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Abstract We conduct discrete spectrum analyses for a

selection of mixed discretization schemes for the Stokes

eigenproblem. In particular, we consider the MINI el-

ement, the Crouzeix-Raviart element, the Marker-and-

Cell scheme, the Taylor-Hood element, the Qk/Pk−1 el-

ement, the divergence-conforming discontinuous Galerkin

method, and divergence-conforming B-splines. For each

of these schemes, we compare the spectrum for the con-

tinuous Stokes problem with the spectrum for the dis-

crete Stokes problem, and we discuss the relationship

of eigenvalue errors with solution errors associated with

unsteady viscous flow problems.

Keywords Stokes eigenproblem · mixed methods ·
discrete spectrum analysis

1 Introduction

One of the most important roles of numerical analysis is

to quantify the induced error of a particular discretiza-

tion scheme. Classical a priori error estimation tech-

niques allow one to identify the asymptotic convergence

rate of a scheme, but they rarely give much insight

into a method’s pre-asymptotic characteristics. Alter-

natively, one may utilize discrete spectrum analysis to

analyze the approximation properties of all the scales of

a discretization scheme. In discrete spectrum analysis,

one directly compares the spectrum of a chosen dif-

ferential operator with the spectrum of the discretized

version of the differential operator. Discrete spectrum

analysis has a long history in structural dynamics where

J.A. Evans · T.J.R. Hughes
Institute for Computational Engineering and Sciences
201 East 24th Street, Stop C0200
Austin, Texas 78712-1229
E-mail: evans@ices.utexas.edu

the eigenvalues of a linear structural system correspond

to the squares of the natural frequencies [19]. For lin-

ear structural dynamics problems, it can be shown that

errors in natural frequency lead to a linear accumu-

lation of solution error in time which scales with fre-

quency error. For nonlinear structural dynamics prob-

lems, induced coupling of low and high modes exacer-

bates this accumulation of error, ultimately resulting in

non-robust numerical schemes. Hence, a discretization

technique whose discrete spectrum closely matches the

exact spectrum is highly desirable. Discrete spectrum

analysis can also be utilized to analyze diffusive prob-

lems where the eigenvalues of the underly differential

systems correspond to the dissipation rates of distinct

eigenmodes [2]. While it can be easily shown that errors

in dissipation rates do result in enlarged solution error,

these errors typically decay exponentially in time. Nev-

ertheless, quantification of such errors is important for

diffusive problems exhibiting a wide array of spatial and

temporal scales such as viscous turbulent fluid flow.

In this paper, we conduct a discrete spectrum anal-

ysis for a selection of mixed discretization schemes for

the Stokes eigenproblem. For simplicity, we restrict our

attention to the Stokes eigenproblem posed on the two-

dimensional torus. The eigenvalues of the Stokes eigen-

problem correspond to the dissipation rates of the natu-

ral modes of unsteady Stokes flow as well as the squares

of the natural frequencies of linear incompressible elas-

todynamics. Furthermore, in the context of incompress-

ible turbulent fluid flow, these eigenvalues approximately

match the dissipation rates of modes with sufficiently

high wave number, namely modes in the viscous range,

and comprise a significant fraction of the dissipation

rates of modes at the tail end of the inertial range.

Consequently, a scheme with favorable resolution prop-
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erties should be characterized by a discrete spectrum

which closely mimics the exact spectrum.

An outline of this paper is as follows. In Section

2, we consider the unsteady Stokes flow problem and

express its solution in terms of the eigenvalues and

eigenmodes of the Stokes eigenproblem. We also dis-

cuss numerical approximation of the unsteady Stokes

flow problem and its relationship to the Stokes eigen-

problem, and we discuss estimation of solution errors.

In Section 3, we conduct discrete spectrum analyses for

a variety of mixed discretization schemes for the Stokes

eigenproblem, starting with the MINI element in Sub-

section 3.1 and ending with divergence-conforming B-

splines in Subsection 3.7. In Section 4, we draw conclu-

sions.

