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ABSTRACT 

This study compared how non-experienced and experienced pilots reacted in terms of 

their scan patterns during a simulated high speed low level flight. The focus of this study 

was specifically on the flight regimes encountered by helicopter pilots. Information 

obtained from this research may aid training effectiveness specific to helicopter aviation. 

Methods: There were 17 military officers, all active-duty Navy helicopter pilots, 

who all had different levels of flight experience based on their total flight times. Each 

pilot was asked to successfully fly and navigate a course through a simulated southern 

Californian desert in a fixed-based helicopter simulator modeled after the U.S. Navy’s 

MH-60S. The location of their scan was tracked by an eye-tracking system in order to 

determine scan rate and locations while they flew the course. All of the flight parameters, 

such as airspeed and altitude, were recorded by the simulator’s recording system.  

Results: Analysis of the results obtained from the eye tracking system indicated a 

decreasing relationship between scan rate and pilot experience, indicating that the scan 

rate decreases as a pilot becomes more experienced. The analysis uses altitude variance 

as a measure of performance. Results indicate that higher scan rates correlate with higher 

degrees of variance in the altitude, indicating that a quicker scan does not necessarily 

result in better performance. The higher experienced pilots show a lower altitude variance 

overall (they were more consistent in maintaining a constant altitude above the ground), 

yet those pilots all exhibited slower scan rates.  

Discussion: The integration of the eye tracking technology with a simulator 

representing an aircraft currently in service was a success. Although none of the null 

hypotheses presented were rejected, trends were evident in scan rates when compared 

with pilot experience. The relatively small sample size was identified as the major causal 

factor for the lack of significance.  
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EXECUTIVE SUMMARY 

Helicopters operate at low altitude levels (within 500 feet of ground level); it is the nature 

of their mission and the way they survive in combat environments. As helicopters evolve 

and become faster and more agile, their pilots will be expected to navigate at low altitude 

levels while traveling at high speeds. The primary danger in these missions is Controlled 

Flight Into Terrain (CFIT). 

The ability of a pilot to interpret information from a combination of sources 

determines the success of a mission, as well as the survival of the aircraft and its crew. 

These sources include the outside environment (the visual scan), the instrument panel 

(flight profile information), displays that inform the pilot of the aircraft’s status, and 

additional information from navigation charts or Global Positioning Satellites (GPS) 

displays. A competent pilot is able to move his or her scan from source to source in such 

a way that maximizes the assimilation of information, and react accordingly to safely 

maneuver the aircraft. 

This thesis investigates the relationship between a helicopter pilot’s experience 

level and his or her visual scan patterns during high-speed low-level flight. The research 

focuses on scanning patterns in flight regimes that are not optimal. For helicopters, flying 

at high speeds and low-levels is not the safest way to fly, but in times of war, it is 

necessary for survival. A helicopter’s primary means of defense while flying in combat is 

to remain low and masked by the terrain. Keeping a high rate of speed is vital for 

reducing the time an enemy has to target the helicopter as it passes over. The combined 

low-level, high-speed flight results from these two needs. 

Seventeen military officers, all active-duty Navy helicopter pilots, who all had 

different levels of flight experience based on their total flight times, volunteered for the 

study. Each pilot was asked to successfully fly and navigate a course through a simulated 

southern Californian desert in a fixed-based helicopter simulator modeled after the U.S. 

Navy’s MH-60S. The location of their scan was tracked by an eye-tracking system in  
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order to determine scan rate and locations while they flew the course. All of the flight 

parameters, such as airspeed and altitude, were recorded by the simulator’s recording 

system. 

Analysis of the results obtained from the eye tracking system indicates a 

decreasing relationship between scan rate and pilot experience, indicating that the scan 

rate decreases as a pilot becomes more experienced. The analysis uses altitude variance 

as a measure of performance. The results indicate that higher scan rates correlate with 

higher degrees of variance in the altitude, indicating that a quicker scan does not 

necessarily result in better performance. Pilot fixation events–those events in which a 

pilot looked at an area of interest for more than 70 milliseconds–were also analyzed. 

Exploratory analyses revealed that the amount of “no fixation” events significantly 

decrease with regard to pilot experience. The higher experienced pilots show a lower 

altitude variance overall (they were more consistent in maintaining a constant altitude 

above the ground), yet those pilots all exhibited slower scan rates. 

The research focused on scanning patterns in flight regimes that are not optimal: 

flight at high speeds and low altitude levels. Our primary goal was to gain an 

understanding of the unique scan characteristics that might present themselves in this 

challenging arena of flight by investigating the relationship between a helicopter pilot’s 

experience level and his or her visual scan patterns during high-speed, low-level flight. 

Although none of the null hypotheses presented were rejected, trends were evident in 

scan rates when compared with pilot experience. The relatively small sample size was 

identified as the major causal factor for the lack of significance. Data was lost on a total 

of five subjects from both the eye tracking system and the simulator’s flight recording 

software. 

A secondary goal of this thesis was to verify that FaceLab can be adapted for use 

in a simulator that is not in the laboratory environment. The data from FaceLab and the 

simulator was combined to complete the analysis outlined in this study. The integration 

of the eye tracking technology with a simulator representing an aircraft currently in 

service was a success. 
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I. INTRODUCTION 

Helicopters operate at low altitude levels (within 500 feet of ground level); it is 

the nature of their mission and the way they survive in combat environments. As 

helicopters evolve and become faster and more agile, their pilots will be expected to 

navigate at low altitude levels while traveling at high speeds. The primary danger in these 

missions is Controlled Flight Into Terrain (CFIT). 

The ability of a pilot to interpret information from a combination of sources 

determines the success of a mission, as well as the survival of the aircraft and its crew. 

These sources include the outside environment (the visual scan), the instrument panel 

(flight profile information), displays that inform the pilot of the aircraft’s status, and 

additional information from navigation charts or Global Positioning Satellites (GPS) 

displays. A competent pilot is able to move his or her scan from source to source in such 

a way that maximizes the assimilation of information, and react accordingly to safely 

maneuver the aircraft. 

This thesis investigates the relationship between a helicopter pilot’s experience 

level and his or her visual scan patterns during high-speed, low-level flight. The research 

focuses on scanning patterns in flight regimes that are not optimal. For helicopters, flying 

at high speeds and low levels is not the safest way to fly, but in times of war, it is 

necessary for survival. A helicopter’s primary means of defense while flying in combat is 

to remain low and masked by the terrain. Keeping a high rate of speed is vital for 

reducing the time an enemy has to target the helicopter as it passes over. The combined 

low-level, high-speed flight results from these two needs. 

In the case of an emergency situation in which the pilot is alerted to a condition 

that threatens the aircraft’s ability to safely complete the flight, the information from the 

display describing the nature of the aircraft emergency needs to be scanned and processed 

on top of all of the normal flight operating parameters. The pilot is still expected to fly, 

navigate and communicate throughout the situation in which the aircraft is not operating  
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correctly. While operating in this flight regime, information needs to be assimilated 

quickly and efficiently to account for the decreased reaction time demanded in this 

environment. 

As a pilot increases in experience, his or her scan should become more efficient at 

gathering the needed information to safely fly and navigate. This thesis seeks to quantify 

what constitutes a more efficient scan. 

A. BACKGROUND 

The year 2008 proved to be the deadliest year on record for Emergency Medical 

Service (EMS) helicopter aviation. Six months into the year, 16 people had perished in 

EMS helicopter crashes. The accident rate for the year for helicopters was 6000 times 

greater than fixed-wing commercial air carriers (Evans, 2008). 

Bitton (2008) highlighted the need to further understand the scan patterns of 

helicopter pilots by describing the ongoing research efforts by the FAA and the EMS 

helicopter industry to study and analyze helicopter emergency medical service (HEMS) 

accidents, in order to better understand the causes (Bitton, 2008): “The primary cause of 

accidents remains Controlled Flight Into Terrain (CFIT) and inadvertent flight into clouds 

or diminishing visibility, with the results of loss of situational awareness.” 

B. LITERATURE REVIEW 

Duquette and Dorr (2010) were also conducting the same kind of research in 

conjunction with the FAA in order to better understand the alarmingly high accident 

trend in 2008. The results of this ongoing investigation are that the main causes of HEMS 

accidents were controlled flight into terrain (CFIT), inadvertent operation into instrument 

meteorological conditions (IMC), and pilot spatial disorientation/lack of situational 

awareness in night operations. The Honeywell Corporation conducted a CFIT study in 

order to dispel some common helicopter accident myths. Importantly, they found that the 

majority of CFIT (52%) accidents occur during the daylight hours in visual 

meteorological conditions (VMC) (61%) (Learmount, 2005). The study also found that 

67% of helicopter CFIT incidents occur during the cruise phase of flight. 
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Few studies had been done to date on helicopter pilots in these regimes. Given the 

alarming accident statistics above, a study of the scan patterns of helicopter pilots is long 

overdue (Crognale, 2008). Recently, the use of synthetic vision (SV) and a heads-up-

display (HUD) have been a topic of discussion in the aviation community. Synthetic 

vision uses external cameras to provide the pilot with an enhanced view of the outside 

world, usually with the assistance of night vision technology. In conjunction with the use 

of a HUD, or a display mounted in such a way that the pilot can get information without 

removing his or her gaze from the windscreen, synthetic vision could greatly increase 

aviation safety by aiding helicopter pilots in scanning for hazards during flight. A HUD 

would be designed in such a way that presents important and time-sensitive information 

to the pilot in one place, without pilots having to shift their scan from the outside 

environment. This set up allows pilots to remain focused on an important task, such as 

landing, while still receiving information that contributes to situational awareness. 

Wickens (2001) states that the effort required to shift a gaze or direct the attention 

over to another area that may be a long distance from the area currently scanned can 

sometimes inhibit that shift or re-direction. Wickens (2001) further states: “We have 

found, in a rotorcraft simulation, that directing the pilot’s attention to important hazards 

like power lines or terrain by cueing, while offering benefits to the detection of those 

hazards, will direct attention away from other un-cued hazards in the area.” A HUD, 

acting as a centralized location for all the required information while still allowing the 

pilot access to the outside environment, could eliminate that inhibition. 

In Rotor and Wing, Adams (2010) argues for the use of “overlapping” displays, 

such as multi-function displays (MFD), that reduce the need for pilots to move their 

attention from one area to another. He advocates for the integration of synthetic vision 

(SV) and enhanced vision (EV) with helicopter system and navigation information. Much 

of this technology is already available on the fixed wing market, and is heavily advocated 

by the FAA through operational credits to those carriers employing these technologies. 

The FAA intends to extend these operational credits so that they include rotary-winged 

aircraft (Adams, 2010). The FAA also requires that fixed wing commercial air carriers  
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have two independent traffic, terrain and obstacle warning systems installed in their 

aircraft. This requirement does not extend to rotary-wing commercial air carriers such as 

EMS helicopters (Evans, 2008). 

The need for better displays in helicopters has been established, but in order to 

understand what helicopter pilots need on those displays, their rate of scan and scanning 

pattern have to be understood. In order to properly design the displays in the spirit of the 

machine supporting the operator, experiments recording helicopter pilots’ scan patterns 

during all phases of flight are needed. The purpose of this study was to begin to fill in this 

gap in knowledge. 

1. Previous Studies Investigating Eye Tracking and Aviator Flight 
Performance 

Several studies have investigated visual scan patterns in aviator flight 

performance. In this section, I focus on the ones most relevant to the current study. 

Mumaw, Sarter, and Wickens (2001) studied 20 Boeing 747-400 pilots in a simulator in 

order to understand the role of “pilot monitoring in the loss of awareness on automated 

flight decks.”  Prior studies indicated unsafe flying conditions when pilots fail to 

understand or have some confusion over an aircraft’s automated flight systems. Mumaw 

et al. (2001) attempted to gain an understanding of the interaction between pilots and an 

aircraft’s automated flight systems through the use of an eye-tracking system. The initial 

analysis of the eye-tracking data focused on how fixations were distributed in each area 

of interest (AOI). From this information, the investigators were able to determine where 

the pilots were looking in different phases of the flight. Different traffic schemes and 

emergency scenarios were also introduced. Mumaw et al. (2001) found that many pilots 

had ineffective scan patterns, and the type of automation feedback used in the aircraft had 

caused unnecessary fixations on areas of little importance. Given these results, Mumaw et 

al. (2001) were able to suggest improvements in pilot training until new automation and 

instrumentation interfaces could be developed. 

Two papers by Wickens et Goh, Helleberg and Talleur. (2002, 2003) center 

around their study in which a sample of 12 pilots flew a full mission simulator to examine 
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two aspects of advanced aviation display technology, the digital data-link and the cockpit 

display of traffic information (CDTI). The study used a high-fidelity flight simulator 

based on a Frasca 142. Pilots wore a head-mounted eye-tracking system throughout the 

flight. The information regarding other aircraft in the area was presented to the pilots 

through auditory cues, visual cues, and a combination of both. 

They found, through the use of eye-tracking technology, that pilots used a variety 

of outside scan patterns, with the “sector sweep” method being the most proficient. Pilots 

were able to detect traffic more efficiently without disrupting piloting tasks using the 

sector sweep method. Percentage dwell time (PDT) time on areas of interest (OW, IP, 

and CDTI (Cockpit Digital Traffic Indicator)) was calculated via mean dwell duration 

(MDD) using the eye trackers to show how much time each pilot spent on a particular 

area of interest. The study was able to show that the auditory traffic warning resulted in 

the pilots’ spending more time looking out of the window (OW) for traffic, rather than 

trying to interpret what a visual display was trying to tell them (Wickens et al., 2002).  

The results showed different types of scan patterns depending on the traffic load. 

Whereas Mumaw et al. (2001) and Wickens et al. (2002, 2003) examined visual 

scan patterns among a sample of highly skilled pilots, most other studies investigating 

visual scan patterns and flight performance have focused on expertise differences. For 

example, Bellenkes, Wickens and Kramer (1997) measured attention control by 

analyzing visual scanning behavior during a simulated VFR flight in expert and novice 

pilots. A novice pilot was defined as having logged between 40 and 70 hours of VFR 

flight time. The expert pilots were rated Air Force pilots having logged between 1500 

hours and 2150 hours of flight time. It was a ground-breaking study in which attention 

control was broken into perception (which channels to select) and response (which 

actions to perform). Visual scanning was also used in an attempt to describe pilots' 

mental models. Three challenges to attention were found. The first is that attention is 

limited, so pilots have to prioritize it. Secondly, when the main axes were “sluggish,” 

proactive attention was required well in advance of changes. Lastly, complex interactive 

dynamics require increased attention. The most important instrument, in terms of the 

amount of time the pilots spent looking at it, was the attitude indicator. Results indicate 
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clear expertise differences in visual scan patterns. Experts scanned the flight instruments 

more often than novices, and novices had longer dwell times than experts. In particular, 

experts scanned the directional gyro and altimeter more often than novices. Novices 

dwelled longer on the vertical speed indicator and the turn coordinator than experts. 

