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ABSTRACT 

Due to the United States’ dependency on maritime travel, the proliferation of efficient 

and inexpensive naval mines poses a tremendous risk.  Current MCM technologies have 

narrow FOVs, preventing timely, wide-area searches.  These technologies require the 

operator to be in proximity to the targets, a dangerous scenario made worse when in 

denied territory. 

In an effort to mitigate these risks, the use of a high altitude hyperspectral sensor 

is proposed.  The operational ability of a hyperspectral sensor to detect sub-pixel surface 

and submerged mines in non-littoral environments was evaluated using visual inspection 

and two common anomaly detectors: Mixture Tuned Matched Filtering (MTMF) and 

Reed-Xiaoli (RX).  Due to the unavailability of the DoD’s Spectral Infrared Imaging 

Technology Testbed (SPIRITT), ProSpecTIR-VS3, a sensor similar spatially and 

spectrally to SPIRITT was flown over a range offshore California.  This experiment 

included three surface and three submerged targets, each with a 0.8 meter diameter.  Both 

0.5 and 1 meter spatial resolution data were collected, allowing for both a resolved and 

unresolved analysis. 

While both anomaly detection techniques have their flaws, the success of this 

study is in proving the usefulness of hyperspectral data for sub-pixel mine detection. 
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I. INTRODUCTION 

. . . when you can’t go where you want to when you want to, you haven’t 
got command of the sea.  And command of the sea is a rock-bottom 
foundation for all our war plans. – Admiral Forrest Sherman, 1950 
(Program Executive Office Littoral and Mine Warfare, 2009, p.5) 

Due to the United States’ dependency on both international and domestic 

maritime travel, the proliferation of efficient and inexpensive naval mines poses a 

tremendous risk.  More than 50 nations have the ability to effectively shut down 

waterways with naval mines.  These weapons are easy to produce and according to recent 

published reports, global stockpiles are surging.  Many recent national directives, 

including the U.S. National Strategy for Maritime Security, National Strategy for 

Homeland Security and National Infrastructure Protection Plan call for the improved 

ability to detect and neutralize threats to the maritime community, particularly sea mines.   

Current United States Mine Countermeasure (MCM) detection tactics require the 

use of side scan sonar, multibeam bathymetry or airborne light detection and ranging 

technologies.  These sensors, although effective and accurate, have key operational 

limitations: they require the collection platform to be in close proximity to the targets and 

have narrow field of views, preventing timely, wide-area surveys.  Under even the most 

ideal scenario, having vessels in the water near mines or aircraft operating at low 

altitudes creates an extreme risk to the vessel and the operator.  In a more realistic 

scenario, the target mines will be within a denied territory.  This would increase the risk 

to both an airborne and water-based asset.  Recent developments in high altitude spectral 

imaging may allow for timely, wide-area surveys to detect mines in denied territories. 

Using data collected by a variety of multispectral and hyperspectral imagers, 

Winter (2008) explored the feasibility of using a Reed-Xiaoli anomaly detection 

algorithm and a signature-based pixel unmixing algorithm to locate both sub-pixel and 

fully resolved mines in a variety of land-based backgrounds.  The data for this test were 

collected at high and low resolutions in order to analyze spatially unresolved and 

resolved targets.  Both of the detection techniques worked flawlessly on the high 



2 

resolution data as the mines were spatially resolved.  The tests had no false negative and 

no false positives.  For the low resolution data, with sub-pixel, spatially unresolved 

targets, Winter (2008) used the Invariant Subspace Method (ISM) algorithm.  This 

technique is similar to mixture tuned matched filtering (MTMF), and was designed by 

Healey and Slater (1999) to use “a physical model to generate the set of sensor spectra for 

a target that will be measured over a range of conditions” (Winter, 2008, p.69530R-6).  

The results of this test, while not as robust as the spatially resolved test, were 

encouraging.  The ISM algorithm was able to detect 50% of the mines, with no false 

positives (Winter, 2008).  A similar analysis will be done later in this report, using an RX 

anomaly detector and MTMF analysis technique.   

The purpose of this paper is to determine the operational ability of an airborne 

hyperspectral sensor, spatially and spectrally similar to current Department of Defense 

sensors, including the Spectral Infrared Imaging Technology Testbed (SPIRITT), to 

quickly and accurately detect spatially unresolved, sub-pixel mines.  The specific targets 

in this experiment were both surface and submerged (up to 3 meters) mines in deep water 

(i.e. non-littoral) conditions.  In an effort to detect them quickly, a basic anomaly 

detection wizard was run using ENVI, a common image processing software.  Two 

common hyperspectral detection algorithms were evaluated: the Mixture Tuned Match 

Filter and the Reed-Xiaoli anomaly detector.  The results of Sandersfeld (2012), done 

concurrent to this study using multispectral WorldView-2 data of the target range, were 

compared to the results of this paper.   

Chapter II of this paper will discuss the background elements to this study, with a 

brief history of mine warfare.  This will give the reader an understanding of the extreme 

risk posed by mines and why detecting them should a priority.  Chapter II will then 

describe the physics of hyperspectral imaging as well as give a brief overview of 

common anomaly detection algorithms.  Chapter III will give a detailed description of the 

data collection process and the arranged test.  Chapter IV will discuss how the data was 

processed, while Chapter V will show the results.  Finally, Chapter VI will provide 

conclusions to the study and suggest further research to be done in this field.   
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II. BACKGROUND 

A. SEA MINES 

1. History 

The origins of sea mine warfare have been linked to the “Greek Fire” used by the 

Byzantine fleet in 673 AD (PEO LMW, 2009) and the earliest published description of 

the modern sea mine dates back to the 14th century and the Ming Dynasty.  In the 

military treatise Huolongjing, famous for its early description of gunpowder weapons, 

Chinese military officers Jiao Yu and Liu Ji first described the concept of the naval sea 

mine (mine) (Needham & Wang, 1954).  Over 400 years after first appearing in printed 

work, the mine became a practical weapon in 1776.  During the American Revolutionary 

War, David Bushnell, an American inventor known for developing the first combat 

submarine, created a mine by sealing a wooden keg full of gunpowder and floating it 

down the Delaware River towards British Warships.  These mines had a negligible 

impact during the American Revolution, but as developments continued, the mine 

became an effective weapon during the wars since (PEO LMW, 2009).   

Modern naval mines were developed by Immanuel Nobel for Russia’s use in the 

Crimean War (1853–1856).  His expertise using nitroglycerin and gunpowder made 

mines reliable and devastating weapons that denied British naval ships access to the 

strategic Gulf of Finland (Brown, 1990). 

Initially written off as an “un-chivalrous” form of warfare, naval mining started to 

become more common during the American Civil War (1861–1865) (Gilbert, 2001).  In a 

statement regarding the Confederacy’s growing use of mines, Rear Admiral David 

Farragut of the United States Navy (USN) wrote, “I have always deemed it unworthy of a 

chivalrous nation, but it does not do to give your enemy such a decided superiority over 

you” (PEO LMW, 2009, p. 3).  Confederate mines destroyed 59 ships during the war, 

including 11 of their own (PEO LMW, 2009). 
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Mines impacted the Spanish-American War (1898), the Russo-Japanese War 

(1904–1905), both of the World Wars (1914–1918 and 1939–1945), the Korean War 

(1950–1953), the Vietnam War (1955–1975), the Iran-Iraq War (1980–1988) and the 

Gulf War (1990–1991).  During World War II, German U-boats placed mines along the 

United States and Canadian coasts, causing the closure of many ports.  As part of 

Operation Starvation in 1945, the U.S. mined Japanese waters, destroying almost 800 

Japanese vessels and shutting down nearly all Japanese maritime commerce.  Post-World 

War II, four times as many USN vessels were damaged or sunk by mines than any other 

attack.  This started during the Korean War when 14 vessels were severely damaged or 

destroyed by mines, accounting for 78% of the damaged vessels and over 20% of Navy 

causalities during the conflict.  In order to deny access to North Vietnam ports, the 

United States laid thousands of mines during the Vietnam War, stopping all maritime 

trade.  During the Iran-Iraq War and Gulf War, the belligerents heavily mined the 

Arabian Gulf and the Strait of Hormuz, causing damage to numerous vessels, including 3 

USN ships (PEO LMW, 2009).  

In the 5 years between the end of the Gulf War in 1991 and a report published by 

the United States Senate Armed Services Committee on Expeditionary Warfare in 1996, 

the number of mines stockpiled globally had increased by over 50%.  Currently, global 

inventories include over 250,000 mines with more than 50 nations having the ability to 

mine waterways.  At least 30 nations are producing 300 different types of mines and 

more than 20 nations are exporting mines (PEO LMW, 2009).   

2. Tactical Advantages 

a. Cost Effectiveness 

Sea mines are a cost-effective form of warfare, achieving excellent results 

via an asymmetric warfare campaign.  They are easy to place from aircraft, small boats, 

large ships, divers or even trucks.  Compared to the amount of damage they can do to a 

vessel, mines are not expensive to manufacture or purchase.  The SADAF-02 Russian-

made and Iranian placed mine that struck the USS Samuel B. Roberts during the Iran-Iraq 
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War in 1980 cost approximately $1,000, but was able to inflict over $96 million in 

damage (PEO LMW, 2009).  Similarly, during the 1991 Gulf War, the Iraqi-made 

LUGM-145 and Italian-made Manta mines that damaged the USS Tripoli and USS 

Princeton collectively cost less than $25,000 to manufacture, but inflicted over $20 

million in damage to the vessels (Rios, 2005). 

b. Denial of Access 

The effectiveness of mines has never been limited to just their ability to 

damage and / or sink vessels, but their ability to effectively control bodies of water by 

limiting or slowing naval movements (Truver, 2011).  This is particularly effective in 

narrow bodies of water such as bays and harbors.  Twice since the end of World War II 

the presence of enemy mines has prevented United States military operations.  In 1950, 

during the Korean War, North Korean mines delayed the landing of U.S. and United 

Nations (U.N.) forces in Wonsan bay for almost a month, allowing enemy soldiers to 

escape.  The frustrated commander of the task force, Rear Admiral Allen E. Smith would 

later summarize the tactical advantage of mining, bemoaning that, “[U.N. forces had] lost 

control of the seas to a nation without a navy, using pre-World War I weapons, laid by 

vessels that were utilized at the time of the birth of Christ” (PEO LMW, 2009, pp. 4–5). 

After two USN vessels were damaged by mines during the Gulf War in 1991, plans for 

an amphibious assault on Kuwait City were cancelled for fear of Iraqi mines (PEO LMW, 

2009).   

c. Psychological Effects 

Just the threat of deployed mines is psychologically powerful enough to 

deny enemy combatants access to a body of water.  In fact, “about 90% of all mine 

hunting and sweeping operations have been conducted in areas in which mines have not 

been deployed” (PEO LMW, 2009, p. 22).  In response to the Soviet grain embargo in 

January of 1980 an unknown person claimed to have laid a mine in the Sacramento River, 

an important shipping waterway in Northern California.  The threat caused the complete 

closure of the river for four days as a navy mine-sweeping team searched the river.  No 
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mine was ever found and the threat was deemed a hoax, but the cost to maritime shipping 

was estimated to be hundreds of thousands of dollars (PEO LMW, 2009).   

