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ABSTRACT 

Recent studies in the literature have demonstrated the ability of self-healing processes to be 

effective in enhancing the overall life of concrete.  The main goal of this project is to evaluate 

and to control specific parameters for the production of an effective self-healing matrix that can 

be utilized within the application of self-healing concrete.  Therefore, the project objective is to 

synthesize microcapsules using dicyclopentadine and sodium silicate and to evaluate the effects 

of pH, temperature, and agitation rate on microcapsule morphology.  The microcapsule diameter, 

yield analysis, and shell thickness were characterized using scanning electron microscopy.  

During the experimental analysis, it was determined that temperature possesses a direct 

relationship with the pH for both sodium silicate and DCDP.  As the temperature increased 

during the trials, the pH decreased.  Temperature had a direct impact on the forming of the wall 

and core during the interfacial polymerization phase.  Although the ability to maintain this 

consistency with the pH is important and essential, agitation rate is the key factor that controls 

the microcapsule capsule diameter size.  As the agitation rate is increased, the microcapsule 

diameter size will decrease.  If the agitation rate decreases, the microcapsules will become larger.  

Sodium silicate, however, was not consistent with the normal parameter matrix, due to its 

alkaline nature.  As the agitation rate increased, the size remained normal and consistent.  This 

was due to the attempt to stabilize the sodium silicate solution for the micro-encapsulation 

procedure of Urea-Formaldehyde.  Nevertheless, both sodium silicate and DCDP trials were 

successful in meeting the overall objective of this thesis, which was to control the performance 

parameters of the two self-healing methods.     

ii 
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CHAPTER 1 

INTRODUCTION 

 

Concrete is exposed to external factors such as extreme heat, cold, stress, during service.  

Concrete shrinks and expands with variations in moisture and temperature.  Cracks can occur 

when changes to accommodate these factors are not implemented in the design and development.  

Other factors that can affect concrete and its lifespan include shrinkage, design flaws or poor 

quality of construction materials (Mather 1989).  Concrete experiences various loading from 

heavy vehicles, earthquakes and strong winds.  Due to these factors in addition to several more it 

is inevitable that reinforced concrete eventually develop cracks.  When cracks originate in 

concrete structures, a sequence of serious events begins to occur within those structures.  Not 

only do these cracks affect the functionality of the structure, but they also affect the durability 

and strength of the structure.  In order to enhance concrete resistance to these defects and 

degradations, the innovation of self-healing concrete is promising.   

Self-healing concrete can be defined as concrete that possesses self-healing agents, which 

will ‘automatically heal’ concrete structures, when cracks occur during their life cycle.  Self-

healing agents may be transferred through strong core microcapsules, hollow reinforced fibers 

and even by forms of organic matter (Ming Qiu Zhang et al 2011).  All of these methods are 

currently undergoing testing and analysis in order to test their durability and longevity.  This 

research deals with a number of self-healing chemicals that are used in the micro-encapsulation 

process.   

1.1 PROBLEM STATEMENT 

Recent studies in the literature have demonstrated the ability of self-healing processes to be 

effective in enhancing the overall life of concrete (Keesler et al. 2003).  Although, the 

application of this technology and recent innovation is still in its experimental phases, its 

contributions towards effectively healing concrete possess outstanding possibilities.  Therefore, 

there are many future environmental designs and operational factors that still need to be 

assessed.  Factors that control the morphology, shell thickness and strength of these capsules 

have not been thoroughly tested.  
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1.2 OBJECTIVES 

To address the aforementioned problem statement, the main goal of this project is to evaluate and 

to control specific parameters for the production of an effective self-healing matrix that can be 

utilized within the application of self-healing concrete.  The healing process that has been chosen 

for this analysis is that of self-healing by microencapsulation.  To achieve this goal, this study 

met the following objectives:  

1. Synthesize microcapsules using Dicyclopentadine (DCDP) and Sodium Silicate;  

2. Evaluate the effects of pH, temperature, and agitation rate on microcapsule morphology 

(diameter, shell thickness, shape); 

3. Evaluate Yield 

1.3 RESEARCH APPROACH 

To achieve the aforementioned objectives, this study was divided into four phases comprised of 

the following nine tasks: 

Phase 1: Manufacturing of Microcapsules 

Task 1: Purchase appropriate equipment to manufacture microcapsules 

Task 2: Implement urea-formaldehyde procedures to produce DCDP microcapsules 

Task 3: Implement urea-formaldehyde procedures to produce sodium silicate  

 

Phase 2: Evaluate the effect of PH on the microcapsules synthesized  

Task 4: Synthesize microcapsules using the DCDP and sodium silicate methods developed in 

Phase 1 with various pH levels 

Task 5: Characterize resulting microcapsules’ diameter, morphology, and shell thickness using 

Scanning Electron Microscopy (SEM) 

 

Phase 3: Evaluate the effect of Temperature on the microcapsules synthesized  

Task 6: Synthesize microcapsules using the DCDP and Sodium Silicate methods developed in 

phase 1 with various temperature levels 

Task 7: Characterize resulting microcapsules’ diameter, morphology, and shell thickness  
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Phase 4: Evaluate the effect of the agitation rate on the microcapsules synthesized  

Task 8: Synthesize microcapsules using the DCDP and sodium silicate methods developed in 

Phase 1 with various agitation rates 

Task 9: Characterize resulting microcapsules’ diameter, morphology, and shell thickness  

1.4 REFERENCES 
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By P.K. Mehta, ACI SP-144, 1-30, (1994). 

 

 

Darter, M. Abdelrahman, M., Okamoto, P., and Smith, D.  Performance Related Specifications 

for Concrete Pavements.  FHWA-RD-93-042.  Federal Highway Administration, 

Washington, D.C, 1993.   

 

 

Mather, B. How to Make Concrete That Will Be Immune to the Effects of Freezing and 

Thawing.  Performance of Concrete, American Concrete Institute, Vol. 122, 1989, pp. 1-
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Ming Qiu Zhang, Min Zhi Rong.  Self-Healing Polymers and Polymer Composites, First Edition.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 CONCRETE SELF-HEALING METHODS 

There are various self-healing methods for concrete that have been instituted throughout modern 

practices.  Some of these methods consist of the following:  Hollow Fiber Glass Systems, 

Autonomic Healing of Polymer Composites, and Microencapsulation of Self-Healing Agents.  In 

the following sections, a detailed and thorough overview is provided concerning these processes 

and methods. 

2.1.1 Overview of Self-Healing Processes and UF Resins 

During service, concrete is exposed to multiple external factors such as extreme heat, cold, and 

stresses.  Due to these external factors, as well as possible shrinkage, design flaws or poor 

quality of construction materials, reinforced concrete will eventually develop cracks.  Inevitable 

damage to concrete structures occurs by cracks originating in these structures by steel oxidation, 

resulting in strength loss for reinforced concrete structures (Schlangen, E. 2005).  Not only do 

these cracks adversely affect the many components within the structure, but they also reduce the 

durability and strength of the structure.  Self-healing concrete components assist in remedying 

this dynamic event.   

Numerous methods and processes are available for self-healing cracks within damaged 

concrete.  The methods include, but are not limited to, natural healing, autonomic healing, 

activated processes, autogeneous healing, etc.  Natural healing occurs when a concrete crack is 

automatically and naturally blocked without use of a chemical matrix or design.   The autonomic 

healing process is a method that utilizes a ‘specialized design matrix’ of specific man made 

materials to aid in the healing process.  These materials assist in sealing the crack within in an 

expedited manner.  The activated process utilizes a different mechanism, which is previously 

implemented and placed in the concrete beforehand.  Autogeneous, which means produced from 

within or self-generating incorporates not only natural healing, but the autonomic process (self-

managing) as well.  Although these methods are reliable and consistent, crack propagation plays 

a large role on its healing effectiveness.   
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There are a multitude of methods that exist, which can incorporate and utilize the 

different self-healing methods and mechanisms.  A method that incorporates autogeneous, 

autonomic and the activated methods is the method of U-F (Urea-Formaldehyde).  Urea-

Formaldehyde resin, which was discovered between 1800 – 1885, implements a reaction of urea 

and formaldehyde, which produces a resinous material (Rammon et al. 1986).  A large amount of 

urea-formaldehyde is produced each year by industry.  This polymethylene resin is mostly used 

in bonding particle board, hardwood plywood and laminating adhesive.  Some of the properties 

of this chemical includes a high surface hardness, volumetric resistance, and high tensile 

strength.   

