSH) and oxidized

form of glutathione (GSSG) in the cerebellum and different regions of

the cerebral cortex in subjects with autism and age-matched control

subjects. There was a significant decrease in GSH levels (a) and

increase in GSSG levels (b) in the cerebellum and temporal cortex in

autism compared with the control group (*p \ 0.05, **p \ 0.01 and

***p \ 0.001). No significant change in the levels of GSH and GSSG

was observed in the frontal, parietal and occipital cortices between the

autism and control groups
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the temporal cortex (p \ 0.0001) in autistic subjects

compared with control subjects (Table 2). However, there

was no significant change in the tGSH levels, GSH/GSSG

redox ratio, and % GSSG of tGSH in other brain regions,

i.e., frontal, parietal and occipital cortices between the

autism and control groups (Table 2). Taken together, a

decrease in GSH levels, increase in GSSG levels and %

GSSG of tGSH, and a decrease in the redox ratio of GSH/

GSSG in the cerebellum and temporal cortex from autism

subjects, but not in other brain regions, suggest brain

region-specific glutathione redox imbalance in autism.

There was no significant difference in postmortem

interval (PMI) between the autistic and control groups.

The mean ± SE of PMI was: 22.0 ± 4.2 h in the autism

group (n = 10), and 16.1 ± 1.22 h in the control group

(n = 10). Because GSH and GSSG levels were affected

in the cerebellum and temporal cortex but not in the

frontal, parietal and occipital cortices of individuals with

autism, these findings also suggest that PMI was not a

contributing factor to the alterations in GSH and GSSG

levels observed in the cerebellum and temporal cortex of

individuals with autism.

Discussion

ASDs are considered multi-factorial disorders in which

environmental factors may act as a trigger in genetically

susceptible individuals, and oxidative stress may serve as a

common link between genes and environmental factors.

GSH is a major intracellular antioxidant and plays a crucial

role in the maintenance and regulation of the thiol-redox

status of the cell. In its reduced form, GSH protects the

proteins, lipids and DNA from free radicals–mediated

damage by providing the reduced environment, and during

this process, it gets oxidized to GSSG by GPx. Therefore,

decreased levels of GSH and increased levels of GSSG are

suggestive of the oxidative stress environment in cells and

tissues. The redox ratio of the GSH/GSSG serves as an

important indicator of redox environment in the cell and

plays an important role in cell differentiation, proliferation

and apoptosis [11, 13–15]. Several reports have suggested

that decrease in GSH levels can also be associated with

immune system dysfunction and inflammation [13, 16–18].

This is the first study to compare glutathione redox

status in the brain regions of autistic subjects and

Table 2 Redox ratio of GSH/

GSSG, levels of total

glutathione, and percentage of

oxidized glutathione in the

cerebellum and different regions

of cerebral cortex in the autism

and control groups

GSH reduced glutathione, GSSG
oxidized glutathione. Total

glutathione (tGSH) was

calculated as [GSH ? 2GSSG],

and % GSSG of tGSH was

calculated as [(GSSG/

tGSH) 9 100]. A significant

decrease in GSH/GSSG redox

ratio and tGSH levels, and

increase in % GSSG of tGSH

was observed in the cerebellum

and temporal cortex in the

autism group as compared with

the control group. There was no

significant change in these

parameters in other brain

regions, i.e. frontal, parietal, and

occipital cortices between the

autism and control groups

Basin tissue GSH/GSSG

redox ratio

Total glutathione

(tGSH)

% GSSG

of tGSH

Cerebellum

Autism (A) 48.7 ± 1.7 1,326 ± 59 1.98 ± 0.07

Control (C) 103.4 ± 5.9 1,976 ± 119 0.97 ± 0.05

Change (A vs. C) ; 52.8 % ; 32.9 % : 2.0-fold

p value \0.0001 0.0013 \0.0001

Temporal cortex

Autism (A) 44.7 ± 3.1 1,136 ± 120 2.19 ± 0.12

Control (C) 113.9 ± 8.2 1,996 ± 157 0.91 ± 0.07

Change (A vs. C) ; 60.8 % ; 43.1 % : 2.4-fold

p value \0.0001 0.0011 \0.0001

Frontal cortex

Autism (A) 103.8 ± 4.3 1,453 ± 128 0.96 ± 0.04

Control (C) 105.7 ± 4.6 1,574 ± 140 0.94 ± 0.04

Change (A vs. C) ; 8 % ; 7.7 % None

p value ns ns ns

Parietal cortex

Autism (A) 93.0 ± 3.0 1,022 ± 90 1.06 ± 0.03

Control (C) 103.0 ± 5.4 1,080 ± 116 0.98 ± 0.05

Change (A vs. C) ; 9.7 % ; 5.4 % None

p value ns ns ns

Occipital cortex

Autism (A) 96.5 ± 2.9 1,868 ± 195 1.02 ± 0.03

Control (C) 94.4 ± 2.5 2,057 ± 118 1.04 ± 0.03

Change (A vs. C) : 2.2 % ; 9.2 % None

p value ns ns ns
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age-matched control subjects. Our results indicate that

(a) the levels of GSH, tGSH and also the redox ratio of

GSH to GSSG are significantly decreased, and GSSG

content and % GSSG of tGSH are significantly increased in

the cerebellum and temporal cortex of the brains of indi-

viduals with autism compared with age-matched control

subjects, and (b) glutathione redox imbalance and oxidative

stress in autism is brain region–specific because in the

frontal, parietal and occipital cortices, GSH, GSSG, tGSH

and GSH/GSSG were similar in the autism and control

groups. Reduced glutathione-mediated redox status has

also been previously reported in blood samples from

individuals with autism [36–40]. In addition, several

studies have provided evidence for GSH depletion and

disturbances in glutathione homeostasis in other neurobe-

havioral and neurodegenerative disorders, including

schizophrenia [45, 46], bipolar disorder [47], Parkinson’s

disease and Alzheimer’s disease [18, 48].

Extensive evidence from our and other groups has

indicated that oxidative stress and inflammatory markers

are increased in autism [3, 5, 7–9]. Numerous clinical

studies in autism have provided evidence for increased

oxidative stress, as revealed by elevated lipid peroxidation

[5, 26–28] and reduced antioxidant defense [26–28, 35].

Recent postmortem studies have also shown evidence of

increased lipid, protein and DNA oxidation in the cere-

bellum and temporal cortex of individuals with autism

compared with control subjects [3, 30–34]. However, oxi-

dative stress condition may not be the sole mechanism

responsible for the deficit in GSH content in the cerebellum

and temporal cortex from subjects with autism. There are

several pathways by which cells maintain intracellular

GSH homeostasis, including GSH redox cycling, direct

uptake, and de novo synthesis. Further studies are needed

to understand whether synthesis, consumption and/or

regeneration of GSH are affected in the brain of subjects

with autism. GSH serves as an essential cofactor or sub-

strate for GPx, glutathione S transferase, and glyoxalase I,

which are involved in antioxidant defense or detoxification

[49]. Recently, reduced levels of NADPH were reported in

the plasma of children with autism compared to those of

controls [39], which may affect NADPH-dependent GR

activity and thus, recycling of GSSG to GSH.

The free radicals are generated endogenously during

oxidative metabolism and energy production by mito-

chondria, and the ETC in mitochondria is a prime source

for ROS generation [41, 42]. Accumulating clinical,

genetic and biochemical evidence suggests that mito-

chondrial dysfunction in ASDs occurs more commonly

than expected [50, 51]. Recently, we reported brain region–

specific changes in the levels of ETC complexes in the

cerebellum and the frontal and temporal cortices but not in

the parietal and occipital cortices in children with autism

[30]. Mitochondria contain approximately 10–15 % of

GSH, which is synthesized in the cytosol and transported

into the mitochondria via an energy-dependent transporter

[52]. A decrease in GSH availability in the brains of

individuals with autism suggests that mitochondria may

also be subjected to altered redox status, which will pro-

mote mitochondrial damage via increased ROS and affect

cellular energy production [53]. We have also reported that

the activities of Ca2?–Mg2?-ATPase and Na?–K?-ATPase

are affected in the cerebellum and the frontal cortex of

autistic subjects [54].