3. Types of Mines 

Mines can be created in a variety of forms, but are traditionally divided into a few 

different categories, including bottom mines, limpet mines, drifting mines and moored 

mines.  Each mine type is designed for use in certain locations.  Moored mines, for 

instance, are designed to float and are moored to the seafloor.  These mines are used 

mostly in littoral zones and shallow water.  Bottom mines are placed on the seafloor and 

are thus used primarily in littoral zones and at shallow depths.  These mines are also 

placed in deeper water in order to target submarines.  Limpet mines are placed directly on 

the hull of the target vessel and rigged with a detonator.  These mines can be used in any 

water depth, but require a diver to place them.  Drifting mines are buoyant and float at, or 

just below the surface.  These mines are found at any water depth and are especially 

dangerous as they are intended to drift with the current.  As such, their exact location and 

course cannot be determined or controlled.  Although the use of drifting mines violates 

the International Hague Convention of 1907, they are still commonly used by countries 

such as Iran and Iraq (Rios, 2005). 

Each of these mine types have various trigger mechanisms, including chemical 

horns that trigger on contact, command mines, which can be detonated by remote control 

and influence mines which trigger based off of built in sensors.  Influence mines may use 

seismic, acoustic, pressure or magnetic sensors to determine when a target is within range 

(PEO LMW, 2009).  The development of computers and sensors has allowed mine 

triggering mechanisms to become more sophisticated. 

4. Mine Countermeasures: Detection 

Although mine countermeasure (MCM) doctrine consists of detection, 

classification and neutralization (Potter, 1999), this research focuses on the detection 

aspect of MCM. 
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a. Brief History 

The first recorded use of mine detection and minesweeping tactics 

occurred one hundred years after David Bushnell invented the practical mine.  During the 

American Civil War, mine sweeping rafts were created by Union forces.  These rafts 

were made of wood and constructed with grappling hooks in order to catch the lines of 

moored mines.  Soldiers on the rafts would look for mines and then steer their vessels 

toward them with hopes of catching them.  Although the vessels themselves improved, 

similar in-field searches and grappling hook recoveries were done until World War II.  

By the 1940s, the development of acoustic and pressure trigger mechanisms outpaced 

detection technologies and compelled MCM forces to use the “guinea pig” approach of 

sending in a lead ship to “find” mines (Borden, 2000).   

The advancement of sensor technology for mine detection began in the 

late 1970s and early 1980s, with promising research using helicopter-towed side-scan 

sonar.  Side-scan sonar was first used operationally in 1984 to clear mines in the Red Sea 

and the Gulf of Suez that had been placed by Libyan dictator Muammar Gaddafi.  Rapid 

developments during the 1980s and 1990s due to various conflicts in the Arabian Gulf 

lead to the present technologies in use today (Borden, 2000). 

b. Current Technology 

The stalwart of the USN sonar fleet is the SQQ-32 side-scan sonar which 

can be mounted on a variety of platforms, including the SLQ-48 submersible.  This 

system is designed to locate moored, tethered or proud bottom mines (PEO LMW, 2009).   

For airborne mine detection, the USN operates the MH-53E Sea Dragon 

helicopter with its suite of aerial MCM tools.  The AQS-24 multibeam sonar is the 

primary mine detection sensor operated by the helicopter.  Other  devices onboard the 

helicopter are used to both detect and neutralize simultaneously, including the Mk 105 

magnetic sweep, which is towed behind the helicopter and produces a magnetic signature 

in order to force magnetic influence mines to detonate.  The MH-60S helicopter deploys 

the USN’s airborne laser mine detection system (ALMDS), a light detection and ranging 
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(LiDAR) device with the ability to detect both surface and subsurface mines (PEO LMW, 

2009).  Since the late 1990s, MCM strategy has included the use of the Coastal 

Battlefield Reconnaissance and Analysis (COBRA) system, a multispectral video camera 

operated on an unmanned aerial vehicle (UAV) (Witherspoon, Hollway, Davis, Miller, & 

Dubey, 1995).  BAE Systems and the Naval Surface Warfare Center have recently 

expanded the spectral toolset of MCM with the development of the Tactical Multispectral 

Imager (TACMSI) (Louchard, Farm, & Acker, 2008).  Both of these multispectral 

cameras were designed for use at low altitudes over littoral zones (Witherspoon et al., 

1995; Louchard et al., 2008).   

Navy explosive ordinance disposal divers support MCM detection, using 

both visual identification and hand held sensors to locate mines.  Marine mammal 

systems, including trained bottle nose dolphins and sea lions successfully detected and 

neutralized mines during previous Arabian Gulf hostilities (1988, 1991–1992 and 2003) 

(PEO LMW, 2009). 

Other sensors currently being used to detect mines, both academically and 

operationally, include electromagnetic induction arrays (Barrow & Nelsen, 2001; 

Malinici, 2004), magnetic gradiometers (Funk, Feldpausch, & Bridge, 2011; Malinici, 

2004) and synthetic aperture sonars (Hayes & Gough, 1999). 

In recent years the used of unmanned platforms has increased, including 

remotely operated vehicles (ROV) (both aerial and water-based), automated underwater 

vehicles (AUV), and UAVs.  The USN operates the Remote Multi-Mission Vehicle 

(RMMV), a semi-autonomous underwater vehicle that uses the AQS-20A side-scan sonar 

and the AUV Remote Environmental Measuring Unit (REMUS) (von Alt et al., 2001). 

While the remote sensing technologies discussed above are reliable and 

effective techniques for detection of sea mines, they also have important limitations.  

Each system has a relatively narrow field of view, hindering timely, wide-area searches.  

Operating a majority of these sensors requires the operator to be placed in harm’s way, 

especially if the targets are within a denied territory.  The airborne-based technologies 

(LiDAR) require low altitudes for the resolution necessary to identify mines and the 
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water-based technologies (side-scan sonar, multibeam bathymetry) require a vessel to be 

in the minefield.  Systems mounted on AUVs and UAVs may not place soldiers in 

danger, but have limited operating ranges, further narrowing their search field.  Recent 

developments in high altitude spectral imaging may allow for timely, wide-area surveys 

to detect mines in denied territories.  

B. HYPERSPECTRAL 

1. Theory 

To understand how hyperspectral imaging (HSI) works, one must first examine 

the fundamentals of the electromagnetic spectrum.  Light is a form of electromagnetic 

wave and its characteristics are defined by its wavelength.  The wavelengths of visible 

light range from 400 to 700 nanometers (nm), near-infrared wavelengths range from 700 

to 1100 nm and short wave infrared wavelengths range from 1400 to about 3500 nm 

(Jensen, 2008).  Figure 1, taken from Shippert (2003) shows the electromagnetic 

spectrum.  Note the called-out section from 400 to 700 nm that denotes the visible 

spectrum.   

 

Figure 1.   The electromagnetic spectrum (From Shippert, 2003) 

When an electromagnetic wave interacts with a surface it is absorbed by the 

material, diffusely reflected (scattered) or transmitted through the material (Lillesand & 

Kiefer, 2000).  Imaging spectrometers are passive sensors that measure the intensity of 

the reflected waves at various wavelengths by using a prism to split the reflected light 

into individual narrow bands (Jensen, 2008).  Hyperspectral spectrometers are imaging 

spectrometers with the ability to simultaneously record hundreds of individual narrow 
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(typically 10 nm in width) bands (Goetz, 1996).  More specifically, according to Goetz 

(1992), hyperspectral imaging is defined as the acquisition of images in hundreds of 

contiguous spectral bands with an ultimate goal to produce a complete reflectance 

spectrum for each pixel in an image.  Taken literally, hyperspectral means “too many 

bands” and is an oversampling of information in each pixel (Goetz, 1992).  This 

oversampling of information allows for measurement of quantities such as upwelling, 

radiance, emissivity and reflectance (van der Meer, 2002).  Figure 2 shows the concept of 

imaging spectrometry and the data stack: a two-dimensional representation of a 

hyperspectral cube, where the 3rd dimension of the cube is the spectral information. 

 

Figure 2.   The basic concept of hyperspectral imaging (From Vane & Goetz, 1988) 

a. Radiance 

The physical property of a material most precisely measured by a 

hyperspectral sensor is the material’s radiance.  Figure 3 shows the concept of radiance, 
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but to fully understand it a few terms must first be defined.  The initial amount of energy 

incident on a surface per unit area of the surface is the radiant flux density.  The amount 

of this energy that is emitted or reflected from this surface, per unit area of the surface is 

referred to as the radiant exitance.  As defined in Equation 1.1, radiance is a 

measurement of the radiant exitance per unit of projected source area in a specific 

direction and is measured in watts per square meter per steradian:  

cos

L

A










      (W/m2/sr)    2.1 

Radiance (L and the radiant flux () are both variable depending on the wavelength. 

The solid angle, , is a cone-shaped area between the sensor and the surface through 

which the reflected radiant flux (radiant exitance) has travelled (Jensen, 2008). 

 

Figure 3.   The concept of radiance and its input variables (From Jensen, 2008) 

Unwanted radiometric noise from other sources, including diffuse sky irradiance and 

radiance from other materials on the ground are introduced into the value recorded by the 

sensor as the energy travels from the material to the sensor (Jensen, 2008).  Jensen 

(2008), page 57 gives a detailed description of the variables that factor into the total  
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radiance collected at the sensor.  These factors must be accounted for when calculating 

the true radiance of a material (Jensen, 2008).  This radiometric correction process will be 

discussed in greater detail in Chapter IV.   

b. Reflectance 

Reflectance is the fundamental physical parameter of a material that 

hyperspectral imaging attempts to measure for data analysis and interpretation.  A 

hyperspectral image can be converted to reflectance by calculating the ratio of the 

intensity of the reflected light to the intensity of light that was incident on the surface 

(van der Meer, 2002; Lillesand & Kiefer, 2000).  For a remotely sensed hyperspectral 

image, the primary factors needed to accurately calculate the reflectance are the 

variability of illumination factors and the atmospheric effects (Goetz, Boardman, Kindel, 

& Heidebrecht, 1997). 

The amount of energy output by the sun varies with wavelength (Jensen, 

2008).  Figure 4 shows a typical solar irradiance curve, with the peak in energy occurring 

in the visible wavelengths.  As this curve varies with temperature and time it must be 

known, calculated or modeled at the time of the image collection (Olsen, 2007).   

 

Figure 4.   A typical solar irradiance curve. (From MicroImages, 2001) 
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One of the key effects the atmosphere has on incoming solar radiation is 

the absorption of energy at certain wavelengths due to atmospheric gases.  This 

interaction, primarily with carbon dioxide, water vapor and ozone, can reduce the amount 

of energy that is transmitted or it can absorb it completely (Lillesand & Kiefer, 2000).  