Experts performed better than novices in terms of altitude control, particularly on the two 

most difficult segments of the route. They also had fewer airspeed errors overall. 

Another study by Karsarkis,Stehwien, Hickox, Aretz and Wickens (2001) posed 

the following research question: To what extent are various aviation stimuli visually 

sampled, and how do scanning strategies differ between novice and expert pilots?  

Novice pilots were ten U.S. Air Force Academy cadets who had 40–70 hours of VFR 

flight time. Experts were six Air Force pilots with 1500–2150 flight hours. This study 

was similar to one conducted by Bellenkes et al. (1997) in which they found different 

scan patterns for turning, climbing, and descending. Karsarkis et al. presented the 

hypothesis that expert pilots would have shorter dwell times and more fixations on all 

instruments, particularly on the airspeed indicator, altimeter, and vertical velocity 

indicator, and will look out the window more often than novices. They also hypothesized 

that landing performance correlated with total fixations and dwell time per fixation. From 

the data analysis in the Karsarkis study, poor landings were defined as those that were 

below the median of all landings across all subjects. Pilot fixations were classified into 

four visual areas of interest: the upper 2/3 of computer screen, and as the trial progressed 

this included the runway; the airspeed indicator, the altimeter, and other instruments on 

the far right side of instrument panel. The results were as expected. Pilots spent much 

more time looking out of the window, indicating (at least in part) why experts performed 

better landings: experts paid more attention to airspeed than altimeter, with more 

fixations outside. These outside fixations tended to be at a more distant point on the 

runway; experts also had shorter dwells (and more fixations) on almost all instruments 

and on runway. The authors suggest that the focus on airspeed is a key strategy, and this 

strategy was particularly evident when altitude was changing. The other part was that 

experts had shorter dwells on everything, indicating automation and that the experts have 

more time to scan other locations. Importantly, more fixations and shorter dwell times 
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also were associated with good landings, providing indirect evidence that these visual 

strategies cause expertise differences in landing performance. 

The studies by Bellenkes et al. and Karsarkis et al. are good examples of the 

evolution of eye-tracking technology and data analysis, as well as how eye-tracking can 

be used to detect successful visual scan strategies used by expert pilots. Bellenkes et al. 

assessed eye patterns during IFR cruise flight, while Karsarkis et al. focused primarily on 

flight under visual flight conditions. A study by Ottati Hickox and Richter (1999), which 

was based on work by Bellenkes et al. (1997), tested the hypothesis that expert pilots 

spend less time finding and fixating on individual landmarks and are able to use 

landmarks to navigate more accurately than novice pilots. They also tested the hypothesis 

that pilots classified as novices will have a harder time finding landmarks and thus have 

longer dwell times than pilots classified as experts. The experiments relied on 20 cadets 

from the U.S. Air Force Academy. Half of the cadets were considered experienced pilots; 

experienced pilots were those having a private pilot’s license and at least 50 flight hours. 

Novice pilots had between 5 and 15 flight hours logged. The participants had simulated 

flights over a 40 nautical mile route that consisted of five distinct checkpoints. The pilots 

could utilize a 90-degree forward field of view map representation of their current 

location. Eye tracking data consisting of those fixations that lasted longer than 

0.1 seconds were analyzed. Fixation dwells were defined as those that lasted at least one 

second. The study found that novice pilots were more likely to fly out of the window, 

rather than relying on instrumentation to guide them through the 40 nautical mile route. 

Experienced pilots had more fixations than novices, but no differences in dwell time. 

This study suggests that the fixations of the expert pilots were more deliberate. The 

authors conclude that novice pilots are more likely to use spontaneous fixations during 

flight tasks in order to gain an accurate orientation. 

Only one study was found, other than the ones conducted here at NPS described 

below (Sullivan, Yang, Day and Kennedy, 2011), that used eye-tracking technology for 

low-level en-route flight in a helicopter. The first project found that examined the visual 

workload of the navigator/copilot during terrain flight in a UH-1H helicopter was 

conducted in 1979 by Sanders, Simmons and Hoffman. Visual performance was 
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measured using external eye-tracking measures (called an occulometer). The study did 

not focus on the flying pilot, but rather on the navigator. Sanders et al. found that 

helicopter navigators spent different amounts of time looking out of different view 

screens to gather data for navigation. Navigators spent 46.8% of the time looking out the 

left windscreen, 5% through the right view screen, 4.9% of the time looking out the left 

gunner’s window, while the rest of the time was spent looking at the hand held map used 

to navigate. Sanders’ study laid the groundwork for the type of analysis done in the 

results section of this thesis, which involved analyzing the amount of time a pilot looked 

at a particular area of interest and relating the scan pattern to a performance measure. 

2. Studies Utilizing Altitude as a Measure of Pilot Performance 

Helicopter overland navigation while flying at low altitude levels is a demanding 

task for pilots as it entails additional tasks that do not involve the simple control of the 

aircraft. Sullivan et al. (2001) found that a common flight performance measure, RMS 

error of flight trajectory, does not predict expertise levels in helicopter overland 

navigation as it does in other aviation tasks. They found that helicopter pilots are trained 

to adapt their en-route or “between way points” navigation solution based on what they 

are seeing in terms of terrain at the current time. Thus, in evaluating helicopter pilots, a 

different measure of expertise beyond RMS error was needed. This thesis uses the 

amount of deviation from the assigned altitude parameters to evaluate pilot performance. 

The concept of using altitude deviation as a measure of performance is not a 

ground-breaking and new practice. A study done in 1965 by Soliday and Scohan used 

altitude deviation as a measure of performance in order to determine the effects of task 

loading on pilots. Only three pilots were used, and were asked to fly at 500 feet above the 

ground in a light fighter aircraft. The results were as expected; as the terrain became more 

difficult, or as the pilots were asked to fly at higher airspeeds, the altitude deviations 

increased in both severity and number. It was also discovered that pilots fly at different 

altitudes depending on how they approach a slope of a mountain (higher going up, lower 

coming down). 
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Wickens et al. (2003) also used altitude deviation as a measure of performance. 

They found a positive association between altitude error and traffic load. Finally, 

Yesavage, Otto Leirer, Denari and Hollister (1985) conducted a study to examine THC 

carry-over effects on a simple piloting task 24 hours after smoking of the drug. Pilots 

(both those who smoke and those who did not) were asked to fly a simulator that 

mimicked the controls and cockpit of a Cessna 172. Different parameters were measured 

to determine pilot performance, to include “average lateral deviation from an ideal 

glideslope,” or altitude deviation. Through this measure of performance, it was 

discovered that the effects of THC were most notable one hour after smoking the drug. 

Pilots who smoked THC deviated significantly more than at baseline. After 24 hours 

from smoking, the effects subsided (the average altitude deviation did not differ 

significantly from the baseline). 

3. Literature Summary 

The need for research involving the scanning habits of helicopter pilots exists. 

Many of the studies, some of which are listed here, focus primarily on the scanning 

patterns of fixed wing pilots. Further research is needed to fully understand the scanning 

patterns of helicopter pilots, whose operating conditions are far different than those of 

fixed wing pilots. Scan patterns change as a pilot’s experience changes. Does this carry 

over to helicopter pilots?  If there are performance differences, how do the helicopter 

pilots that exhibit a better performance scan? 

The studies outlined above use eye-tracking technology in one way or another to 

fulfill their research goals. The goal of the study conducted for this thesis is to examine 

scan techniques used by helicopter pilots across a wide range of experience levels. This 

thesis differs from the previous research in that it focuses on pilots flying helicopters in 

cruise flight. In this thesis, data from an eye-tracking device installed in a MH-60S flight 

simulator was analyzed along with demographic survey data to determine whether 

correlations between pilot experience, scan techniques and performance level exist under 

high-speed, low-level flight. The pilots were volunteers from squadrons with Helicopter 

Combat Wing Pacific, focusing primarily on pilots in a current operational status.  
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C. HYPOTHESIS 

1. Research Questions 

 What is the relationship between pilot experience level (in terms of flight 
hours) and scan techniques? 

 When errors are made, such as deviations from assigned parameters, are 
there any common trends that can be related to a pilot’s experience level?  
Or are errors as common across all levels of experience? 

2. Hypotheses 

 1) H0: There is no association between eye scan pattern (number of 
fixations, dwell durations, percent time looking out the window (OTW), 
scan rate between OTW and instrument panel) and flight experience when 
pilots are classified by total, instrument, or type of mission flight hours. 

 HA: With increased flight experience, eye scan patterns will be more 
efficient: greater number of fixations, shorter dwell durations, faster scan 
rate between OTW and instrument panel. 

 2) H0: Eye scan parameters (fixation time, dwell time OTW, scan rate) 
will not predict a pilot’s ability to accurately maintain assigned altitude 
parameters during a navigation event. 

 HA: Eye scan parameters (fixation time, dwell time OTW, scan rate) will 
predict a pilot’s ability to accurately maintain assigned altitude parameters 
during a navigation event.  

 3) H0: Eye scan parameters (fixation time, dwell time OTW, scan rate) 
will not predict occurrence of CFIT. 

 HA: Eye scan parameters (fixation time, dwell time OTW, scan rate) will 
predict occurrence of CFIT. 
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II. METHODOLOGY 

A. PARTICIPANTS 

The 17 subjects for the trials were all U.S. Navy helicopter pilots from three 

squadrons located at Naval Air Station (NAS) North Island, CA. Two different helicopter 

communities were represented: a carrier-based community, HS (Helicopter Anti-

Submarine), and an expeditionary community, HSC (Helicopter Sea Combat). The eight 

pilots from the HS squadron described themselves as primarily maritime operators. The 

nine pilots from the HSC squadron described themselves as overland operators. All the 

pilots, except one, were current in the MH-60S.  

Of the 17 participants, 14 were men. The most experienced pilot (3400 hours 

total) was a female maritime pilot. The least experienced pilot (350 hours total) was a 

man who was recently certified to fly the MH-60S. Figure 1 shows the distribution of 

experience level measured in flight hours. From Figure 1, it is shown that the majority of 

the pilots that participated in the trials were in the 500 to 1000 total flight hour range. 

 

 

Figure 1.   Experience Level, in Flight Hours, of the Participants  
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Table 1 shows pilot age, experience in terms of years, and how recently they flew 

a flight and an overland flight. The majority of the pilots were in their first tour, which 

places them in their middle to late twenties with five to six years of experience. Since all 

of the pilots were in an operational status, the majority of them had flown fairly recently 

in relation to the time of the study. 

 

  Age 
Experience 

(Years) 
Months Since Last 

Flight
Months Since Last Overland 

Flight 

Mean 
29.7

0 6.55 0.29 1.64 
S.dev 4.09 4.09 0.57 2.76 
Min 26 3 0 0 
Medi

a 28 5 0 1 
Max 40 18 2 12 

Table 1.   Pilot Age, Experience in Years, and Proficiency 

On the flight experience survey, I asked the pilots to estimate the total number of 

hours they had flown overland. There is no measure of the overland hours in a pilot’s log 

book, and the Navy is just starting to track overland flight time for helicopter pilots as a 

measure of training. Given that the overland hour data was strongly correlated to the 

“maritime” or “overland” mission type label (as shown in table 2), I was reasonably 

certain that most pilots have a good idea of the number of hours they have spent flying 

overland in their career. Unfortunately, there is no way to verify this portion of the data 

collection.  

 

 

Table 2.   Comparison of Overland Flight Hours by Mission Type, Land or Maritime 

 

Mean Std.dev Min Median Max

Land 769.44 367.76 300.00 800.00 1500.00

Mar 409.38 248.73 100.00 362.50 1000.00
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A paired t-test was used to compare the means of the reported overland hours by 

mission type. The pilots that classified themselves as “overland” had a significantly 

higher average overland time than pilots classifying themselves as maritime (p = .03046) 

at the 95% significance level. 

 

 

Figure 2.   Overland Light Hours of the Subjects, Based on the Report in the Flight 
Experience Survey 

Figure 3 depicts the total flight hours of each pilot against his or her reported 

overland flight hours. The most experienced pilot in terms of total flight time reported the 

least amount of overland flight time. This fact was verified through further interview 

during the debrief process. The subject had spent most of her career in the maritime 

operational arena and had very little overland flying experience outside flight school. 

Figure 3’s linear regression formula was  

y = 0.1689x + 398.82 
 

From this data, we can tell a pilot accrues more overland time with experience. 

This correlation is further shown in Figure 4, in which the pilot who had 3400 hours total 
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time, but only 100 hours overland time, was removed. This pilot’s experience was solely 

in the maritime environment. In Figure 4 (without the outlier), the linear regression 

formula was  

y = 0.4821x + 123.63 
 

 

Figure 3.   Overland Flight Hours by Total Flight Hours   

Figure 4 shows that navy helicopter pilots are spending roughly half of their time 

flying in an overland environment, with the exception of Subject 8, who only reported 

100 hours of overland flying time in her 3400 hour flying career. 



 15

 

Figure 4.   Overland Flight Hours by Total Flight Hours (outlier removed) 

B. EQUIPMENT 

The experiment was run at NAS North Island using a simulator under the 

stewardship of the Commander, Helicopter Sea Combat Wing Pacific 

(CHSCWINGPAC). Permission was obtained for use of the simulator from the 

CHSCWINGPAC. Helicopter Sea Combat Squadron Three (HSC-3) was responsible for 

the scheduling of events in the simulator. Scheduling was done through HSC-3. 

The simulator was the fixed-base Tactical Operational Flight Trainer 2 (TOFT-2). 

TOFT-2 accurately represents a MH-60S cockpit (Figure 5). The seat on the right is the 

flying pilot’s seat. The principal investigator, who also acted as a co-pilot, occupied the 

left seat. Not shown is the simulator operator’s chair. This seat was occupied by the 

research assistant (RA). The FaceLab computers were placed next to this chair, so that 

the RA could calibrate and run the eye-tracking software. The flight controls and the 

displays were accurate and current. The TOFT had a full cockpit video system which 

presented simulated views through the “chin bubbles” which allowed a simulated view of 

the terrain below the helicopter. Major terrain features, such as roads, mountains, valleys 

and large buildings were represented accurately in the simulator. Even the Coronado Bay 
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Bridge, a common sight to every helicopter pilot based at NAS North Island as they fly 

south for training, was accurately represented in the video display.  

 

 

Figure 5.   The Cockpit of TOFT-2 

The simulator collected two types of data through the use of “de-brief” system. 

This system continuously recorded the simulated aircraft’s status throughout the flight. 