Recent studies support a prenatal onset for develop-

mental abnormalities leading to autism [19–21]. Several

studies have reported the adverse effects of endogenous or

xenobiotic-enhanced generation of ROS and the resultant

oxidative stress on embryonic and fetal development [55].

GSH is the major endogenous antioxidant produced by the

cells, which participates directly in the neutralization of

ROS. Through direct conjugation, it detoxifies many

xenobiotics and carcinogens. The depletion of GSH has

been reported to enhance embryopathies [56]. Exposure of

the developing embryo or fetus to radiation and xenobiot-

ics, including drugs and environmental chemicals, can

affect development by increasing ROS levels [56, 57].

Excess of ROS may alter development by oxidatively

damaging cellular lipids, proteins and DNA, and/or by

altering signal transduction via Ras, NFjB and related

transducers [55].

GSH also plays a central role in cell death, including

apoptotic cell death [13–15]. GSH depletion is a common

feature and an early hallmark in apoptotic cell death in

response to a variety of apoptotic stimuli [14, 15]. GSH

levels have also been reported to affect caspase activity,

transcription factor activation, Bcl-2 expression and func-

tion, thiol-redox signaling and phosphatidylserine external-

ization [13]. Several lines of evidence suggest the

involvement of apoptosis in the cerebellum of autism sub-

jects, including loss and atrophy of Purkinje cells [58–60],

reduced levels of Bcl2 and increased levels of p53 [61]. We

suggest that the alteration in brain glutathione homeostatasis

observed in this study may also play a role in apoptotic cell

death in the brains of individuals with autism.

Our results suggest that PMI cannot account for the

observed brain region-specific glutathione redox imbalance

in autism. Other factors, such as medications (reported for

six autism cases, and two control cases), and regression

(reported for five autism cases) do not seem to be con-

tributing factors to the decrease in GSH levels and GSH/

GSSG redox ratio in the cerebellum and temporal cortex in

autism. However, further studies with a larger autistic

group are needed to explore this issue.

The brain region-specific location of changes in GSH/

GSSG observed in the cerebellum and temporal cortex
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from autistic subjects in this study fits to the brain region

specificity of other manifestations of autism. There is

substantial evidence from neuroimaging and postmortem

neuropathological studies that dysfunctions in the cere-

bellum and the temporal lobe may result in autistic

symptoms. Loss of Purkinje and granule cells throughout

the cerebellar hemispheres in autism has been reported

[58–60]. Other studies suggested neuroimmune activation/

neuroinflammation in the cerebellum [9] as well as the

presence of autoantibodies against cerebellar proteins [62].

The neuropathological and immunological abnormalities

have also been suggested in the temporal lobe of the brain

in autism. The main autistic symptoms were seen most

consistently with a neurological model involving bilateral

dysfunction of the temporal lobes [63]. Positron emission

tomography and voxel-based image analysis also showed

localized dysfunction of the temporal lobes in children with

autism [64]. Recent magnetic resonance imaging (MRI)

studies have shown abnormalities in the superior temporal

gyrus (STG) region of the brain in autism, which is of

particular interest because of its role in language process-

ing and social perception [65–67]. Gene expression profiles

in this region provided evidence of increased transcript

levels of many immune system–related genes and immune

signaling pathways suggesting neuroimmune activation of

the STG in autism [68]. Furthermore, fewer and smaller

neurons in the fusiform gyrus (FG), located in the temporal

lobe, have been reported in autism [69]. The functional

MRI studies also showed hypoactivation of the FG in face

perception tasks in autistic subjects [70, 71]. The changes

observed in the glutathione levels in the cerebellum and

temporal lobes of subjects with autism suggest that oxi-

dative stress may be one of the contributing factors to these

pathological changes in the cerebellum and temporal lobes.

In conclusion, this study implicates disturbance in glu-

tathione homeostasis and deficit in glutathione antioxidant

capacity in specific brain regions, i.e., cerebellum and

temporal cortex, of individuals with autism. Our previous

report on increased lipid peroxidation and deficit in mito-

chondrial ETC complexes in these brain regions of autistic

subjects also suggests increased oxidative damage and

mitochondrial dysfunction in autism. GSH deficit in many

diseases has been linked to immune dysfunction, inflam-

mation and apoptosis. Taken together, these studies indi-

cate oxidative damage coupled with deficit in glutathione

antioxidant status in the brain of autistic subjects that may

be associated with mitochondrial dysfunction, inflamma-

tion and immune abnormalities in ASDs.
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Abstract

Autism is a severe neurodevelopmental disorder that is characterized by impaired language, communication, and social
skills. In regressive autism, affected children first show signs of normal social and language development but eventually lose
these skills and develop autistic behavior. Protein kinases are essential in G-protein-coupled, receptor-mediated signal
transduction and are involved in neuronal functions, gene expression, memory, and cell differentiation. We studied the
activity and expression of protein kinase A (PKA), a cyclic AMP–dependent protein kinase, in postmortem brain tissue
samples from the frontal, temporal, parietal, and occipital cortices, and the cerebellum of individuals with regressive autism;
autistic subjects without a clinical history of regression; and age-matched developmentally normal control subjects. The
activity of PKA and the expression of PKA (C-a), a catalytic subunit of PKA, were significantly decreased in the frontal cortex
of individuals with regressive autism compared to control subjects and individuals with non-regressive autism. Such
changes were not observed in the cerebellum, or the cortices from the temporal, parietal, and occipital regions of the brain
in subjects with regressive autism. In addition, there was no significant difference in PKA activity or expression of PKA (C-a)
between non-regressive autism and control groups. These results suggest that regression in autism may be associated, in
part, with decreased PKA-mediated phosphorylation of proteins and abnormalities in cellular signaling.
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Introduction

Autism spectrum disorders (ASDs) are neurodevelopmental

disorders characterized by impairment in social interactions and

verbal/non-verbal communication skills, and restricted, repetitive

and stereotyped patterns of behavior [1]. According to a recent

report from the Centers for Disease Control and Prevention, the

prevalence of ASDs is 1 in 110 for children 8 years of age [2].

The symptoms of ASDs are typically present before the age of 3

years, and are often accompanied by abnormalities in cognitive

functioning, learning, attention, and sensory processing. While

the causes of ASDs remain elusive, ASDs are considered to be

heterogeneous and multifactorial disorders that are influenced by

both genetic and environmental factors. The onset of autism is

gradual in many children. However, in regressive autism,

children first show signs of normal social and language

development but lose these developmental skills at 15–24 months

and develop autistic behavior [3]. The reported incidence of

regressive autism varies in different studies from 15% to 62% of

cases [4–7]. In a few cases, regression may significantly affect

language, with lesser impact in other domains such as social

interaction or imaginative play [4,8]. On the other hand, some

children may regress especially in social functions and not in

language [9].

Protein kinases are known to play important roles in cellular

signaling pathways and are involved in brain development [10–

13]. Protein kinase A (PKA) is a cyclic adenosine monophosphate

(cAMP)–dependent protein kinase that is involved in cognitive

functions and memory formation [14–18]. PKA consists of

regulatory (R) and catalytic (C) subunits. Three genes encode for

catalytic units (Ca, Cb, and Cc), and four other genes encode for

regulatory units (RIa, RIb, RIIa, and RIIb) of PKA. PKA remains

catalytically inactive when the levels of cAMP are low. The

concentration of cAMP rises upon activation of adenylate cyclase

by G protein-coupled receptors, and/or inhibition of cyclic

nucleotide phosphodiesterase (PDE) enzyme. Under these condi-

tions, cAMP binds to two binding sites on the regulatory subunits

of PKA, which results in the release of the catalytic subunits. These

free catalytic units of PKA can then phosphorylate proteins by

transferring a phosphate group from ATP. Several studies have

implicated the role of PKA in neuropsychiatric disorders such as

schizophrenia, bipolar affective disorder, obsessive compulsive

disorder, and panic disorders [19–22]. To date, no studies of PKA

have been done in autism.

The intracellular levels of cAMP are controlled by PDE, which

degrades the phosphodiester bond in cAMP. PDE regulates the

localization, duration, and amplitude of cAMP signaling within

subcellular domains. Multiple forms of PDEs have been identified

PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e23751



on the basis of substrate specificity. PDE4, 7, and 8 act on cAMP;

PDE5, 6, and 9 act on cyclic guanosine monophosphate (cGMP);

whereas PDE1, 2, 3, 10, and 11 act on both cAMP and cGMP.