When certain wavelengths of light interact with aerosols and gas molecules in the 

atmosphere, the energy is scattered, thus reducing the amount of energy transmitted 

(Olsen, 2007),  A typical atmosphere transmission curve, which has taken into account 

both scattering and absorption, is show in Figure 5.  The absorption bands are the 

locations where the curve takes a sudden dip downward.  Note the complete absorption of 

energy at 1400 and 1900 nm due to water vapor in the atmosphere.  This curve is 

typically modeled using MODTRAN (Olsen, 2007), but can also be measured using 

ground-truthed calibration targets (Goetz et al., 1997).  

 

Figure 5.   A plot of transmittance versus wavelength for typical atmospheric conditions, 
showing the atmospheric absorption bands (From Microimages, 2001) 

Multiple techniques exist to calibrate a hyperspectral image to derive 

reflectance, taking into account the variables discussed above.  These techniques include 

empirical methods (Flat Field Conversions, Quick Atmospheric Correction) and modeled 
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methods (Atmospheric Removal Program) (Goetz et al., 1997).  Once a spectrum has 

been converted to reflectance values, it can be compared to known field or laboratory 

spectra, making note of the location and shape of the unique absorption characteristics.  

This can be a difficult process due to inherent spectral variability in all matter.  Under 

precisely the same conditions, identical materials can have slightly different spectra 

(Lillesand & Kiefer, 2000).  Figure 6 shows a typical plot of reflectance spectra created 

in ENVI, using the United States Geological Survey (USGS) mineral spectral library.  

The horizontal axis is the wavelength, in microns, while the vertical axis is the calculated 

reflectance value, which has no units.  In this example, the quantitative value of the 

reflectance has been offset in order to compare the two shown spectra.   

 

Figure 6.   A typical plot of reflectance spectra (Created in ENVI using a USGS mineral 
spectral library) 

Due to the multitude of information per pixel in a hyperspectral image, a 

detailed analysis can be done on the data.  The narrow, contiguous bands allow for 

extraction of sub-pixel scale information and the spectral unmixing of a mixed pixel 

(Boardman, 1993).  These concepts will be discussed in detail later in Chapter II. 
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c. Resolution: Spatial vs. Spectral 

To fully understand the capabilities of a hyperspectral sensor, one must 

first understand the difference between spatial and spectral resolution.  Spatial resolution 

is the smallest distance between two ground points such that both points can be resolved 

by the sensor (Jensen, 2005).  For example, a 1 meter resolution imaging system would 

be able to image a 1x1 meter target on 1 pixel.  Ground sample distance (GSD) and 

spatial resolution are often used interchangeably, although a truer definition of  GSD is a 

measurement of the ground distance between the points imaged on the center of adjacent 

pixels (Olsen, 2007). 

Spectral resolution, as described by Jensen (2005), “is the number and 

dimension (size) of specific wavelength intervals . . . in the electromagnetic spectrum to 

which a remote sensing instrument is sensitive” (p. 14).  The spectral resolution of a 

sensor is often defined by the full-width at half maximum (FWHM) of the gaussian curve 

representing the detector sensitivity (Clark, 1999).  As an example, the high spectral 

resolution hyperspectral instrument Airborne Visible / Infrared Imaging Spectrometer 

(AVIRIS) has a spectral resolution of 10 nm (Green et al., 1998).  Figure 7 illustrates the 

FWHM concept and the gaussian curve that represents a detector’s spectral sensitivity. 
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Figure 7.   A measure of spectral resolution using the FWHM of a detector’s gaussian 
sensitivity curve (From Jensen, 2005) 

2. History of Hyperspectral Remote Sensing 

The origins of remotely sensed imaging spectroscopy can be found in the mineral 

industry, using the technology as a tool to create geologic maps (Goetz, Vane, Solomon 

& Rock, 1985).  By the late 1980s, airborne hyperspectral instruments became a reliable 

tool, with the development of the Jet Propulsion Laboratory’s (JPL) AVIRIS and ITRES 

Research Ltd.’s Compact Airborne Spectrographic Imager (CASI) (Kruse, 1999). In 

recent years, commercial developments have seen hyperspectral imaging applied to 

forestry, resource management, geology, physics and agriculture (van der Meer & De 

Jong, 2002).  Militaries have begun to use this technology in support of intelligence, 

surveillance and reconnaissance (ISR) applications, including target detection and 

material identification.  Currently, the U.S. Air Force (USAF) has committed funds to  
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Raytheon’s Airborne Cueing and Exploitation System, Hyperspectral (ACES-HY) and 

Goodrich’s Spectral Infrared Imaging Technology Testbed (SPIRITT), among others 

(Butler, 2011). 

3. Physics of Hyperspectral Imaging and Water 

High resolution imaging over water can be difficult due to the unique variables 

marine environments introduce into hyperspectral measurements.  Trying to look below 

the surface at objects submerged in the water can be even more complicated (Hedley, 

Harborne, & Mumby, 2005). 

a. Water and Radiance 

As discussed earlier, the total radiance recorded at a sensor includes 

unwanted radiometric noise from additional sources.  These sources include reflected 

radiance from other ground sources and downwelling irradiance from both the sun and 

the sky.   A simplified radiance model is shown in Figure 8 illustrating the additional 

factors that must be taken into account when looking into the water column.  These new 

factors are the initial reflection off of the surface of the water (Ls), the reflection off of the 

particles or objects in the water column (subsurface volumetric radiance) (Lv) and, if 

shallow enough, the reflection off of the underlying substrate (Lb) (Bukata, 1995).  When 

trying to spectrally analyze objects in the water column, the subsurface volumetric 

radiance has to be extracted from the total radiance (Doxaran, Froidefond, Lavender, & 

Castaing, 2002). 
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Figure 8.   A diagram showing the additional radiance factors added to the total radiance 
when looking into water (From Jensen, 2008; modified from Bukata, 1995)  Lt is 

the total radiance and Lp is the downwelling irradiance from the sun and sky 

b. Absorption and Scattering 

As light travels through water it is scattered and absorbed by the water 

molecules.  Figure 9 illustrates the absorption and scattering coefficients of pure water as 

a function of wavelength.  This image is an inverse of the transmission curve shown 

earlier, with a lower value representing a higher amount of transmission.  Wavelengths 

greater than 520 nm are heavily absorbed by water, with the near-infrared wavelengths 

(greater than 750 nm) almost completely absorbed.  Wavelengths less than 400 nm are 

both absorbed and scattered.  The least amount of scattering and absorption occurs in the 

400–500 nm range, with the minimum at about 460 nm.  These blue / blue-green 

wavelengths are transmitted efficiently in pure water and thus penetrate further into the 

water column than other bands (Lillesand & Kiefer, 2000).  This makes them ideal 

wavelengths to look into pure water (Jensen, 2008). 



19 

 

Figure 9.   The absorption and scattering of light as a function of wavelength.  Note the 
minimum at 460 nm (Modified from Jensen, 2008, original data derived from 

various sources by Bukata, 1995) 

Pure water, containing only water molecules, does not exist in nature.  

Real water contains a variety of dissolved and particulate biological and inorganic matter.  

These impurities will alter the reflected spectrum, as well as the absorption and scattering 

coefficients shown in Figure 9.  Some of the impurities have a negligible effect, while 

others have a much larger effect.  Dissolved salt for instance, can increase scattering by 

30% as compared to pure water (Mobley, 1994).  Table 1 defines some common 
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constituents in water and the effect they have on light propagation in water.  “Variant 

upon concentration levels of dissolved substances . . . the total spectral absorption [and 

scattering] coefficient for any water sample will range from that of pure water to ones 

that show orders of magnitude greater than pure water” (Blankenship, 2006, p. 28).  

Much like the atmospheric effects discussed earlier, water column effects must be 

modeled or measured (using systems such as the portable profiling oceanographic 

instrument system) to truly understand the spectral response of objects in the water 

column (Mobley, 1994; Stein, Schoonmaker, & Coolbaugh, 2001). 

Table 1.   Common constituents in water (From Blankenship, 2006, modified from Mobley, 
1994) 

 

c. Transmission and Refraction 

Transmission occurs when electromagnetic waves pass through a medium.  

When the waves are transmitted from a medium of one density to another medium (e.g.  
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air to water), refraction occurs.  This deflection of light alters the velocity and wavelength 

of the wave and creates a “blurring effect.”  The magnitude of this change is defined by 

Snell’s Law: 

1 1 2 2sin sinn n      2.2 

where n represents the index of refraction for the two media and  is the angle of 

transmittance (Olsen, 2007). 

d. Glint 

The main complication of imaging over water is the presence of sun glint 

in an image.  Glint, sometimes referred to as clutter, is a result of specular reflection of 

direct solar radiance off of wave crests (Hochberg, Andrefouet, & Tyler, 2003).  As seen 

in Figure 10, this phenomenon appears as extremely bright pixels and obscures all 

spectral information about the reflecting surface (Kutser, Vahtmae, & Praks, 2009).  As 

such, glint mitigation is essential for spectral studies in marine environments.   

The most effective form of mitigating glint is to avoid it by planning data 

collections such that the position and angle of the sensor with regards to the sun angle 

minimizes the glint (Hochberg et al., 2011).  According to Mustard, Staid and Fripp 

(2001) this can be achieved with an aerial collection by flying towards or away from the 

sun, with solar elevation angles between 30o and 60o.  Figure 10 is an example of the 

difference solar elevation angle can make with regards to glint in a hyperspectral image.  

The two images are of the same geographic location and were collected by the same 

sensor.  The left image was collected early in the morning, with a solar elevation angle of 

approximately 43o and the right image was collected mid-day, with a solar elevation 

angle of greater than 60o.  As expected, the right image is heavily saturated with glint and 

the left image is not.  Collecting data when the sea state is calm will also reduce the 

amount of glint by reducing the number of surfaces for specular reflection (Hochberg et 

al., 2011). 
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Figure 10.   True color composite images (R: 641 nm, G: 551 nm, B: 460 nm) from 
ProSpecTIR-VS3 illustrating the effect solar elevation angle has on glint.  Both 
images were recorded by the same sensor, with the left image being recorded 

early in the morning and the right image recorded mid-day 

Although glint can obscure the spectral signal it is possible to recover the 

component resulting from the reflecting surface (Hedley et al., 2005).  Much research has 

gone into the development of algorithms for removing glint from images, starting with 

Cox and Munk (1954).  They analyzed aerial photographs in order to make quantitative 

measurements of sea surface roughness and the slope of waves at various wind speeds.  

This statistical model-based approach allows for glint correction over large areas, using 

low resolution sensors (on the order of 100s to 1,000s of meters).  As this technique uses  
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a very basic model, it does not translate well to marine environments with large 

variability in sea surface (i.e. littoral zones) nor does it accurately correct for high 

resolution images (Vahtmae & Kutser, 2008).  

Barnes, Gilbert, Schoonmaker and Rohr (1999) successfully used a 

processing technique to look at large objects in the water column.  Due to the absorption 

and reflection characteristics of surface phytoplankton, the covariance between a green 

and blue band was defined as the sea surface. The variance of a green band was then 

divided by the covariance of the two bands.  This green band weighted average was then 

subtracted from the blue band, removing the water surface and allowing one to “see” 

humpback whales in the water column (Barnes, Gilbert, Schoonmaker, & Rohr, 1999).  