There are two different developments for the synthesis of Urea Formaldehyde.  The first 

is incorporated and conducted at an alkaline pH (normally using an alkaline catalyst and 

ammonia) which produces a methylol urea.  The second uses an acid pH, which results in the 

strengthening of methylol and forms a polymeric material (Rammon et al. 1986).  The solid 

formation of material during the aqueous phase after the polymerization of urea and 

formaldehyde is due to the high molecular weight polymers (Dunker et al. 1986).  

2.1.2 Hollow-Fiber Glass Systems 

FRP’s (Fiber-Reinforced Polymer’s) have great performance characteristics in relation to 

strength and stiffness.  FRP’s allow for a versatility and flexibility in performance.  Nevertheless, 

due to their inherent micro-structure, delamination may occur due to its poor performance under 

loading (Kessler et al. 2002).  FRPs not only give an advantage to incorporate a healing agent, 

but they also have positive structural improvements.  When failure or overstresses of broken 

fibers occur, the healing agents flow into the damaged area.  Some chemicals used in the past for 

healing agents are ethyl cyanoacrylate, methyl methacrylate, and cyanoacrylate (Kessler 2002).   

Glass fibers, which contain specific healing agents, can represent two different methods.  

One method can serve as a one-part adhesive, such as cyanoacrylate.  The system can also serve 

as a two-part epoxy system, containing both a resin and a hardener.  Both of these methods will 

be located perpendicular to one another; however, one is implemented within the matrix itself 

and one within the fibers (Kessler 2002).   It has been shown in previous studies that these 

hollow fibers are multifunctional; since the fibers themselves store a liquid healing agent while 

simultaneously provide structural reinforcement.  
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These hollow fiber systems offer a flexibility to place healing plies in different locations 

within the laminate in order to tailor the repair to the likely damage.  This is an excellent process 

for the self-healing of concrete process.  However, if these self-healing hollow glass fibers are 

not located in an area where the crack occurs, the self-healing agent will not be utilized.  

Although an excellent method, more research and analysis must be completed before 

implementation into the market place. 

2.1.3 Autonomic Healing of Polymer Composites 

As previously discussed and addressed with Hollow Glass Fiber Healing, it was founded that 

cracks can develop deep within polymer structures, causing mechanical degradation at times.  

Despite the bases for the cracks, the composition of the polymer structure can be significantly 

compromised (Wool 1995).  Beyond the Hollow Glass Fiber method, an additional process exists 

in which a structural polymeric material has the capability to automatically heal cracks within 

concrete structures.  Just like the Hollow Glass Fiber Self-Healing method, a microencapsulated 

healing agent is released into the crack plane once the damage occurs.  Once the healing agent 

comes into contact with the embedded catalyst, a bonding action takes place called 

Polymerization (Lee 1991).  Autonomic healing consists of polymerization capsules that have 

non-ending chain ends.  This allows the epoxy matrix to heal multiple cracks simultaneously 

(Zihlif et al. 2011). 

Regardless of the application or design of the microcapsule, configuration and geometry 

is the key.  The walls on the manufactured capsules cannot be too profuse or too small; 

otherwise, they might rupture prematurely or might not rupture at all (Dry 1996).  An additional 

and important design factor is the microcapsules’ strength and stiffness as well as the 

relationship between the microcapsules and the matrix.  This supports a theory known as ROMP 

(ring opening metathesis polymerization).  There are several essential factors that have 

contributed to the ROMP theory (Dry and Sottos 1993).  These factors are as follows:   

1.  Promotes long life 

2. Low monomer viscosity 

3. Rapid polymerization at ambient conditions 

4. Low shrinkage upon polymerization 
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This linked polymer network causes a reaction that polymerizes dicyclopentadiene (DCDP) at 

room temperature within minutes (White et al. 2001).  DCPD, a highly stable monomer with 

excellent shelf life, was encapsulated in urea formaldehyde (UF) microcapsules.  These DCDP 

micro-capsules (filled with urea-formaldehyde) provide a protective shell between the catalyst 

and the DCDP in order to prevent premature polymerization during the development of the 

composite (Brown et al. 2003).  In order to ensure that polymerization has occurred, SEM and 

microscopy analysis were administered on the specimens.   Effectiveness of the healing agent 

was shown by damage under the SEM, as well as absorption within the film through Infrared 

Spectroscopy.   

Materials and components such as these presented should increase the reliability and 

service life of thermosetting polymers (Brown et al. 2003).  However, the amount utilized when 

placing DCDP microcapsules within concrete structures is unclear.  In addition, there are many 

questions that must and should be answered in order to effectively utilize this unique and rare 

self-healing property in the commercial market.  For example, the reproduction potential in mass 

quantity is speculative.   

2.2 MICROCAPSULE SYNTHESIS 

This section and Figure 2.1 explains the sequence of events that take place during the 

development of microcapsule formation and generation.  Section A is a representation of the 

ingredients and additives with H₂O.  These additives are mixed together with a stirring device in 

order to create an emulsion.  Section B is a representation of an agent separating themselves 

from the emulsion.  Section C is an illustration of the healing agent being encapsulated by the 

surfactant being utilized.  Section D is the final result of the microcapsule itself with the healing 

agent stabilized inside.  This basic process is the end result of the entire microencapsulation 

process itself.  The objective of these steps is to streamline the process using different chemicals, 

techniques, and procedures.   
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Figure 2.1 Microcapsule Solid Wall (After Brown et al. 2003) 

2.2.1 Micro-Encapsulation Processes 

The in-situ process is an extremely important component of this study, due to the fact that this 

was the process selected for the preparation of the microcapsules.  An essential part of the 

microcapsule is the core shell itself (Massoth et al. 1965).   The method utilized to generate the 

microcapsules core can be by liquid or gaseous phase, liquid or slurry, multiple wall capsule, etc.  

Within the in-situ process, an emulsification process produces a spherical core solid wall, as 

shown in Figures 2.2 and 2.3 (Brown et al. 2003).  

 

 

Figure 2.2 Microcapsule Solid Wall (After Brown et al. 2003) 

 
 

Figure 2.3 Representation of Wall Thickness (After Brown et al. 2003) 

Section A Section B 
Section C Section D 
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The second integral section of the microcapsule is the shell wall itself.  In order to establish to 

proper wall application, the type of materials for the given product desired must be selected.  The 

material utilized must be appropriate to assist the microcapsules in enduring its required 

environment (Flinn and Nack 1967, a,b).  In the case of the application of self-healing concrete, 

the wall must be rigid and strong enough to endure an aqueous condition as well as the concrete 

environment.   

The deposited wall usually follows the outline of the generated core.  This means that the 

final form of the shell wall for the capsule generated will be strongly affected by the core itself.  

This is why the selection of the materials, as well as the microcapsule process employed, will 

assist in distributing the core particles to achieve a smooth morphology (Massoth et al. 1965).  

The overall selection for the microcapsule process depends on multiple factors.  These factors 

are the solubility of the core, the reactivity of the core to other chemicals and properties, and 

which method of core release should be evaluated.  There are also other factors, such as storage 

release and reaction, and product performance (Massoth et al. 1965).   

The in-situ process includes a combination of aqueous and interfacial polymerization.  

For the aqueous phase, the core material must be immersible in water.  The walls will form when 

the dissolved material creates a ‘phase out’ and ‘wrap’ around core particles to make a suitable 

change (Flinn 1967).  In order for this to occur, the system of the aqueous solution must be 

changed by the following factors: reduction in temperature, addition of chemical precipitating 

agent, or pH alteration.  The micro-encapsulation process is also successful by utilizing an 

interfacial polymerization technique.  The formation of a polymer at the interface between two 

liquid (Water and DCDP Interface) phases is known as interfacial polymerization (Hermann 

Nack 1967).     

2.2.2 Effect of Temperature 

Temperature plays a significant role in the design and manufacturing of microcapsules at 

elevated temperature by speeding up response time and enhancing poly-condensation advantage 

(Alexandridou and Kiparissides 1994).  The microencapsulated monomer must be in the liquid 

phase in order to flow through the damage site. The original design is ineffective at low 
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temperature because DCPD is very likely in the solid phase.  Diffusion of solid phase DCPD into 

the crack is slow or unlikely to occur at all (Brown et al. 2002). 