Recent evidence has suggested altered levels of PDE4 in the brains

of individuals with autism [23].

Because the levels of PDE4 are altered in autism, and PKA is

involved in neuropsychiatric disorders, it was of interest to

compare the activity and protein levels of PKA in different brain

regions in autism (regressive and non-regressive) and age-matched

control subjects. Our study suggests that PKA activity and

expression are decreased in the frontal cortex of individuals with

regressive autism as compared with control subjects. Such changes

were not observed in individuals with non-regressive autism.

Materials and Methods

Autism and Control Subjects
Samples of postmortem frozen brain regions, i.e., the cerebel-

lum, and the cortices from the frontal, temporal, parietal, and

occipital lobes from autistic (N = 7–10 for different brain regions)

and age-matched, typically developed, control subjects (N = 9–10)

were obtained from the National Institute of Child Health and

Human Development (NICHD) Brain and Tissue Bank for

Developmental Disorders at the University of Maryland, Balti-

more, MD. The age (mean 6 S.E.) for autistic subjects was

12.663.2 years, and for control subjects, 12.463.3 years. All brain

samples were stored at 270uC.

The case history and clinical characteristics for the autism and

control subjects are summarized in Table 1. Donors with autism

had met the diagnostic criteria of the Diagnostic and Statistical

Manual-IV for autism. The Autism Diagnostic Interview-Revised

(ADI-R) test was performed for the donors UMB #s 4671, 4849,

1174, 797, 1182, 4899, and 1638 (Table 2). Each donor’s

impairments in social interaction, qualitative abnormalities in

communication, and restricted, repetitive and stereotyped patterns

of behavior are consistent with the diagnosis of autism, according

to the results of the ADI-R diagnostic algorithm. All donors with

autism exceeded the cut-off score in these parameters. The

diagnosis of autism was assigned to donor UMB # 1349 after

extensive evaluation of behavioral tests, including the Autism

Diagnostic Observation Schedule (ADOS), Vineland Adaptive

Behavioral Scale (VABS), and Bayley Scales for Infant Develop-

ment-II (BSID-II). In addition to the ADI-R, UMB # 4849 was

also evaluated by the BSID-II and Childhood Autism Rating Scale

(CARS), which indicated moderate to severe autism, and autism in

UMB # 4671 was also verified by the VABS and BSID-II. Table 3

shows scores for the VABS test, which assesses adaptive behavior

in four domains: communication, daily living skills, socialization,

and motor skills.

In this study, the subjects with autism were divided into two

subgroups: regressive autism and non-regressive autism, depend-

ing on the pattern of onset of symptoms for autism. Regressive

autism is a type of autism in which early development is normal,

followed by a loss of previously acquired skills. Language is the

most common area that regresses; this regression can be

accompanied by more global regression involving loss of social

skills and social interest. On the other hand, in non-regressive

autism, the child never gains normal language and social skills, and

initial symptoms are delayed speech development, and/or delay in

development of social skills and in nonverbal communication.

These children do not demonstrate regression in terms of loss of

language or social skills.

Ethics statement. This study was approved by the

Institutional Review Board (IRB) of the New York State

Institute for Basic Research in Developmental Disabilities. The

IRB reviewed this study in accordance with New York State

Regulations and the HHS Office for Human Research

Protections, including the ‘‘Human Subject Decision Chart 1,’’

and found that the research does not involve human subjects because ‘‘the

research does not involve intervention or interaction with the

individuals’’, nor ‘‘is the information individually identifiable’’.

The subjects cannot be identified, directly or through identifiers

linked to the system, and the consent is not required.

Preparation of Brain Homogenates
The tissue samples were homogenized (10% w/v) in cold buffer

containing 50 mM Tris-HCl (pH 7.4), 8.5% sucrose, 2 mM

EDTA, 10 mM b-mercaptoethanol, and protease inhibitor

cocktail (Sigma-Aldrich, St. Louis, MO) at 4uC. For extraction

of protein kinases, the homogenates were mixed with an equal

volume of extraction buffer containing 40 mM Tris-HCl (pH 7.4),

300 mM NaCl, 2 mM EDTA, 2 mM EGTA, 2% Triton, 5 mM

sodium pyrophosphate, 2 mM b-glycerophosphate, 2 mM

Na3VO4, 100 mM NaF, and 2 mg/ml leupeptin. The samples

were allowed to stand on ice for 10 min, and then centrifuged at

135,000 g for 20 min at 4uC. The supernatants were collected,

and the concentrations of total proteins in the supernatants were

measured by the biocinchoninic acid protein assay kit (Thermo

Scientific, Rockford, IL).

Assay for PKA Activity
PKA activity was measured using the solid phase enzyme-linked

immunosorbent assay (ELISA) kit from Enzo Life Sciences

International, Inc. (Plymouth Meeting, PA). In this assay, the

substrate of PKA was pre-coated on the wells of a microplate. The

microplate wells were soaked with 50 ml of kinase assay dilution

buffer for 10 min. The buffer was then carefully aspirated from

each well, and the brain samples were added to the appropriate

wells. The kinase reaction was initiated by adding 10 ml ATP, and

was carried out for 90 min at 30uC. It was terminated by emptying

the contents of each well. A phosphosubstrate–specific antibody

was added to the wells except in blank, and incubated for 60 min

at room temperature, followed by washing 4 times with wash

buffer. The peroxidase-conjugated secondary antibody was then

added except in blank, and incubation was done for 60 min at

room temperature. The wells were again washed 4 times with

wash buffer. The color was developed with tetramethylbenzidine

substrate, and it was proportional to the phosphotransferase

activity of PKA. The reaction was stopped with acid-stop solution,

and the absorbance was measured at 450 nm in a microplate

reader. The absorbance was divided by the concentration of total

protein (mg) in each sample, and the data are represented as

relative PKA activity.

Western Blot Analysis
Total protein (15 mg) from brain homogenates of subjects with

regressive- and non-regressive autism or control subjects was

separated using a 10% sodium dodecyl sulfate-polyacrylamide gel

electrophoresis, and then transferred to a nitrocellulose mem-

brane. The membrane was blocked with Tris-buffered saline

containing 5% fat-free dried milk for 2 h at room temperature,

and further incubated overnight at 4uC with polyclonal antibody

against C-subunit (isoform a) of PKA (Cell Signaling Technology

Inc., Danvers, MA). The membrane was then washed 3 times with

TBS-0.05% Tween 20, and incubated with horseradish peroxi-

dase-conjugated secondary antibody for 2 h at room temperature.

The membrane was washed again, and the immunoreactive

protein was visualized using enhanced chemiluminescent reagent.
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Because PKA (C-a) and b-actin have similar molecular weights

(42 KDa), polyclonal antibody against PKA (C-a) was stripped

from nitrocellulose membrane, and the membrane was re-probed

with monoclonal antibody against b-actin (loading control). The

densities of all protein bands were measured by NIH Image J

software, and the density of PKA (C-a) band was normalized with

the density of b-actin for each sample.

Statistical Analysis
Initially, autistic and control cases were collected as age-

matched pairs. As data for both members of a pair were not

available in all cases, and data were approximately normally

distributed, unpaired two-tailed t-tests were employed to make

comparisons of PKA activity in various brain regions, and of

overall PKA density between autistic vs. control cases. Compar-

isons among controls and autistic cases showing or not showing

clinical signs of regression in function were made using one-way

analysis of variance (ANOVA). To guard against type I error, a

Bonferroni adjustment for multiple comparisons was made to the

t-tests of multiple brain regions, and for the pairwise post-hoc t-tests

comparing each pair of the three groups that were compared in

the overall ANOVA. For purposes of this adjustment, tests of

different hypotheses, i.e., of activity levels and of protein contents

of PKA, were not considered to be multiple comparisons.