Figure 11, although low resolution, shows the ability of spectral processing techniques to 

greatly enhance the imaging ability of submerged objects.  Although successful in this 

example, this technique required the whales to be relatively shallow and at a precise 

angle to the sun, due to their highly reflective grey and white bodies.  Additionally, this 

process is highly susceptible to surface clutter, including wave crests (Barnes et al., 

1999). 
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Figure 11.   Images demonstrating spectral processing’s ability to look into the water 
column.  The top image is an unprocessed true color image, showing the ocean 

surface with the white cap of a breaking wave.  The bottom image has been 
processed using the technique described in the text above.  Note the obvious 

humpback whales to the right (Originally from Barnes et al., 1999, modified by 
Potter, 1999) 

Recently developed methods to remove glint involve a direct estimation of 

the amount of glint in each image, allowing for correction of higher resolution images, 

with more spatial variability in the sea surface state (Hochberg et al., 2011).  Hochberg, 

Andrefouet, and Tyler (2003) took advantage of the fact that infrared (IR) light is 

strongly absorbed by water and thus any IR radiance recorded after atmospheric 

corrections would come solely from the surface of the water.  The amount of glint in the 

IR bands is then assumed to be linearly related to the amount of glint in visible bands.  A 

glint value is then estimated by subtracting the darkest pixel in an image from the 

brightest.  This value is then subtracted from each pixel (Kay, Hedley, & Lavender, 

2009).  Others, including Silva and Abileah (1998) and Hedley, Harborne, and Mumby. 

(2005) continued to refine this approach.  Kutser, Vahtmae, and Praks. (2009) suggested 
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a slight variant of the method by using the depth of the oxygen absorption band at 760 

nm to define the amount of glint. 

C. SPECTRAL ANOMALY DETECTION 

As the altitude of collection increases, pixel size relative to the target decreases.  

Due to the relative small size of naval mines, using an airborne hyperspectral sensor to 

detect them can be difficult.  Whereas larger targets tend to encompass multiple pixels 

even when imaged from high altitude, mines tend to be sub-pixel in size and thus their 

observed spectrum is a mixture of both background and target spectra.  In order to detect 

sub-pixel mines, spectral mixing models must be defined and spectral anomaly detectors 

must be used (Winter, 2008).  This has been a widely researched topic, with Singer and 

McCord (1979) determining that macroscopic scale mixing is linear and Nash and Conel 

(1974) finding that microscopic scale mixing occurs nonlinearly.  Although a 

simplification of the complicated contributors to a pixel spectrum, a common technique is 

to assume the mixing occurs linearly (Boardman & Kruse, 2011). 

1. Mixture Tuned Matched Filtering 

Mixture Tuned Matched Filtering (MTMF) is a popular dual-threshold detector 

that is readily found in ENVI (Boardman, 1998).  MTMF combines the linear spectral 

mixing model and statistical matched filtering (MF), a technique commonly used in 

signal analysis to extract known signals from a mixed background (Boardman, 1998; 

Boardman & Kruse, 2011).  According to Boardman (1998), “[t]he MTMF method 

leverages the high dimensionality of [hyperspectral] data, using the high dimensional 

space to its advantage, to greatly increase detectability and selectivity” (p. 55), as well as 

decrease false-positive rates.  The advantage of MTMF as compared to other spectral 

mixture models is MTMF’s ability to un-mix a pixel with a priori knowledge of just one 

endmember spectrum (the target of interest), whereas other models require all of the 

endmembers to be known (Boardman, 1998; Boardman & Kruse, 2011).  Although a 

strength compared to other spectral mixing models, this required a priori knowledge 

could hinder MTMF’s robustness, due to potential target spectral variability (Stein et al, 
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2002).  A detailed analysis of the theory and algorithms of MTMF can be found in 

Boardman and Kruse (2011).  Figure 12 displays a list of the MTMF processing steps, 

modified from Boardman and Kruse (2011).  In the following text a few of the major 

steps are discussed in greater detail, as well as some of the previous studies that have 

used the MTMF method. 

 

Figure 12.   The processing steps of the Mixture Tuned Matched Filter (Modified from 
Boardman & Kruse, 2011) 

a. Data Reduction 

(1) Minimum Noise Fraction.  In order to isolate noise in highly 

dimensional data from the background and target spectral signatures, a minimum noise 

fraction (MNF) transform is run prior to MTMF.  MNF was initially developed by Green, 

Berman, Switzer and Craig (1988) to determine the “inherent dimensionality of the data . 

. . using a special orthogonalization procedure related to principal components” 

(Boardman & Kruse, 2011, p. 4140).  This transformation isolates the large eigenvalues 

(the data) from the small ones (the noise) (Green, Berman, Switzer, & Craig., 1988).  

(2) Pixel Purity Index.  After a MNF transform is run, the data are 

further reduced by processing the most significant MNF bands using a pixel purity index 

(PPI).  The data are projected into n-dimensional scatter plots to identify the purest 

spectral endmembers (Boardman & Kruse, 2011). 

MTMF PROCESSING STEPS 
1. Preprocessing and Data Conditioning (Minimum Noise Fraction [MNF]) 

a. Estimation of noise covariance matrix 
b. Data subjected to noise whitening transform 
c. Mean subtracted from noise-whitened data 
d. Noise-whitened data projected onto its eigenvector, decorrelating it 

2. Matched Filtering for Abundance Estimation (MF Projection) 
a. Target spectrum transformed to MNF space 
b. Background covariance matrix estimated and inverted 
c. Normalized matched filter projection vector calculated 
d. MNF data projected onto MF vector to estimate target abundance 

3. Mixture Tuning to Measure Feasibility (MT Modeling) 
a. Continuum of mixture distributions interpolated 
b. Mixture infeasibilities calculated for each pixel 
c. Valid detections separated from false positives
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b. Output 

The MTMF method outputs a matched filter (MF) score image and an 

infeasibility image.  The MF score image is a per pixel abundance estimation of the target 

spectrum, giving pixels dominated by the background spectra a score of 0 and pure target 

pixels a score of 1.  The infeasibility image is a per pixel score of the likeliness of the 

pixel spectrum to be a mixture of the background spectrum and the target spectrum.  This 

value is calculated by the MT part of MTMF, measuring the vector distance of the pixel 

from the line segment connecting the target spectrum and the background mean 

(Boardman & Kruse, 2011). 

c. History of Use 

This heavily tested technique has been used successfully in Kruse (2003, 

February), Kruse, Boardman and Huntington (2003), Mars and Crowley (2003), Winter 

(2008), DiPietro (2010), DiPietro et al. (2010), and Boardman and Kruse (2011), among 

others. 

2. Reed-Xiaoli Anomaly Detector 

Due to the variability of potential target spectra, an anomaly detector that simply 

distinguishes unusual materials from a background material, without a priori knowledge 

of the target spectrum is advantageous (Stein et al., 2002).  These targets are then defined 

in reference to the overall background characteristics. 

Reed and Yu (1990) developed the Reed-Xiaoli (RX) anomaly detector (Yu, 

Reed, & Stocker, 1993; Yu, Hoff, Reed, Chen, & Stotts, 1997).  This widely used, local 

spectral anomaly detection algorithm was originally designed for multispectral data, but 

has since shown its applicability to hyperspectral data as well (Stein et al., 2002; Chang 

& Chiang, 2002; Kwon & Nasrabadi, 2005).  RX detection algorithms are optimal for 

locating targets in water due to the relatively homogenous Gaussian background of the 

ocean surface (Winter, 2008).  RX detectors (RXD) exploit the spectral difference 

between a specific pixel and the surrounding background pixels (Kwon & Nasrabadi, 
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2005), calculating the Mahalanobis distance.  This is done by using the local clutter mean 

and covariance of the surrounding pixels (Winter, 2008).  

A version of the RXD used in ENVI implements a background subtraction 

algorithm known as the Uniform Target Detector (UTD) to improve the performance of 

the RXD (Chang & Chiang, 2002).  This RXD-UTD method was shown to be effective 

by Ashton and Schaum (1998) and applies the following formula to each pixel: 

1( ) ( 1) ( )T
RXD UTD LxLr r K r 

        2.3 

where ( )RXD UTD r   is the RXD-UTD target score, 1
LxLK   is the sample covariance matrix of 

L by L dimensions, r is the pixel spectral vector and µ is the mean spectral vector of the 

area of interest.  The output of running this detector is a matrix of confidences for each 

pixel (Chang & Chiang, 2002). 

The limitation of RX anomaly detectors is their susceptibility to high false alarm 

rates due to isolated spectral anomalies (Winter, 2008) and the assumption that the 

background is homogenously gaussian (Stein et al., 2002).  Additionally, due to the high 

dimensionality of hyperspectral data, running RX detector algorithms on HSI images can 

be computationally intensive.  This is owed to the need to calculate the inverse of large 

covariance matrices (Banerjee, Burlina, & Diehl, 2006). 

a. History of Use and RX variants 

Muise (1996) used the COBRA multispectral sensor to detect individual 

mines with an algorithm based on the RX anomaly detector.  Very similar work was done 

by Louchard et al. (2008) with TACMSI, but with the added ability to multi-look, 

mitigating transient (generally glint-caused) false alarms. 

3. Various Other Anomaly Detectors 

Automated sub-pixel target detection research has been done previously by 

Acker, Pfeiffer, and Farm (2003) using the Littoral Airborne Sensor, Hyperspectral 

(LASH).  Acker et al. (2003) used the LASH Stochastic Mixing Model algorithm, a 
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modified version of the Finite Target Matched Filter model designed by Stocker and 

Schaum (1997).  This real-time automated detection algorithm determines pixel 

constituents with statistical probability curves and requires an input target spectrum.  

Acker et al. (2003) had positive results compared to traditional methods, with high target 

detection rates and low false positive rates (<1 per hour). 

Other anomaly detection algorithms include the Gauss-Markov Random Field 

(GMRF) algorithm developed by Schweizer and Moura (2000) and the Support Vector 

Data Description (SVDD) from Banerjee, Burlina and Diehl (2006).  These algorithms 

are extremely similar to the techniques previously described, albeit altered to address 

errors caused by assuming a gaussian and homogenous background.  GMRF and SVDD 

assume the background clutter to be spatially and spectrally random (Schweizer & 

Moura, 2000; Banerjee et al., 2006).  Still others have found success with techniques 

including principle component transformations (Miao et al., 1998) and the low 

probability detector (LPD) (Harsanyi, Farrand, & Chang, 1994), similar to the UTD 

(Chang & Chiang, 2002). 
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III. DATA COLLECTION AND GROUND TRUTH FIELD WORK 

A. COLLECTION 

The data for this project were collected on March 20th and 21st, 2012, over a 

United States Navy barnacle study test range offshore La Jolla, California.  With the 

unavailability of the SPIRITT hyperspectral sensor, SpecTIR, LLC, a privately owned 

remote sensing firm out of Reno, Nevada was contracted to collect hyperspectral images 

of the test range.  Their ProSpecTIR-VS3 instrument was used as a proxy for the 

SPIRITT sensor and was flown on a low altitude Cessna 206 single engine aircraft. 