2.2.3 Effect of RPM and Droplet Size 

The overall distributions of the size of the microcapsules play an essential role in establishing the 

surface area in which contents are unconfined.  As the microcapsules originate from the solution, 

various sizes of spherical capsules will be developed.  The stirring rate has the greatest effect on 

drop sizes (Ovez et al. 1997).  In using the urea-formaldehyde method, drop size variation while 

polymerization is occurring, is a direct function of time.  Drop sizes during this process also have 

a direct impact on the crosslink of urea and formaldehyde (Ovez et al. 1997). 

The agitation rates, as well as the stirrer being utilized, are essential in establishing 

diameter control.  As blade driver is not a shear stirrer, the microcapsules will not be uniform 

(Jyothi et al. 2010).  If the agitation rate is fast, the microcapsules generated will be of a smaller 

diameter.  As the agitation rate decrease, so does the overall size of the microcapsule 

(Alexandridou and Kiparissides 1994).  This means that there is a direct relationship on a linear 

log-log scale between average diameter and agitation rate (Brown et al. 2003).  As previously 

mentioned, the droplet size along with the shear agitation rate is critical in the successful 

developing of microcapsules.   

2.3 CHARACTERIZATION OF MICROCAPSULES 

Microcapsules can be evaluated and characterized using numerous techniques.  These techniques 

include Transmission Electron Microscopy (TEM), Atomic Force Microscopy, Scanning 

Electron Microscope (SEM), etc.  SEM was the method adopted in this study due to its ability to 

best meet the requirements for the analysis of microcapsules.  The following sections present 

each characterization method as well as their analysis processes. 

2.3.1 Transmission Electron Microscopy Analysis 

Both SEM and TEM are adequate methods for the characterization of microcapsules or 

nanocapsules.  Specific size elements and nanoparticles are not visible because they are smaller 

than visible wavelengths, therefore to see nanoparticles, smaller wavelengths are required.  As 

one gets closer to the object the depth of focus broadens, the aperture is larger, but the focus is 

worse, which leads to the limit of resolution (the ability to distinguish something into its separate 
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components) (Williams 1996).  As a result, the concept of scanning electron techniques is 

simple; the wavelength of smaller dimensions correlates to smaller dimensions observable.   

In the 1930’s, transmission electron microscopy (TEM) was first built followed by the 

scanning electron microscopy (SEM).  Scanning electron microscopy is used for 2-D surface 

imaging with resolution near 1 nm.  Used with energy dispersive spectroscopy the elemental 

composition can be derived.  Using a similar technique, TEM can collect the transmitted 

electrons.  This can be instrumental in analyzing extremely small micro-capsules or nano-

capsules.  Higher resolution near 0.2 nm can be achieved; however, the sample must be a thin 

film to allow for electron transmittance (Hornyak et al. 2008).   

TEM accelerates electrons that either pass through or deflect the subject material.  Elastic 

scattering is when there is no energy loss whereas inelastic scattering is due to heterogeneities 

such as density changes, boundaries, and defect.  The information on electrons deflected and 

passing through is gathered to produce a high magnified resolution.  Higher voltages are required 

for thicker samples or better lateral resolution.  As a result, TEM is limited to thin films  

(Hornyak et al. 2008).  Although TEM is an acceptable method for characterization, this system 

was not utilized due to the fact that the microcapsules were no smaller than 10 µm in length.   

2.3.2 Atomic Probe Microscopy 

The scanning probe techniques are the true techniques for determining 3D Micrometer 

measurements.  This method can be utilized for micro-capsule characterization in specifying 

definite and precise measurements.  These methods are not dependent on the wavelength like 

optical and electron microscopy.  Instead, it is based on the principle of electron tunneling.  Two 

common techniques are scanning tunneling microscopy (STM) and atomic force microscopy 

(AFM).  STM allows for 3-D surface imaging including the height dimensions at resolution near 

0.1 nm.  Using a tunneling current applied to a probe tip that is rastered across the surface, the 

electrons from the tip jump to the surface at a measurable current proportional to the distance 

from the surface.  The problem is that the material imaged must be conducting.  To address this 

barrier, the AFM measures the force between the probe and the surface, thus, eliminating the 

need of a conductive material.  The probe can be made of several materials such as silicon and 

tungsten but the main importance is the sharpness of the point relating to the image clarity 

(Hornyak et al. 2008). 
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Recent developments in microencapsulation characterization of cementitious materials 

have begun to show the importance of AFM in determination of mechanical properties.  Various 

experiments have used AFM with nanoindentation probe to study the local mechanical properties 

coupled with high-resolution imaging.  The qualitative results are proportional to the modulus of 

elasticity.  To quantify the modulus of elasticity, nanoindentation tests must be used.  Studies 

have used statistical analysis to relate several elastic moduli from various phases to relate to the 

qualitative results obtained from the AFM to estimate the elastic moduli profile (Mondal et al. 

2005).   

2.3.3 SEM Analysis 

Figure 2.4 is an illustration of an operational SEM machine located at Louisiana State 

University.  The S-3600N Hitachi ESEM Microscope has ability to generate extraordinary digital 

images of the surface of a sample.  This system consists of large sample chambers, which can 

analyze samples up to 254 mm in diameter, 70mm in height and 2kg in weight. The system 

utilizes a pressurized adjustable mode that enables the analysis of non-conductive samples, 

which eliminate the need for special sample preparation of the non-conductive samples 

(Danilatos 1990). The SEM also encompasses a specimen chamber with 12 ports, which ensures 

the best geometry for the multiple detectors and accessories.  This pressure scanning electron 

microscope has a resolution of 3 nm at 25 kV under high vacuum conditions and 4.5 nm at 25 kV 

under variable pressure conditions.  Variable Pressure technology permits examination of 

virtually any type of sample without the need for traditional sample preparation techniques 

(Danilatos 1990). 

 

 

Figure 2.4 Hitachi S-3600N ESEM Microscope 
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The SEM tool consists of seven primary components:   

1. Beam Generation – This system is located at the top of the microscope and generates the 

primary electron beam. 

2. Beam Interaction – This includes the interaction and involvement of the sample with the 

electron beams, and the multiple signals that can be detected. 

3. Vacuum System – The vacuum system eliminates the dispersion and scattering of 

electrons due to the interaction of the electron beam forcing collisions with different 

molecules within the chamber. 

4. Beam Manipulation– This system controls the size, shape and position of the beam on the 

samples surface.  It encompasses electromagnetic lenses and coils, which are located at 

the microscopes column.    

5. Signal Processing – This includes an electronic system, which handles the manipulation 

of the initial image, and processes the generated image by the detection system. 

6. Detection System – This system consists of multiple detectors, each of which is sensitive 

to the multiple energy particles that occur on the specimens’ surface. 

7. Display and Record System – This incorporates a cathode ray tube which allows 

recording of the analysis utilizing a photographic or magnetic media, and enables 

visualization of an electronic signal. 

These subsystems work together in determining specifics of a micrograph such as: resolution, 

depth of field, contrast magnification and brightness.  When dealing with the analysis portion of 

the SEM, the following occurs in the analysis process. When an electron beam hits a specimen, 

part of the beam will become scattered by other particles and the rays emitted tend to be very 

characteristic of the element from which they originated (Goldstein 2003).  This electron beam –

sample interaction will eventually cause the ray energy to dissipate, as well as change the 

wavelength from when it was originally emitted.  The possibility of identifying a ray after it 
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loses some its energy, is extremely common at the low energy spectrum, and in retro-respect will 

decrease towards the high energy end.  This is known as uncharacteristic rays.  They are called 

this term due to the energy and wavelength they possess and because they do not have the 

original character traits from which they originated from (Egerton 2005).   

Characteristic x-rays have the ability to interfere with primary identification once 

elements are in low concentrations.  They are represented by low energy characteristic x-ray 

lines, where the background is significantly higher. This is why the WDS (Wavelength 

Dispersive Spectroscopy) detector is set to detect a specific range of wavelengths. Wavelengths 

which are not in this range cannot be detected (Goldstein 2003).  The WDS detector is usually 

preset for a small range of wavelengths and the sensitivity of the detector is greater which allows 

for greater accuracy in analytical work.  