Results

PKA Activity in Different Brain Regions of Individuals with
Autism and Age-Matched Control Subjects: Relationship
with Regression in Autism

The activity of PKA was measured in the brain homogenates

from the frontal, temporal, occipital, and parietal cortices, and

the cerebellum in autistic and control subjects (Fig. 1). When all

autism cases (regressive and non-regressive) were compared with

the age-matched control group, no significant difference was

found in PKA activity in any of these brain regions, although

PKA activity in the frontal cortex was found to be reduced by

34.7% in the autism vs. control group. When the autism group

was divided into two sub-groups (regressive and non-regressive),

depending on whether there was a clinical history of regression

or not, unadjusted two-tailed t-test showed a significant decrease

in PKA activity in the frontal cortex of individuals with

regressive autism as compared to the developmentally normal

control group (p = 0.0278) and the non-regressive autism group

Table 2. Autism Diagnostic Interview-Revised test scores in donors of brain tissue samples.

Autism Diagnostic Interview-Revised (ADI-R)a

Diagnostic Algorithm
Cutoff score for
autism UMB 4671 UMB 4849 UMB 1174 UMB 797 UMB 4899 UMB 1638

Impairments in reciprocal social
interaction (Scores:0–30)

10 26 22 22 24 22 21

Abnormalities in communication:

Verbal (Scores:0–26) 8 - 18 - 20 - -

Non-verbal (Scores: 0–14) 7 13 N/A 11 13 14 11

Restricted, repeated and stereotyped
behavior (Scores: 0–12)

3 3 8 6 6 8 7

Abnormalities of development evident
at or before 36 months

1 5 3 5 - 4 5

a: Higher score represents greater impairment.
UMB 1182: ADI-R was conducted but the scores are not available. The donor met the criteria for a diagnosis of autism.
doi:10.1371/journal.pone.0023751.t002

Table 3. Vineland Adaptive Behavioral Scales diagnostic test for autism in donors of brain tissue samples.

Vineland Adaptive Behavioral Scales (VABS)a

UMB 1349 UMB 4671 UMB 1174

At age: 25 months At age: 33 months At age: 39 months At age: 6.4 y

Domain (Scores:20–160)
Standard
Score

Age equivalent
performance

Standard
Score

Age equivalent
performance

Standard
Score

Age equivalent
performance

Standard
score

Communication 57 9 months 69 18 months 52 10 months 41

Daily living skills 65 16 months 62 16 months 54 14 months 22

Socialization 60 9 months 71 17 months 51 4 months 52

Motor skills - - - - 65 24 months -

Composite - - - - 51 13 months 35

a: Higher score represents better function.
According to the medical histories for UMB-4231 and UMB-5027, the donors had psychological evaluation, and met the criteria for a diagnosis of autism. Detailed
information is not available.
doi:10.1371/journal.pone.0023751.t003
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(p = 0.0318), but these differences did not remain significant

after application of the adjustment for multiple comparisons.

The mean 6 S.E. of PKA activity in the frontal cortex was:

2.4860.57 in autism (regressive+non-regressive), 1.6060.31 in

regressive autism, 3.9460.99 in non-regressive autism, and

3.8060.65 in control groups. The alteration in PKA activity was

specific to the frontal cortex in regressive autism because it was

not observed in other regions of the brain, i.e., the cerebellum

and the temporal, parietal, and occipital cortices, suggesting

that the changes observed in PKA activity were brain region–

specific in regressive autism. PKA activity was also similar in all

of the brain regions between non-regressive autism and control

groups.

There was no significant difference in postmortem interval

(PMI) between the autistic and control groups, or between the

regressive autism and non-regressive autism groups. The mean 6

S.E. of PMI was: 22.064.2 in the autism groups (regressive+non-

regressive, n = 10), 16.161.22 in the control group (n = 10),

28.467.2 in regressive autism (n = 5), and 15.662.6 in the non-

regressive autism group (n = 5). We also studied whether there was

an inverse correlation between PMI and PKA activity. Correlation

analysis between PMI and PKA activity for all autistic and control

subjects did not reveal any such association (data not shown).

Furthermore, the cerebellum and the temporal, parietal, and

occipital cortices were not affected in subjects with regressive

autism in comparison with control subjects, while the frontal

cortex was affected in these individuals. These results suggest that

PMI was not a contributing factor to the observed alteration in

PKA activity in the frontal cortex of individuals with regressive

autism. There was also no significant difference in age (mean 6

S.E.) between the regressive autism (11.662.7 years, n = 5) and

non-regressive autism groups (13.766.1 years, n = 5).

Figure 1. PKA activity in different brain regions from regressive autism, non-regressive autism, and age-matched control subjects.
The autism group comprises combined regressive and non-regressive autism sub-groups. Brain homogenates were prepared, and activity of PKA was
measured as described in Materials and Methods. Data represent mean 6 S.E.
doi:10.1371/journal.pone.0023751.g001
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Protein Levels of Catalytic C-a Subunit of PKA in the
Frontal Cortex of Individuals with Autism (Regressive and
Non-Regressive) and Control Subjects

Because a decrease in PKA activity was observed in the frontal

cortex of subjects with regressive autism as compared to control

subjects and subjects with non-regressive autism, we analyzed

whether the decreased activity of PKA is related to the reduced

protein contents of PKA. The protein contents of the catalytic Ca
unit of PKA were analyzed in the frontal cortex of individuals with

autism (regressive and non-regressive) and age-matched controls by

Western blotting (Fig. 2 A). The relative densities of the protein

contents of PKA (C-a) normalized with b-actin are shown in Fig. 2

B. A one-way ANOVA comparing regressive and non-regressive

autism cases and controls showed a significant difference in the

protein contents among these three groups (F [df = 2,15] = 9.770,

p = 0.002). Post-hoc pairwise comparisons among the groups

revealed a significant decrease in the protein contents of PKA (C-

a) in individuals with regressive autism (mean 6 S.E = 0.3460.09)

as compared to control (mean 6 S.E. = 0.6460.05, p = 0.019,

Bonferroni-adjusted) and individuals with non-regressive autism

(mean 6 S.E. = 0.8360.09, p = 0.002, Bonferroni-adjusted), sug-

gesting that the protein contents of PKA are affected in regressive

autism. PKA contents were similar between non-regressive autism

and control groups, and when the entire autism group (regressive

and non-regressive) was compared with the control group.

Discussion

ASDs are complex neurodevelopmental disorders. The com-

plexity of ASDs is further increased because some affected

individuals fall in the sub-group of regressive autism [7].

Behavioral changes in regressive autism fall into two broad

domains: (a) loss of vocalization and (b) loss of social skills. The rate

of regressive autism varies from 15% to 62% of cases in different

studies [4–7]. While Lord et al. reported that 29% of the children

they studied who were diagnosed with autism had lost language

skills for meaningful words, and another 9% lost non-word

vocalizations [5], Goldberg et al. reported regression in 62% of

children [4]. Loss of spoken words generally associates with loss of

social behavior [6], but some affected children show only loss of

social skills [4]. We report here that individuals with regressive

autism have decreased PKA activity in the frontal cortex of the

brain. This decreased PKA activity in autistic regression may be

attributed to the decreased protein contents of PKA because the

protein content of PKA (C-a subunit) was also decreased in the

frontal cortex of individuals with regressive autism. Interestingly,

such changes were not observed in other brain regions of

individuals with regressive autism, or in the frontal cortex and

other brain regions of individuals with non-regressive autism.

These results suggest that alterations in PKA activity and PKA

expression are specific to the frontal lobe in regressive autism.

Our results suggest that PMI and age cannot account for the

observed alteration in PKA in regressive autism. Other factors,

such as comorbidity with seizure disorder, reported for three of 10

autism cases (of which two had regressive autism, and one had

non-regressive autism), and medications, reported for two

regressive autism cases, four non-regressive autism cases, and

two control cases, do not seem to be contributing factors to the

altered activity or expression of PKA in regressive autism.

Figure 2. Relative protein levels of PKA (C-a) in the frontal cortex of regressive autism, non-regressive autism, and age-matched
control subjects. Western blot analyses of C-a subunit of PKA in the frontal cortex of individuals with regressive and non-regressive autism, and
age-matched control subjects are represented in Fig. 2A. The relative density of PKA (C-a) normalized with the density of b-actin (loading control) is
shown in Fig. 2B. Data represent mean 6 S.E.
doi:10.1371/journal.pone.0023751.g002
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However, further studies with a larger autistic group should be

done to explore this issue.

cAMP is one of the key factors for neuronal outgrowth, plasticity,

and regeneration. Members of the cAMP-dependent second-

messenger pathways participate in the regulation of cellular growth

and differentiation and are also implicated in a variety of embryonic

stages including brain development [24]. The PKA pathway is also

recognized as an essential component in memory formation.