The first type of data was what the pilot could see—consisting of the aircraft’s location, 

orientation, airspeed and altitude—were all recorded as each pilot flew the route. This 

system was commonly used for instruction, but we were able to use it to record flight 

parameters for the purpose of the study. The second type of data consisted of video 

recordings. The de-brief system had two cameras: one that recorded the actions of the 

pilot, and another that recorded the pilot’s flight information data screen. These cameras 

provide real-time information on what the pilot was looking at during any phase of the 

flight. 
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The third source of data was collected by FaceLab. FaceLab, made by Seeing 

Machines Inc., collects face/head/eye data utilizing infrared light. For this experiment, 

FaceLab used two pairs of fixed (as opposed to head-mounted) stereo cameras, two 

infrared light emitters, and two laptop computers. Infrared emitters were needed to 

produce the level of infrared light necessary for the fixed stereo cameras to capture head 

and eye motion. Two lap computers ran the software that collected, interpreted, and 

stored the data from the stereo camera system. Prior to each flight, the FaceLab system 

had to be calibrated to accurately capture the pilot’s head and eye data. To do this a 

“world” was set up in the computers to simulate the environment in which each pilot 

operated. A head model was established for each subject in the simulated environment 

created using the FaceLab software in order to correctly collect gaze and scan data. Once 

the environment and the head model were established, FaceLab was ready to run through 

the trials. 

Mounting the cameras in the simulator was challenging. The glare shield on the 

MH-60S cockpit extends high into the cockpit. A position was needed that could both 

collect the data properly without hampering the pilot’s scan as he or she flew the course. 

The RA used duct tape to mount the top set of cameras, the Out-of-The-Window (OTW) 

set, far enough back on the glare shield in satisfactory way. The lower set of cameras, the 

cockpit set, was mounted below the instrument display screens. Only the mechanical 

“ball” was obstructed. The “ball” is the slip indicator, a ball suspended in liquid that 

indicates whether or not the aircraft is in balanced flight. During the pilot trials, the 

subjects informed me that this distraction was not a problem, since the digital “ball” on 

the display screens was adequate to maintain balanced flight. 

The laptop computers were installed next to the FaceLab specialist’s operator’s 

chair. This setup allowed the RA to operate both the simulator controls as well as the 

FaceLab computers. The operator chair was also a great vantage point for the RA to 

observe each subject as he or she flew. This observation helped greatly when diagnosing 

problems with the camera’s ability to record eye and head movement. 
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C. FLIGHT SCENARIO 

The low-level route the pilots flew in the simulator was created using two VFR 

Terminal Area Charts of the San Diego area and my personal experience flying in the San 

Diego area. These charts were used by every pilot from when he or she was in flight 

school, which made them familiar to pilots of all experience levels. The principal 

investigator constructed the route by flying it in the simulator, noting the time that each 

leg required, and checking that the altitude restriction the pilots would have to adhere to 

was a realistic goal. 

The route consisted of ten checkpoints and nine legs, with a total time of about 

26 minutes to complete at 100 knots indicated airspeed (IAS). The chart was then marked 

with course lines and “doghouses”—a popular term for doghouse shaped boxes that align 

with the legs of the route. Each doghouse consisted of a base heading for the pilot to 

follow, the length of the leg in nautical miles, and the time to fly the leg at 100 knots IAS. 

Straight lines were drawn from a checkpoint to its subsequent checkpoint, again offering 

the pilot a baseline track to follow throughout the flight. The chart was cut down to a 

manageable size and laminated so that it would survive the many trials to come. 
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Figure 6.   The Chart Used by the Pilot for the Flight 

The pilot’s task was to safely navigate the helicopter along a route through San 

Diego’s airspace consisting of a number of checkpoints that the pilot identified through 

either visual means or through the use of instrumentation (in fact, each pilot was expected 

to back up his or her position using the instruments in the MH-60S). There were multiple 

places along the route where a CFIT event could occur because the pilots were flying at 

very low levels among a variety of terrain features. All total, each pilot was in the 

simulator for no more than one and a half hours each. No adverse conditions were 

introduced to the flight; that is, the simulated conditions were set to “clear” skies and 

“calm” winds. 
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Each pilot was expected to adhere to the following performance parameters: 
 Within 100–300 feet above the ground 
 Within 10 knots of the assigned airspeed 
 Within one mile of the assigned course 

Any significant events that occur such as the aircraft’s impact with the ground or 

another object were recorded. 

D. SURVEYS 

Participants were asked to fill out two surveys as part of the experiment: a pre-

flight survey to measure a subject’s confidence in his or her ability to navigate, and a 

post-flight survey to measure the level of difficulty of the flying and navigation tasks. 

Both surveys were subjective in nature, using a Likert scale of 1–5. 

The pre-flight survey consisted of the following questions: 

1. To what extent have you participated in activities other than overland 
navigation that may contribute to improved navigation skills? (Examples may 
include sport orienteering, land navigation exercises, boy/girl scouts etc.)? 

2. At your peak of currency, how would you rate your navigation skills in a low-
level (below 200’ AGL) overland environment? 

3. If tasked today, how would you rate your navigation skills in a low-level 
(below 200’ AGL) overland environment? 

4. How much experience do you have with low-level navigation in mountainous 
desert terrain? 

5. How much low-level navigation experience do you have in the Southern 
California operating area? 

 

Pilots were asked to rate their answers using the following scale: 

1. Poor/None 
2. Fair/Very Little 
3. Average/Somewhat 
4. Considerable/Good 
5. Extensive/Excellent 

The results are shown in Figure 7. Most of the pilots answered the questions in the 

3–4 answer range, indicating they were somewhat-to-considerably confident of their 

ability to navigate the course. The subject pilots also felt somewhat-to-considerably 

comfortable navigating the mountainous local terrain.  
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Figure 7.   Pre-Flight Navigational Survey Results 

After the flight and the FaceLab verification procedures were complete, pilots 

were asked to proceed to the briefing area in order to fill out a post-flight survey. The 

purpose of this survey was to gain insight on the perceived level of difficulty for each 

evolution. The survey consisted of the following questions: 

 

1. How difficult was it to navigate the route while maintaining the assigned 
parameters? 

2. Describe any strategies that you used to stay on course and within the 
assigned flight parameters. 

3. For each navigation leg on the route, please rate how difficult it was to 
navigate by referencing terrain. Place an “X” on the line that best 
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describes your experience. No response is necessary for the shaded 
regions. 

4. How confident are you that you flew within the assigned parameters? 
5. How confident are you that you correctly navigated the course? 

 

Pilots were asked to categorize their answers according to the following Likert 

scale: 

For questions 1–3: 
1. Not at All Difficult/Completely Trivial 
2. Somewhat Difficult 
3. Moderately Difficult 
4. Very Difficult 
5. Extremely Difficult/Not at All Possible 

 
For questions 4–5: 

1. Very Confident 
2. Confident 
3. Moderately Confident 
4. Not Very Confident 
5. Not at All Confident 

Figure 8 displays the results of these surveys. All of the pilots except one found 

the course very easy to fly. Question two was non-quantifiable since the subjects were 

allowed to write and even expand their answers. Most of the pilots relied on a 

combination of terrain recognition with the assistance of the co-pilot to navigate the 

course. Each pilot was asked to rate the difficulty of each leg of the course in question 

three. Legs three and five were the only legs that seemed have any degree of difficulty 

associated with them. Most of the pilots were confident they flew the course within the 

assigned parameters, and they were very confident they navigated correctly in the course.  
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Figure 8.   Post-Flight Survey Results 

E. PROCEDURE 

The procedure consisted of three distinct phases. First, obtaining permission and 

cooperation from units and their command authority at NAS North Island to use a 

simulator for testing, and poll the squadrons for volunteers to participate in the trials. 

Once it was apparent that the use of a simulator and pilot at North Island was achievable, 

approval had to be obtained from the Naval Postgraduate School in the form of an 

Internal Review Board (IRB) for testing using human subjects. Finally, after obtaining all 

approval and cooperation, the team turned to setting up the simulator and conducting the 

trials in it. This last step had several steps in itself, to include recruitment efforts, a 

preliminary study, and the trials themselves. 

F. STUDY APPROVAL PROCESS 

The study approval process began about six months from the desired testing time. 

Permission was required from the Commander of the Naval Air Forces 

(COMNAVAIRFOR) Helicopter readiness and from the Commander of the Helicopter 
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Sea Combat Wing Pacific (COMHSCWP). The permission to conduct experiments in 

simulators owned by the wing was obtained in writing from the Commodore. Then, 

coordination between the wing, the squadrons, and the simulation and training device 

manager had to be made. The squadrons required all experimental runs in the simulator, 

or “flights” were to be made on a not-to-interfere basis with any training and operations 

that the participating squadron might be conducting at the time. Timely and constant 

communication with the training squadron’s operations officer was a necessity in order to 

ensure that the experiment time blocks remained unmolested. Even though this 

scheduling was done, there were still several attempts made by some non-participating 

pilots to “jump” in to time slots already slated for the experiments. 

Attempts at setting all of the required coordination through e-mail and phone calls 

were a failure. In August, four months before the trials were scheduled to begin, the team 

decided to send the principal investigator (PI) down to make the necessary arrangements 

in person. Meetings with COMNAVAIRFOR helicopter readiness officer and 

COMHSCWP chief staff officer both went well, and both seemed enthusiastic about the 

project. COMHSCWP gave us permission to engage with the wing’s simulation and 

training device manager (STDM), as well as individual squadrons, to begin setting up the 

experiment phase of the project. In meeting with the STDM, it was discovered that a 

MH-60S fixed-based simulator, TOFT-2, was slated for an overhaul in January 2012, and 

would not be used for regular training during the month of December 2011. Also, the 

STDM was asked if conducting the experiments in a simulator that is usually used to 

augment training and operations of over ten squadrons was even feasible, and his answer 

was yes. The STDM thought it would be possible to use TOFT-2 for three weeks without 

interruptions and without the risk of someone tampering with the installed FaceLab 

equipment. As long as HSC-3 allowed it, our team had full use of a simulator for three 

weeks, with no cost. 

Three more meetings were held on this first trip: with the commanding officer of 

HSC-21, with the executive officer of HSC-3, and with the executive officer of HS-4. All 

were very positive and enthusiastic about supporting the project. Subsequent meetings 

were held with the operations officers of all three squadrons to do the following: 
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 An introduction, and an exchange of contact information 
 A description of the project concept and goals 
 A description of the project’s needs in terms of pilots and time 

commitment 

These points were outlined to the operations officers, with no initial commitments 

made. Due to the dynamic nature of helicopter operations, none of the operations officers 

could say with certainty, four months prior to the scheduled experimentation period, that 

they would be able to commit time and pilots to the project. 

After the first trip, e-mail contact with the above mentioned was established and 

the Internal Review Board (IRB) process was initiated. Two more trips down to NAS 

North Island were scheduled in order to set up the simulator and confirm the availability 

of test subjects from the squadrons. The team began to make travel plans for the 

investigator and the RA for the three weeks we would need to conduct the experiments 

using TOFT-2. Also during this time, the team clearly defined the goals for the simulator 

use with the FaceLab equipment. 

G. EXPERIMENTAL SET-UP PROCEDURE 

 During the last week of November, the PI left NPS for NAS North Island to 

begin setting up the actual workspace and recruiting subjects for the trials. The FaceLab 

equipment, consisting of three metal briefcases, was loaded in to a rental car and 

transported to San Diego. Upon arrival, contact was made with COMHSCWP’s 

Simulation and Training Device Manager (STDM) to get the status of TOFT-2. He and 

his team were trying to fix the video system on the co-pilot’s display and were still trying 

to get the de-brief system up and running. The STDM and his team were sure the video 

would be running in time for our trials, but he was not so sure about the de-brief system. 

Next, the simulator space was inspected to get an idea of the working environment. The 

research assistant and the investigator had a briefing area to work in, which served as a 

good place to meet with subjects before and after the trials to fill out consent and survey 

forms, as well as give them a description of what the trial consisted of. There were plenty 

of power outlets both in the cockpit area of the simulator and outside for the FaceLab 

laptops to plug in to. Lastly, it was noted that there were two computer terminals we 
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could use that had internet access just in case. The highly qualified research assistant 

informed me that these would be necessary to upload the data to NPS every night. 

H. RECRUITMENT PROCEDURES 

The next task was to go to each of the participating squadrons, give them a brief 

on the project, and obtain contact information to start populating a subject list. The 

personnel were briefed on the goals of the project, what their participation consisted of, 

and any benefits, risks or hazards associated with the trials. Sign-up sheets were passed 

around and returned to the investigator via a sealed envelope if they were filled out at that 

time. Each participant also had the option to fill out the sheet at a later time and place 

them inside a folder to be picked up a day later. On these sheets, participants gave their 

contact information and their preference of flight time and day. Again, the project was 

well received by the squadrons and the initial pledge of support was overwhelming. 

That week, solicitations were sent through e-mail for volunteers. Each person who 

filled out a contact sheet was sent an introductory e-mail with a time slot for their flight. 

Each e-mail was sent to the individual only, and no reply was required. A schedule was 

created on a spreadsheet consisting of a subject identification number and the time and 

date of their flight. Each day consisted of three available time slots of one and a half 

hours each. The team was guaranteed use of TOFT-2 from 1200–1700 every day, so the 

three slots fell within that window. 

The last Friday of every week was used as a recruitment day. A squadron was 

selected, and briefed on what their participation would entail, as well as the possible 

benefits to rotary-winged aviation as a whole. Throughout the brief, the voluntary nature 

of the experiment was stressed, and that the research team had no affiliation with their 

command in any way. Contact was also made with the COMHSCWINGPAC offices and 

Mr. Jacobs to give updates on the status of the simulator and the project. The support 

given by the wing staff and the simulator managers was top-notch. At the end of every 

Friday, recruitment e-mails were sent to the volunteers from the squadrons to confirm the 

time of their flights. 
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I. PRELIMINARY DATA COLLECTION 

Week two began with approval from the IRB to start conducting our research. 

COMHSCWINGPAC operations was approached in order to solicit volunteers for the 

preliminary (pilot) study phase of our research. These pilots tended to be more 

experienced, and they would offer good insight as to how to integrate FaceLab into a 

flight with as little interference as possible. The STDM informed the team on Monday 

morning of our second week that the de-brief system, to include the video recording 

system, was working. The RA arrived from Monterey that morning to assist with the set-

up of FaceLab and to run the software during the pilot trials. The RA set up the world, the 

computer representation of the cockpit, in the FaceLab software. In order to do the set up, 

he had to use cardboard cut-outs and duct tape to create “maps” of the out of the window 

(OTW), instrument and helicopter diagnostic displays. The investigator served as the first 

head and eye model for creation in this new environment. Through much trial and error, 

the RA was able to establish the vertical link between the upper and lower eye-tracking 

cameras on the first day. The first two complete test runs of the route were flown in 

conjunction with the FaceLab system. A few things were brought to light on these first 

test runs. Certain actions by the pilot, such as resetting the aircraft’s timer, interfered with 

the eye-tracking cameras. During these initial runs, we found that the total time to 

complete the route at 100 knots indicated airspeed (IAS) was 26 minutes and 30 seconds. 