Using this type of detector, however, is cumbersome when dealing with an unknown 

specimen because of the many spectra that need to be gathered to determine the elemental 

composition of an unknown sample.  With any type of SEM studies, it is important that the 

sample be as smooth as possible (Goldstein 2003). Topography will influence the X-ray counts 

and gives a poor determination of the elemental composition. This is the main reason X-ray 

analyses are often difficult to use with biological samples. 

2.3.4 SEM Procedures and Imagery Analysis 

The following sections provide a detailed explanation of sample preparation as well as 

procedures and techniques that are normally utilized for analysis of a specimen.   

SEM Sample Preparation 

Microcapsule preparation for SEM is generally prepared by a technique called ‘sputtering’.  This 

process involves a large amount of heavy particles being sprayed on a specimen under a gaseous 

glow discharge between an anode and cathode, which will cause the erosion of the prepared 

specimen (Goldstein 2003).  By sputtering a specimen, the following benefits are involved: 

 Increase in thermal conduction;  

 Improved secondary electron emission; 

 Reduced beam penetration with improved edge resolution; 

 Protection of specimens which are beam sensitive; 

 Reduction in microscope beam damage. 
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Under glow condition discharge, ion bombardment of the cathode occurs, which will result in the 

erosion of the cathode material (Plasma Sputtering).  This will result in the omni-directional 

deposition of the sputtered atoms, which form coatings of the original cathode material on the 

surface of the sample and work chamber (Reimer 1998).  This is an important method to use for 

SEM samples that require an electrically conductive thin film for the sample.  The process 

utilized for the Microcapsules is called D.C. (Direct Current) coater.  This method utilizes a 

negative cathode on the specimen to be sputtered, and to locate samples that are to be coated on 

the anode (Reimer 1998).  A typical system utilized during platinum sputtering of the 

microcapsules, consisted of a two stage rotary vacuum pump and an inert gas; which was 

admitted to a chamber by a controlled valve.  This process allowed defined characteristics and 

clearer images for the SEM analysis.   

When evaluating a specimen, a sample must possess the following characteristics:  

1. Adequate Dimension 

2. Stable Stage for the Vacuum System 

3. Electrical Conductivity  

4. Retain Natural State Characteristics  

When metallic specimens are utilized, many of them require very little manipulation or 

preparation.  If it was required to use a specimen such as a unique mineral, clay or elastic, it 

would need to be coated with a conductive metal.  If biology samples are utilized, such as flower 

pedals and insects, the natural water retention will give them sufficient conductivity to be 

evaluated.  Although this can be utilized, it is not recommended due to the fact that it will 

contaminate the microscope (Reimer 1998).  The procedure adopted in analyzing platinum 

coated microcapsules was as follows: 

1. A sampled was adequately prepared (coated using sputter technique), placed in the 

specimen holder and measured by the measuring device (see Figure 2.5) 

2. The SEM chamber door was then opened, and the sample was then carefully placed 

inside the sample holder, and secured (See Figure 2.6). 

3. The door was then closed, and the “EVAC” button was pressed simultaneously. 

4. The user must then wait until the “Vacuum” says ready and the status bar turns blue. 
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5. The student is then able to select “Go Home” and change the Specimens Size & Height.  

In this study, it was 55 mm. 

6. Next, the Z/Tilt is changed from 5 – 15 mm.  This allows us to examine the specimen 

much closer (acceptable range is 5.0 – 25). 

 

Figure 2.5  Loading of the Sample in the Chamber 

5. After the user has input all the specifications and requirements that needed to be changed, 

the user shall select HV at the top right corner of the monitor and ensure system is in 

ABC mode. * Do not select ASF * 

6. Utilizing proper technique and procedures, the user then adjusts “Stigmator/Alignment” 

X & Y to ensure beam alignment to improve image quality. 

7. Once complete, the user is able to use the proper procedures using the Magnification, 

Contrast, Brightness and Focus in order to attain the desired image quality for analysis. 

8. Once the user selects the image the user desires to utilize for analysis, the User must 

select “H.R.” Capture.  This allows the system to collect the best image possible  (See 

Figure 2.7) 
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Figure 2.6  User Operation of the Hitachi S-N3600 

 

9. The user must then manually select the image on the left hand side, left click on the 

image and select “PCI”.  This allows the transfer and saving of an image on another 

program. 

10. Once the image has been saved, close the window and select “TV”.  Complete steps 7 

through 11 until the user had gathered all of the imagery that he deems sufficient (see 

Figure 2.7). 

 

 
 

Figure 2.7   User Adjusts parameters to generate a series of Quality Images 

 

11. When ready for shutdown, ensure all pictures are deleted and select “HV”.   

12. After one minute, press “EVAC” on microscope bottom department. 
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13. After all Vacuum pressure is released, carefully open chamber door and remove 

specimen. 

14. Close door gently and contact lab technician to inform that you are complete with the use 

of the equipment. 

In retrospect to the SEM, the following are required to effectively construct an electron beam: 

 High voltage 

 Filament Current 

 Bias Controls 

Specific components such as the beams gun, specific lenses and apertures must be properly 

aligned in order for the beam to be centered on the sample.  Also, proper beam alignment, which 

is implemented by small adjustments to the petite deflection coils, is a necessity as well.  A 

thorough understanding was developed in comprehending the restriction of the SEMs restrictive 

aperture (Reimer 1998). By understanding the difference between large (allow additional 

electrons through thereby better recording of micrographs under low noise conditions) and small 

(allow for a much better beam resolution) apertures, one is able to manipulate the SEM in order 

to develop a better overall images.     

The overall goal in the utilization of SEM is to acquire the best resolution possible.  In 

doing so, the user must inquire and determine the instrument’s best resolution and not the 

capability of its magnification (a normal microscope utilizes lens magnification whereas SEM 

relies on its beam and emitting of electrons).  Understanding theories such as Empty 

Magnification, Depth of Field, Polymerization of the beam is essential in the evaluation of a 

sample.   An additional goal in attaining exceptional resolution is knowing and understanding 

that the signal level for detection will be decreased due to the minute spot impacting the 

specimen.   

The emission of the specimen and its topography efficiency play a huge role on the signal 

level as well.  Because some specimens are capable of producing more secondary electrons, this 

will result in a higher atomic numbers, which in turn will promote better emission efficiency.  If 
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a specimen surface is rough, it will provide more surface area, therefore emitting a better signal 

from the specimen.    

One of the major user controlled factors that contribute to brightness is the electrons 

emitting from the specimen.  There are also other factors that contribute to this such as 

Brightness control knob, recording film speed, etc.  In having a thorough understanding of SEM, 

will enable a user to develop a detailed high resolution image for evaluation and analysis.  
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CHAPTER 3 

MICRO-ENCAPSULATION OF SELF-HEALING CONCRETE 

PROPERTIES 

3.1 INTRODUCTION  

Concrete is one of the most used building materials in the world.  Concrete has a large load 

bearing capacity for compressive load, but the material is weak in tension.  That is why steel 

reinforcement bars are embedded in the material.  The steel bars carry the load when the concrete 

is loaded in tension.  The concrete on the other hand protects the steel bars from the environment 

and prevents corrosion from taking place.  However, cracking in the concrete presents a problem.  

The ingress of water and ions take place and deterioration of the structure starts with the 

corrosion of the steel.  To increase the durability of the structure either the cracks that have 

formed are repaired or in the design phase, extra reinforcement is placed in the structure to 

ensure that the crack widths stay within a certain limit.  Durability is one reason to prevent 

cracks or limit crack widths.  Other reasons are water tightness of structures, loss of stiffness and 

aesthetic reasons.  This extra reinforcement is then only needed for durability reasons (to keep 

the crack widths small) and not for structural capacity.  With current steel prices, this extra steel 

is not desirable.   

With concrete bridges, corrosion is the number one cause of deterioration for the concrete 

infrastructure throughout the nation.  The dollar impact of corrosion on reinforced-concrete, pre-

stressed concrete and steel bridges is considerable but the indirect costs (those incurred by users) 

increase expenses tenfold (FHWA 2008).  For example, a traffic tie-up or detour caused by a 

bridge failure or its rehabilitation and maintenance can result in wear and tear on automobiles, 

increased gasoline use, delays in product transport, missed appointments, and other 

inconveniences that result in lost dollars.  A typical dilemma for bridge management is how to 

allocate limited funds for construction, rehabilitation, and maintenance.  Funding typically comes 

from city, state, and federal sources that often have spending restrictions.  It is, therefore, 

difficult to make optimal decisions about when and how to inspect, repair, or replace bridges 

while minimizing the impact on drivers (FHWA).  Supporting the use of a more durable, self-

healing concrete, will further reduce the large direct and indirect expenses associated with bridge 

corrosion.  By incorporating self-healing concrete properties within concrete mixes, the process 
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will not only change concrete quality design and control methods, but the goal is to positively 

impact the overall construction process as a whole.   