Several studies in Drosophila have demonstrated the role of PKA

in memory formation [25–29]. Mutations in the rutabaga gene,

which encodes adenylate cyclase, caused significant defects in short-

term memory [25]. Reduced expression or activity of DC0 (the gene

encoding the catalytic subunit of PKA) caused deficits in learning,

short-term memory, and middle-term memory [26–28]. Studies

have also shown that pharmacological agents such as cAMP analogs

and rolipram (an inhibitor of PDE), which are known to increase

PKA activity, could improve memory [30,31].

G-protein–coupled adenylate cyclase converts ATP to cAMP,

which in turn binds to regulatory subunits of PKA. Following this

event, catalytic subunits of PKA are released, which are the

activated forms of PKA. PKA then phosphorylates and alters the

activity of enzymes and many target proteins such as ion channels,

chromosomal proteins, and transcription factors. cAMP response-

binding protein (CREB) is one of the targets of PKA-mediated

phosphorylation. CREB, upon activation by PKA, binds to certain

DNA sequences (cAMP response elements), thereby stimulating

the transcription of downstream genes and the synthesis of

proteins. The CREB transcription factor is also required for long-

term memory formation [32–34]. It is possible that a decrease in

the activity of PKA in regressive autism may result in reduced

phosphorylation of CREB, and thus reduced transcription and

altered synthesis of some proteins.

Given that PKA is activated by cAMP, and PDE regulates the

levels of cAMP, a discussion on PDE becomes imperative. Altered

levels of PDE4 in the cerebella of autism subjects were reported by

Fatemi and group [23]. Other studies have suggested a role of

PDE4 in learning and memory in behavioral models of mice, rats,

and monkeys [35,36]. PDE4 is also reported to be involved in

behavior sensitivity to antidepressant drugs in animals [37]. PDE

inhibitors such as rolipram could improve object recognition

[38,39], passive avoidance [40,41], radial arm maze [40–42],

Morris water maze [43], and contexual fear conditioning

[30,43,44]. PDE4 has also been studied as a potential therapeutic

target for depressive disorders. It has been suggested that rolipram

may have potential therapeutic benefits for major depression [45],

Alzheimer’s disease [36,46], Parkinson’s disease [47,48], schizo-

phrenia [49,50], and tardive dyskinesia [51,52].

Several reports suggest that some proteins related to the PKA

pathway are involved in autism. Extensive evidence indicates

hyperserotonemia in autism [53–55]. PKA regulates serotonergic

activity in the brain [56]. Galter and Unsicker [57] reported that

co-activation of cAMP- and tyrosine receptor kinase B (TrkB)–

dependent signaling pathways plays an important role in

maintaining the serotonergic neuronal phenotype. TrkB is also

regulated by the cAMP/CREB pathway in neurons [58].

Furthermore, transcriptional activity of the engrailed-2 gene is

also regulated by PKA [59]. The importance of engrailed can be

envisioned because of its crucial roles in brain development [60]

and in the development of autism [61–65].

In conclusion, this study suggests that the frontal cortex may be

the region of the brain involved in regressive autism, where

abnormalities such as decreased activity and expression of PKA

can affect the signal transduction. It may have multiple effects on

signal transduction pathways, which may also influence seroto-

nergic neurons, TrkB, and engrailed-2, all of which have been

suggested to be involved in the development of autism.
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Abstract 

Autism is a neurodevelopmental disorder with unknown etiology. In some cases, typically 
developing children regress into clinical symptoms of autism, a condition known as regressive 
autism. Protein kinases are essential for G-protein-coupled receptor-mediated signal trans-
duction, and are involved in neuronal functions, gene expression, memory, and cell differen-
tiation. Recently, we reported decreased activity of protein kinase A (PKA) in the frontal 
cortex of subjects with regressive autism. In the present study, we analyzed the activity of 
protein kinase C (PKC) in the cerebellum and different regions of cerebral cortex from 
subjects with regressive autism, autistic subjects without clinical history of regression, and 
age-matched control subjects. In the frontal cortex of subjects with regressive autism, PKC 
activity was significantly decreased by 57.1% as compared to age-matched control subjects (p 
= 0.0085), and by 65.8% as compared to non-regressed autistic subjects (p = 0.0048). PKC 
activity was unaffected in the temporal, parietal and occipital cortices, and in the cerebellum in 
both autism groups, i.e., regressive and non-regressed autism as compared to control sub-
jects. These results suggest brain region-specific alteration of PKC activity in the frontal 
cortex of subjects with regressive autism. Further studies showed a negative correlation 
between PKC activity and restrictive, repetitive and stereotyped pattern of behavior (r= 
0.084, p = 0.0363) in autistic individuals, suggesting involvement of PKC in behavioral ab-
normalities in autism. These findings suggest that regression in autism may be attributed, in 
part, to alterations in G-protein-coupled receptor-mediated signal transduction involving PKA 
and PKC in the frontal cortex. 

Key words: Autism; behavior; protein kinase C; protein kinases; regression; signal transduction. 

INTRODUCTION 

Autism spectrum disorders (ASDs) are neuro-
developmental disorders characterized by impair-
ment in social interactions, verbal and non-verbal 
communication skills, and restricted, repetitive and 
stereotyped patterns of behavior [1]. Recently, Centers 
for Disease Control and Prevention reported the 

prevalence of ASDs to be 1 in 88 children in the 
United States [2]. The symptoms of ASDs usually start 
before the age of 3 years, and are often accompanied 
by abnormalities in cognitive functioning, learning, 
attention, and sensory processing. The cause of ASDs 
is not known. However, ASDs are considered as het-
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erogeneous and multifactorial disorders that are in-
fluenced by genetic and environmental factors [3-5]. 
Several lines of evidence from our and other groups 
have suggested increased oxidative stress [3; 6-14], 
mitochondrial dysfunctions [8; 10; 15; 16], immune 
dysfunction and inflammation [10; 17-21] in autism.  

The onset of autism is gradual in many children. 
However, in regressive autism, children first show 
sign of normal social and language development but 
lose these developmental skills at 15–24 months and 
develop autistic behavior [22]. The reported incidence 
of regressive autism varies from 15% to 62% of cases 
in different studies [23-26]. In few cases, regression 
may significantly affect language with lesser impact 
on other domains such as social interaction or imagi-
native play [23; 27]. On the other hand, some children 
may regress particularly in social functions and not in 
language [28].  

The cause of regression in autism is not under-
stood. Protein kinases are known to play important 
roles in cellular signaling pathways, and are involved 
in neurodevelopment [29-31]. The brain synapses are 
the building blocks of memory formation, and synap-
tic strength contributes to learning and memory [32]. 
The changes in neurotransmitters release, receptor 
sensitivity, and gene expression are involved in syn-
aptic strength, structure and function. Because protein 
kinases-mediated phosphorylation modifies the func-
tions of proteins, altered activities of protein kinases 
affect the synaptic efficacy.  

Recently, we reported that the activity of 
cAMP-dependent protein kinase A (PKA) is de-
creased in the frontal cortex of subjects with regres-
sive autism as compared to age-matched control sub-
jects and autistic subjects without clinical history of 
regression [33]. Protein Kinase C (PKC), a ubiquitous 
phospholipid-dependent serine/threonine kinase, is 
another G-protein-coupled receptor-mediated kinase. 
PKC is known to be involved in signal transduction 
associated with the control of brain functions, such as 
ion channel regulation, receptor modulation, neuro-
transmitters release, synaptic potentia-
tion/depression, and neuronal survival [34]. It also 
plays crucial roles in cell proliferation, differentiation 
and apoptosis. Neuronal tissues have high activity of 
PKC. 