On the first day of preliminary trials, we were able to get two COMHSCWP pilots 

though the first pilot studies while successfully collecting data. There were a few 

problems that were overcome. The pilots both stated that they would prefer to have a co-

pilot (the investigator) navigate for them; that is, they wanted someone in the left seat 

reading the chart, relaying important information to them. This was contrary to our first 

ideas about the design of the study, in which the pilots would fly without any help from a 

co-pilot, referring to the chart which would be taped over the multi-function display 

(MFD) used to relay the status of the aircraft. Both pilots on the first day of the pilot trials 

stated that this setup was not realistic, in that they would not fly that way, and they found 

it distracting since it was not what they were used to. Because both pilots relied on the 

co-pilot for navigation, the previously noted problem with the timer use was no longer a 
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problem since the flying pilot was not the one resetting the timer. It was also noted that 

both pilots tried to adhere to the published “course rules” of the area, in that they tried to 

maintain the parameters outlined in the local area flying rules dictated by NASNI flight 

operations. In both cases, they were told that this was not necessary. For the purposes of 

the research, it would be better if they tried to maintain the altitude restrictions delineated 

in the brief. Both pilots were very concerned with the presence of power lines on the 

route. They were told that none were present in the simulation, and it was noted that this 

fact needed to be included in the pre-flight brief. The pilots also stated that they flew a 

constant torque when flying low-level over terrain not a constant airspeed. This phrase 

means that the helicopter is flown at a constant power setting and is allowed to increase 

or decrease speed, depending on the attitude needed to maneuver over the terrain. Despite 

this difference, the 100 KIAS approximation used earlier was still valid, in that the 

average speed over the flight was 111 KIAS (standard deviation 8.5). 

On the second day of preliminary trials, two more pilots from COMHSCWP flew 

the simulator with FaceLab installed. During these trials, the team tackled the issue of 

“pilot creep”—that is the tendency for pilots to crouch forward and lower as the flight 

progresses. The RA suggested that these two pilots use the shoulder harnesses while 

flying the simulation as a way to limit the pilot creep, and thereby eliminating the need to 

re-adjust the eye-tracking cameras after the first twenty minutes of every flight. This 

procedure was not welcomed by the pilots. The simulator is a non-motion simulator and 

the harnesses are not normally used when flying TOFT-2. Aside from some grumbling, 

all pilots in the trials complied with this request, and the technique proved successful in 

reducing the number of flight stoppages due to the loss of eye-tracking “lock.” 

J. PROCEDURES DURING TESTING 

With the preliminary trials complete and the procedures modified to reflect the 

findings of those test runs, it was time to move on to the testing phase of the research. 

TOFT-2 was reserved for our use Monday–Thursday of every week, for the hours of 

1200–1800. Three trial runs, or flights, would fit within the allotted time slot. This 

allowed adequate time for the pilot briefing, set-up of the FaceLab model for each pilot, 

the flight, and the de-brief.  
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Upon arrival, each pilot was greeted by the primary investigator (PI) and shown to 

the designated briefing area. The briefing area used was the same briefing area used for 

flight training, so the place was familiar to every MH-60S pilot. A brief outline of the 

flight and what would be required of the pilot was given by the PI, to include an overview 

of the route and the parameters of flight expected they were expected to maintain. During 

the route brief, the pilots were told not to adhere to the normal course rules for the San 

Diego area, and to maintain the altitudes described in the Flight Scenario section. The 

pilots were also told that the route in the simulator contained no hazards to low-level 

flight, such as power lines or other low-flying aircraft. During the initial briefing, pilots 

filled out the consent to participate in research from, the flight demographics survey and 

the navigation experience survey. Once the briefing and the surveys were completed, the 

pilot and the PI would then join the research assistant in the simulator. The research 

assistant stayed in the simulator between flights to finish saving the data from the last 

flight, and to set up the FaceLab system for the next flight. 

The RA took over at this point. He was responsible for making sure each pilot 

was strapped in to the seat, to include the use of the shoulder straps. Once the pilot was 

strapped in and had his or her seat properly adjusted, the RA would begin to build the 

face and eye model in FaceLab. Each pilot was asked to track his or her eyes across the 

cardboard cutouts created by the RA in order to calibrate FaceLab to their gaze. The 

majority of pilots would have to go through the entire set-up process, which could take up 

to 45 minutes. In a few cases, the pilot currently occupying the seat was close enough to 

height and seat adjustment to the prior pilot. These cases allowed the RA to do an 

abbreviated set-up procedure, which only took 15 minutes. Either way, once the pilot’s 

face and eye gaze were set up in FaceLab, it was time to start the flight. 

Once the set-up was complete, the pilot was instructed to take off from pad three 

at NAS North Island and start flying towards the starting point of the low-level route 

(checkpoint one), commonly known to all San Diego-based pilots as the “Blue Crane.”  

During this time, the PI stepped out of the simulator to start the recording of the flight 

using the simulator’s de-brief system. By the time the PI returned from this task, each 

pilot was usually at the Coronado Bay Bridge. Each pilot flew the course rules altitude 
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until reaching the area of checkpoint one, at which they descended down to the 100–300 

feet AGL requirement of the trial. At each checkpoint, the PI relayed the recommended 

heading to the next checkpoint, the time of flight between checkpoints at 100 KIAS, and 

any significant terrain features the pilots could use to find the next checkpoint. The PI 

also informed the RA which checkpoint we were at, so he could mark the point in the 

FaceLab database. Throughout the flight, the PI notified the pilot if they were in violation 

of any of the assigned parameters, but this notification not given often. 

Upon reaching the tenth and final checkpoint of the flight, the PI “froze” the 

simulator, suspending any further flight. The PI crawled out of the cockpit to stop the de-

brief system’s recording. The RA went through FaceLab’s validation process, in which 

the pilot’s gaze and position relative to the simulated “world” created by the software was 

verified. After the validation was complete, the pilot was asked to step out and return to 

the briefing space. The total flying time in the simulator for each pilot was a maximum of 

one half hour. The set up time and validation time totaled one hour. The pilots filled out 

the post-flight survey, complete with comments on how to improve the simulation. After 

the survey was complete, the pilots were given some time to ask questions about the 

experiment and what we were trying to do, since they had completed the scenario and 

there was no longer any risk of this information tainting the results. 

K. PROBLEMS ENCOUNTERED DURING TESTING 

There were a few problems encountered during the testing phase of the thesis. 

Previously mentioned in the preliminary data collection, the “pilot creep” kept causing 

problems with camera alignment. The RA’s suggestion of having the pilots use the 

shoulder straps helped keep the pilots from slumping, but the added procedure did not 

eliminate the problem entirely. Many pilots would not only “sink” into their seats as they 

flew, but would also lean to the left as they used the collective flight control input to 

adjust the helicopter’s power. The only solution to this problem was to freeze the 

simulator and re-adjust the cameras to account for the pilot’s adjusted position. 

“Freezing” a flight is unrealistic and distracting, and elimination of this problem would 

only increase the reality of each flight. 
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Another problem encountered was the tendency for some pilots to be “jittery” 

during the flight. A few of the pilots showed what both the RA and the PI called 

“excessive” head movements during the flight. During the post-flight debrief, the pilots 

with this problem were not asked if they were hyper-aware of their head and eye motion 

due to the presence of the cameras. The RA and the PI both thought this might be the 

case, but no way to verify this was achieved during the scope of this experimentation. 

With these pilots the cameras were unable to track their head and eye movements. The 

result was degraded but still usable data from these pilots. 

The time to set up the cameras for FaceLab seemed to be directly related to the 

height difference from one pilot to the next. Larger height differences from pilot-to-pilot 

resulted in significantly longer FaceLab set-up times. The RA and the PI could not think 

of any easy way to get around this difficulty. One possible resolution is to have set 

camera positions based on the height of the pilot. This was not possible to do in the short 

amount of time given to execute the experiment, but setting adjustments based on height 

may save time in future efforts using FaceLab. 

There was a tendency for at least one pilot a day not to show up for the scheduled 

flight. This was the price of conducting trials in the field. The flight operations each 

squadron conducts are at the whim of weather and aircraft availability. There are myriad 

reasons a pilot could have missed the trial obligation. An aircraft’s suddenly becoming 

available for a flight event, or flight delays due to weather are just two examples of why a 

pilot might be unable to meet the scheduled trial commitment. 

One of the squadrons insisted on the flight events being placed on their daily 

flight schedule. This did convey the commander’s intent to support the project, but the 

flight schedule is a signed order from the commanding officer of the squadron to all that 

are placed on it. While the intent of the commanding officer was to be helpful, they were 

informed that this violated the voluntary nature of participation in the study. To avoid any 

further command involvement, the scheduling e-mails were sent directly to the 

participants by the PI. All further events from that point on were only blocked out on the 

squadron’s flight schedule as “NPS Experiment–TOFT-2” with no further information or 

identification of the participants. 
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L. EXPERIMENT PHASE CONCLUSION 

Upon the conclusion of the experiments, the FaceLab system was dismantled and 

removed it from TOFT-2. All the items were inventoried and packed for the trip back to 

NPS. The simulator was cleaned out and returned to its original operating condition. All 

TOFT-2 de-brief files relating to our experiments were deleted from the simulator’s 

database. All written materials and files, including the hard drive, were locked in 

briefcases by both the RA and the PI. These were not opened again until they reached the 

lab at NPS. 

The next day, the PI visited the participating squadrons, the wing and the training 

and simulation device manager, giving them each a wrap up of the experimentation phase 

and a few words on the next steps in the project. They were all thanked for their 

overwhelming support. The PI returned to NPS with the FaceLab equipment and the data. 
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III. ANALYSIS AND RESULTS 

A. DATA PREPARATION 

1. Flight Briefing and Surveys 

The data came from three sources: the surveys that the subjects filled out before 

and after the flight, the output from the simulator’s debrief system, and the output from 

the FaceLab eye tracking software. Each of the data sets had to be handled in a unique 

way, due to its format from the source. The surveys were in a pen and paper format, 

while the debrief data and the FaceLab data were in the form of comma-separated files 

(CSV) saved on a secure hard drive. 

2. Pre-Flight Briefing and Surveys 

During the initial briefing, the pilots filled out the consent to participate in 

research form, the flight demographics survey and the navigation experience survey. The 

results from these surveys were translated from paper to an Microsoft Excel spreadsheet 

for each pilot. Flight demographics and navigation experience surveys were combined 

into a single spreadsheet to give a picture of pilot experience. The data were saved for 

comparison later with the de-brief and the FaceLab data. 

3. Simulator Data 

During each trial run, the simulator’s de-brief system recorded the parameters of 

flight for the simulator. These included the simulated aircraft’s airspeed, altitude, 

heading, and data specific to aircraft systems, such as the status of the hydraulic systems. 

There were over 50 recorded parameters in each file pertaining to each subject’s flight. 

They were recorded over a series of time frames. At any given time mark, the de-brief 

system recorded the aircraft’s performance and position. For the purpose of the study, 

only 11 of the parameters were needed. They were:  

 The magnetic heading (degrees) 
 The aircraft’s position in latitude and longitude (2 parameters) (degrees) 
 Whether or not an instance of an aircraft “crash” had been reported  

(0 or 1) 
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 The helicopter’s ground speed (GS, in knots) 
 The helicopter’s indicated air speed (IAS, in knots) 
 The aircraft’s pressure altitude (or reading on the pilot’s barometric 

altimeter, in feet) 
 The aircraft’s height above the terrain (or the reading on the pilot’s radar 

altimeter, in feet) 
 The helicopter’s vertical speed, up or down, in feet per minute (feet per 

minute) 
 The position of the pilot’s “ball” or sideslip indicator, the instrument that 

indicates whether or not the helicopter is in balanced flight (degrees) 
 An indication of the actual sideslip of the aircraft (degrees)  

 

Out of the data files for the 17 subjects, only two were corrupted. The technicians 

responsible for restoring the de-brief system during our pilot trials issued a warning that 

corruption might happen. The de-brief system had a tendency to get “stuck” on one data 

point and remain there for the duration of the flight. There was no way to recover this 

data other than re-flying the flight and conducting another trial. Unfortunately, this option 

was not realistic for many reasons. Most of the pilots were already taking time out of 

busy schedules to accommodate these trials. Also, a pilot would fly differently on his or 

her second run than on the first. Fortunately, the corruption only occurred for two of the 

flights, so most of the data was available for analysis. 

Each file contained data on the entire route of simulated flight, from when the 

pilot took off from pad three at Naval Air Station North Island until the simulator was 

frozen at the end of the trial run. For the purposes of the study, only data from the route 

of flight depicted on the chart was used. Each file was trimmed so that only data along 

the route of flight from checkpoint one to checkpoint ten was included. This editing was 

done by noting the heading change when each pilot turned off the ingress route to 

intercept the course and checkpoint one, and again noting the heading change at the end 

of the route at checkpoint ten. 

4. Eye Tracking/FaceLab Data 

The FaceLab data came in three distinct files for each participant: 
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 Timing Files: Each checkpoint was marked to a corresponding frame 
number. 

 World-View Files: The data indicating where the pilot was looking at a 
given frame number. 

 Eye Files: Data on the pilot’s gaze and saccades. These were not used in 
the analysis for this thesis. 

Each file had to be processed in order to obtain useable data for hypothesis 

testing. This processing was done using the open-sourced statistical software [R], “a 

powerful tool for statistics, graphics, and statistical programming” (Teeter, 2011). For 

each file, a loop was written and executed to gather the data needed for further analysis. 

The [R] code used is presented in the appendices. 

5. Timing Files 

The timing files were processed first in order to attain the checkpoints and their 

corresponding frame numbers. The raw data from the FaceLab software was in the form 

of text files (.txt files), which had to be converted to comma-separated files (.csv files) for 

use in [R]. The output files were in CSV form and imported in to Microsoft Excel for 

analysis. This process was common to all of the files produced by FaceLab. Table 9 

shows a typical result after the processing of the timing files: 

 

TIMING      

Min.  Median Mean  Max. 
13600  84540 84580  156300 

FRAME_NUM EXPERIMENT_TIME GMT_S   
Check 
pt 

42362 706.117 1.32E+09   1 
55579 926.384 1.32E+09   2 
66751 1112.57 1.32E+09   3 
80485 1341.45 1.32E+09   4 
87289 1454.84 1.32E+09   5 
98357 1639.29 1.32E+09   6 
110451 1840.84 1.32E+09   7 
115429 1923.8 1.32E+09   8 
123824 2063.71 1.32E+09   9 
135408 2256.76 1.32E+09   10 

Table 3.   A Sample of the Timing Data for Subject 7 
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The minimum and maximum frame numbers represent the beginning and the end 

of each flight from take off until the simulator was frozen after checkpoint ten. Flight 

time duration for each subject was calculated using the experiment time (in seconds) 

from checkpoint one to checkpoint ten. For subject number seven, the flight time from 

checkpoint one to checkpoint ten was 1550 sec, 25 minutes and 50 seconds. 

6. World View Files 

Timing data with the checkpoint locations in terms of frame number and mission 

time was critical for further analysis on the world-view files. Only data between the start 

of the flight at checkpoint one and the end of the flight at checkpoint ten was necessary. 

Using the frame numbers corresponding to the checkpoints in the timing data, each 

world-view file was cropped so that only the information in between these checkpoints 

was included in the analysis. This step was critical because the focus of the study is on 

cruise flight only. Data before checkpoint one includes the take-off from the pad on NAS 

North Island and the over flight of the Coronado Bridge, which would require altitudes 

greater than 500 feet above ground level. The cropping process was completed using the 

similar file conversion (text file to CSV file to Microsoft Excel, and then back to CSV) as 

used for the timing files. 