1. Targets 

Six 0.8 meter diameter targets were deployed by Scripps Institution of 

Oceanography into the Navy test range.  Water depths in the range varied from 34 to 48 

meters.  Three of the targets were painted green and submerged to 3 meters, 2 meters and 

1 meter below the surface, respectively.  The other three targets were left on the surface 

and painted white, green or black.  Additionally, as shown in Figure 13, the test range 

boundaries were marked by a variety of surface buoys with sub-meter diameters.  The 

northwest and southwest buoys were connected to 3 additional buoys, half meter in size 

and painted black, blue and green.  Additional descriptions of the targets are available in 

the classified addendum to this report. 
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Figure 13.   Target locations overlaid on a true-color WorldView-2 Image. 

a. Additional Targets 

During data collection, the author and scientists from Rochester Institute 

of Technology and Goodrich ISR ran hyperspectral calibration experiments near the test 

site.  These experiments included the use of four 2 x 2 meter black and grey calibration 

panels, a 5.5 meter Zodiac and the 33.5 meter M/V Merlin.  These elements are present in 

the images. 

2. Airborne Sensor Description 

The pushbroom-imaging ProSpecTIR-VS3 is a dual sensor instrument that 

contains a visible and near-infrared (VNIR) sensor and a short-wave infrared sensor 

(SWIR).  The VNIR sensor can record 244 unique spectral bands covering the spectral 
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range of 400 to 1000 nm and the SWIR sensor can record 254 bands over the spectral 

range of 970 to 2500 nm.  The VNIR and SWIR sensors have spectral resolutions of 2.9 

and 8.5 nm, respectively.  The VNIR sensor uses a silicon charge-coupled device (CCD) 

focal plane, while the SWIR sensor has a mercury cadmium telluride CCD (SpecTIR, 

LLC, 2011).   

ProSpecTIR-VS3 is operated on a Cessna 206 aircraft and is pointed to nadir with 

a 24o field of view (FOV).  The instrument is integrated with flight operations by an 

internal global positioning system (GPS) receiver with inertial navigation system (INS) 

and inertial measurement unit (IMU) sensors (SpecTIR, LLC, 2011).  Figure 14 shows 

the ProSpecTIR-VS3 instrument and Figure 15 shows its typical specifications. 

 

Figure 14.   The ProSpecTIR-VS3 hyperspectral sensor (From SpecTIR, LLC, 2011) 
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Figure 15.   Typical specifications of the ProSpecTIR-VS3 hyperspectral sensor (From 
SpecTIR, LLC, 2011) 

3. Collection 

a. Flight Line Plan 

As discussed previously, the spatial resolution of the images is dependent 

on the altitude of the sensor.  In an effort to collect both a high spatial resolution and a 

low spatial resolution data set, two flight altitudes were planned.  The high spatial 

resolution collection altitude was approximately 410 meters and the low spatial resolution 

altitude was approximately 800 meters.  The spatial resolutions of the collections were 

0.5 and 1.0 meters, respectively.  The flight line spacing was planned such that each 
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image provided 35% overlap with adjacent images.  This resulted in a plan of 17 

collection lines for the high spatial resolution images and 7 collection lines for the low 

spatial resolution images.  Figures 16 and 17 show the planned flight lines for the high 

and low spatial resolution collections, respectively.  Appendix A shows the detailed flight 

plan spreadsheets for each of the collections. 

 

Figure 16.   Planned flight lines for the high spatial resolution collection (From Goodrich 
ISR Systems, 2012) 
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Figure 17.   Planned flight lines for the low spatial resolution collection (From Goodrich 
ISR Systems, 2012) 

b. Collection Process 

The low spatial resolution flight lines were flown on March 20th, 2012 

from 09:28 to 10:42 local time (PDT) at a rate of 100 knots.  The high spatial resolution 

lines were collected on March 21st, 2012 from 09:12 to 10:06 PDT at a rate of 80 knots.  

In an attempt to mitigate solar glint off the water, lines were flown in the morning with a 

low solar elevation angle of approximately 43 degrees.  Data were collected during the 

afternoons of March 20th and 21st as well, but the sensor was over-saturated with glint, 

rendering the data unusable. 

For each resolution, lines were collected while heading the same direction 

in order to prevent bidirectional reflectance distribution function (BRDF) artifacts.  For 

the low spatial resolution collections, the lines were flown west to east and for the high 

spatial resolution collections, the lines were flown east to west.  All data were collected 
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during optimal weather conditions—sunny and clear.  Each high spatial resolution image 

is approximately 3,400 meters long by 160 meters wide and each low resolution image is 

3,400 meters by 330 meters.  All collected data contain 360 spectral bands ranging from 

390 to 2465 nm.  The wavelength of each band is listed in Appendix B. 

In order to save time only lines 5 through 13 were flown while collecting 

the high resolution images.  Lines 1 through 4 and 14 through 17 were deemed 

unnecessary as they were outside the target area.  All 7 planned low resolution lines were 

flown. 
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IV. PROCEDURES 

A. SPECTIR, LCC PRE-DELIVERY DATA PROCESSING 

1. Radiance Calibration and Conversion 

Prior to delivery to the Naval Postgraduate School, the data were radiometrically 

calibrated using a Labsphere USS-2000-V uniform source, allowing for the data to be 

accurate within 5% of absolute radiance.  The wavelength measurements were calibrated 

with an Oriel Cornerstone 130 1/8m monochromator and are accurate to within 0.5 nm 

(SpecTIR, LLC., 2012). 

Using dark measurements recorded at the end of each flight line and a SpecTIR 

proprietary compensation algorithm, dark current signals (sensor noise) were removed 

from the data.  The previously created calibration gain file was then used to convert the 

raw data to radiance units (SpecTIR, LLC., 2012).  These radiance files were then 

delivered to the Naval Postgraduate School in .dat ENVI file format, along with the 

associated header files. 

2. GLT Creation 

SpecTIR’s flight package included a fully integrated INS and IMU.  To allow for 

accurate georeferencing of the data, the IMU provided real-time differential corrections 

to the INS.  Prior to flight, a boresight calibration test was completed, ensuring “optimal 

translation of the INS positional data to the image” (SpecTIR, LLC., 2012, p. 8). 

For each collected flight line, this geo-location information was encoded into both 

an internal geometry map file (IGM) and a geographic lookup table (GLT).  The IGM is a 

pixel identification file consisting of easting and northing values in separate bands.  The 

GLT contains 2 bands which point the non-geometrically corrected data into map space, 

with a UTM Zone 11 projection and a WGS-84 datum.  Both of these file types were 

delivered with their respective data files to the Naval Postgraduate School. 
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B. VISUAL INSPECTION OF THE DATA 

1. Flight Line Selection 

Using ArcGIS, the known locations of the targets were plotted into a point shape 

file.  Geocorrected tiff images of the high and low resolution flight lines were created and 

brought into ArcMap, along with the target locations.  The high spatial resolution (0.5 

meter) flight lines were used for target location verification.  The low spatial resolution (1 

meter) flight lines were the subject of this study. 

As shown in Figure 18, only three of the 1 meter spatial resolution flight lines 

contained targets.  These lines are 003_0320-1724, 004_0320-1706 and 005_0320-1700 

and were the only lines processed any further. 

 

Figure 18.   1 meter spatial resolution, true color composite images (R: 641 nm, G: 551 
nm, B: 460 nm), of the geocorrected flight lines overlaid by the known location of 

the targets 

2. Multiple Pixels 

Prior to any spectral or image processing, each of the targets are visually 

identifiable in true-color composites of the data.  As shown in Figure 19, the sub-pixel- 

 

001_0320-1736 

002_0320-1730 

003_0320-1724 

004_0320-1706 

005_0320-1700 

006_0320-1712 

007_0320-1718 



41 

size targets appear to encompass multiple pixels in size.  This is assumed to be due to the 

impulse response of the instrument (real electro-optical systems do not have point 

responses). 

   

   

Figure 19.   The center pixels of each frame are the targets, which are the 3 (A), 2 (B) and 
1 (C) meter submerged targets, the white surface target (D) the green surface 

target (E) and the black surface target (F).  These sub-pixel size targets encompass 
between 4 and 8 pixels.  Each frame is a 6 times magnification of a true color 
composite image (R: 641 nm, G: 551 nm, B: 460 nm) that has been linearly 

stretched 

3. Additional Scene Elements 

The additional objects discussed in Chapter III are also visible in the scene.  As 

Figure 20 shows, the yellow, orange, blue, green and black sub-meter diameter surface 

buoys, as well as the calibration experiment elements are visually identifiable in true 

color composites of the data. 
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Figure 20.   The additional objects that are visually identifiable in the flight lines.  Frame 
A shows the orange, black, blue and green surface buoys (in order from left to 

right), B shows the yellow surface buoy, C shows the four 2 x 2 meter calibration 
panels and 5.5 meter Zodiac, and D shows the 33.5 meter M/V Merlin.  Each 

frame is a 4 times magnification of a true color composite image (R: 641 nm, G: 
551 nm, B: 460 nm) that has been linearly stretched 

C. ANOMALY DETECTION PROCESS 

Spectral unmixing is a technique that is sensitive to minute changes in the 

spectrum of a pixel.  Retaining the spectral integrity of each pixel is of utmost 

importance.  Atmospheric corrections, glint removal and other processing techniques may 

alter spectral characteristics (Vahtmae, 2008) and thus were avoided.  Additionally, the 

stated purpose of this paper was to propose an operational method to quickly and 

accurately detect targets.  As such, the least amount of processing steps necessary were 

used to complete the task. 

A B

C D
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As the target spectra were taken directly from the data, conversions to reflectance 

were unnecessary—both the target spectra and the data were in radiance.  This technique 

would require the imaging of a known target during the time of collection in order to 

assure that the solar incidence angle, atmospheric parameters and solar source energy is 

similar.  If this cannot be done, then both the target spectra and the scene have to be 

converted to reflectance values. 

The flight paths for the data collection were planned at optimal solar geometries 

in order to avoid glint in the data.  This was mostly successful and so glint removal from 

the images was not necessary. 

1. Data Subset 

a. Spatial 

As the focus of this study was target detection in non-littoral, deep waters, 

the data was spatially subset prior to processing in order to remove the land and littoral 

areas.  The new size of the three images was 2000 pixels long by 320 pixels wide. 

b. Spectral 

The first step in processing the data was to divide the target detection 

process into 2 distinct segments: detection of submerged targets and detection of surface 

targets.  This allowed for the exploitation of the unique spectral characteristics of each 

target type.  Due to the limited wavelength range that can penetrate into seawater 

effectively, the submerged target flight lines were spectrally subset to bands 3 through 

46, covering 400 to 598 nm. 