Genetic studies have suggested an involvement 
of PKC in autism [35; 36]. The analysis of ge-
nome-wide linkage and candidate gene association 
showed PKCβ gene (PRKCB1) linkage to a region on 
chromosome 16p in the neocotex of subjects with au-
tism [35;36]. High-resolution single-nucleotide poly-
morphism genotyping and analysis of this region 
showed strong association of haplotypes in the PKCβ 

gene with autism. The present study was undertaken 
to compare the activity of PKC in the cerebellum and 
different regions of cerebral cortex from subjects with 
regressive and non-regressive autism and their 
age-matched control subjects. The relationship be-
tween PKC activity and behavioral abnormalities was 
also studied in autism. 

MATERIALS AND METHODS 

Autism and control subjects. Samples of post-
mortem frozen brain regions, i.e., the cerebellum, and 
cortices from the frontal, temporal, parietal and oc-
cipital lobes from autistic (N= 7-10 for different brain 
regions) and age-matched typically developed, con-
trol subjects (N= 9-10) were obtained from the Na-
tional Institute of Child Health and Human Devel-
opment (NICHD) Brain and Tissue Bank for Devel-
opmental Disorders at the University of Maryland, 
Baltimore, MD. The age (mean ± S.E.) for autistic 
subjects was 12.6 ± 3.2 years, and for control subjects, 
12.4 ± 3.3 years. All brain samples were stored at 

70°C. This study was approved by the Institutional 
Review Board (IRB) of the New York State Institute 
for Basic Research in Developmental Disabilities. 

Diagnostic classification. The case history and 
clinical characteristics for the autism and control sub-
jects is summarized in Table 1. Donors with autism 
had met the diagnostic criteria of the Diagnostic and 
Statistical Manual-IV for autism. Autism Diagnostic 
Interview-Revised (ADI-R) test was performed for 
UMB # 4671, 4849, 1174, 797, 1182, 4899 and 1638 
(Table 2). According to the results of ADI-R diagnostic 
algorithm, the donor’s impairments in social interac-
tion, qualitative abnormalities in communication and 
restricted, repetitive and stereotyped patterns of be-
havior are consistent with diagnosis of autism. All 
exceeded cut off score in each of these parameters. 
Diagnosis of autism was assigned to UMB # 1349 after 
extensive evaluation of behavioral tests, including 
Autism Diagnostic Observation Schedule (ADOS), 
Vineland Adaptive Behavioral Scale (VABS), and 
Bayley Scales for Infant Development-II, (BSID-II). In 
addition to ADIR, UMB # 4849 was also evaluated by 
BSID-II and Childhood Autism Rating Scale (CARS), 
which indicated moderate to severe autism, and au-
tism in UMB # 4671 was also verified by VABS. Table 
3 shows VABS test which assesses adaptive behavior 
in four domains: communication, daily living skills, 
socialization, and motor skills.  

In this study, the subjects with autism were di-
vided into two subgroups: regressive autism and 
non-regressive autism, depending on the pattern of 
onset of symptoms for autism. Regressive autism re-
fers to a child where parents report an early history of 
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normal development, which is followed by a loss of 
previously acquired skills. Language regression is the 
most common form of regression but it can also be 
accompanied by more global regression involving 
loss of social skills and interest. On the other hand, in 
non-regressive autism, the child never gains normal 

language and social skills, and initial symptoms are 
delayed speech development, and/or delay in de-
velopment of social skills and nonverbal communica-
tion. These children do not demonstrate regression in 
terms of loss of language or social skills. 

 

Table 1. Case history and clinical characteristics of autism and control donors of brain tissue samples. 

Brain 
tissue 
(UMB #) 

Diagnosis Autism Diag-
nostic tests 

Age 
(y) 

Sex PMI  
(h) 

Regressive 
autism 

Other medical condi-
tions 

Medications Cause of death 

4671 Autism ADIR, VABS, 
BSID-II 

4.5 F 13 No   Multiple injuries 
from fall 

1349 Autism ADOS, VABS, 
BSID-II 

5.6 M 39 Yes   Drowning 

4849 Autism ADIR, BSID-II, 
CARS 

7.5 M 20 Yes Lead poisoning  Drowning 

1174 Autism ADIR, VABS 7.8 F 14 No Seizures Depakote, Tegretol Multiple-system 
organ failure 

4231 Autism  8.8 M 12 No Hyperactivity Zyprexia, Reminyl Drowning 

797 Autism ADIR 9.3 M 13 No Attention deficit disor-
der, migraine headache 

Desipramine Drowning 

1182 Autism ADIR 10.0 F 24 Yes   Smoke inhalation  

4899 Autism ADIR 14.3 M 9 Yes Seizures Trileptal, Zoloft,Clonidine, 
Melatonin 

Drowning 

1638 Autism ADIR 20.8 F 50 Yes Seizures, Attention 
deficit hyperactivity 
disorder  

Zoloft, Zyprexa, Mellaril, 
Depoprovera 

Seizure-related 

5027 Autism WISC-R, 
Bender-Gestalt  

38.0 M 26 No  Respirdal, Luvox Obstruction of 
bowel  

4670 Control  4.6 M 17    Commotio Cordis 
from an accident 

1185 Control  4.7 M 17    Drowning 

1500 Control  6.9 M 18    Motor vehicle 
accident 

4898 Control  7.7 M 12  Hyperactive disorder Concerta, Clonidone Drowning 

1708 Control  8.1 F 20    Motor vehicle 
accident 

1706 Control  8.6 F 20  Congenital heart dis-
ease with heart trans-
plant 

 Rejection of cardi-
ac allograft trans-
plantation 

1407 Control  9.1 F 20  Asthma allergies Albuterol, Zirtec, Alegra, 
Rodact, Flovent, Flonase 

Asthma 

4722 Control  14.5 M 16    Motor vehicle 
accident 

1846 Control  20.6 F 9    Motor vehicle 
accident 

4645 Control  39.2 M 12    Arteriosclerotic 
heart disease 

ADI-R: Autism Diagnostic Interview Revised. 

ADOS: Autism Diagnostic Observation Scale. 

VABS: Vineland Adaptive Behavioral Scale. 

BSID-II: Bayley Scales of Infant Development-Second Edition. 

CARS: Childhood Autism Rating Scale. 

WISC-R: Wechsler Intelligence Scale for Children-Revised. 

According to the medical histories for UMB-4231 and UMB-5027, the donors had psychological evaluation, and met the criteria for a diagnosis of autism. De-
tailed information is not available. 
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Table 2. Autism Diagnostic Interview-Revised test scores in donors of brain tissue samples. 

Autism Diagnostic Interview-Revised (ADI-R)a 

Diagnostic Algorithm Cutoff score 
for autism 

UMB 4671 UMB 4849 UMB 1174 UMB 797 UMB 4899 UMB 1638 

Abnormalities in reciprocal social interaction 
(Scores:0-30) 

10 26 22 22 24 22 21 

Abnormalities in communication:        

Verbal (Scores:0-26) 8 - 18 - 20 - - 

Non-verbal (Scores: 0-14) 7 13 N/A 11 13 14 11 

Restricted, repetitive and stereotyped patterns of 
behavior (Scores: 0-12) 

3 3 8 6 6 8 7 

Abnormalities of development evident at or before 
36 months 

1 5 3 5 - 4 5 

a: Higher score represents greater impairment. 

UMB 1182: ADI-R was conducted but the scores are not available. The donor met the criteria for a diagnosis of autism. 

 
 

Table 3. Vineland Adaptive Behavioral Scales diagnostic test for autism in donors of brain tissue samples. 

Vineland Adaptive Behavioral Scales (VABS)a 

 UMB 1349 UMB 4671 UMB 1174 

 At age: 25 months At age: 33 months At age: 39 months At age: 6.4 y 

Domain 
(Scores:20-160) 

Standard 
Score 

Age equivalent per-
formance 

Standard 
Score 

Age equivalent 
performance 

Standard 
Score 

Age equivalent per-
formance 

Standard score 

Communication  57 9 months 69 18 months 52 10 months 41 

Daily living skills 65 16 months 62 16 months 54 14 months 22 

Socialization 60 9 months 71 17 months 51 4 months 52 

Motor skills - - - - 65 24 months - 

Composite - - - - 51 13 months 35 

a: Higher score represents better function. 