Once each world-view file held the correct segment of data and was in the correct 

format, [R] was used once again to process the files to get the necessary information for 

analysis. Each subject’s world-view file contained a column called ITEM_NAME, 

depicting the item the pilot was looking at during the time stamp. The items were: 

 InstrumentDisplayCockpit 
 InstrumentDisplayOTW 
 MapCockpit 
 MapOTW 
 Nothing 
 OTW 
 OTWCockpit 

The “Nothing” category refers to data that was not captured by the recording 

system. 
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The first item in the item name indicated the actual item being scanned. The 

second part of the name indicated that the camera that was used to pick up the item being 

scanned by the pilot at that particular time. For example: 

 
InstrumentDisplayCockpit 

 

 

The item “OTW” does not have a second identifier. The OTW camera picks up 

this item, and it is assumed that the designers of FaceLab thought the identifier 

“OTWOTW” would be a little redundant. 

Again, using [R], each subject’s file was processed in order to ascertain how 

many of each item was present in the ITEM_NAME column. At each frame number, the 

pilot was looking at one of these objects. The number of times an item was picked up 

corresponded to the number of frames the pilot was looking at that object. After running 

the code, [R] produced a CSV file with the desired output. 

The [R] code (see appendix B) produced the following output (shown after the 

CSV file was imported into Microsoft Excel): 

  

The item being scanned at the frame The camera used to pick up the scan 
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Instrument 
DisplayC 

Instrument 
DisplayO 

Map 
Cockpit 

Map 
OTW 

Nothin
g OTW 

OTW 
Cockpit 

37296 356 453 1 45300 8800 644 

Frame number Change from To     

42408 1 5     

42450 5 1     

42473 1 5     

42496 5 1     

42507 1 5     

42508 5 1     

42510 1 5     

42616 5 1     

42627 1 5     

42635 5 1     

42660 1 5     

42763 5 1     

Table 4.   A Sample of the World-View Data After Processing in [R] and Microsoft Excel 

The top row depicts which object the pilot was scanning at the time. The second 

row shows the number of “hits” for each object. The third row delineates the frame 

number at which a pilot shifted scan from one object to another. For example, in the 

highlighted row, the pilot shifted his or her scan from object 5 to object 1, corresponding 

to a shift from the instrument display (picked up by the cockpit cameras) to nothing. 

Since the only concern was what the pilot was looking at during a certain time, 

there was no need to discriminate between which camera picked up the information. By 

adding some additional columns, the object’s camera location was eliminated from the 

analysis. This produced a column that only indicated which object the pilot was looking 

at during a given frame number. Additionally, a “diff” column was added to indicate the 

number of frames that passed between the pilot’s last scan shift. 
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Instrument 
DisplayC 

Instrument 
DisplayO 

Map 
Cockpit 

Map 
OTW Nothing OTW 

OTW 
Cockpit 

37296 356 453 1 45300 8800 644 

Frame number Change from To Diff New places  

42408 1 5  1 4  

42450 5 1 42 4 1  

42473 1 5 23 1 4  

42496 5 1 23 4 1  

42507 1 5 11 1 4  

42508 5 1 1 4 1  

42510 1 5 2 1 4  

42616 5 1 106 4 1  

42627 1 5 11 1 4  

42635 5 1 8 4 1  

42660 1 5 25 1 4  

42763 5 1 103 4 1  

Table 5.   World-View Data with the Frame Difference Column and the Combined Objects 

Figure 9 shows a guide that was created in each spreadsheet in order to translate 

the [R] code: 

Old 
Code   

New 
Code  

1 InstDispC  1 Inst_Disp 

2 InstDispO  2 MAP 

3 MAPcp  3 OTW 

4 MAPotw  4 Nothing 

5 Nothing    

6 OTW    

7 OTWcpt    

Figure 9.   Code Descriptions, Showing Numbers Corresponding to the Scanned 
Object 

Once the data from the world-view and timing files were processed in Microsoft 

Excel the results were combined on to a final page in the workbook for further analysis. 

Each data type was then combined on a final worksheet for comparison along pilot 
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experience level and type. When the data from the scan location, or where exactly the 

pilot was looking at a certain time was put together, it became apparent that the 

“Nothing” category was a problem. The “Nothing” category refers to data that was not 

captured by the recording system. 

 

     Dwell %  

Subj 
#  Inst_Disp MAP OTW Nothing

7  40.55143 0.488961 10.17124 48.78837

8  8.00052 57.66396 3.373641 30.96188

11  43.62472 0.224121 42.82276 13.3284

12  37.03034 1.062985 44.38704 17.51964

13  1.330562 0.186013 64.95838 33.52504

14  3.380094 0.259408 26.01536 70.34513

15  33.95664 0.230613 41.51316 24.29959

16  7.187941 41.78071 26.34036 24.69099

18  18.44136 0.25168 39.68335 41.62361

19  26.78608 0.074518 39.00145 34.13794

20  4.515534 1.125352 6.021339 88.33778

21  3.498846 6.829686 23.64647 66.02499

22  5.056483 0.427872 72.02139 22.49425

23  6.997912 0.254952 45.97211 46.77503

25  6.131998 0.120843 26.58025 67.16691

26  36.48841 0.108766 14.71449 48.68833

28  11.86348 0.441894 43.45943 44.2352

Table 6.   Percentages of the Total Flight Time a Pilot was Looking at a Certain Object 

In order to accurately represent where the pilot was looking at a time in which the 

FaceLab system recorded “Nothing,” a substitution had to be created based on the flight 

videos from the simulator’s de-brief system and the videos based on the world-view 

recreation created by the FaceLab system. FaceLab, using a world-view program, was 

able to re-create a simulation that depicts the location of the pilot’s eye gaze, as well as 

the orientation of their face at any given time. The de-brief videos were watched to 

ensure that, at no time during the flight, the pilots were looking at “Nothing.” They were 

indeed looking at something, whether it was out of the window or down at the instrument  
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or map display. Next, the world-view videos were watched to see what FaceLab thought 

the pilot was looking at a given time. The insights gained from these viewings produced 

an interesting result. 

During the set-up of the simulated “world” in FaceLab, which took place in 

TOFT-2, the RA measured the instrument view screen and entered the dimensions  

(.28 x .18 meters) in to the FaceLab simulation. He also measured the distances from the 

top of the glare shield and the space in between the map and instrument displays to get an 

accurate representation of the cockpit display. While his efforts are commendable, the 

world-view videos show that the alignment of these displays may have been in error. The 

videos clearly show that the pilots are scanning down towards the instrument display, yet, 

because the display in the world-view simulation was so small, the scan often “missed” 

according to FaceLab, and the event was recorded as if the pilot was looking at 

“Nothing.”  Only in three cases, subjects 14, 20, and 25, did “Nothing” actually mean 

“Nothing.”  In these cases, the FaceLab system was actually unable to register the 

location of the pilot’s eye gaze or head model location. The simulation was unable to 

reproduce an accurate representation due to poor gaze quality, the calibration of the 

system was off, or because the pilot made a movement that the system was not able to 

pick up. The percentages of “Nothing” in these cases represented a loss of data recording. 

Armed with this new realization, the data was modified in the Microsoft Excel 

spreadsheet to accurately represent scan location. The “Nothing” category was switched 

to “Inst_Disp,” and the percentages were re-calculated. Each subject’s world-view sheet 

was modified separately in order to ensure that the findings of the video review were 

accurately represented. The combined data checking resulted in the percentages and times 

used in the data analysis in the next chapter. 
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 Adjusted Dwell % 
Subj # Inst_Disp MAP OTW 
7 89.33 0.48 10.17 
8 38.96 57.6 3.37 
11 56.95 0.22 42.82 
12 54.54 1.06 44.38 
13 34.85 0.18 64.95 
14 73.72 0.25 26.01 
15 58.25 0.23 41.51 
16 31.87 41.7 26.34 
18 60.06 0.25 39.68 
19 60.92 0.07 39.00 
20 92.85 1.12 6.021 
21 69.52 6.82 23.64 
22 27.55 0.42 72.02 
23 53.77 0.25 45.97 
25 73.29 0.12 26.58 
26 85.17 0.10 14.71 
28 56.09 0.44 43.45 

Table 7.   Corrected Percentages of the Total Flight Time a Pilot is Looking  
at a Certain Object 

Using the results from the [R] code combined with some coding in Microsoft 

Excel, a metric was developed that gave some insight as to the direction of a pilot’s scan. 

The Microsoft Excel code was based on the “change from” and “to” columns. A count 

was taken to determine how many times a pilot switched his or her gaze from one object 

to another. For example, if a pilot switched his or her gaze from the instrument display to 

out-of-the-window, it would be recorded as an event of that type. Using this method, the 

following table was produced for further analysis: 
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      Scan  Direction    

IM  IO  MI  MO OI OM

110  932  111  1  931 2

346  1355  339  34 1361 28

41  1116  40  2  1118 1

71  1213  75  0  1208 4

37  1259  43  6  1253 12

42  2569  49  12 2563 19

29  1308  30  3  1308 4

75  3529  62  27 3541 14

50  2784  52  3  2782 5

13  1864  13  3  1864 3

237  853  239  8  851 10

318  1526  316  99 1529 96

35  1571  36  4  1571 5

81  2231  74  21 2237 14

62  3243  64  7  3242 9

19  1581  18  3  1582 2

105  2759  103  31 2760 29

Table 8.   Occurrences of Scan Shifts with the Codes Used for each Type of Event.  
One Row for Each Pilot 

Each column represents a scan shift event. When a pilot transitioned from 

scanning the instrument display to out-of-the-window, that event was recorded as an 

“IO.” The first row represents the data collected for Subject 7. In this example, Subject 7 

shifted from the instrument display to out-of-the-window 932 times during the flight. 

This concluded the data set up for analysis. The eye-tracking data collected from 

the experimental trials in TOFT-2 will be used in later analysis for future research 

questions. 

B. STATISTICAL ANALYSIS USED 

Trend analyses were done using the measures of rank correlation outlined in 

Conover’s Practical Nonparametric Statistics (1999). The type of test for trends used 

was Spearman’s Rho (Conover, 314). The tests used the data based on bivariate samples 

to see if a trend existed as the one sample is ranked according to the other. A negative  

 

Rho value indicated an inverse relationship; a positive value indicates a direct 

  Scan   

Code From  To

IM Inst_Disp  MAP

IO Inst_Disp  OTW

MI MAP  Inst_Disp

MO MAP  OTW

OI OTW  Inst_Disp

OM OTW  MAP
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relationship. For example, a negative Rho value indicated that altitude standard deviation 

decreased as pilot experience increased. 

Helicopter group analyses utilized a two sample t-test assuming unequal variances 

and the scan direction data was analyzed using paired t-tests in [R]. 

C. DATA ANALYSIS AND RESULTS 

1. Pilot Performance Analysis 

The debrief data from TOFT-2 provided the performance data for each subject’s 

flight. Using this data, Table 9 is presented: 

 

 Mean Median Stdev 

Time to Complete the Course 
(minutes) 27.7 28.1 2.6 

Indicated Airspeed (NM/min) 111.0 108.9 8.5 

Ground Speed (NM/min) 110.9 108.9 8.5 

Radar Altitude (feet) 192.0 184.3 52.5 

Table 9.   Summary of the Flight Performance Data 

The time to complete the course varied little from pilot to pilot, and that 

corresponds with the small variance in ground speed between the pilots. No wind speed 

of any kind was entered in to the simulation for any of the pilots, which is why indicated 

airspeed (IAS) and ground speed (GS) were so close in value. 

From the literature review, using a pilot’s deviation from the assigned altitude 

parameters is an acceptable measure of a pilot’s performance during a trial. Figures 10 

and 11 show the comparison of a pilot’s experience level in terms of flight hours and the 

standard deviation of the altitude during the flight.  
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Figure 10.   Standard Deviation in Altitude Compared to Flight Hours, n = 15 

From Figure 10, there appears to be a decreasing trend in the amount of the 

standard deviation of altitude as pilot experience increases in terms of total flight hours as 

shown in Figure 16. Subject 18’s altitude standard deviation was extreme when compared 

to those of the other pilots (standard deviation 146.3, 975 flight hours). Figure 11 shows 

the data with Subject 18’s data removed from the data set resulting in a best-fit linear 

regression that revealed a significant a decreasing trend in altitude variance as pilot 

experience level increases. 

Subject # 18 
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Figure 11.   Standard Deviation in Altitude Compared to Flight Hours with Subject 18 
Data Removed, n = 14 

With Subject 18’s data removed, the negative association between standard 

deviation and pilot experience is highly significant (Spearman’s Rho = - .745, p = .002).  

The prior discussion concerning Subject 18 led to another question: was there any 

correlation between the height at which the pilot flew and the difficulty each pilot had in 

maintaining the desired altitude above the terrain? If so, one possible explanation is that 

the higher a pilot flew, the harder it was to maintain a constant altitude above the ground 

using visual cues. This, when cross-referenced with how often a pilot looked Out-of-the-

Window (OTW) using scan data obtained from the FaceLab system, produces a good first 

glance of how a pilot scans correlates with a metric of pilot performance. 

Standard deviation in altitude compared to the average altitude a pilot held 

throughout the flight is shown in Figures 12 and 13 the next two graphs. Figure 12 

includes the data from Subject 18, while Figure 13 removes subject 18’s data. This 
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approach is to ensure that Subject 18’s higher than normal altitude variance is not 

skewing the first look at this performance metric. 

 

 

Figure 12.   Altitude Standard Deviation by Average Altitude, n = 15 
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Figure 13.   Altitude Variance by Average Altitude with Subject 18’s Data Removed, 
n =14 

In both cases, the higher a pilot flew, the higher his or her deviation in altitude 

was. 

From this point on, Subject 18’s data was retained in the analyses. Spearman’s 

Rho changed modestly with the removal of Subject 18’s data. It was determined that 

Subject 18 was not an influential outlier. Therefore, Subject 18’s data was included in the 

analyses for hypothesis testing. 

The data suggested two points for further investigation. The pilots with more 

experience were able to hold a more constant altitude above the ground throughout the 

flight, and the pilots who flew lower were also able to maintain a more consistent altitude 

profile. Figure 14 shows a non-significant relationship between the average altitude for 

the flight and the experience level (in total flight hours) of the pilot flying the route. 

According to Figure 14, the more experienced pilots flew lower along the route, which 

was expected. 
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Figure 14.   Average Altitude by Flight Hours, n = 15 

 

 

Table 10.   Associations between Performance Parameters and Flight Hours 

All of the comparisons had significant trends, except for the comparison of 

altitude and flight hours. For the ease of interpretation, green rows indicate that a 

significant trend exists (p < .05). Blue rows indicate that trend exists, but only within a 

10% significance level (p < .1), and red rows indicate that a trend was not found within 

either level of significance (p > .1). In this specific case, the green rows indicate that a 

pilot’s performance in terms of altitude deviation improves as his or her experience 

improves. The red row shows that it was not able to be confirmed, within a 5% level of 

error, that the more experience pilots flew lower during the flight. 