2 Unsteady Stokes Flow and the Stokes

Eigenproblem

To properly motivate discrete spectrum analysis and

its role in characterizing errors associated with time-

dependent problems, we consider the unsteady Stokes

flow problem in this section and express its solution

in terms of eigenvalues and eigenmodes. For simplicity,

let us consider the unsteady Stokes problem on the two-

dimensional torus subject to no applied forcing. To this

effect, we set Ω = (0, 2π)2 and introduce the Sobolev

spaces

H1
per(Ω) := {u ∈ H1(Ω) :

u(·, 0) = u(·, 2π),u(0, ·) = u(2π, ·)}

and

L2
per(Ω) := L2

0(Ω).

Furthermore, for a given end-time T > 0, we define the

spaces

VT,per := {v ∈ L2(0, T ;H1
per(Ω)) :

∂tv ∈ L2(0, T ;H∗per(Ω))
}

and

QT,per := L2(0, T ;L2
per(Ω))

where H∗per(Ω) denotes the dual space of H1
per(Ω). Given

u0 ∈ H1
per(Ω), the problem of interest then reads as fol-

lows.

(P )



Find u ∈ VT,per and p ∈ QT,per such that u(0) =

u0 and, for almost every t ∈ (0, T ),

〈∂tu(t),v〉+ k(u(t),v)− b(p(t),v)

+b(q,u(t)) = 0

for all v ∈ H1
per(Ω) and q ∈ L2

per(Ω) where

k(u,v) = ν

∫
Ω

∇u : ∇vdx,

b(p,v) =

∫
Ω

p∇ · vdx.

Above, u denotes the flow velocity of a fluid moving

through the domain Ω, p denotes the pressure acting on

the fluid divided by the fluid density, and ν denotes the

kinematic viscosity of the fluid. Problem (P ) consists of

an evolutionary equation subject only to dissipation in

time. Now, defining the space of divergence-free func-

tions as

H̊
1

per(Ω) :=
{
v ∈ H1

per(Ω) : ∇ · v = 0
}
,

let us consider the following eigenproblem.

(E)



Find û ∈ H̊
1

per(Ω) and λ ∈ R+ such that

‖û‖L2(Ω) = 1 and

k(û,v) = λ (û,v)L2(Ω)

for all v ∈ H̊
1

per(Ω).

The orthonormal eigenmodes corresponding to the above

problem are explicitly known and comprise the set

{û =
curlφ

‖curlφ‖L2(Ω)

: φ = exp (ik1x+ ik2y) ,

k1, k2 ∈ Z, k21 + k22 6= 0
}
.

We enumerate these eigenmodes and their correspond-

ing eigenvalues as {ûn, λn}∞n=1 where

λ1 ≤ λ2 ≤ · · · .

Finally, a direct calculation shows that the exact veloc-

ity solution of (P ) can be written as

u(x, t) = A0 +

∞∑
n=1

Anûn(x) exp(−λnt)

where

A0 =

∫
Ω

u0(x)dx
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(a)

(b)

(c)

Fig. 1 Degrees of freedom: (a) the MINI element, (b) the
non-conforming Crouzeix-Raviart element, (c) the Marker-
and-Cell finite difference scheme. Velocity DOF are on the
left and pressure DOF are on the right.

and

An =

∫
Ω

u0(x) · ûn(x)dx.

Hence, the velocity solution of (P ) depends only on

the initial condition u0, the eigenmodes {ûn}∞n=1, and

the eigenvalues {λn}∞n=1. Furthermore, the eigenvalues

{λn}∞n=1 gives the dissipation rates of the individual

eigenmodes. We may repeat all of the above calcula-

tions at the discrete level to express our discrete ve-

locity solution entirely in terms of the discrete initial

condition u0,h, discrete eigenmodes
{
ûhn

}N
n=1

, and dis-

crete eigenvalues
{
λhn
}N
n=1

where N denotes the total

number of discretely divergence-free modes correspond-

ing to nonzero eigenvalues. A natural question to then

ask is how well do the discrete eigenvalues approximate

the first N exact eigenvalues. This question can be an-

swered to some degree using tools arising from func-

tional analysis. For example, it is well-known that the

discrete eigenvalues arising from a conforming, stable,

and balanced mixed finite element approximation of the

Stokes eigenproblem satisfy the relationship

|λn − λhn| ≤ Ch2k

provided the product nh is sufficiently small where h is

the mesh size, k is the polynomial degree of the discrete

velocity space, and C is a positive constant independent

of h [4]. Unfortunately, this relationship only gives an

error bound for discrete eigenvalues corresponding to

the lowest discrete eigenmodes. For simple eigenprob-

lems such as those arising from one-dimensional struc-

tural dynamics, one can employ discrete Fourier anal-

ysis to exactly characterize discrete eigenvalue errors

across the entire spectrum [21], though this analysis is

intractable in the context of multi-dimensional Stokes

flow. Hence, in this paper, we resort to direct computa-

tion to compute discrete eigenvalue errors and compare

discrete spectra with the spectrum corresponding to the

continuous Stokes eigenproblem.