The need for self-healing concrete is further supported by the latest ASCE report.  More 

than 26% of the nation's bridges are either structurally deficient or functionally obsolete.  While 

some progress has been made in recent years to reduce the number of deficient and obsolete 

bridges in rural areas, the number in urban areas is rising.  A $17 billion annual investment is 

needed to substantially improve current bridge conditions.  Currently, only $10.5 billion is spent 

annually on the construction and maintenance of bridges.   

Before self-healing microcapsules can be applied effectively to concrete matrixes, 

specific preparation parameters must be understood to control microcapsule properties.  

Therefore, the objective of this study is to evaluate the effect of pH, temperature, and agitation 

rate during the microencapsulation process on the resulting microcapsule morphology. 

3.2 BACKGROUND 

3.2.1 Overview of Self-Healing Methods  

There are numerous applications and methods used in self-healing concrete.  An application of 

self-healing that has been implemented is known as Hollow Glass Reinforced Polymer.  FRP’s 

(Fiber-Reinforced Polymer’s) have great performance characteristics in relation to strength and 

stiffness.  FRP’s allow for a versatility and flexibility in performance.  It has been proven that 

FRPs not only give an advantage to incorporate a healing agent, but they also have positive 

structural improvements (Kessler 2002).  When failure, overstressing or broken fibers occur, the 

healing agents flow into the damaged area, repairing the damaged structure.   

Glass fibers, which contain specific healing agents, are categorized in two main types.  

One type can serve as a one-part adhesive, such as cyanoacrylate (Kessler 2002).  The system 

can also serve as a two-part epoxy system, containing both a resin and a hardener.  Both of these 

methods are located perpendicular to one another; however, one is implemented within the 

matrix itself and one within the fibers (Kessler 2002).  It has been shown from previous studies 

that these hollow fibers are multifunctional; since the fibers themselves store a liquid healing 

agent while simultaneously provide structural reinforcement.  
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By utilizing this method of self-healing, one can generate a self-healing concrete material 

having the same mechanical characteristics as normal concrete.  The process that was used in this 

study was that of micro-encapsulation of self-healing concrete properties, specifically DCDP and 

sodium silicate.  The purpose of the microcapsule shell is to provide a protective barrier between 

the catalyst and DCPD to prevent polymerization during the preparation of the composite. 

The two self-healing methods were DCDP and sodium silicate.  Dicyclopentadiene 

(      ) is a white crystalline solid/Clear Liquid solution (depending on its potency) with an 

energy density of approximately 10,975 Wh/l.  Its main use within industry and private practice 

is for resins/unsaturated polyester resins (Xiaofang 2005).  This chemical can be used as a 

monomer in polymerization reactions, such as: ring-opening metathesis polymerization or olefin 

polymerization.  Sodium Silicate (        , which is also known as liquid glass, is a sodium 

metasilicate compound.  This solid or aqueous solution can be used in cements, automobiles and 

even textile and lumber processing.  In concrete applications, this product is used to reduce the 

concrete porosity.  When added, a chemical reaction occurs with the excess of Ca     , which 

is already present in concrete (Greenwood 1997).  When (         reacts with Ca     , the 

concrete permanently binds with the silicates at the surface.  This makes the product a great 

sealer as well as a great water repellent.   

The microcapsule self-healing method was selected, due to self-healing chemicals’ ability 

to independently resolve issues such as internal cracking and micro-cracking.  When the cracks 

occur, they initiate imminent path towards structural failure.  By filling these voids and cracks 

with self-healing materials, these structures will have a longer life cycle along with a less 

likelihood of destruction from unwanted moisture and corrosion wear (Brown 2003).  Although 

DCDP is an exceptional healing agent alone, in order for the agent to achieve maximum 

effectiveness, an appropriate interaction is required to polymerize the healing agent within the 

damaged area.  A process called ring opening metathesis polymerization (ROMP) provides the 

following advantage for the self-healing microcapsules (White et al. 2001):   

1. A more durable long lasting shelf life;  

2. A low monomer viscosity and volatility; 
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3. Increased rapid polymerization during ambient conditions; and  

4. Low shrinkage rate during polymerization.  

The ROMP process utilizes a Grubbs Catalyst (transition metal catalyst), which incorporates a 

high metathesis method.  The use of this catalyst allows multiple chemical groups to be utilized 

within the chemical process (such as oxygen and water).  When DCDP encounters this Grubbs 

Catalyst, polymerization occurs (Brown 2005).  Sodium silicate, however, does not require a 

matrix and can be used as an individual healing component.  The first reaction (R1) consists of 

sodium silicate reacting with calcium hydroxide, which is a product of cement hydration (Nonat 

2004).  The second reaction (R2) occurs between sodium hydroxide and silica.  R1 produces a 

calcium-silica-hydrate gel, known as (C-S-H).  This method creates a binding material normal to 

concrete matrix.  What is essential in both processes is the mending agent that resides in an 

aqueous environment within the microcapsule itself (Nonat 2004).  Water enables the hydration 

of the damaged cement and also allows, further bonding of the mending agent.  The C-S-H and 

N-S-H gel will fill the crack, and subsequently permits recovery of strength.  It is important to 

note that C-S-H and N-S-H complex process will occur rapidly and then much slower, 

respectively.  Both processes support the presence of the aqueous mending agent, which again 

provides further integrity of the concrete by creating a bond, healing the crack (Nonat 2004). 

3.2.2 Microencapsulation Procedures  

There were over 100 trials attempted that involved the stabilization for the two different 

microencapsulation methods that were utilized for DCDP, as well as sodium silicate.  The first 

microencapsulation procedure that was attempted was that of the Autonomic.  This was one of 

the first attempts to the microencapsulation procedure utilizing the Urea-Formaldehyde method.  

This method focused on developing a procedure that would control the properties of the 

microcapsule geometry, and its mechanical triggering system (Tseng 2005).  When evaluating 

the wall thickness parameters, it was understood that microcapsule walls that were too thin 

would fail during the manufacturing process.  In retrospect, capsule shells that are too thick will 

not allow wanted breaking or fracturing of the shell as the crack penetrates through the 

microcapsules plane.  This method also achieved a specific robustness, virtual toughness, and a 

strong interface with the matrix and the microcapsule itself (Tseng 2005).  This focus of interest 

provided a basic orientation and baseline to begin further studies and trials. 
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A more defined and developed process of micro-encapsulation using the urea-

formaldehyde method was developed by Brown et al. (2003).  The in-situ encapsulation method 

for water-immiscible liquids, by the reaction of urea with formaldehyde at acid pH, which was 

outlined by Dietrich et al., was the foundation of this extensive method.  S.R. White and his team 

were able to streamline the micro capsulation of DCDP by controlling its diameter as well as the 

morphology.   

Although the shell wall thickness was analyzed and thoroughly explained, there is a 

minimum amount of literature, which incorporated information to specifically control its 

parameters.  For example, it was annotated that too much ammonium chloride or resorcinol, 

reduced quantities of DCPD, tainted beakers, an unbalanced or unaligned mixer and lower initial 

pH will increase the thickness of the microcapsules shell wall.  With certain standards and 

practices in place, all of these factors can be controlled.  However, if there was a desire to change 

the thickness of the capsule wall, the pH would be the likely candidate for evaluation. 

Micro-encapsulation of sodium silicate has  been successfully accomplished by using the 

polyurethane micro-encapsulation procedures only.  This process, also using in situ synthesis, is 

an interfacial polymerization, which was adapted from (Jinglei Yang et al 2008).  The following 

chemicals were utilized during this process: Span 85, polyethyleneglycol (PEG), toluene, 

methylene diiosocyanate (Basonat), dibutyl tin dilaureate, etc.  Although theoretically possible, 

micro-encapsulation of the Sodium Silicate using the Urea-Formaldehyde method has never been 

successfully accomplished before.   

3.3 EXPERIMENTAL PROGRAM 

3.3.1 Materials 

The chemicals utilized in the preparation of the microcapsules based on in-situ polymerization 

are presented in Table 3.1. 