Trend Spearman's RHO P‐value Sig. Trend? Type?

Altitude Std Dev. By Flight Hours ‐0.632 0.007 Y Negative

Altitude Std Dev. By Flight Hours (‐18) ‐0.745 0.002 Y Negative

Altitude Std Dev. By Altitude 0.707 0.002 Y Positive

Altitude Std Dev. By Altitude (‐18) 0.639 0.008 Y Positive

Mean Altitude by Flight Hours ‐0.279 0.157 N Negative
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Another and final consideration for the average altitude flown was whether or not 

the type of experience played a role in how high each pilot flew over the ground during 

the route. Each pilot was asked to classify the bulk of their flying experience as either 

“over land” or “maritime” on the demographics survey. Most of the subjects from HSC-

21 classified themselves as “over land” pilots. For the last couple of years, HSC-21 has 

been filling the air-ambulance role in Iraq, a mission that requires all of their flying to be 

overland. In contrast, the HS-4 pilots classified themselves as “maritime,” since they 

were fulfilling the classic role of a HS squadron: maritime search and rescue and carrier 

support. Given these areas of operations for the two squadrons, it was conjectured by the 

investigator that the pilots that classified the bulk of their experience as “over land” 

would fly lower along the route since the HSC-21 pilots should be more comfortable over 

land than the HS-4 pilots. This conjecture was not supported by the data collected from 

TOFT-2’s de-brief system, t (16) = .638, p = .547. The pilots who classified themselves 

as “over land” pilots (7) flew at an average height above ground of 201.3 feet (sd 56.1), 

while the “maritime” (8) pilots flew at an average height above ground of 183.9 feet (sd 

39.0). This somewhat surprising result could be followed up in a study that had larger 

numbers of pilots in each group. 

2. Eye Tracking Measures Analysis 

Given that altitude standard deviation has been established as a performance 

measure, analysis was done to see how the pilot’s performance related to scan rate and 

dwell times. Since the scan rates and the average dwell times were computed separately, 

a check was needed to make sure the two had an inverse relationship. That is, as the scan 

rate increases for each pilot, their average dwell time should decrease. This correlation is 

only logical since an increased scan rate indicated that the pilot was spending less time on 

each object, and moving between them more frequently. The following graph displays 

this inverse relationship. 
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Table 11.   Summary of the Scan Rate and Dwell Time Data 

The dwell time, or the average time a pilot spent looking in any one particular 

area, was measured in seconds. Scan was measured in shifts per second, as it is the 

number of times a pilot shifts his scan from one place to another during a measured time 

unit. 

 

 

Figure 15.   Median Dwell Time by Scan Rate, n = 14 

Dwell times and scan rates had an inverse relationship. The next step was to 

determine whether or not there were trends in dwell times and scan rates as they relate to  

 

 

Scan Rate (shifts/sec) Dwell Time (sec)

Mean 2.30 0.82

SD 0.96 0.45

Median 2.09 0.76
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pilot experience level. Figures 16 and 17 show this. In both cases, there was a good deal 

of variability for both scan rate and fixation time for those pilots with less than 1500 

hours. 

 

 

Figure 16.   Median Dwell Time by Flight Hours, n = 14 
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Figure 17.   Scan Rate by Flight Hours, n = 14 

Since the dwell times and scan rates had an inverse relationship, it follows that 

this relationship would carry over into the comparison of the two with a pilot’s flight 

hours. The interesting discovery was a positive but not significant association shown in 

table 12 (Rho = .231, p = .236) between dwell time and experience, which contradicted 

the regression analysis shown in Figure 16, along with a non-significant negative 

association (Rho = .229, p = .216) between scan rate and experience. Neither scan rate 

nor fixation time predicted variability in altitude with a 5% significance level, although 

trends were present when the data was presented graphically in Figures 18 and 19. 

 

 

Table 12.   Association between Eye Tracking Parameters and Flight Hours 

 

Trend Spearman's RHO P‐value Sig. Trend? Type?

Median Dwell Times by Flight Hours 0.231 0.236 N Positive

Scan Rates by Flight Hours ‐0.229 0.216 N Negative
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Figure 18.   Altitude Standard Deviation by Scan Rate, n = 12 

 

Figure 19.   Altitude Standard Deviation by Fixation, n = 12 
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Table 13.   Association between Eye Tracking Parameters and  
Altitude Standard Deviation 

Another metric that was obtained from the FaceLab data was dwell time, the 

amount of time a pilot spends looking at one object. The cumulative dwell times 

delineate how much time a plot spends looking at a particular object during the duration 

to the flight, such as the instrument panel (Inst_Disp) or the aircraft status panel (Map). 

In the data preparation section, this data was presented as the percentage of the total time 

of the flight the pilot spent looking at a particular object. In Table 14 and Figure 20, these 

percentages were compared to pilot experience to gain some insight as to where the more 

experienced pilots spend most of their time looking at. 

 

 

Table 14.   Summary of the Scan Location Parameters 

Trend Spearman's RHO P‐value Sig. Trend? Type?

Altitude Std Dev by Scan Rate 0.133 0.302 N  Positive

Altitude Std Dev by Median Dwell Time ‐0.315 0.160 N Negative

Inst_Disp (%) MAP (%) OTW (%)

Mean 58.43 7.40 34.17

SD 19.57 17.52 19.68

Median 58.26 0.26 39.00
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Figure 20.   Dwell Percentages by Flight Hours, n = 14 

The results in Figure 20 show that the amount of time a pilot spends looking at the 

instrument display was consistent across experience levels. However, the more 

experienced pilots spent far less time looking out of the window, or flying with a visual 

scan, than the less experienced pilots. These more experienced pilots seemed to swap the 

amount of time spent looking outside with time spent looking at the aircraft diagnostics 

screen (called the Map display in FaceLab). Subject 8, the most experienced pilot of the 

subject group (3400 hours total flight time) was the most extreme case, with a significant 

amount of time (57.7%) spent scanning the aircraft diagnostics (AD) display. The next 

subject in decreasing order according to AD display dwell time was Subject 16 (41.8%, 

991 hours total flight time). All other subjects spent less than 7% of the time scanning the 

AD display. 

To see what kind of effect these two extreme cases had, they were removed in the 

generation of Figure 21. The effect of the dwell percentage on the AD (MAP) display is 

nearly removed, leaving the trends in the amount of time a pilot scans the instrument 

display vs. out of the window as experience increases more evident. Table 15 contains 
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trend analyses from both cases, with Subjects 8 and 16 and without. The trend for the 

amount of time pilots spend looking at the AD (Map) display is almost non-existent 

without Subjects 8 and 16. Other trends, such as dwell percentages for the instrument 

display and out-of-the-window, become more evident (in Table 15) with their data 

removed. 

 

 

Figure 21.   Dwell Percentages by Flight Hours with Subjects 8 and 16 Data Removed, 
n =12 

 

Table 15.   Association between Eye Tracking Parameters and Flight Hours, Altitude 
Deviation 

Trend Spearman's RHO P‐value Sig. Trend? Type?

Dwell %'s by Flight Hours (OTW) ‐0.563 0.018 Y Negative

Dwell %'s by Flight Hours (OTW, ‐ 8, 16) ‐0.430 0.080 N Negative

Dwell %'s by Flight Hours (Inst_Disp) 0.165 0.287 N Positive

Dwell %'s by Flight Hours (ID, w/o ‐8,16) 0.431 0.081 N Positive

Dwell %'s by Flight Hours (Map) 0.275 0.171 N Positive

Dwell %'s by Flight Hours (Map, w/o ‐8,16) ‐0.007 0.501 N Negative

Dwell % by Altiude Deviation (OTW) 0.401 0.096 N Positive

Dwell % by Altiude Deviation (Inst_Disp) ‐0.301 0.165 N Negative
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According to Table 15, the more experienced pilots spent less time looking out of 

the window than the less experienced pilots. This was the only trend that was verified 

within a 5% significance level. Of note were the comparison of the OTW dwell 

percentages by flight hours, the ID dwell percentage by flight hours, and the dwell 

percentage on OTW by altitude standard deviation, all of which showed trends within the 

10% significance level (shown in Figure 22). 

 

 

Figure 22.   Altitude Deviation Compared by % of Dwell Time, n =12 

In both preliminary looks at the dwell percentage data, the trend for more 

experienced pilots to look out of the window less remained consistent. When data from 

Subjects 8 and 16 were removed, along with their tendency to scan the AD display more 

than any other pilot in the study, the decrease in the amount of time spent scanning 

visually was traded for more time spent scanning the instrument panel. No similarities  
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existed between Subjects 8 and 16 other than this tendency. Why these two pilots 

scanned the AD display significantly more than any other of the pilots in the study is 

beyond the scope of this study. 

a. Fixation Analysis 

Fixation, as an event, occurs when a pilot keeps her scan on an area of interest for 

more than 70 milliseconds. Using Microsoft Excel to further analyze the world-view data, 

each pilot’s data was processed to find events that fit this criteria. FaceLab had a frame 

rate of 60 frames per second. In 70 milliseconds, 4.2 frames passed. Any difference that 

was greater than 4.2 frames was counted. That is, any time a change from one area to 

another (an event recorded in the previous analysis to determine scan rate) took more 

than 4.2 frames, the event that the shift was from was counted as the fixation area of 

interest.  Table 16 shows a summary of the fixation data collection. 

 

 

Table 16.   Summary of Fixation Events 

Table 16 shows a summary of the fixation events recorded using the 70 

millisecond criteria. Each area is represented; “IP for instrument panel, “MAP” for the 

aircraft diagnostic display, and “OTW” for scanning out of the window. “No Fix” 

represents the number of recorded events that did not meet the fixation criteria. These are 

the scan events that were shorter than 70 milliseconds. Figure 23 further summarizes the 

data in a box plot. 

Fixation

IP MAP OTW No Fix

Mean 629.80 83.67 1094.47 4518.67

SD 444.08 163.48 817.76 1247.64

Median 669.00 15.00 963.00 4375.00
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Figure 23.   Boxplot of Fixation Events for All Pilots 

To further explore whether or not pilots scan techniques differ as their experience 

increases, the number of fixation events for each pilot were compared on a scale of flight 

experience via the amount of flight time accrued. Figure 23 shows the number of fixation 

events recorded using the 70 millisecond criteria for each area of interest. As flight 

experience increases, there is a slight increase in the number of fixations on each area of 

interest. The amount of fixations on the instrument panel showed the most significant 

increase with flight experience, with a slope of 0.19. Out of the window was 0.11, and the 

Map display’s slope was 0.05.  
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Figure 24.   Graphs of the Fixation Counts by Flight Hours 

The increase in the number of fixations in each are of interest seemed incomplete 

without including the “no fixation” event. These are accounted for in Figure 25. As the 

number of fixations increased, the number of non-fixation events decreased. This 

relationship implies that pilots with slower scan rates tended to fixate more, spending 

more time scanning each area of interest for information. This is further confirmed in 

Figure 26 and Table 18. 
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Figure 25.   Fixation Counts by Flight Hours, with the “No Fixation” Event Included 

Figure 25 shows the addition of the “no fixation” events. The linear fit had a slope 

of -0.57, showing a significant decrease when compared to pilots’ experience in terms of 

flight hours. The results from further analysis using Spearman’s Rho to detect trends is 

shown in Table 17. 

 

 

Table 17.   Fixation Event Analysis Results 

“No fixation” events decrease significantly with an increase in experience based 

on flight hours. The earlier analysis on the scan rate did not produce a significant trend 

when compared to the number of flight hours a pilot had. Yet, using the no fixation 

events as a metric to determine how fast a pilot was looking from one area of interest to 

another, there seems to be a correlation.  

Trend Spearman's RHO P‐value Sig. Trend? Type?

IP fixation events by Flight Hours 0.405 0.075 N Positive

MAP fixation events by Flight Hours 0.276 0.169 N Positive

OTW fixation events by Flight Hours 0.187 0.261 N Positive

"No fixation" events by Flight Hours ‐0.585 0.014 Y Negative
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Figure 26.   No Fixation by Scan Rate Graph 

Figure 26 shows the correlation between scan rate and the number of “no 

fixation” events recorded. As expected per the definitions, the faster a pilot’s scan rate, 

the less time he spent looking at any one object. Hence the increased number of “no 

fixation” events. Table 12 did not show a significant relationship between scan rate and 

flight hours. Further research is needed to determine if the “no fixation” events can be 

used as a metric to measure a pilot’s scan rate. 

 

Table 18.   “No Fixation” by Scan Rate Trend Analysis 

The last remaining item from the data preparation to receive an initial look was 

the scan direction data that was created from the FaceLab collection efforts. This analysis 

was done to gain insight in to a pilot’s scan direction. By looking at the number of 

transitions that occur from one area to another in Table 19 and Figure 27, a general idea 

of scan direction could be ascertained. The scan shift event codes were included in Table 

20 for ease of interpretation. 

Trend Spearman's RHO P‐value Sig. Trend? Type?

"No Fixation" by Scan Rate 0.494 0.037 Y Positive
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Table 19.   Summary of Scan Shift Even Counts 

  Scan  

Code From To

IM Inst_Disp MAP

IO Inst_Disp OTW

MI MAP Inst_Disp

MO MAP OTW

OM OTW MAP

Table 20.   Scan Transition Codes 

 

Figure 27.   Boxplots of the Scan Shift Directions, n = 14 

IM IO MI MO OI OM

Mean 103.13 1823.53 102.87 15.33 1823.93 15.07

SD 106.97 850.87 105.38 25.27 852.50 23.56

Median 62.00 1571.00 62.00 6.00 1571.00 9.00
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Table 21.   Scan Direction Comparisons Using a Paired T-Test 

From the data in Table 21 and Figure 27, a simple diagram was constructed in 

Figure 28 in order to show where the bulk of the scan activity for all of the pilots existed. 

Pilots were, for the most part, scanning in between their instrument displays and out of 

the window. There were more transitions from the instrument display to the AD display 

(in either direction) than from the AD display to out of the window. It seemed that pilots 

spend most of the flight scanning out of the window and the instrument display, with a 

few looks at the aircraft diagnostic page from the instrument panel. 

 
 

Figure 28.   Diagram to Depict the Intensity of Scan Activity between Objects. The 
Width and Number of the Arrows Indicates the Frequency of the Scan 

Shift Event 

Comparison T P‐value Difference?

Scan Direction counts

IO vs MO 8.742 0.000 >

OI vs OM 8.694 0.000 >

IM vs OM 3.41 0.002 >

MI vs MO 3.42 0.002 >
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D. SUMMARY OF RESULTS 

Analysis of the results obtained from the eye tracking system indicates a 

decreasing relationship between scan rate and pilot experience, indicating that the scan 

rate decreases as a pilot becomes more experienced. The analysis uses altitude variance 

as a measure of performance. Results indicate that higher scan rates correlate with higher 

degrees of variance in the altitude, indicating that a quicker scan does not necessarily 

result in better performance. The higher experienced pilots show a lower altitude variance 

overall (they were more consistent in maintaining a constant altitude above the ground), 

yet those pilots all exhibited slower scan rates. 