3 Discrete Spectrum Analyses

3.1 The MINI Element

We begin our discrete spectrum analyses with the so-

called MINI element. Originally introduced by Arnold,

Brezzi, and Fortin in [1], the MINI element is arguably

the most efficient mixed discretization scheme for the

approximation of Stokes flow. The velocity space of the

MINI element is defined to be that of piecewise continu-

ous linears enriched by the space of element-wise cubic

bubbles over a given triangulation, and the pressure

space is defined to be only that of piecewise continuous

linears. The degrees of freedom (DOF) for this element

are illustrated in Fig. 1(a). It should be noted that if

one statically condenses the cubic bubbles over each

element, one arrives at a formulation that is nearly al-

gebraically equivalent to the pressure-stabilized P1/P1

velocity/pressure pair [20].

We have computed the discrete Stokes spectrum

corresponding to the MINI element on a structured tri-

angular mesh with 1,568 elements and plotted a com-

parison of the discrete spectrum with the exact spec-

trum in Fig. 2. In the figure, n denotes the given mode

number while N denotes the total number of discrete

modes. For this calculation,N = 3, 919. Note that while

the initial part of the spectrum is fairly well-resolved,

the discrete eigenvalues corresponding to n/N > 0.15

exhibit more than fifty percent error. As the discrete
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Fig. 2 Stokes spectrum for the MINI element.

eigenvalues are larger in magnitude than the continu-

ous eigenvalues, this indicates that in an unsteady flow

simulation, eighty five percent of the discrete modes

will dissipate much faster than their continuous coun-

terparts. It should be indicated that the upper part of

the discrete spectrum exhibits nearly two hundred per-

cent error. Finally, we have also computed the discrete

Stokes spectrum for a wide variety of mesh resolutions

and found similar results to those reported here. This is

also the case for the other discretization schemes con-

sidered in this paper.

3.2 The Non-conforming Crouzeix-Raviart Element

We proceed by conducting a discrete spectrum analysis

for the non-conforming Crouzeix-Raviart element [11].

For this element, midside nodes are used as DOF for the

discrete velocity field. This generates a non-conforming

piecewise linear approximation. The discrete pressure

field is taken to be constant on each element. The DOF

for this element are illustrated in Fig. 1(b). As the di-

vergence of the discrete velocity field is piecewise con-

stant, this velocity/pressure pair results in a discrete

velocity field which is exactly divergence-free over each

element. Furthermore, the non-conforming Crouzeix-

Raviart element admits an element-wise mass conser-

vation law in the sense that the total amount of mass

which flows out of the element is equal to the total

amount of mass which flows in. However, the element

is not strongly mass-conservative as the discrete veloc-

ity field associated with the element does not exhibit

normal continuity across element boundaries. Like the

MINI element, the non-conforming Crouzeix-Raviart el-

ement is computationally inexpensive and popular in

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

n/N

λ
h
/
λ

Crouzeix-Raviart

Fig. 3 Stokes spectrum for the Crouzeix-Raviart element.

practice, though it is generally less robust than the

MINI element. For example, the discretized momentum

equation associated with the non-conforming Crouzeix-

Raviart element is not coercive in the presence of trac-

tion boundary conditions.

We have computed the discrete Stokes spectrum

corresponding to the non-conforming Crouzeix-Raviart

element on a structured triangular mesh with 2,048 el-

ements and plotted a comparison of the discrete spec-

trum with the exact spectrum in Fig. 3. For this calcu-

lation, N = 4, 095. Note that all of the discrete eigen-

values are smaller in magnitude than their continu-

ous counterpart. This indicates that, in an unsteady

flow simulation, all of the discrete modes will dissipate

slower than their continuous counterparts. In a turbu-

lent flow simulation free of turbulence models, this will

have the effect of lengthening the discrete inertial range

and pushing back the discrete viscous range to higher

wavenumbers. Furthermore, while most of the discrete

eigenvalues exhibit less than fifty percent error, less

than ten percent of the discrete eigenvalues exhibit less

than ten percent error.