When searching for the surface targets, the determination was made to use 

all of the bands.  However, after a visual inspection of the spectra throughout the image, 

an anomalous spike present in each pixel was located around band 123 (1,000 nm 

wavelength).  As this is the spectral location of the overlap between the SWIR and VNIR  
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focal planes, this spike was determined to be a sensor artifact.  Bands 115 through 150, 

covering 929 through 1149 nm were added to ENVI’s bad band list, effectively removing 

them from the data. 

2. RX Anomaly Detection 

In ENVI, a RXD-UTD Anomaly Detection algorithm was initially applied to the 

flight lines using all of the spectral bands and then subsequently reapplied to the same 

lines, sub-setting them to just the water penetrating bands discussed earlier.  Rule images 

were output from the algorithm and the density slice function was used as a threshold to 

filter out the target pixels.  As a logical initial threshold value, the brightest 2% of the 

pixels were selected.  The threshold was then adjusted in order to isolate the targets. 

3. MTMF Anomaly Detection 

a. Sample Target Spectra 

MTMF requires an input target spectrum and thus representative targets 

for the submerged and the surface targets were chosen.  For the submerged targets, the 2 

meter target was chosen and for the surface targets, the green target was chosen. In order 

to collect a spectrum from each target, a region of interest (ROI) was drawn covering the 

pixels the target encompassed (3 pixels for the 2 meter submerged target and 4 pixels for 

the green target).  The mean spectrum of these ROIs was then calculated and recorded as 

an ASCII file.  The same procedure was followed in order to calculate a non-target 

spectrum: a 69,000 pixel polygon ROI was created over a representative water region 

with small amounts of surface clutter and glint.  The mean spectrum of the water was 

then used in the non-target section of the target detection wizard. 

b. Target Detection Wizard 

As part of ENVI’s spectral tools, the Target Detection Wizard guides the 

user through the process of finding targets in hyperspectral or multispectral data.  The 

steps are as follows (Modified from ENVI Help, Version 4.8): 
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1. Input / Output File Selection 

2. Atmospheric Correction (optional) 

3. Target Spectra Selection 

4. Non-Target Spectra Selection 

5. MNF Transformation 

6. Target Detection Methods 

7. Rule Images and Results Preview 

8. Target Filter 

9. Export Results 

10. View Statistics and Report 

The first five steps of the wizard are self-explanatory or have been 

discussed previously.  Step 6 of the wizard gives the user the option of a multitude of 

detection algorithms, including MTMF.  In this study, MTMF was the only method 

chosen.  

Step 7 outputs the MTMF Rule Image, as well as a full band scatter plot.  

Full band scatter plots compare a pixel’s MF score (horizontal axis) to its infeasibility 

score (vertical axis).  This plot is similar to an n-dimensional plot except it includes the 

values for the entire scene.  The similar background (water) pixels form a data cloud with 

low infeasibility and MF scores, while the target pixels are outliers, generally with low 

infeasibility scores and high MF scores (e.g. good match to the target spectrum and a 

feasible mixture).  Targets tend to project out from the data cloud like fingers, allowing 

for easy delineation.  Pixels deemed as targets by the wizard are highlighted red.  

Additional pixels determined to be target pixels by the user were highlighted as well.  

Figures 21 and 22 show plots created for flight line 004 with the 2 meter submerged and 

surface targets, respectively.  Note the circled outliers denoting the pixels deemed to 

contain the target. 
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Figure 21.   Full band scatter plot showing the pixels deemed target pixels for the 2 meter 
submerged target.  The horizontal axis is the MF score and the infeasibility score 
is the vertical axis.  The circled pixels are the targets of interest and have high MF 

scores with low infeasibility values 

 

Figure 22.   A full band scatter plot showing the pixels deemed target pixels for the green 
surface target.  The horizontal axis is the MF score and the infeasibility score is 
the vertical axis.  The circled pixels are the targets of interest and have high MF 

scores and low infeasibility values 
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Step 8 allows for basic filtering options, including clumping and sieving.  

For both the surface and submerged targets, these settings were left as the recommended 

defaults, which include a clumping operator of 3 rows by 3 columns and a sieving 

parameter using 8 neighboring pixels. 

With the last two steps of the target wizard, a target ROI was created and 

then overlaid on the true color image.  The locations of the ROIs were then compared to 

the known locations of the targets to assess accuracy. 

The spectrally subset versions of flight lines 003, 004 and 005 were run 

through this process individually, using the mean 2 meter submerged sample target 

spectrum as the input target (Step 3).  This process was then duplicated using the non-

spectrally subset versions of the flight lines and the mean green surface target sample 

spectrum as the input target (Step 3). 
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V. RESULTS AND ANALYSIS 

A. ANOMALY DETECTORS 

When searching for targets in water, the primary complication is the small size 

and limited number of targets as compared to the amount of clutter (glint, ocean wave 

crests, etc.).  This clutter tends to lead to high false alarm rates that can limit the 

usefulness of any anomaly detector.  For example, with many typical remote sensing 

techniques, “it is common to have 100 false alarms due to clutter for every real mine 

present” (Williams, Myers, & Silvious, 2009, pp. 1).  Thus when analyzing the usefulness 

of any anomaly detector, one should look at both its false negative and false positive 

results (Williams, et al., 2009). 

1. RX Anomaly Detector 

The RXD-UTD output is a rule image, with the values of each pixel representing 

the RXD-UTD score; the larger the score, the more anomalous the pixel.  These results 

are shown in Figures 23 through 25.  Each figure shows a section of the flight line that 

contains the targets in true color with a square root stretch, the submerged target results 

and the surface target results.  This process lacks a default threshold or a way to isolate 

the targets (high values) from the false positives (low values).  In order to compare the 

images a baseline was chosen, density slicing the images to show the brightest 2% of the 

pixels. 
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Figure 23.   Flight line 003 RXD-UTD results.  The left image is a true color composite 
(R: 641 nm, G: 551 nm, B: 460 nm), the center image is the submerged target 

RXD-UTD result and the right image is the surface target RXD-UTD result.  The 
submerged target (yellow), surface target (green) and marker buoys (orange) are 

circled 
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Figure 24.   Flight line 004 RXD-UTD results.  The left image is a true color composite 
(R: 641 nm, G: 551 nm, B: 460 nm), the center image is the submerged target 

RXD-UTD result and the right image is the surface target RXD-UTD result.  The 
submerged target (yellow), surface target (green) and marker buoys (orange) are 

circled 
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Figure 25.   Flight line 005 RXD-UTD results.  The left image is a true color composite 
(R: 641 nm, G: 551 nm, B: 460 nm), the center image is the submerged target 

RXD-UTD result and the right image is the surface target RXD-UTD result.  The 
submerged target (yellow), surface target (green), marker buoys (orange) and 

calibration experiment elements (blue) are circled 

With 0 true positive detections, the RXD-UTD algorithm did not detect the 

submerged targets or the black surface target.  Further analysis was impossible without 

target pixels selected. 

The RXD-UTD located the green and white surface targets.  In order to evaluate 

the ability of the detector to locate the targets as compared to false alarms, the initial 

threshold value was set to the brightest 2% of the pixels and then was increased by 500 

points at a time until the targets were no longer selected. 

Each pixel identified as a target by the algorithm was counted as either a true 

positive (TP) or a false positive (FP). Due to the pixel “blurring” effect previously 

discussed, pixels immediately adjacent to the target pixels were not deemed false 

positives if selected.  The previously discussed field testing elements, including the 

calibration panels and the M/V Merlin were counted as false positives when identified by 
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the anomaly detectors.  If an analysis intended to locate surface targets selected pixels 

containing a submerged target (or vice versa), this was considered a favorable result and 

deemed a true positive.  If a pixel identified prior to the wizard as a target pixel was not 

identified by the wizard, it was counted as a false negative (FN).  Any pixel in the image 

that did not contain a target and was not selected by the wizard was deemed a true 

negative (TN). 

A common technique to evaluate the performance of a detection algorithm is to 

calculate the true positive rate (TPR) and the false positive rate (FPR): 

TP
TPR

TP FN



    5.1 

FP
FPR

FP TN



    5.2 

Table 2 lists the results of this analysis.  
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Table 2.   Pixel-based RXD-UTD results, along with threshold 

Type Line # Target
Threshold Value 

(RXD‐UTD Score)
TP FP FN TN TPR FPR

786 13 16504 0 623483 1.00 2.6E‐02

1286 8 529 0 639463 1.00 8.3E‐04

1786 8 202 0 639790 1.00 3.2E‐04

2286 8 102 0 639890 1.00 1.6E‐04

2786 7 58 0 639935 1.00 9.1E‐05

3286 7 42 0 639951 1.00 6.6E‐05

3786 5 33 0 639962 1.00 5.2E‐05

4286 5 30 0 639965 1.00 4.7E‐05

4786 4 27 0 639969 1.00 4.2E‐05

5286 4 23 0 639973 1.00 3.6E‐05

5786 3 19 1 639977 0.75 3.0E‐05

6286 2 17 2 639979 0.50 2.7E‐05

6786 2 16 2 639980 0.50 2.5E‐05

7286 2 15 2 639981 0.50 2.3E‐05

7786 2 15 2 639981 0.50 2.3E‐05

8286 1 14 3 639982 0.25 2.2E‐05

14286 0 5 4 639991 0.00 7.8E‐06

421 19 23341 0 616640 1.00 3.6E‐02

921 8 71 0 639921 1.00 1.1E‐04

1421 7 20 1 639972 0.88 3.1E‐05

1921 5 10 2 639983 0.71 1.6E‐05

2421 4 5 4 639987 0.50 7.8E‐06

2921 3 4 5 639988 0.38 6.3E‐06

3421 3 3 5 639989 0.38 4.7E‐06

3921 2 3 6 639989 0.25 4.7E‐06

4421 2 3 6 639989 0.25 4.7E‐06

4921 2 3 6 639989 0.25 4.7E‐06

5421 2 3 6 639989 0.25 4.7E‐06

5921 2 3 6 639989 0.25 4.7E‐06

6421 2 3 6 639989 0.25 4.7E‐06

6921 1 2 7 639990 0.13 3.1E‐06

13421 0 0 0 640000 0.00 0.0E+00

White003

Su
rf
ac
e

Green004

Su
rf
ac
e

 

A variant of a typical receiver operator characteristics (ROC) curve was then 

created by plotting the TPR and FPR against the threshold value.  As Figures 26 and 27 

show, this technique allows for a side-by-side comparison of the curves.  By plotting the 

threshold values on the horizontal axis, it allows threshold values to be evaluated with  
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regard to FPRs and TPRs.  Note the different scale of each of the two horizontal axes.  In 

order to better visualize the small values in the large range of the FPR, this axis was set to 

a logarithmic scale. 