 

E. HYPOTHESIS TESTING 

1) H0: There is no association between eye scan pattern (number of fixations, 
dwell durations, percent time looking out the window (OTW), scan rate between 
OTW and instrument panel) and total flight hours. 
 
HA: Eye scan patterns will be more efficient for pilots who have higher total 
flight hours (greater number of fixations, shorter dwell durations, less time 
looking OTW, and faster scan rate between OTW and instrument panel). 
 
Result: Fail to reject the null hypothesis. Although Spearman’s Rho indicates 
trends between eye scan pattern and total flight hours and the dwell times (rspearman 
= .310, p = .14) and scan rate (rspearman =-.229, p =.216), none of the results were 
significant. The dwell percentage for out of the window scanning (rspearman  = -
.563, p = .018) did show a significant trend with an increase in flight experience, 
however it was the only scan region that demonstrated such a trend (Table 15). 
 
2) H0: Eye scan parameters (number of fixations, dwell duration, percent time 
OTW, scan rate between OTW and instrument panel) will not predict a pilot’s 
ability to accurately maintain assigned flight parameters during a navigation 
event. 
 
HA: Eye scan parameters (number of fixations, dwell duration, percent time 
OTW, scan rate between OTW and instrument panel) are a reliable predictor of a 
pilot’s ability to accurately maintain assigned flight parameters during a 
navigation event. 
 
Result: Fail to reject the null hypothesis. Spearman’s Rho in this case only 
showed very slight trends when either dwell times (rspearman =-.021, p = .302), 



 67

scan rates (rspearman =.133, p = .478) or were compared with the altitude standard 
deviation. From Table 15, only the amount of time a pilot spends looking out of 
the window had any significance when compared to altitude deviation (rspearman =-
.401, p = .096), but the amount of time a pilot spent looking at the instrument 
display did not change the amount a pilot deviated from the altitude with any 
significance (rspearman =-.301, p = .165). 
 
3) H0: Eye scan parameters (number of fixations, dwell duration, percent time 
OTW, scan rate between OTW and instrument panel) will not predict occurrence 
of CFIT. 
 
HA: Eye scan parameters (number of fixations, dwell duration, percent time 
OTW, scan rate between OTW and instrument panel) will predict occurrence of 
CFIT. 
 
Result: There were no occurrences of CFIT during any of the trials. Therefore, 
this hypothesis was not tested. 

 

F. EXPLORATORY ANALYSIS 

To explore some additional questions that arose from the preliminary results, 

exploratory analyses were conducted on two pilots who stood out from the others in 

terms of their performance or eye scan pattern. Additionally, because the older pilots 

tended to have more TFH, I also explored whether pilot age was associated with flight 

performance or eye scan pattern. 

1. Subject 18 

This pilot’s average air speed (116.9 KIAS) and ground speed (116.9 KIAS) were 

both within one standard deviation of the average air speed and ground speed of all of the 

pilots (109.80 KIAS, sd =  7.79 for both air and ground speed). However, Subject 18’s 

average radar altitude (310.6 feet, sd = 146.34), the main measure of flight performance 

was much higher than the average radar altitude for all of the pilots (195.0 feet, sd = 

57.64). At this higher altitude, it would have been difficult to pick out prominent land 

features that were more easily discernable at lower altitudes. Flying at a higher altitude 

during these flights was an issue, since the pilots were asked to simulate a tactical 

operating environment. That is, the lower altitude may have been necessary during this 

particular mission to increase the chance of survival. Subject 18's eye scan data was 
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examined to see if there was any explanation for Subject 18’s higher than average altitude 

during the flight. Subject 18 spent 60.1% of the flight scanning the instrument display 

compared to 58.4% (sd=19.6%) for all of the pilots. Airspeed control was the only other 

measure of pilot performance recorded during the trials. Subject 18 performed within the 

standard deviations for all of the pilots in this metric. From Table 10 and Figure 12, the 

only other possible explanation for the increased deviation is the high altitude Subject 18 

held throughout the flight. 

2. Subject 8 

Subject 8 reported a very low over land hour amount, just 100 hours, compared to 

the mean of all the pilots’ reported over land flight hours of 636.67 (sd = 386.24). Subject 

8 had 3400 total flight hours (mean of all pilots = 1273.18, sd = 881.01), and was by far 

the most experienced pilot of the group. 

 

 

Table 22.   Performance Data for Subject 8 

Table 22 shows that Subject 8 performed within a standard deviation with regards 

to scan rate, fixation, and the percent of time spent scanning the instrument display. 

Subject 8 spent a great deal more time scanning the map, and less time scanning out of 

the window than the other pilots. The “MAP” was actually the aircraft diagnostics page. 

No emergency situations were presented during the flight that would have caused Subject 

8 to devote more time scanning the diagnostics page than any other pilot. Also, the small 

amount of time she spent scanning out of the window is alarming. This indicates that 

Subject 8 flew the route primarily by referencing the flight instruments. 

Scan Rate Fixation Inst_Disp MAP OTW

Subj 8 2.06 0.86 38.96 57.66 3.37

Mean  2.30 0.82 58.43 7.40 34.17

SD 0.96 0.45 19.57 17.52 19.68
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3. Pilot Age 

From Figures 16 and 17, and Table 12 (Scan Rate and Fixation by Flight Hours), 

it appeared that pilots actually slow down their scan as they accrue more experience. 

There were a few possibilities for this initial discovery. One of the metrics available was 

each pilot’s age, which was given by each pilot when he or she filled out the pilot 

demographics survey. A pilot should accrue more flight time as they get older simply 

because they've had more years to fly (shown in Figure 29). Spearman's Rho indicated 

that there was not a significant (with 5%) association between total flight hours and pilot 

age (Spearman's  = .430, p = .063). 

 

 

Figure 29.   Total Flight Hours by Pilot Age 

With age, processing speed (how fast the brain works) slows down, and older 

pilots are no exception from this pattern (Taylor Kennedy, Noda and Yesavage, (2007); 

Kennedy, Taylor, Reade, and Yesavage (2010). ). Therefore, do the pilots in this study 

have a slower scan rate due to age?  Or was the slower scan and longer fixation time due 

to greater experience? Table 23 outlines the Spearman's correlations between these eye 
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scan parameters and age (see Figures 26 and 27). Again, the correlations do not exist with 

any significance, and Figures 30 and 31 show a very weak linear relationship in both 

cases. 

 

 

Table 23.   Association between Eye Tracking Parameters and Pilot Age 

 

 

Figure 30.   Scan Rate by Pilot Age 

 
 
 
 
 
 
 

Trend Spearman's RHO P‐value Sig. Trend? Type?

Median Dwell Times by Pilot Age 0.241 0.204 N Positive

Scan Rates by Pilot Age ‐0.139 0.317 N Negative
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Figure 31.   Median Time by Pilot Age 
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IV. CONCLUSION AND DISCUSSION 

A. DISCUSSION 

The research focused on scanning patterns in flight regimes that are not optimal: 

flight at high speeds and low altitude levels. For military helicopter pilots, maintaining a 

low altitude is crucial to maintain survivability in hostile environments, reducing the 

amount of time an enemy has to detect, track, and possibly destroy the helicopter. These 

flight parameters are unique to helicopter aviation. It was our hope to gain an 

understanding of the unique scan characteristics that might present themselves in this 

challenging arena of flight by investigating the relationship between a helicopter pilot’s 

experience level and his or her visual scan patterns during high-speed, low-level flight. A 

secondary goal of this thesis was to verify that FaceLab can be adapted for use in a 

simulator that is not in the laboratory environment. 

B. FLIGHT PERFORMANCE RESULT 

Flight performance typically is measured by adherence to flight path (i.e., RMS 

error in Caldwell, Jones, Carter and Caldwell, 1992), but Sullivan et al. (2011) found that 

levels of flight expertise did not predict RMS error of flight trajectory in helicopter 

overland navigation as well as it does in other aviation tasks. Based in part on the results 

in the Sullivan et al. paper, I decided to use mean altitude and altitude standard deviation 

as the main indicators of flight performance in this thesis, rather than RMS error. Pilots 

were instructed to stay between 100–300 feet above ground level and the average altitude 

and altitude standard deviation were the main measures of flight performance. Although 

all pilots maintained an average altitude of below 500 feet, more experienced pilots were 

better able to maintain a lower and more consistent altitude. These results are consistent 

with previous research findings that a pilot’s experience expressed as total flight hours is 

positively associated with flight performance (Wickens et al., 2003, and Soliday and 

Schohan, 1965). 
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C. VISUAL SCAN RESULTS 

Analyses of pilots' visual scans revealed a clear eye-scan pattern. Pilots spent 

most of their time scanning between out of the window and the instrument display. The 

map display, which was the aircraft diagnostics page, was not scanned often. The pilots 

were told not to expect adverse conditions with the aircraft, so the few scan shifts to and 

from the map display, combined with the relatively few fixations on the map display 

(Table 16), indicate that the pilots were not expecting anything to go wrong. Thus, with 

the exception of one pilot, they spent very little time worrying about the condition of the 

aircraft and concentrated on the navigation and maintaining the assigned flight 

parameters. 

D. HYPOTHESES RESULTS 

Results from tests of Hypotheses 1 and 2 were generally in the predicted 

directions, but did not reach significance. For Hypothesis 1, regarding the association 

between eye scan parameters and total flight time, the strongest trends were the amount 

of time pilots spend looking out of the window and looking at the instrument display. As 

flight experience increased, pilots spent more time looking at the instrument display than 

out of the window, swapping OTW scan time for more instrument scan time. Further 

evidence of this trend is that the more experienced pilots had more fixations on the 

instrument display than the less experienced pilots. These results agree with those found 

by Ottati et al. (1999) who found that novice pilots were more likely to fly scanning out 

of the window rather than relying on instrumentation to guide them through a 

navigational route. Sullivan et al. (2001) also found that the more experienced pilots 

scanned OTW less frequently than the less experienced pilots. 

To explore this idea further, I distinguished between fixations that lasted longer 

than 70 milliseconds and those that lasted less than this time cutoff (labeled “no 

fixations”). This time cutoff was used to determine when a person was clearly fixating on 

something versus just a visual skim. A fixation is an event in which a pilot takes more 

time to gather information from the area of interest. A fixation is not “staring”; it is 

merely an event in which the pilot dwells on the area of interest in an attempt to interpret 
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the information from it. This event can happen during OTW, IP or MAP dwells—the 

pilot could have seen something of interest that might take more time to interpret, or the 

pilot chooses to be more deliberate in the time he scans each area of interest. Exploratory 

analyses revealed that the amount of “no fixation” events significantly decrease with 

regard to pilot experience. This trend is consistent with the result that the more 

experienced pilots had more fixations than the less experienced pilots. Both Bellenkes et 

al. (1997) and Karsarkis et al. (2001) found results that were similar; they found that 

experts tended to have more fixations. 

Hypothesis 2 addressed the association between eye scan parameters and flight 

performance. A negative correlation between the average dwell percentages for OTW 

with altitude deviation showed that pilots who spent more time looking OTW had overall 

poorer performance in maintaining a constant altitude, a result similar to that found by 

Karsarkis (2001). No other correlations approached significance. The lack of strong 

correlations between flight performance and other eye scan parameters parallels the 

findings of Sullivan et al. (2011) who reported that eye scan parameters did not predict 

RMS error. 

Hypothesis 3 was designed to investigate CFIT occurrence. However, no CFIT 

events occurred, so I was unable to test this hypothesis. With more subjects, the 

probability of a crash occurring may increase but, given the experience levels of the 

participants and the relatively low task load placed on them during the flight, such a crash 

was unlikely. These pilots were very familiar with the route because they had flown it 

many times on their routine training flights. Future research should consider making the 

simulated flight route sufficiently challenging to "induce" CFIT events. 

E. EXPLORATORY ANALYSES 

The relationship between scan patterns, average dwell time and pilot age was 

investigated in the exploratory analyses section of Chapter Three. As expected, there was 

a trend for a positive correlation between flight hours and pilot age. Older pilots typically 

have had more time to accrue flight hours (Taylor et al., 2007). Analyses revealed that the 

correlations between (1) the eye tracking parameters and total flight hours and (2) eye 
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tracking parameters and pilot age were very similar. The exceptions were two "older” 

pilots, a 33-year old with 350 hours and another 33-year old with 975 hours. These pilots 

may have entered flight school at an older age when compared to their peers, thereby 

falling a little behind their peers in terms of flight hours. The pilot with 350 hours had a 

scan rate and dwell time within a standard deviation of the group means, but the pilot 

with 975 hours had a scan rate and mean dwell time greater than one standard deviation 

difference above the group means. 

Two case studies were investigated. Subject 18 had a higher than average altitude 

standard deviation than the other pilots in the study. The most experienced pilot in the 

study, Subject 8, had a large amount of dwell time on the Map display—a value far 

greater than any other pilot in the study. In both cases the data from FaceLab was cross-

referenced with simulator performance data to investigate possible causes for differences 

in performance. While the results were inconclusive in both cases, two sources of data 

were successfully integrated and cross-referenced. The integration of the two systems 

was one of the goals of the study. 

F. LIMITATIONS 

One likely reason for the failure to reject the null hypotheses is the small sample 

size. Although 17 subjects participated in the study, the effective sample size ranged 

between 12 and 15 pilots, depending on the analyses. Two of the subjects’ data were lost 

when the simulator’s de-brief system failed to record their performance parameters. The 

FaceLab data for three more subjects was determined to be inaccurate, in that the eye 

tracking system was unable to record the pilot’s eye and head movement for a significant 

duration of the flight. When the trend analyses were performed on the performance data 

or the eye tracking data separately, only 15 of the subjects’ data were available for the 

performance evaluation, and only 14 of the subjects’ data were available for trend 

analysis on the eye tracking data. When the eye tracking data was compared to the 

performance data, only 12 of the subject’s data were available for testing. 
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G. STRENGTHS 

The major strengths of this study were the demographic characteristics of the 

sample of pilots and the flight simulator used. The pilots represented a wide range of 

flight experience in terms of flight hours (min 350, max 3400) and were all in the midst 

of an operational flying tour. Thirteen of the pilots had all flown within a month of the 

trials, and only three pilots had more than one month away from flying (max two months 

since last flight). Many of the studies cited in Chapter One drew from populations 

consisting of only civilian pilots. This study was successful in acquiring pilots from a 

military helicopter community that specializes in low-level, high-speed flight. 

TOFT-2, the simulator used in this study was actually being used for military 

helicopter training at the time this study was conducted. The simulator was also an exact 

replica of the aircraft flown by all of the pilots in this study. At the time of this study, 

TOFT-2 was still being used for training and evaluation of fleet pilots. All of the pilots in 

the study had experience in the kind of simulator TOFT-2 represented. Also, TOFT-2’s 

video graphics were representative of the area where the pilots operate and train in: 

eastern San Diego. The research team was successful in showing that FaceLab could be 

installed in an operational fleet simulator and produce usable data for analysis. This was a 

major goal of the research effort. 