 

 
 
Preparation of brain homogenates. The post-

mortem brain tissue samples from regressive autism, 
non-regressive autism, and control subjects were 
homogenized (10% w/v) in cold buffer containing 50 
mM Tris-HCl (pH 7.4), 8.5% sucrose, 2 mM EDTA, 10 

mM -mercaptoethanol and protease inhibitor cock-
tail at 4°C. For extraction of protein kinases, the ho-
mogenates were mixed with an equal volume of ex-
traction buffer containing 40 mM Tris-HCl (pH 7.4), 
300 mM NaCl, 2 mM EDTA, 2 mM EGTA, 2% Triton, 
5 mM sodium pyrophosphate, 2 mM 
β-glycerophosphate, 2 mM Na3VO4, 100 mM NaF, and 
2 μg/ml leupeptin. The samples were allowed to 
stand on ice for 10 minutes, and then centrifuged at 
135,000 g for 20 minutes at 4°C. The supernatants 

were collected, and stored at 70C. The concentra-
tions of total proteins in the supernatants were meas-
ured by the biocinchoninic acid protein assay kit 
(Thermo Scientific, Rockford, IL). 

 Assay of PKC activity. The activity of PKC in 
the brain supernatants was measured by solid phase 

enzyme-linked immuno-absorbent assay (ELISA) kit 
from Enzo Life Sciences International, Inc. The assay 
is designed for the analysis of PKC activity in the so-
lution phase. In this assay, microplates pre-coated 
with PKC substrate were used. The microplate wells 
were soaked with dilution buffer and were emptied 
after 10 minutes. An equal volume of the brain su-
pernatants was added to the wells, followed by the 
addition of ATP to initiate the reaction. After incuba-
tion for 90 minutes at 30°C, the kinase reaction was 
terminated by emptying the contents of each well. The 
phosphopeptide substrate thus obtained was immu-
nodetected by using phospho-substrate specific pri-
mary antibody and peroxidase-conjugated secondary 
antibody as per manufacturer’s instructions. The 
mean absorbance (x103) of samples was divided by 
the quantity of total protein (μg) used per assay, and 
the data is represented as relative PKC activity.  

Statistical analysis. Initially, autistic and control 
cases were collected as age-matched pairs. As data for 
both members of a pair were not available in all cases, 
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and data were approximately normally distributed, 
unpaired two-tailed t-tests were employed to make 
comparisons of PKC activity in various brain regions 
between autistic vs. control cases. The data was con-
sidered significant if ‘p’ was < 0.05. Comparisons 
among controls and autistic cases showing or not 
showing clinical signs of regression in function were 
made using one-way analysis of variance (ANOVA). 
To guard against Type I error, a Bonferroni adjust-
ment for multiple comparisons was made to the t-tests 
of multiple brain regions, and for the pair wise 
post-hoc t- tests comparing each pair of the three 
groups that were compared in the overall ANOVA. 
Data is presented as Mean ± S.E. 

 Pearson’s correlation coefficient (r) was used to 
evaluate if there was relationship between PKC activ-
ity in autism and behavioral abnormalities (ADI-R 
score). 

RESULTS 

PKC activity in the cerebellum and different 
cerebral regions of brain from subjects with regressive 
autism, non-regressed autism and their age-matched 
controls.  

PKC activity was assayed in the frontal, tem-
poral, occipital and parietal cortices (Fig. 1), and cer-
ebellum (Fig. 2) from subjects with autism (regressive 
and non-regressive) and their age-matched control 
subjects. As shown in Fig. 1, PKC activity was signif-
icantly decreased by 65.8% (p = 0.0048) in the frontal 
cortex of subjects with regressive autism (Mean ± S.E.; 
2.05 ± 0.41) as compared to non-regressive autistic 
subjects (Mean ± S.E.; 6.00 ± 0.97), and by 57.1% (p = 
0.0085) as compared to age-matched control subjects 
(Mean ± S.E.; 4.78 ± 0.63). On the other hand, PKC 
activity was similar between non-regressive autism 
and age-matched control groups. We also analyzed 
the data with one-way ANOVA test using Bonferroni 
adjustment for multiple comparison, and observed 
that data was significant (p = 0.0057). Alteration of 
PKC activity in the frontal cortex of subjects with re-
gressive autism was brain regions-specific. PKC ac-
tivity was not affected in other brain regions i.e., cer-
ebellum, and in the temporal, occipital and parietal 
cortices from autism subjects (regressive and 
non-regressive autism) as compared to age-matched 
controls (Figs. 1 and 2).  

 

 

Fig. 1. Protein kinase C activity in different regions of cerebral 

cortex, i.e., frontal, temporal, occipital and parietal cortex from 

subjects with regressive autism, non-regressed autism and their 

age-matched controls. The mean absorbance (x103) of samples 

was divided by the quantity of total protein (μg) used per assay, 

and the data is represented as relative PKC activity. **p < 0.01 as 

compared to control and non-regressed autism groups. 
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Fig. 2. Protein kinase C activity in the cerebellum from subjects 

with regressive autism, non-regressed autism and their 

age-matched control subjects. The mean absorbance (x103) of 

samples was divided by the quantity of total protein (μg) used per 

assay, and the data is represented as relative PKC activity. 

 
 
 Postmortem interval (PMI) and age of the 

subjects. There was no significant difference in age 
(mean ± S.E.) of the subjects among the regressive 
autism (11.6 ± 2.7 years), non-regressive autism (13.7 ± 
6.1 years) and control groups (12.4 ± 3.3 years). Our 
results also suggest that PMI was not a contributing 
factor to the observed alteration in PKC activity in the 
frontal cortex of individuals with regressive autism 
because PKC activity in the cerebellum and the tem-
poral, parietal, and occipital cortices was not affected 
in subjects with regressive autism in comparison with 
control subjects, while it was affected only in the 
frontal cortex from these individuals with regressive 
autism.  

Correlation of PKC activity with behavioral 

abnormalities in autism. In order to evaluate whether 
there is any correlation between reduced PKC activity 
and behavioral abnormalities in subjects with autism, 
we analyzed the data of PKC activities in the frontal 
cortex as a function of ADI-R scores for different be-
havioral parameters (Fig. 3). In this study, we had 
ADI-R scores of only six subjects with autism, which 
included three regressive autism subjects (UMB # 
4849, 4899, 1638) and three non-regressive autism 
subjects (UMB # 4671, 1174, 797). Fig. 3a shows the 
correlation between PKC activity in the frontal cortex 
and ADI-R score for restrictive, repetitive and stereo-
typed behavior in regressive and non-regressive au-
tistic subjects. It was observed that ADI-R test score 
for restrictive, repetitive and stereotyped pattern of 
behavior was higher in regressive autism as compared 
to non-regressive autistic subjects. Interestingly, linear 
regression analysis showed a negative significant 
correlation between PKC activity in the frontal cortex 
and restrictive, repetitive and stereotyped behavior (r 

= 0.84, p =0.0363). A comparison of PKC activity in 
combined regressive and non-regressive autism 
group with ADI-R scores for abnormalities of devel-
opment before the age of 36 months did not show a 
correlation between these two parameters (data not 

shown). However, a negative correlation (r = 0.988) 
in subjects with regressive autism was observed be-
tween PKC activity and abnormalities of development 
before the age of 36 months, though it did not reach 
significance (p =0.09, n=3) (Fig. 3b). On the other 
hand, there was no correlation between reduced PKC 
activity and impairments in reciprocal social interac-
tion in regressive or non-regressive autistic subjects 
(data not shown). Abnormalities in communication 
had two types of scores: verbal and non-verbal. Only 
two scores were available in verbal category, which 
were not sufficient for analysis. Therefore, we ana-
lyzed the PKC data in the frontal cortex with respect 
to non-verbal score, and did not find any significant 
correlation between these parameters in regressive or 
non-regressive autism (data not shown).  