 

Figure 26.   Flight line 003 variant ROC curve evaluating the RXD-UTD results.  The left 
vertical axis is the true positive rate and the right vertical axis is the false positive 
rate.  Note the different scales between the vertical axes.  The right vertical axis 
has a logarithmic scale in order to better visualize small values.  The horizontal 

axis is the threshold DN 
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Figure 27.   Flight line 004 variant ROC curve evaluating the RXD-UTD results.  The left 
vertical axis is the true positive rate and the right vertical axis is the false positive 
rate.  Note the different scales between the vertical axes.  The right vertical axis 
has a logarithmic scale in order to better visualize small values.  The horizontal 

axis is the threshold DN 

Table 2 and the variant ROC curves in Figures 26 and 27 illustrate the relative 

effectiveness of using a RX-UTD algorithm with 1 meter hyperspectral data to detect 

sub-pixel surface targets.  For line 003, the algorithm is able to detect targets at a 100% 

true positive rate with a 0.003% false positive rate.  The results are similar when line 004 

is run through the process, with an 88% true positive rate at a 0.003% false positive rate. 

Another useful way to evaluate the process is to look at the clumped pixels as 

single objects instead of evaluating individual pixels.  This means each target is one 

object, regardless of the number of pixels it encompasses.  As the true number of 

“objects” in an image is undefined (everything from a single pixel of glint to the M/V 

Merlin can be an “object”), this technique prevents the calculation of a true negative 
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value and thus an FPR.  However, an object-based result is easier to conceptualize.  

Pixels clumped together were counted as one object.  A single selected pixel of a target 

was counted as 100% detection, even if the target encompassed multiple pixels.  As 

before, if an analysis intended to locate surface targets selected a pixel containing a 

submerged target (or vice versa), it was not counted as a false positive.  The largest 

threshold that still identified the target was used, as this also allowed the least number of 

false positives.  As the submerged targets were not identified, regardless of threshold 

value, nor were the targets in line 005, these results are not provided.  The remaining 

results are shown in Table 3. 

Table 3.   Object-based RXD-UTD results, along with the threshold values and descriptions 
of the objects identified 

Type Line # Target
Threshold Value 

(RXD‐UTD Score)

Target 

Detection %

# of False 

Postives
Notes

Surface 003 White 8286 100% 4
surface target, yellow  buoy and 3 

patches of glint identified

Surface 004 Green 6921 100% 1
surface target and a single patch of 

glint identified  

a. Further Analysis 

This seemingly positive result must be examined further.  The process 

failed to locate targets in 4 of the 6 lines.  Neither the submerged targets, nor the black 

surface target were found.  These targets are the most difficult to discern from a 

background, but also the most realistic type of targets.  The failure of this technique in 

these situations cannot be overlooked. 

Although the experiment returned low false positive rates with high true 

positive rates, the values were calculated with regards to number of pixels.  High spatial 

resolution HSI images covering large surface areas have an extremely large number of 

pixels.  This means the low false positive rates would equate to a large number of false 

positives.  For instance, applying the 100% true positive rate and 0.0036% false positive 

rate to just the three flight lines used in this experiment, covering 1,920,000 square 

meters (1,920,000 pixels) equates to 69 false alarms.  That number of falsely identified 
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pixels is relatively high when compared to the 6 targets that were placed in the area, 

covering less than 25 pixels. To put this into context, Bab-el-Mandeb, the narrow straight 

at the mouth of the Red Sea, which was mined in 1984, covers about 5,200,000 square 

meters.  In order to detect 100% of the mines throughout this area, with the RXD-UTD 

false positive rates listed previously would detect up to 187 false pixels.  Even with a 

75% target detection rate and 0.0029% false positive rate, the test would produce 154 

false positive pixels. 

When looking at the object-based analysis, a single pixel of the target can 

be found with much lower false alarm rates.  In the case of line 004, only 5 objects were 

detected: 4 false alarms and the target.  Line 005 had even better success, with only 2 

objects detected: the target and 1 false alarm.  This counting method is dependent on the 

clumping of pixels, however.  If there are 154 false positive pixels and none of them are 

clumped, then the false alarm rate increases drastically. 

2. MTMF Results 

Figures 28 through 30 show a section of the MTMF Target Detection Wizard rule 

images for flight lines 003, 004 and 005, respectively.  The left images are true color 

composites (R: 641 nm, G: 551 nm, B: 460 nm), enhanced with a square root stretch in 

order to make the targets easier to view.  The middle images are the submerged target 

rule images and the right images are the surface target rule images.  The objects in each 

image have been circled with the following color code: the submerged targets are yellow, 

the surface targets are green, the marker buoys (non-targets) are orange, and the M/V 

Merlin and other calibration test elements (non-targets) are blue. 
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Figure 28.   Flight line 003 MTMF results.  The left image is a true color composite (R: 
641 nm, G: 551 nm, B: 460 nm), the center image is the submerged target MTMF 

result and the right image is the surface target MTMF result.  The submerged 
target (yellow), surface target (green) and marker buoys (orange) are circled 

 

Figure 29.   Flight line 004 MTMF results.  The left image is a true color composite (R: 
641 nm, G: 551 nm, B: 460 nm), the center image is the submerged target MTMF 

result and the right image is the surface target MTMF result.  The submerged 
target (yellow), surface target (green) and the marker buoys (orange) are circled 
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Figure 30.   Flight line 005 MTMF results.  The left image is a true color composite (R: 
641 nm, G: 551 nm, B: 460 nm), the center image is the submerged target MTMF 

result and the right image is the surface target MTMF result.  The submerged 
target (yellow), surface target (green), the marker buoys (orange) and the 

calibration experiment elements (blue) are circled 

Table 4 lists the pixel-based results of the MTMF Target Detection Wizard 

analysis.  The same pixel-counting rules defined in the RXD-UTD results (regarding TP, 

TN, FP and FN) were applied to this data set.  Without a threshold value to adjust, TPRs, 

FPRs, and ROC curves are ambiguous and thus not are provided. 

Table 4.   Pixel-based results of the MTMF Target Detection Wizard 

Type Line # Target TP FP FN TN

003 ‐2 m 3 0 0 639997

004 ‐3 m 9 0 0 639991

005 ‐1 m 5 0 0 639995

003 White 4 8 0 639988

004 Green 9 0 0 639991

005 Black 0 61 3 639936
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For the submerged target MTMF analysis, the detector located the submerged 

target in each flight line with no false positives.  In flight line 004, the wizard detected 

both the submerged target and the surface target. 

For the surface target MTMF analysis, the detector located the white and green 

surface targets in lines 003 and 004, respectively, but not the black surface target in line 

005.  With line 003, the only false positives were the 8 pixels of a yellow marker buoy.  

The 0 false positives and 0 false negatives for line 004 is slightly deceptive, as this is the 

line the average green surface target spectrum was taken from.  In line 005, the detector 

falsely identified the M/V Merlin and a few pixels of glint as a target, but was unable to 

locate the black surface target.  None of the surface MTMF analyses located the 

submerged targets. 

The same object-based analysis that was detailed in the RXD-UTD section was 

performed on the results.  Table 5 shows these descriptions. 

Table 5.   Object-based MTMF results, along with descriptions of the objects identified 

Type Line # Target
Target  

Detection %

# of False 

Positives
Notes

003 ‐2 m 100% 0
submerged target only object 

identified

004 ‐3 m 100% 0
submerged and surface target 

identified

005 ‐1 m 100% 0
submerged target only object 

identified

003 White 100% 1
surface target and a yellow marker 

buoy identified

004 Green 100% 0 surface target only object identified

005 Black 0% 2
M/V Merlin and ocean clutter 

identified
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a. Further Analysis 

(1) Error Analysis.  The most critical step in a MTMF target 

detection process is differentiating between target pixels and background pixels in the full 

scene scatter plot.  If the target spectrum is not unique enough from the background, its 
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pixels are lost in the data cloud.  This is the primary reason the submerged targets were 

successfully found—they are easily distinguished from the background data cloud (this is 

shown in Figure 21).  As Figure 31 shows, a large, highly reflective object can overpower 

a scatter plot, making target pixel delineation impossible.  This scatter plot is from the 

non-spectrally subset flight line 005, which appears to have sensor noise and includes the 

M/V Merlin, the calibration experiment elements, marker buoys and both the 1 meter 

submerged and black surface targets.  Operationally, large, highly reflective objects 

should be masked out prior to MTMF analysis. 

  

Figure 31.   Flight line 005 full band scatter plot when run through the surface target 
MTMF detection wizard.  This plot has a different horizontal and vertical scale 

than the previous full band scatter plots.  Note the lack of outlier pixels with low 
infeasibility score and high MF scores (the red circle).  This mean the targets 

cannot be isolated in this plot 



63 

b. Verification 

Due to the extreme success of this process, additional verification tests 

were run to look for potential biases.  These test involved repeating the process, 

introducing a new variable each time. 

(1) Other Input Targets.  The wizard was run using the black 

surface target and the 3 meter submerged target as the input sample targets, replacing the 

green surface target and the 2 meter submerged target, respectfully.  These results were 

similar to the results listed in the text above. 

(2) Littoral Zones.  This process was then duplicated using a larger 

spatial subset, leaving the littoral zones in the overall scene.  This had the effect of 

introducing a large amount of clutter into the scene.  The initial results to this test were 

promising, although without a relatively homogenous background, the target pixels are 

harder to discern in the full scene scatter plots.  This resulted in a much higher false 

positive rate. 

(3) Other Flight Lines.  A pivotal experiment, testing the response 

of the wizard when no targets were present, was run using the flight lines that were 

known to not contain targets.  The same process described in the text above was used.  

The results are displayed in Table 6.  There were 0 TPs for all of the tests as no targets 

existed.  The submerged target analyses resulted in 2 to 4 false positive pixels.  The false 

positives in lines 002 and 006 were due to the blue surface buoys that were in the frame.  

The 2 false positive pixels in line 007 were due to glint.  The surface MTMF analyses 

returned 2 false positive pixels in line 002 as a result of the blue surface buoy.  Neither 

line 006 nor 007 had a false positive. 
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Table 6.   Pixel-based MTMF results of the flight lines not containing targets 

Type Line # Target TP FP FN TN

002 N/A 0 2 0 639998

006 N/A 0 4 0 639996

007 N/A 0 2 0 639998

002 N/A 0 2 0 639998

006 N/A 0 0 0 640000

007 N/A 0 0 0 640000
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B. SPECTRAL OR SPATIAL? 

The results above, especially the MTMF analysis outpaces the results from similar 

work done at this test range.  Using 2.2 meter spatial resolution WorldView-2 

multispectral data, Sandersfeld (2012) was able to identify the targets using a 

combination of principle component analysis and a RXD-UTD algorithm, but had false 

alarm rates greater than 20%.  With both a lower spectral and spatial resolution than the 

ProSpecTIR-VS3 data, Sandersfeld’s results beg the question: “Were the higher detection 

rates and lower false positive rates of the MTMF analysis due to the higher spatial or 

spectral resolution?” 