3.3 The Marker-and-Cell Scheme

We next consider the Marker-and-Cell (MAC) finite dif-

ference scheme. The MAC scheme is one of the old-

est schemes for incompressible fluid flow and was origi-

nally introduced by Harlow and Welch to simulate free-

surface problems [17]. In the MAC scheme, the veloc-

ity field is defined on cell faces, the pressure field is

defined on cell interiors, and finite differences are uti-

lized to discretize the momentum equation on cell faces

and the continuity equation on cell interiors. The DOF
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Fig. 4 Stokes spectrum for the Marker-and-Cell scheme.

for this scheme are illustrated in Fig. 1(c). The MAC

scheme has been shown to be equivalent to a finite el-

ement scheme [24], a mixed finite element method in

vorticity-velocity-pressure formulation with special nu-

merical quadrature [16], and a particular divergence-

conforming discontinuous Galerkin method [22]. The

MAC scheme satisfies a mass conservation statement on

each cell by construction, and this conservation prop-

erty has resulted in enhanced robustness for problems

where mass conservation is of critical importance such

as coupled fluid-transport [23].

We have computed the discrete Stokes spectrum

corresponding to the MAC scheme on a structured rect-

angular mesh with 4,096 elements and plotted a com-

parison of the discrete spectrum with the exact spec-

trum in Fig. 4. For this calculation, N = 4, 095. Note

that all of the discrete eigenvalues are smaller than their

continuous counterpart as was the case for the non-

conforming Crouzeix-Raviart element. Hence, they will

suffer from the same issues as the Crouzeix-Raviart el-

ement. Namely, in a turbulent flow simulation without

the introduction of turbulence models, the discrete in-

ertial range will be artificially lengthened. However, for

the most part, the discrete spectrum corresponding to

the MAC scheme is better resolved than that of the

Crouzeix-Raviart element. Approximately ten percent

of the discrete eigenvalues exhibit less than ten percent

error.

3.4 The Taylor-Hood Family

We continue by conducting discrete spectrum analyses

for the Taylor-Hood family of Stokes elements [18]. For

a given polynomial degree k ≥ 2, the velocity field is

(a)

(b)

(c)

Fig. 5 Degrees of freedom: (a) the second-order Taylor-
Hood pair, (b) the Q2/P1 pair, (c) the second-order Raviart-
Thomas pair. Velocity DOF are on the left and pressure DOF
are on the right.

approximated by continuous piecewise tensor-product

polynomials of degree k and the pressure field is approx-

imated by continuous piecewise tensor-product polyno-

mials of degree k− 1. We denote this velocity/pressure

pair as Qk/Qk−1. The DOF for the second-order Taylor-

Hood pair Q2/Q1 are illustrated in Fig. 5(a). The second-

order Taylor-Hood pair is one of the most popular fi-

nite elements for incompressible flow simulation. It is

balanced in the sense that the discrete velocity field is

second-order accurate in the H1-norm and the discrete

pressure field is second-order accurate in the L2-norm.

Mixed finite elements which are unbalanced typically

suffer from suboptimal convergence.

For k = 2, 3, 4, 5, we have computed the discrete

Stokes spectrum corresponding to the Qk/Qk−1 ele-

ment on a structured rectangular mesh and plotted

a comparison of the discrete spectrum with the ex-
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Fig. 6 Stokes spectrum for the Taylor-Hood family.

act spectrum in Fig. 6. For each polynomial degree, we

chose a sufficiently fine mesh such that N ≈ 4000. Note

that the initial portion of the discrete spectrum im-

proves dramatically with increased polynomial degree.

This is expected from classical a priori error estimates.

Asymptotically, discrete eigenvalues converge like h2k

for the Taylor-Hood family. However, the entire dis-

crete spectrum does not improve with increased poly-

nomial degree. In fact, the upper part of the discrete

spectrum worsens. This indicates that the high modes

of the discrete Stokes system have no approximability

and these modes get worse with increased polynomial

degree. This is analogous to what has been observed for

hp-finite elements in the context of structural dynamics

[21]. Furthermore, it should be noted that many of the

discrete eigenvalues corresponding to the Q2/Q1 pair

are smaller than their continuous counterpart.