 
 

 

Fig. 3. Relationship between PKC activity of frontal cortex and 

Autism Diagnostic Interview Revised (ADI-R) test scores in sub-

jects with autism. PKC activity was plotted against individual 

ADI-R scores for (a) restricted, repetitive and stereotyped pat-

terns of behavior, and (b) abnormalities of development evident 

before the age of 36 months. R represents subjects with regressive 

autism. 
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DISCUSSION 

Autism is a multifactorial disorder with varia-
bility in many domains. The variability of domains 
includes high or low functioning autism, regressive or 
non regressive autism, and comorbidities such as ep-
ilepsy. No single factor can explain variability ob-
served with different domains of autism. Our results 
are suggestive of reduced PKC activity in the frontal 
cortex as one of the factors contributing to regression 
in autism. Recently, we reported that PKA is also af-
fected in the frontal cortex of subjects with regressive 
autism [33]. Collectively, our present results and pre-
vious report suggest that regression in autism may be 
the result of alterations in protein kinases-mediated 
signal transduction. It is possible that both of these 
kinases (PKC and PKA) are affected by a common 
pathway because both protein kinases are activated 
by G-protein-coupled receptors. PKA gets activated 
by G-protein-coupled adenyl cyclase that converts 
ATP to c-AMP, an activator of PKA. On the other 
hand, activation of PKC is associated with 
G-protein-coupled phospholipase C-mediated cleav-
age of phosphoinositides into two intracellular mes-
sengers, i.e., diacylglycerol (DG) (activator of PKC) 
and inositol trisphosphate (IP3) (a Ca2+ mobilizer).  

In the brain, the signals that control cognition 
vary depending on type of G-protein-coupled signal 
input. Several receptors such as glutamatergic recep-
tors [37], cholinergic receptors [38], serotonergic re-
ceptors [39] and dopaminergic receptors [40] regulate 
the functions of PKC. PKC is a key regulator of neu-
ronal signal transduction pathways that are crucial to 
learning and memory consolidation [41-45]. Neuronal 
plasticity and synaptic connections are important for 
information processing in the brain. Activation of 
PKC facilitates synaptic plasticity that includes re-
sponses such as Ca2+ influx, neurotransmitters release, 
and a decrease in Ca2+-activated K current in the 
brain, leading to the enhancement of neuronal excita-
bility and potentiation of synaptic response [46; 47]. Li 
et al. [48] also reported effect of chronic treatment 
with staurosporine (PKC-inhibitor) on acquisition and 
expression of contextual fear conditioning in rats. 
Considering the importance of PKC in neuronal func-
tions, decreased PKC activity in subjects with regres-
sive autism may result in decreased neuronal plastic-
ity, thus affecting neuronal excitability and synaptic 
response. 

 The formation of functional neuronal synapse 
requires various molecular players in presynaptic and 
postsynaptic growth. Dysfunction of proteins such as 
neuroligins, neurexin and SHANK that are required 
for synaptic development have been reported in ASDs 

[49; 50]. Neural disconnection leading to abnormali-
ties in cortical networks has been suggested in autism. 
Different isozymes of PKC are known to have im-
portant roles at various stages of brain development. 
Purkayastha et al. [51] reported that serotonin 1A re-
ceptor-mediated signaling during neonatal hippo-

campal development initially requires PKC to boost 

neuronal proliferation, and then uses PKC to pro-
mote synaptogenesis.  

  Our results also suggest a relationship of re-
duced PKC activity in the frontal cortex with some 
behavioral abnormalities in autism. According to 
ADI-R diagnostic algorithm criteria, higher score re-
flects greater behavioral impairment. A negative sig-
nificant relationship was observed between PKC ac-
tivity in the frontal cortex and restrictive, repetitive 
and stereotyped behavioral score in autistic subjects 

(r= 0.84). A negative correlation was also observed 
between PKC activity in the frontal cortex and ab-
normalities of development before the age of 36 

months in regressive autistic subjects (r= 0.988). 
However, later correlation did not reach significance, 
which may be due to small sample size in this study. 
The correlation between reduced PKC activity in the 
frontal cortex and behavioral abnormalities in autism 
needs further validation with larger sample size. 

The prefrontal cortex has been implicated in au-
tism to explain deficits in brain functions related to 
cognition, language, sociability and emotion [52]. Our 
findings of decreased activities of PKC and PKA in 
the frontal cortex of subjects with regressive autism 
suggest defective phosphorylation/ 
dephosphorylation of proteins. Both PKC and PKA 
are involved in neuronal signal transduction. Chronic 
treatment with carbamazepine (a mood-stabilizer 
drug) has been reported to increase phosphorylation 
of myristoylated alanine-rich C kinase substrate 
(MARKS) in the rat cerebral cortex, suggesting in-
volvement of PKC –mediated phosphorylation of 
MARKS in behavioral changes [53]. A recent study 
showed that PKA inhibitor could induce behavioral 
and neurological antidepressant-like effects in rats 
[54]. Since both PKC and PKA are activated by 
G-proteins-coupled receptors and are extensively in-
volved in brain functions, we suggest that inhibition 
of these kinases in the cerebral cortex may have sig-
nificant role in regressive autism.  

Autism belongs to a group of neuropsychiatric 
disorders. The roles of PKC and PKA have also been 
suggested in other neuropsychiatric disorders. De-
creased protein expression of PKCβ1, PKCξ and PKA 
regulatory Iα subunit and PKA catalytic subunits (α 
and β) has been reported in the postmortem brain 
samples from major depressive subjects as compared 
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to controls [55]. Alterations in PKC activity were re-
ported in manic depression, and antimanic agents 
(lithium carbonate and sodium valproate) inhibited 
PKC-associated signaling in brain tissue [56]. In other 
studies, prenatal and postnatal exposures to valproic 
acid (antiepileptic drug) have been used for animal 
model of autism to induce behavioral and neuropa-
thological abnormalities similar to those observed in 
individuals with autism [57-61]. In pediatric bipolar 
disorder, decreased expression of specific PKC iso-
zymes and decreased PKC activity in the platelets 
were reported [62]. PKC has also been suggested as a 
molecular target in pathogenic and therapeutic 
mechanisms of mood disorders in which electrocon-
vulsive seizure (ECS) is effective [63]. This group re-
ported phosphorylation of PKC substrates, including 
GAP-43, myristoylated alanine-rich C-kinase sub-
strate, and neurogranin in the brain of rats after ECS. 
Another study showed significant decrease in the 
activities of phospholipase C and PKC in the mem-
brane and cytosolic fractions of platelets from patients 
with bipolar disorder, suggesting that PKC may be 
involved in the pathophysiology of bipolar disorder 
[64].  

The involvement of PKC has also been reported 
in other conditions such as inflammation [65], im-
mune disorders [66], and oxidative stress [67]. These 
studies have suggested inhibitors of PKC theta as an-
ti-inflammatory therapeutic agents [65], and PKC 
isozymes as potential therapeutic targets in immune 
disorders [66]. Abnormalities in inflammation, im-
mune system and oxidative stress have been observed 
in autism [7]. Several lines of evidence from our and 
other groups have shown increased oxidative stress 
damage coupled with reduced antioxidant defense in 
blood [3; 6; 11; 14], brains [8-10; 13] and urine [12] of 
subjects with autism. We and others have also re-
ported increased inflammatory markers in autism 
[17-21]. Therefore, PKC may also have a role in in-
flammation, immune defects and oxidative stress ob-
served in autistic individuals. 

Our results suggest that PMI and age cannot 
account for the observed alteration in PKC activity in 
subjects with regressive autism. Other factors, such as 
comorbidity with seizure disorder, reported for three 
of 10 autism cases (of which two had regressive au-
tism, and one had non-regressive autism), and medi-
cations, reported for two regressive autism cases, four 
non-regressive autism cases, and two control cases, do 
not seem to be contributing factors to the altered ac-
tivity of PKC in regressive autism. Furthermore, PKC 
activity was affected only in the frontal cortex but not 
in other brain regions of subjects with regressive au-

tism. However, further studies with a larger autistic 
group should be done to explore this issue.  

Considering the central role played by PKC in 
cellular signaling, the present findings on reduced 
PKC activity in subjects with regressive autism may 
result in disruption of neuronal signal transduction 
pathways in the frontal cortex, which may, in part, be 
responsible for regression in autism. It will be inter-
esting to conduct a detailed study on the relationship 
between PKC activity and behavioral abnormalities 
with larger number of samples from subjects with 
autism. In conclusion, our study suggests that brain 
region-specific reduced PKC activity in the frontal 
cortex of individuals may be associated with regres-
sive autism. 
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