These characteristics, the sample and the flight simulator, provide insight into 

how the use of psycho-physiological measures, such as eye tracking, can be used to aid 

training effectiveness specific to military helicopter missions, particularly in high-speed, 

low-level flight in visual conditions. The combination of flight simulator performance 

measures and eye-tracking parameters can be particularly useful in understanding why 

pilots exhibit certain performance levels. The studies by Bellenkes et al. (1997) and Ottati 

et al. (2001) both used military flight simulators in the same fashion, but only the study 

by Sanders et al. (1979) used a military simulator that was designed to emulate a 

helicopter (the UH-1). This study is one of the few that focuses only on military 

helicopter pilots flying in conditions that only they will encounter in their day-to-day 

operations. 
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H. IMPLICATIONS OF THE RESULTS 

The information gained from understanding eye scan pattern during flight at high 

speeds and low altitude levels could be used in the development of a viable Heads-Up 

Display (HUD) for the MH-60S. Table 16 shows that pilots spent some of time (35%) 

fixating on the instrument display. Those who spent more time looking OTW were less 

likely to maintain constant altitude. Given that the instrument display provides valuable 

information, yet the pilot also needs to regularly look OTW, the HUD would greatly 

narrow the distance that pilots would have to scan between OTW and the instrument 

display. It would allow pilots to keep their scan outside while still gaining valuable flight 

and navigation data from the HUD. The instrument display information coupled with 

limited aircraft diagnostics data would greatly reduce the amount of time a pilot would 

have to divert his scan from the outside world. Indeed, Mumaw et al. (2001) came to 

similar conclusions and results from their study using informed instrumentation to set up 

training programs. 

I. SUMMARY 

In sum, results from this research may aid training effectiveness: spending more 

time looking at the instrument display and less time looking OTW aids maintenance of 

altitude in today's helicopter. Long looks OTW may be particularly detrimental in 

maintaining low-level altitude. Now guidelines can be created based on knowing how the 

more experienced pilots scan while flying at low altitude levels. Because it is apparent 

that navy helicopter pilots are flying approximately half of their total flight time over the 

land, it is critical to understand the scan patterns of the more experienced pilots while 

they are flying in this regime and pass that knowledge on, in the form of structured 

training, to the pilots of the future. Training syllabi are often “written in blood.”  This is a 

common saying in the aviation world, describing how most training manuals are written 

by examining the mistakes of other aviators. Being able to write training manuals based 

on science and research is far preferable than waiting for another mishap to happen. 

J. RECOMMENDATIONS 

Several recommendations are made to improve any future studies in this area. 
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1) The amount of data collected throughout the duration of this study from the 

combined sources of the surveys, the simulator, and the FaceLab system presents more 

than enough material for further testing and comparison. This study focused primarily on 

experience level as defined by total flight hours. Additional analyses can be done 

comparing eye scan patterns with the amount of overland flying time, or the type of 

missions the pilots flew for the majority of their careers. 

2) As discussed above, the small sample size was the main limitation of the study. 

There were many reasons the sample size was limited to 17 overall. Training 

commitments in the simulator, operational commitments of the squadron, and the fact 

that TOFT-2 was scheduled for decommissioning all contributed to the short amount of 

time allotted for the study. A dedicated time for the simulator use, in that the simulator 

would be used only to facilitate the study, is key to establishing a larger participant base. 

All commands involved were very supportive in lending pilots to the study. That being 

said, it was impossible for anyone to foresee the operational and training commitments 

that were placed on the pilots on a day-to-day basis. Some pilots were unable to make 

their scheduled times due to extended flights, or shifts in the flight schedule. A challenge 

for the next study team will be trying to eliminate these cancellations. 

3) The simulated conditions used in this study were the same for every 

participant. All flights were conducted during the daytime hours, with no added weather 

effects. Further research could be conducted as to how pilots will scan given they are 

flying in inclement weather, at night, or a combination of inclement weather at night. 

This variation might give further insight into the efficiency or inefficiency of the layout 

of cockpit displays, given the changes seen when pilots are asked to fly in situations that 

increase the demands placed on them by the environment. 

4) A goal should be to get eye-tracking technology integrated into an actual 

aircraft cockpit. This integration will require approval and coordination between various 

agencies within the Navy, but the benefits of having the system in an actual aircraft 

would be noteworthy. While modern simulators are realistic in their motion and visual 

graphics, there is no substitute for the real thing. The primary difference is that mistakes 

that would usually prove fatal in the aircraft are only result in the “red screen of death” in 
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the simulator. Pilots may fly the simulator differently than they would the actual aircraft. 

Any results obtained in any cockpit other than that of the actual aircraft will still have the 

term “simulated” in front of them, which is why this experiment is a crucial first step 

towards the incorporation of this technology into an actual aircraft, to see how helicopter 

pilots scan during actual flight. 

5) Looking in to the future, with the hope that a Heads-Up-Display will be 

incorporated into rotary-winged aircraft, studies using FaceLab-type technology can be 

used to determine the benefits of using HUD technology. These results, when compared 

to the scan patterns analyzed from a non-HUD equipped aircraft, could add further 

evidence that HUDs will indeed improve flight safety by reducing pilot cognitive task 

loading. 
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APPENDIX A 

A. QUESTIONNAIRES 

Analysis of Helicopter Pilot Scan Techniques: 
Simulation Exercise Evaluation 
Flight Experience Questionnaire 

 
Please provide the following information. 
 
1. Profile Information 
 
Age     Gender      Rank 
 
 
2. The following questions ask about your flight experiences. 
 

Total flight hours: 
 
Overland hours: 
 
Branch of Service: 
 
Community: 
 
Years of aviation experience: 
 

 
3. How many months has it been since your last flight? 
 
 
 
4. How many months has it been since your last overland navigation flight? 
 
 
 
5. Would you qualify the bulk of your flying experience as: (circle one)  
     Maritime   Overland 
 
 
6. Describe your operational flying experience:  
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Analysis of Helicopter Pilot Scan Techniques: 

Simulation Exercise Evaluation 
Navigation Questionnaire 

 
We are interested in learning about your navigation experience. The following questions ask about your navigation 
experiences. 
 

1. To what extent have you participated in activities other than overland navigation that may contribute to improved navigation 
skills? (Examples may include sport orienteering, land navigation exercises, boy/girl scouts etc.)? 

    
No  

Related 
Experience 

Very Limited 
Related 

Experience 

Limited  
Related 

Experience 

Somewhat 
Significant 
Experience 

Significant 
Related 

Experience 
 
2. At your peak of currency, how would you rate your navigation skills in a low-level (below 200’ AGL) overland environment? 

    
Poor Fair Average Good Excellent 

 
3. If tasked today, how would you rate your navigation skills in a low-level (below 200’ AGL) overland environment? 

    
Poor Fair Average Good Excellent 

 
4. How much experience do you have with low-level navigation in mountainous desert terrain? 

    
None Very Little Somewhat Considerable Extensive 

 
5. How much low level navigation experience do you have in the Southern California operating area? 
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An Analysis of Helicopter Pilot Scan Techniques: 
Simulation Exercise Evaluation 

Post-Task Questionnaire 
 
 

Please answer the questions below regarding how difficult you found the navigation and target detection tasks. 
 

1. How difficult was it to navigate the route while maintaining the assigned parameters? 
    

Not At All 
Difficult 

Somewhat 
Difficult 

Moderately 
Difficult 

Very 
Difficult 

Extremely 
Difficult 

 
2. Describe any strategies that you used to stay on course and within the assigned flight parameters. 
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Please use the scale below to answer the questions 3–5. 
 
 
                            
       Completely          Somewhat             Moderately                         Very                Not At All 
           Trivial           Difficult                 Difficult                   Difficult                 Possible 

                                                                                                                                                                       
 

3. For each navigation leg on the route, please rate how difficult it was to navigate by referencing terrain. Place an “X” on the 
line that best describes your experience. No response is necessary for the shaded regions. 

 Navigation Only 

Leg 1 
 

 

 

Leg 2 
 

Leg 3 
 

Leg 4 
 

Leg 5 
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Leg 6 
 

Leg 7 
 

Leg 8 
 

Leg 9 
 

Leg 10 
 

Leg 11 
 

Leg 12 
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4. How confident are you that you flew within the assigned parameters? 
 Navigation  

  
Very                                Moderately                            Not At All 

Confident                            Confident                              Confident 

 

 
5. How confident are you that you correctly navigated the course? 
 Navigation  

              
Very                                Moderately                            Not At All 

Confident                            Confident                              Confident 
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APPENDIX B 

A. [R] CODE FOR DATA ANALYSIS 

[R] code used to process the Face Lab timing files. 
 
# Function to process the timing files, function process.timingfiles: 
 
function(filename){ 
# read in the file 
thisline = 
paste("C:/Users/Nex/Documents/NPS/thesis/Resultsandwriteups/inputfiles/",filename,sep
="") 
thisinfile = read.csv(thisline, header = T) 
attach(thisinfile) 
# create the outfile for this subject 
thisoutfile = paste("out_",filename,sep="") 
thisoutlocation = 
paste("C:/Users/Nex/Documents/NPS/thesis/Resultsandwriteups/outputfiles/",thisoutfile,
sep="") 
# start creating the file for each category 
#x = summary(FRAME_NUM) 
#n = length(x) 
#write(names(x),thisoutlocation,ncolumns = n,append=T,sep=",") 
#write(x,thisoutlocation,ncolumns = n,append=T,sep=",") 
colsinfile = length(names(thisinfile)) 
write(names(thisinfile),thisoutlocation, ncolumns = length(names(thisinfile)), append = 
T, sep = ",") 
n = length(FRAME_NUM) 
for (i in 1:n){ 
 if (ANNOTATION_ID[i] != -1){ 
  thislinetowrite = 
c(FRAME_NUM[i],EXPERIMENT_TIME[i],GMT_S[i],GMT_MS[i],DELAY[i],ANN
OTATION_ID[i]) 
  write(thislinetowrite,thisoutlocation,ncolumns = colsinfile,append = T, sep 
= ",") 
 } 
} 
} 
#end of function 
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timinginfiles <- 
c("Timing_subj7.csv","Timing_subj8.csv","Timing_subj11.csv","Timing_subj12a.csv","
Timing_subj12b.csv","Timing_subj12c.csv", 
"Timing_subj13a.csv","Timing_subj13b.csv","Timing_subj14.csv","Timing_subj15.csv",
"Timing_subj16.csv","Timing_subj18a.csv","Timing_subj18b.csv", 
"Timing_subj19.csv","Timing_subj20.csv","Timing_subj21a.csv","Timing_subj21b.csv",
"Timing_subj23.csv","Timing_subj25.csv","Timing_subj26.csv", 
"Timing_subj28.csv") 
timinginfiles <- c("Timing_subj22.csv") 
m = length(timinginfiles) 
for (i in 1:m){ 
 process.timingfiles(timinginfiles[i]) 
      cat("***!!!file ",timinginfiles[i]," complete!!!***","\n") 
 } 
 
 
[R] code used to process the Face Lab world view files. 
 
# Function process.worldviewfiles: function for reading in, truncating, and producing a 
summary of a world view  
 
function(filename){  
# read in the file 
thisline = 
paste("C:/Users/Nex/Documents/NPS/thesis/Resultsandwriteups/inputfiles/",filename,sep
="") 
thisinfile = read.csv(thisline, header = T) 
attach(thisinfile) 
# create the outfile for this subject 
thisoutfile = paste("out_",filename,sep="") 
thisoutlocation = 
paste("C:/Users/Nex/Documents/NPS/thesis/Resultsandwriteups/outputfiles/",thisoutfile,
sep="") 
# start creating the file for each category 
x = summary(ITEM_NAME) 
n = length(x) 
write(names(x),thisoutlocation,ncolumns = n,append=T,sep=",") 
write(x,thisoutlocation,ncolumns = n,append=T,sep=",") 
#x = summary(FRAME_NUM) 
#n = length(x) 
#write(names(x),thisoutlocation,ncolumns = n,append=T,sep=",") 
#write(x,thisoutlocation,ncolumns = n,append=T,sep=",") 
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headers = c("Frame number","Change from", "To") 
write(headers,thisoutlocation, ncolumns = 3, append = T, sep = ",") 
n = length(FRAME_NUM) 
thisitem = ITEM_NAME[1] 
for (i in 2:n){ 
 if (ITEM_NAME[i] != thisitem){ 
  thislinetowrite = c(FRAME_NUM[i-1],thisitem,ITEM_NAME[i]) 
  write(thislinetowrite,thisoutlocation,ncolumns = 3,append = T, sep = ",") 
 } 
 thisitem = ITEM_NAME[i] 
} 
} 
#end of function 
 
# next, write a loop for all of the files using the worldview function to read them in: 
 
#wvinfiles <- c("Wv-subj7.csv","Wv-subj8.csv","Wv-subj11.csv","Wv-subj12b.csv", 
#"Wv-subj13a.csv","Wv-subj14.csv","Wv-subj15.csv","Wv-subj16.csv","Wv-
subj18b.csv", 
wvinfiles <- c("Wv-subj19.csv","Wv-subj20.csv","Wv-subj21a.csv","Wv-
subj21b.csv","Wv-subj23.csv","Wv-subj25.csv","Wv-subj26.csv", 
"Wv-subj28.csv","Wv-subj22.csv") 
 
#wvinfiles <- c("Wv-subj11.csv") 
m = length(wvinfiles) 
for (i in 1:m){ 
 process.worldviewfiles(wvinfiles[i]) 
 cat("***!!!file ",wvinfiles[i]," complete!!!***","\n") 
 } 
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APPENDIX C 

A. EQUATIONS 

Trend analyses were done using the measures of rank correlation outlined in 

Conover’s Practical Nonparametric Statistics (1999). The type of test for trends used 

was Spearman’s Rho (Conover, 314). The tests used the data based on bi-variate samples 

to see if a trend existed as the one sample is ranked according to the other. Rho ( ) is 

computed using the following equation (Conover, 315): 

 

 represented the rank of the value from the sample X (the same held for 

). The value n represented the sample size. A negative Rho value indicated an 

inverse relationship, a positive value indicates a direct relationship. For example, a 

negative Rho value indicated that altitude standard deviation decreased as pilot 

experience increased. 

Helicopter group analyses utilized a two sample t-test assuming unequal 

variances, using the following equation (Devore, 337): 

 

and represented the means of each sample, and represented a value of the 

difference of the means of the two samples (in all cases for these tests,  was 0). The 

values and represented the standard deviations of the two chosen sample groups. m 

and n were the sizes of each group. 

The scan direction data was analyzed using paired t-tests in [R], which uses the 

following equation (Devore, 345): 
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was the mean of the differences of the two samples. represented the value of the 

difference in the means to be tested (0). The standard deviation of the differences of the 

means of the two samples was represented by in this equation. Finally, n represented 

the sample size, which was equal between the two groups. 
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