3.5 The Qk/Pk−1 Family

We next consider the Qk/Pk−1 family of Stokes ele-

ments [3]. In this discretization scheme, the velocity

field is approximated using continuous piecewise tensor-

product polynomials of degree k and the pressure field is

approximated using discontinuous piecewise polynomi-

als of degree k−1. The DOF for the second-order mem-

ber of the family are illustrated in Fig. 5(b). Like the

Taylor-Hood pairs, the Qk/Pk−1 pair is balanced. Fur-

thermore, as the discrete pressure field contains piece-

wise constants, the discrete velocity field arising from

a Qk/Pk−1 discretization is mass-conservative element-

by-element. Like the MAC scheme, this conservation

property has resulted in enhanced robustness for prob-

lems where mass conservation is of importance.

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2

n/N

λ
h
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k = 4
k = 5

Fig. 7 Stokes spectrum for the Qk/Pk−1 family.

For k = 2, 3, 4, 5, we have computed the discrete

Stokes spectrum corresponding to the Qk/Pk−1 on a

structured rectangular mesh and plotted a comparison

of the discrete spectrum with the exact spectrum in Fig.

7. For each polynomial degree, we chose a sufficiently

fine mesh such that N ≈ 4000. Note immediately that

the discrete spectra associated with these discretiza-

tions are somewhat erratic and unpredictable. Like the

Taylor-Hood family of discretizations, the initial por-

tion of the discrete spectrum improves with increasing

polynomial degree and the upper part worsens. More-

over, as the polynomial degree is increased, the mid-

dle portion of the discrete spectrum is driven to be

smaller and smaller. This being said, for a given poly-

nomial degree k, the discrete spectrum associated with

the Qk/Pk−1 finite element pair is generally more ac-

curate than the discrete spectrum associated with the

Qk/Qk−1 pair.

3.6 Divergence-conforming DG Elements

We proceed by conducting discrete spectrum analy-

ses for divergence-conforming discontinuous Galerkin

(DG) schemes which arise when one employs a Raviart-

Thomas velocity/pressure pair in conjunction with the

symmetric interior penalty Galerkin method to enforce

tangential continuity across element faces [8,9,22]. Such

schemes have become increasingly popular in recent

years as they result in discrete velocity fields which

are pointwise divergence-free. In the context of Navier-

Stokes flow, exact satisfaction of the incompressibility

constraint guarantees that divergence-conforming DG

schemes automatically conserve momentum and are en-

ergy stable. The DOF associated with the second-order
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Fig. 8 Stokes spectrum for divergence-conforming DG ele-
ments. Top: global view, bottom: zoomed in view.

Raviart-Thomas pair are depicted in Fig. 5(c). It should

be noted that in the context of Stokes flow, the classical

second-order Raviart-Thomas pair is only first-order ac-

curate as the discrete space of velocity fields associated

with the second-order Raviart-Thomas pair is complete

only up to linear polynomials. For this reason, we will

designate the divergence-conforming DG scheme em-

ploying a kth-order Raviart-Thomas velocity/pressure

pair as (k′)th = (k − 1)th-order.

For k′ = 1, 2, 3, 4, 5, we have computed the dis-

crete Stokes spectrum corresponding to the (k′)th-order

divergence-conforming DG scheme on a structured rect-

angular mesh and plotted a comparison of the discrete

spectrum with the exact spectrum in Fig. 8. For each

polynomial degree, we chose a sufficiently fine mesh

such thatN ≈ 4000, and we selected the interior penalty

parameter as 4(k′+1)2. Note from the figure that while

the initial portion of the discrete spectrum improves

Fig. 9 Degrees of freedom: divergence-conforming B-splines.
Velocity DOF are designated by arrows and pressure DOF
are designated by points.

with increased polynomial degree, the upper part of

the spectrum catastrophically worsens. Furthermore,

we found the quality of the discrete spectrum degraded

with increasing interior penalty parameter. This indi-

cates that one should choose the interior penalty pa-

rameter intelligently not only for the purposes of nu-

merical stability but also for numerical accuracy. Un-

fortunately, this fact is not often elaborated in the lit-

erature.