Table 3.1 Required Chemicals for Interfacial Polymerization Synthesis 

Chemical Function Manufacturer 
Urea Creates endothermic reaction in water The Science Company 

Ammonium Chloride Assists with curing Process The Science Company 

Resorcinol (Technical Grade Flake) Reacts with formaldehyde and is a 

chemical intermediate for the synthesis 

process 

NDSPEC Chemical Corporation 
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Table 3.1 Continued 

Chemical 

 

 

Function 

 

 

Manufacturer 

ZeMac E60 Copolymer Improves mechanical properties Vertellus Specialties, Inc. 

ZeMac E400 Copolymer Improves mechanical properties Vertellus Specialties, Inc. 

Octanol Prevents surface bubbles Oltchim 

Hydrochloric Acid Lowers pH   The Science Company 

Sodium Silicate Reacts with Ca(OH)2 The Science Company 

Sodium Hydroxide Increases pH The Science Company 

Formaldehyde Reacts with urea during synthesis process The Science Company 

Grubbs Catalyst Reacts with DCDP and polymerizes Materia, Inc. 

DETA (diethylenetriamine) Mix with EPON 

828 

Used in synthesis of catalysts, epoxy 

curing agent, and corrosion inhibitors 

Huntsmann 

DCDP Selected Resin to Heal Concrete Crack Texmark- 87% & 89% Purity 

Cymetech- 99% Purity 

 

3.3.2 Equipment 

The Mettler Toledo Scale and Symmetry Cole Palmer Scale were utilized to measure all the solid 

and liquid chemicals utilized throughout the procedures and trials.  To dissolve the co-polymer in 

water, a 120V Hotplate Stirrer VWR and 2510 Branson Sonicating Water Bath were used.  All 

the water used for the synthesis of the microcapsule is DI (deionized water) water provided from 

the BarnStead Water Pure Nano Filtration system.  Once all the chemicals were added and an 

emulsion was created, the mixture was continuously stirred and heated by the SuperNova 

Thermo scientific hotplate.  However, for the in situ interfacial polymerization process, the IKR 

RW 20 Digital Stirrer with the 55 mm three bladed shear stirrer was used to allow for better 

standardization and efficiency due to the much stronger shear three-blade stirrer.  Once the 

microcapsules were synthesized, they were vacuum filtered using a Cole Palmer Air Admiral 

Vacuum Filtration System with 0.22 µm Nonpyrogenic Sterile Polystyrene Filters.  

3.3.3 DCDP Micro-Encapsulation Procedures  

In Situ Procedure 

This procedure was accomplished by using an in situ polymerization procedure, in an oil-in-

water emulsion.  First, 200 ml of DI water was placed in a 1000 ml beaker.  Next, 50 ml of 2.5 

wt% EMA copolymer was dissolved using a magnetic stirrer and ultra sound water bathe; and an 

aqueous solution was developed.  Agitation was implemented by using an IKA RW 20 digital 

mixer, with a driving 55 mm low shear three-bladed mixing propeller (Cole Parmer) placed just 

above the bottom of the beaker.  Under agitation, 5.00 g urea, 0.50 g resorcinol and 0.50 g 

ammonium chloride was then dissolved in the solution. The pH was set to 3.7 by using sodium 
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hydroxide (NaOH) and hydrochloric acid (HCl) drop-wise with a disposable pipet. The high 

agitation rate of 800 rpm developed surface bubbles; therefore two to three drops of 1-octanol 

were added to eliminate this issue.  The solution was allowed to stabilize for approximately 6 – 8 

minutes at the appropriate pH and rpm agitation rate, before 100 ml of DCPD at a slow stream 

rate.  The solution was allowed to stabilize for 13 – 15 minutes before 12.67 g of 37 wt% 

aqueous solution of formaldehyde was finally added to the emulsion.  The solution was then 

wrapped and covered with aluminum foil, and slowly heated to a temperature of 55° C. After 4 

hours of continuous agitation the mixer and hot plate were switched off. Once cooled to ambient 

temperature, the suspension of microcapsules was separated under vacuum filtration.  The 

microcapsules were rinsed with DI water three times with 500 ml. of DI water, and then allowed 

to air dry for 48 - 72 h.  The procedure has been outlined in Figure 3.3.  Figure 3.4 is a 

representation of the materials, equipment and microcapsule filtration. 

 

 
 

Figure 3.3 DCDP In Situ Process 
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Figure 3.4 Microencapsulation Synthesis Process 

3.3.4 Sodium Silicate Microencapsulation  

In Situ 

This procedure was accomplished by using an in situ polymerization procedure, in an oil-in-

water emulsion.  First, 200 ml of DI water was placed in a 1000 ml beaker.  Next, 100 ml of 5.0 

wt% EMA copolymer was dissolved using a magnetic stirrer and ultra sound water bathe; and an 

aqueous solution was developed.  Agitation was implemented by using an IKA RW 20 digital 

mixer, with a driving 55 mm low shear three-bladed mixing propeller (Cole Parmer) placed just 

above the bottom of the beaker.  Under agitation, 7.00 g urea, 0.50 g ammonium chloride and 

0.50 g resorcinol were then dissolved in the solution.  The pH was set to approximately 3.0 by 

using sodium hydroxide (NaOH) and hydrochloric acid (HCl) drop-wise with a disposable pipet. 

The high agitation rate of 800 rpm developed surface bubbles; therefore two to three drops of 1-

octanol were added to eliminate this issue.  The solution was allowed to stabilize for 

approximately 6 – 8 mins.  Next, 171 ml. of DI water was added to 60 ml. of an aqueous sodium 

silicate.  The solution was allowed to agitate for approximately 5 min.  While under agitation, 

HCL was slowly added to the solution to form a gel/aqueous solution.  100 ml. of the 

gel/aqueous solution was then slowly added to the emulsion while maintaining a pH of 3.0 – 3.5.  

While still under agitation, the pH was adjusted to achieve a goal of 3.3.  The solution was 

allowed to stabilize for 13 – 15 minutes before 18.91 g of 37 wt% aqueous solution of 

formaldehyde was finally added to the emulsion.  The solution was then wrapped and covered 

with aluminum foil, and slowly heated to a temperature of 55° C. After 4 hours of continuous 

agitation the mixer and hot plate were switched off. Once cooled to ambient temperature, the 

suspension of microcapsules was separated under vacuum filtration.  The microcapsules were 

rinsed with DI water three times with 500 ml. of DI water, and then allowed to air dry for 48 - 72 

h.  The procedure has been outlined in Figure 3.4. 
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Figure 3.4 Sodium Silicate In Situ Process 

Test Factorial 

An experimental program was developed to evaluate the effects of preparation parameters, 

namely, temperature, agitation rate, and pH on the shell thickness and size (diameter) of the 

microcapsules.  Table 1 presents the experimental factorial followed in this study.  Two healing 

agents were evaluated, DCDP and sodium silicate.  During synthesis, the agitation rate, 

temperature, and pH were varied.  The agitation rate was varied at 6 levels for the DCDP 

synthesis and at 4 levels for the sodium silicate synthesis; while the temperature and pH were 

kept constant. Similarly, to test the effect of the temperature, three levels were used while the pH 

and agitation rate were kept constant.  Three pH levels were used while the temperature and 

agitation rate were kept constant.  This resulted in a total of 10 synthesis methods tested using 

DCDP and 8 synthesis methods tested using sodium silicate.  All levels are reflected in 

Experimental Factorial Table 3.1. 

Table 3.1 Experimental Factorial 

Variable Content 
Number 

of Levels 

Healing Agent DCDP and sodium silicate 2 

Table 3.1 Continues on Next 

Page 
  



31 

 

Table 3.1 Continued 

 

Variable 

 

 

Content 

 

Number 

of Levels 

DCDP Agitation Rate (rpm) 

 

Sodium Silicate Agitation 

Rate (rpm) 

250, 350, 450, 550, 800, and 

1000 

 

250, 350, 450 & 550 

6 

 

 

4 

DCDP Temperature (°C) 

 

Sodium Silicate Temperature 

(°C) 

49, 52, and 55 

 

 

51, 53, and 55 

3 

 

 

3 

DCDP pH value 

 

Sodium Silicate pH Value 

3.1, 3.4, and 3.7 

 

3.0, 3.1, and 3.2 

3 

 

3 

3.4 RESULTS AND ANALYSIS 

3.4.1 Microcapsule Parameter Analysis  

After extensive literature review, it was determined that numerous factors can affect morphology 

and shell thickness.  It was determined through analysis, that the pH has the largest effect on the 

thickness of the shell.  The outer surface of the microcapsule has a rough permeable layer, 

whereas the inside is smooth and free of cavities.  Factors that can affect the morphology are  

unclean components or glassware, not enough DCDP/Sodium Silicate to allow encapsulation, or 

too much ammonium chloride or resorcinol.  Other factors can include improper utilization of 

equipment, such as wrong size stirrer or driver size, pH meter not being calibrated correctly, and 

poor monitoring methods of temperature and agitation rate.  The controlling parameters to 

stabilize and sustain microcapsules are discussed in the next sections.  The microcapsule 

synthesis yield results are represented below.  The highest yield for DCDP was 79.02 @ RPM: 

350, TEMP: 55, pH: 3.7.  The highest yield of Sodium Silicate was 94.87 @ RPM: 350, TEMP: 

55, pH: 3.2.  The yield was not computed for the Shell Thickness, due to the number of 

specimens that required cutting for analysis.  There were also no results at the variation of 49° 

for DCDP, due to the temperature being too low to enable the microencapsulation to take place.    

3.4.2 Microcapsule Morphology and Shell Thickness  

Microcapsule shell thickness 

The goal for the shell wall thickness is to be between 140 – 200 nm.  It is important that the 

microcapsules have a specific strength, in order to maintain its structure during the mixing 
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process.  The main application to control this parameter is that of the pH.  This was done at 

several different levels.  First, the pH remained constant between 3.68 and 3.67 during trials that 

controlled the diameter.  This allowed the maintaining of a consistent streamlined thickness 

throughout the multiple trials.  Second, the starting pH was varied at 3.7, 3.4 and 3.1 for DCDP.  

However, as the temperature increased the pH decreased.  Therefore, after two hours the pH 

stabilized at 2.12, 1.95, and 1.81 for the starting pH of 3.7, 3.4, and 3.1, respectively. Similarly, 

for the sodium silicate synthesis, the starting pH was varied at 3.2, 3.1, and 3.0 and after two 

hours of heating it decreased to 2.4, 2.3, and 2.2, respectively. 

An analysis of the results is given for the DCDP microcapsules.  Figure 3.5 (a) illustrates 

the thickness at three different temperatures.  At 49°C, the solution remained an emulsion and no 

encapsulation took place.  However, at temperatures of 52°C and 55°C, the shell thickness 

remained similar with a slight increase at the higher temperature.  Figure 3.5 (b) represents an 

illustration of the shell thickness at 6 different rpm rates.  The shell thickness remained between 

130 nm and 470 nm within the rpm range of 250 – 1000 rpm.  However, at an rpm rate of 1000, 

the thickness increased substantially (over 650 nm in thickness).  Figure 3.5 (c) represents the 

variation of the shell thickness at three different pH rates.  At a pH of 3.1 and as shown in Figure 

3.5, the microcapsule shell thickness is at its strongest point.  This supports the assumption that, 

as the pH is reduced, the shell thickness increased.  

For sodium silicate, Figure 3.6 (a) shows a steady increase in shell thickness from 51°C 

to 55°C.  However, after four additional trials at 53°C, there were no microcapsules formed at 

this temperature.  For the rpm variations, as depicted in Figure 3.6 (b), sodium silicate indicates a 

slight increase in shell thickness at the lower rpm.  This is the complete opposite within 

comparison to DCDP; as DCDP was at its highest thickness at higher rpms.  The shell thickness 

for the pH variation, as shown in Figure 3.6 (c), was at its strongest as the pH increased.  As the 

pH is lowered, the shell wall became nonexistent as no microencapsulation took place.  Figure 

3.7 (a, b and c) represents the shell wall thickness of a microcapsule after rupturing.   
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Figure 3.5 DCDP Microcapsule Shell Thickness & Yield vs. (a) Temperature (b) RPM (c) 

pH 

 

     
     

 

 
Figure 3.6 Sodium Silicate Microcapsule Shell Thickness & Yield vs. (a) Temperature (b) 

RPM (c) pH 
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 (a) (b)  (c) 

 

Figure 3.7 Ruptured Micro-capsule with Shell Wall Thickness 

 

Microcapsule surface morphology 

During the in situ process, water is required for the reaction between urea and formaldehyde to 

occur.  If there were a slight variation with materials, the microcapsules would not produce a 

smooth porous membrane shell.  By ensuring the agitation methods (three bladed shear driver) 

were consistent, the associated chemical properties would also be consistent.  As long as the 

EMA remains a soluble liquid, the microcapsule wall is developed due to the implementation of 

the low molecular weight of the EMA while the DCDP interacts with H₂O.  When the emulsion 

of EMA evolves from a solution to a solid phase, this unique phase transition allows the Urea 

and the Formaldehyde bond, therefore, allowing the microcapsule shell wall to form accordingly. 

This occurrence provides the smooth wall of the microcapsule itself.  By changing the 

temperature, pH and rpm simultaneously, the morphology substantially changes.  With these 

factors known, the key to the morphology with this experiment is the consistency the synthesis 

parameters.  As shown in Figure 3.8 a, b and c, the morphology of the microcapsule was 

inconsistent.  This was due to the particles not fully attaching themselves to the wall uniformly.  

This was an important goal to not only streamline this process to provide a smooth morphology, 

but to also have a strong wall core as well.   
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 (a) (b)  (c) 

Figure 3.8  Inconsistent Microcapsule Morphology 

 

As depicted in Figure 3.9 (a, b and c), the smoothest and most uniform spherical shape was 

established at an rpm of 800, pH of 3.7 and a temperature of 55°C.  Sodium Silicate developed a 

morphology that was not consistent with DCDP.  Due to the transition of sodium silicate from a 

liquid to a gel/solid substance, the microcapsules were not uniform in morphology as depicted in 

Figures 3.10 (a, b and c). 

 

 
 (a) (b)  (c) 

 

Figure 3.9 Representation of Smooth Microcapsule Morphology 

 

 

(a) (b) (c) 

 

Figure 3.10 Sodium Silicate Non-Uniform Microcapsules 
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3.4.3 Controlling Diameter and Size  

There is evidence of a linear (log/log) relationship between the agitation rate and the average 

diameter as shown in Figure 3.11 (c).  An important factor in this occurrence is the shear rate 

during agitation and the droplet size of the solution while added.  When the agitation rate is 

between 250 – 1000 rpm, the microcapsule average size is between 50 µm – 800 µm.  In Figure 

3.11 (a), the DCDP microcapsule diameter is at the greatest diameter at 52°C.  In retrospect to 

pH, as depicted in Figure 3.11 (b), a pH of 3.4 resulted in the largest microcapsule generation at 

55°C.  At multiple rpm variations, as seen in Figure 3.11 (c), there was a decrease in 

microcapsule diameter as the rpm rate began at 250 and was increased to 1000 rpm.  The 

variation of diameter size was consistent between 800 and 1000 rpm, with all sizes averaging 

below 100 µm.  
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Figure 3.11 DCDP Microcapsule Diameter vs. (a) Temperature (b) pH (c) RPM 

 

The diameter also changed substantially for sodium silicate as parameters were altered.  Figure 

3.12 (a) presents an illustration of the diameter change at three different temperatures.  From this 

figure, it is shown that a temperature of 51°C at an rpm rate of 250 and a pH of 3.2, will provide 

the largest microcapsule diameter.  The best pH to utilize for Sodium Silicate, was at a pH of 3.2 

as illustrated in Figure 3.12 (b).  The diameter of the microcapsules remained constant, as 

depicted in Figure 3.12 (c).  This is due to the consistency of the gel-like/solid solution, 

compared to the aqueous solution of DCDP.    

 

 

     

 

Figure 3.12 Sodium Silicate Microcapsule Diameter vs. (a) Temperature (b) pH (c) RPM 
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3.5 CONCLUSIONS   

The results from the data presented various amounts of information.  In Figure 3.5a, DCDP was 

varied at three different temperatures (55°, 52° and 49°) at a constant rpm of 250 and a pH of 3.7 

in order to assess the microcapsule shell thickness.  From this figure, the temperature of 52° 

provided the largest shell thickness at 239 nm.  At 49°, no microcapsules were generated were 

not generated most likely due to the molecular weight of the pre-polymers not reaching the 

requirement for encapsulation.  In reference to Figure 3.5b, the rpm was varied of 6 different 

levels while keeping the temperature at 55° and a pH of 3.7.   