3.7 Divergence-conforming B-splines

We finish by conducting discrete spectrum analyses for

divergence-conforming B-spline approximations of the

Stokes eigenproblem [5,12]. These approximations are

motivated by the recent theory of isogeometric discrete

differential forms [6,7] and may be interpreted as smooth

generalizations of Raviart-Thomas elements. As these

approximations are smooth, they can be directly uti-

lized in the Galerkin solution of viscous flows without

resorting to a DG technology in contrast with classi-

cal Raviart-Thomas elements. Recent work has shown

these approximations are much more accurate and sta-

ble than classical methods for Stokes and Navier-Stokes

flows [13–15]. Furthermore, in the context of Navier-

Stokes flow, these approximations admit balance laws

for momentum, energy, vorticity, enstrophy, and he-

licity as they satisfy the incompressibility constraint

exactly [15]. Since divergence-conforming B-spline ap-

proximations exhibit additional smoothness in compar-

ison with classical finite elements, it is not possible to

attribute DOF to element quantities. Instead, DOF can

be identified to cells and edges on a global data struc-

ture called a control mesh. For reference, see Chapter 4
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Fig. 10 Stokes spectrum for divergence-conforming B-
splines.

of [12] or Chapter 2 of [10]. We have depicted a standard

DOF pattern on a patch in Fig. 9. Note the similarity

of the DOF structure with that of the MAC scheme.

For k′ = 1, 2, 3, 4, 5, we have computed the dis-

crete Stokes spectrum corresponding to the (k′)th-order

divergence-conforming B-spline scheme on a structured

rectangular mesh with 4, 096 elements and plotted a

comparison of the discrete spectrum with the exact

spectrum in Fig. 10. For these calculations, N = 4, 095.

Note that the discrete spectrum is quite well-resolved

for all polynomial degrees and that the entire discrete

spectrum improves markedly with increasing polyno-

mial degree. The discrete spectrum corresponding to

the first-order B-spline discretization is remarkably more
accurate than the discrete spectra corresponding to the

other first-order methods in this paper (the MINI ele-

ment, the Crouzeix-Raviart element, the MAC scheme,

and the first-order divergence-conforming DG scheme),

and the discrete spectrum corresponding to the second-

order B-spline discretization is dramatically more ac-

curate than the discrete spectrum associated with any

other method considered in this paper. In fact, ap-

proximately eighty five percent of the spectrum ex-

hibits less than ten percent error for the second-order

B-spline discretization, and approximately eighty five

percent of the spectrum exhibits less than four per-

cent error for the fifth-order B-spline discretization. We

should finally mention that all of the discrete eigenval-

ues associated with a divergence-conforming B-spline

approximation necessarily satisfy λhn ≥ λn since the

approximation scheme is a conforming interior approx-

imation technique (i.e., divergence-conforming B-spline

schemes deliver discrete velocity fields which are point-

wise divergence-free).

4 Conclusions

In this paper, discrete spectrum analyses were conducted

for a selection of mixed discretization schemes for the

Stokes eigenproblem. These analyses revealed that clas-

sical schemes such as the MINI element, the non-conforming

Crouzieux-Raviart element, and the Marker-in-Cell scheme

exhibit poorly resolved discrete spectra, and they fur-

ther revealed that the upper part of the discrete spec-

trum degraded under degree elevation for Taylor-Hood

elements, Qk/Pk−1 elements, and divergence-conforming

DG elements. This is concerning as the eigenvalues of

the Stokes eigenproblem correspond to the dissipation

rates of the natural modes of unsteady Stokes flow as

well as the squares of the natural frequencies of linear

incompressible elastodynamics. Consequently, a scheme

with favorable resolution properties should be charac-

terized by a discrete spectrum which closely mimics the

exact spectrum. In contrast with the other methods

studied in this paper, it was discovered that the dis-

crete spectrum associated with divergence-conforming

B-spline approximations is quite well-resolved for all

polynomial degrees and that the entire discrete spec-

trum improves markedly with increasing polynomial de-

gree. This motivates further study of divergence-conforming

B-spline approximations in the context of fluid flow sim-

ulation and incompressible elastodynamics.
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