There is a linear log relationship with agitation and diameter.  As the agitation increased, 

the microcapsule shell thickness became smaller.  However, at an rpm of 1000, the shell 

thickness almost tripled.  This was most likely due to particles forming and bonding together at a 

much faster rate.  Figure 3.6c represents the last parameter varied to analysis shell thickness.  As 

the pH decreased, the shell thickness increased as well.  These results were expected from 

previous literature review and experimental analysis by other Universities as Doctors.  Sodium 

Silicate (SS) possessed different results in relation to shell thickness.  Unlike DCDP, Sodium 

Silicate shell thickness was almost twice the amount of DCDP.  This was due to Sodium Silicate 

(SS) being transformed into a gel like solution prior to micro-encapsulation.   

This gel solution made the compound much easier to encapsulate, as well as build a much 

stronger shell wall.  For example, Figure 3.6a represents a variation of different temperatures in 

order to evaluate the shell thickness.  51° and 55° provided an average shell thickness of between 

480 and 700 nm, whereas the shell thickness of 53° could not be determined.  Sodium Silicate 

also produced interesting results for the pH variation in Figure 3.6c.  As the pH increased, the 

shell thickness increases.  In relation to the agitation analysis, as the agitation rate increased, the 

shell thickness became smaller.  Controlling the capsules morphology was extremely 

challenging.  For example, during the experimental analysis, it was confirmed and determined 

that temperature possesses a direct relationship with the pH for both Sodium Silicate and DCDP.  

As the temperature increased during the trials, the pH decreased.   

Variations of these parameters resulted in a non uniform morphology.  Figure 3.8 is an 

representation of the parameters of pH and Temp being varied.  Figure 3.9 however, is a direct 

result of those parameters being consistent.  As pH and Temp was stabilized and consistent, as 

indicated in Figure 3.10, a uniform smooth micro-capsule morphology was produced.  Due to the 
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performance factors of Sodium Silicate (High pH), this parameter was difficult to stabilize a 

replicate consistently.  For both experiments, the pH was a challenging factor.  For DCDP, the 

pH was stabilized at 3.5 during the beginning of the experiment.   

As the temperature began to rise from room temperature to approximately 55°, the pH 

was lowered from 3.5 to approximately 2.35.  For Sodium Silicate, the pH was stabilized at 3.2.  

As the temperature rose, the pH dropped and stabilized at 2.3-2.4 after two hours.  Temperature 

has a direct impact on the forming of the wall and core during the interfacial polymerization 

phase.  Although the ability to maintain this consistency with the pH is important and essential, 

agitation rate is the key factor that controls the microcapsule capsule diameter size.  As the 

agitation rate is increased, the microcapsule diameter size will decrease. If the agitation rate 

decreases, the microcapsules will become larger.   

Sodium silicate, however, was not consistent with the normal parameter matrix, due to its 

alkaline nature.  As the agitation rate increased, the size remained normal and consistent.  This 

was due to the attempt to stabilize the Sodium Silicate solution for the micro-encapsulation 

procedure of Urea-Formaldehyde.  Nevertheless, both Sodium Silicate and DCDP trials were 

successful in meeting the overall objective of this thesis, which was to control the performance 

parameters of the two self-healing methods.  Although successful, there is much more research 

within this area that needs to be conducted.   

3.6 REFERENCES 

Brown, E.N., M.R. Kessler, N.R. Sottos, and S.R. White. In situ poly(urea-formaldehyde) 

microencapsulation of dicyclopentadiene. Journal of Microencapsulation, Vol. 20, No. 6, 

2003, pp. 719-730. 

 

 

Brown
a
, E.N., S.R. White, and N.R. Sottos. Retardation and repair of fatigue cracks in a 

microcapsule toughened epoxy composite-Part I: Manual infiltration. Composites Science 

and Technology, Vol. 65, Is. 15-16, 2005, pp. 2466-2473. 

 

 

Brown
b
, E.N., S.R. White, and N.R. Sottos. Retardation and repair of fatigue cracks in a 

microcapsule toughened epoxy composite-Part II: In situ self-healing. Composites 

Science and Technology, Vol. 65, Is. 15-16, 2005, pp. 2474-2480. 

 

 



40 

 

Greenwood, N. N.and A. Earnshaw. Chemistry of the Elements (2nd ed.). Butterworth–

Heinemann, 1997. 

 

Jinglei Yang, Michael W. Keller, Jeffery S. Moore, Scott R. White, and Nancy R. Sottos, 

Microencapsulation of Isocyanates for Self-Healing Polymers, Macromolecules, 2008 

 

 

Kessler, M.R., N.R. Sottos, and S.R. White. Self-healing structural composite materials. 

Composites: Part A, Vol. 34, 2003 pp 743-753 

 

 

Nonat, A. Structure and Stoichiometry of C-S-H. Cement and Concrete Research, Vol. 34, Is. 9, 

2004, pp. 1521-1528. 

 

Tseng, Y.H, M.H. Fang, P.S. Tsai, and Y.M. Yang. Preparation of microencapsulated phase-

change materials (MCPCMS) by means of interfacial polycondensation. Journal 

Microencapsulation. Vol. 22, No.1, 2005, pp. 37-46. 

 

 

White, S.R., N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, 

and S. Viswanathan. Autonomic healing of polymer composites. Nature, Vol. 409, 2001, 

pp. 794-797. 

 

 

 

 

  



41 

 

CHAPTER 4 

SUMMARY AND CONCLUSIONS 

 

The comparison and contrast methods between the two encapsulation procedures were extremely 

complex and challenging.  DCDP and Sodium Silicate, both independently, pose completely 

different performance parameters as self-healing methods.  DCDP remains a liquid throughout 

the encapsulation process and its pH and consistency remains the same.  Sodium Silicates 

composition posed a requirement to be changed from a liquid to a gel.  This was due to its highly 

alkaline nature and response to the Urea – Formaldehyde microencapsulation process itself.  The 

handling of DCDP was a challenge due to its toxicity.  Before handling these healing agents and 

its disposal, many safeguards must be met by the user.  

4.1 FUTURE WORK 

DCDP is a healing agent that requires the completion of a matrix in order to be successful.  More 

research must be instituted in testing the different parameters along with the matrix itself in 

concrete applications.  The Urea Formaldehyde method of Sodium Silicate has never been tested.  

The next step is to apply these microcapsules to a concrete mix design and evaluate and analysis 

its effectiveness.  The shell thickness and strength of these capsules have not been tested in 

actual concrete structures.  The effectiveness of different size self-healing microcapsules within a 

concrete sample still needs to be tested.  Furthermore, it is also not known how and in what 

capacity self-healing will assist/heal large concrete structures. 
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Appendix: SEM MICROCAPSULE ANALYSIS 

 

DCDP ANALYSIS 

 

pH 3.1 Variation (250 rpm., 55°) 

 
 

pH 3.4 Variation (250 rpm., 55°) 

 
 

250 RPM (pH 3.7, 55°) 
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349 RPM (pH 3.7, 55°) 

 
 

451 RPM (pH 3.7, 55°) 

 
 

549 RPM (pH 3.7, 55°) 

 
 

 RPM 800 (pH 3.7, 55°) 
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RPM 1000 (pH 3.7, 55°) 

 

   
 

TEMP. 52° (pH 3.7, RPM 250) 

 

   
 

TEMP. 49° (pH 3.7, RPM 250) 
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SODIUM SILICATE 

 

pH Variation 3.12 (251 RPM, Temp. 55°) 

 

   
 

pH Variation 3.12 (251 RPM, Temp. 55°) 

 

   
 

 

 

 

 

 

RPM Variation 257 (Ph 3.22, Temp. 55°) 
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RPM Variation 352 (pH 3.22, Temp. 55°) 

 

   
 

 

RPM Variation 454 (pH 3.22, Temp. 55°) 

 

   
 

RPM Variation 551 (pH 3.21, Temp. 55°) 

 

   
 

TEMP. Variation 55° (pH 3.23, RPM 255) 
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TEMP. Variation 53° (pH 3.23, RPM 255) 

 

  
 

TEMP. Variation 51° (pH 3.23, RPM 255) 
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