1. Spatial Analysis 

In order to evaluate the contributions of spatial resolution to the success of the 

anomaly detector two additional tests were run.  The 1 meter resolution data were 

subsampled by a factor of 0.5, essentially decreasing the number of pixels by 50%.  The 

resulting lines featured the same spectral resolution as the previous data in this study, but 

had a lower spatial resolution, similar to WorldView-2.  These newly created 2 meter 

spatial resolution lines were put through the process detailed previously.  Due to the 

decrease in number of pixels, the pre-analysis spatial subset differed from that listed 

previously.  In this experiment the lines were spatially subset to 160 x 1000 pixels.  The 

pre-analysis spectral subsets were left the same, using bands 3 through 46 for the 

submerged targets and all of the bands for the surface targets.  The pixel-based results of 

the MTMF analysis are shown in Table 7.   
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Table 7.   Pixel-based results of the MTMF Target Detection Wizard, using the 2 meter 
spatial resolution data 

Type Line # Target TP FP FN TN

003 ‐2 m 2 0 0 159998

004 ‐3 m 4 0 0 159996

005 ‐1 m 3 7 0 159990

003 White 3 3 0 159994

004 Green 4 0 0 159996

005 Black 0 22 0 159978
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The 2 meter spatial resolution MTMF analysis technique had similar success to 

the previous 1 meter experiment, but with higher false positive rates.  The line 003 and 

004 submerged analysis detected the 2 meter and 3 meter submerged targets, respectively 

and had no false positives or false negatives.  The analysis run on line 004 located both 

the green surface target and the 3 meter submerged target.  The submerged MTMF 

analysis run on line 005 located the 1 meter submerged target, but also had 7 false 

positives: 3 pixels were the M/V Merlin and 4 pixels were the marker buoys.  The surface 

MTMF analysis run on line 003 located the white surface target, but also had 3 false 

positives on glint.  With line 005, the surface analysis had a lack of success detecting the 

black surface target, with 22 false positive pixels (16 on the M/V Merlin, 6 on glint). 

This same experiment was then repeated with the low altitude flight lines, 

featuring the same spectral resolution, but a higher spatial resolution (0.5 meters).  The 

new spatial subset was 320 x 3500 pixels.  This increase in spatial resolution resulted in 

the targets being larger than a pixel in size.  Flight lines 006_0321-1655, 009_0321-1636 

and 012_0321-1618 from March 21, 2012 of the low altitude data were used.  The pixel-

based results of the MTMF analysis are shown in Table 8.   
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Table 8.   Pixel-based results of the MTMF Target Detection Wizard, using the data with 
0.5 meter spatial resolution 

Type Line # Target TP FP FN TN

006 ‐2 m 12 0 0 1119988

009 ‐3 m 17 0 0 1119983

012 ‐1 m 9 0 0 1119991

006 White 14 0 0 1119986

009 Green 7 0 0 1119993

012 Black 4 26 2 1119968

Sub‐

merged

Surface

 

The results show an increase in accuracy of the detector, as only the surface target 

analysis of line 012 recorded a false positive and failed to identify a target.  In this case 

the detector missed two pixels of the black surface target and falsely selected 26 pixels of 

the surface buoys.  3 of the pixels selected were actually the 1 meter submerged target 

(counted as a true positive).  With the submerged target analysis, flight line 009 detected 

11 pixels of the 3 meter submerged target and 6 pixels of the green surface target.  For 

the surface target analysis of line 006, 8 pixels of the white surface target were selected 

and 6 pixels of the 2 meter submerged target were selected. 

The change in spatial resolution appears to have an effect on the ability of the 

MTMF analysis to detect targets, but with the limited sample size, the magnitude of this 

effect is hard to estimate.  With a lower spatial resolution, the targets that were detected 

previously were still detected, albeit with higher false positive rates.  The higher spatial 

resolution allowed for the false positive rate to decrease and for the detection of the black 

surface target. 

2. Spectral Analysis 

Figure 32 shows a comparison between spectral means of the 2 meter submerged 

target and water.  The vertical axis is the digital number (DN) of the pixel and the 

horizontal axis is wavelength in nanometers.  Note the similarities between the curves.  In 

fact, little difference can be found between the spectra. 
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Figure 32.   Comparison between the spectral means of the 2 meter submerged target 
water.  The horizontal axis is wavelength in nanometers and the vertical axis is 

the DN 

Figure 33 compares the mean spectra of the green surface target and water.  In 

this plot the green surface target spectrum appears to have a larger peak at 875 nm and a 

new absorption feature at 1390 nm.  The gap between 929 and 1149 nm is due to the 

removal of bands containing sensor artifacts. 
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Figure 33.   Comparison between the spectral means of the green surface target and water.  
The horizontal axis is wavelength in nanometers and the vertical axis is the DN.  

The gap between 929 and 1149 nm is due to the removal of bands containing 
sensor artifacts 

In order to further examine the spectral differences, the mean target spectra were 

divided by the mean water spectrum, essentially normalizing the results and creating a 

difference curve.  As Figure 34 shows, this technique allows for closer examination of the 

differences between the spectra.  The difference curve for the submerged target spectrum 

shows absorption features at 405, 418, 487, 501, 519, 542, and 560 nm.  These features 

are not vastly different than the mean water spectrum, with the deepest feature being only 

a few hundreds of a DN value.  For comparison, the DN values in line 004 range from 

205 to 6808.  The continuum of the curve shows a slightly higher rise than the mean 

water spectrum. 
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Figure 34.   Mean 2 meter submerged target spectrum normalized against the mean water 
spectrum.  The horizontal axis is wavelength in nanometers and the vertical axis is 

a normalized DN 

Figure 35, the difference curve for the mean green surface target, shows deeper 

absorption bands at 636, 1267, 1393, 2006, 2063 and 2452 nm, as well as new peaks at 

514, 875, 1286, 1550 and 2100 nm.  The gap between 929 and 1149 nm is due to the 

removal of bands containing sensor artifacts.  The maximum magnitude of a difference 

feature is 2.65, compared to the image DN range of 6603. 
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Figure 35.   Mean green surface target spectrum normalized against the mean water 
spectrum.  The horizontal axis is wavelength in nanometers and the vertical axis is 

a normalized DN.  The gap between 929 and 1149 nm is due to the removal of 
bands containing sensor artifacts 

3. Principle Component Analysis 

Principle component analysis (PCA), the basis of the MNF transformation, allows 

for the examination of the dimensionality of spectral data.  The first band of a principle 

component (PC) image is the average intensity of all of the bands.  The subsequent bands 

give a quantitative value to the amount of spectral information in each pixel.  By plotting 

the first band against a subsequent band in a scatter plot, one can analyze the amount of 

spectral information in each pixel (Olsen, 2007). 

A PCA using covariance values was run on lines 003, 004 and 005 and then the 

first two bands of each PC image were plotted against each other in scatter plots.  Figures 

36 through 38 show these scatter plots, with the absolute values of PC band 1 on the 

horizontal axis and PC band 2 on the vertical axis.  The absolute values of PC band 1 

were used in order to visually clarify the plot.  Separation of pixels in the vertical 

direction implies spectral differences, while horizontal separation implies intensity 
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differences.  The data cloud contains the water pixels and the unmarked outliers are 

generally glint.  The circled pixels are the submerged targets (green), surface targets 

(blue) and buoys (red). 

 

Figure 36.   Scatter plot of the absolute values of PC band 1 (horizontal) versus PC band 2 
(vertical) for line 003.  The submerged target (green), surface target (blue) and 

buoys (red) are circled 
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Figure 37.   Scatter plot of the absolute values of PC band 1 (horizontal) versus PC band 2 
(vertical) for line 004.  The submerged target (green), surface target (blue) and 

buoys (red) are circled 

 

Figure 38.   Scatter plot of the absolute values of PC band 1 (horizontal) versus PC band 2 
(vertical) for line 005.  The submerged target (green), surface target (blue) and 

buoys (red) are circled 
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The ability of the MTMF analysis to spectrally detect the submerged targets with 

100% true positive rates and 0% false positive rates is partially explained by the location 

of the submerged pixels in each of the scatter plots.  Although the target pixels and the 

data cloud lie in a similar horizontal position, there is a distinct vertical separation.  This 

means the submerged targets have intensities similar to the background water, but are 

distinct spectrally. 

The less robust results of the MTMF analysis on the surface targets are explained 

by the intermixing of the surface target pixels with the glint (Figure 36), the buoys 

(Figure 37 and 38) or the water (Figure 38).  The white surface target in line 003 has little 

spectral separation from the water, but can be differentiated due to its greater intensity 

values.  Compared to the water, the green surface target in line 004 differs spectrally and 

in intensity.  The black surface target in line 005, a particularly difficult target to detect, 

is spectrally similar to the water and differs in intensity only slightly, with little 

horizontal or vertical separation. 

It should be noted, however, that it is unclear how the bands containing sensor 

artifacts impacted the calculation of the principle components.  The eigenvalues of these 

bands were initially listed in the PCA results.  When these bands were deleted from the 

data and then the PCA was rerun, the results appeared identical to the original results. 

A line plot containing the values from the PCA of line 003 was created, using the 

eigenvalues of both PC band 1 and PC band 2 as the vertical axis and wavelength as the 

horizontal axis.  This allowed for further analysis of the results above.  Figure 39 shows 

this graph.  The blue line is PC band 1 eigenvalues and the red dots are PC band 2 

eigenvalues.  The gap around 1000 nm is due to the removal of bands containing sensor 

artifacts.  The horizontal axis range was cut at 1800 nm as nothing of note existed at 

longer wavelengths. 
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Figure 39.   Plot of line 003 PC eigenvalues.  PC band 1 values are the blue line, and PC 
band 2 values are the red dots.  The black line highlights the 0 point as a reference 

The positive spike in PC band 2 at about 556 nm indicates that the green 

wavelengths contribute the most to this band, with negative values for the red, blue and 

near IR wavelengths.  The PC band 1 curve is similar to the spectral irradiance curve 

shown in Figure 4, but inverted.  This is due to the way PC band 1 is calculated: The 

more intense a pixel, the more negative the score.  It shows that PC band 1 contributions 

are mainly from solar irradiance.  Any non-zero values at wavelengths greater than near 

IR indicate potential target contributions or noise.  Future analysis using PC might be 

more effective if the near IR is isolated from the visual wavelengths first. 
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VI. CONCLUSIONS 

As demonstrated by the economic and military damage caused by the use of naval 

mines, mine detection capabilities need to outpace the development of increasingly 

complex mines.  While current technologies are reliable, they tend to put operators and 

assets at risk, or simply have too narrow a field of view to search large areas.  If high 

altitude, hyperspectral imaging can prove a reliable detection mechanism, it would 

provide the Department of Defense with a safe, wide-area search tool.  The promising 

results of this paper suggest this is a possibility. 

A. VISUAL INSPECTION 

One of the initial questions one should ask of a hyperspectral dataset meant to 

detect mines is, “can the targets be visually identified prior to any sort of processing?”  

Using the ProSpecTIR-VS3 1 meter data, the answer appears to be, “yes.”  With prior 

knowledge of where the targets are located, targets are relatively easy to differentiate 

from the other ocean clutter.  The bright colored, reflective targets were, of course the 

easiest to visually identify.  Realistically though, enemy combatants laying mines are not 

likely to paint their targets bright colors.  Regrettably, the limited sample size of dark 

targets prevented further analysis. 

B. ANOMALY DETECTION 

Although the targets are visually identifiable in the true-color images, a cueing 

mechanism is still needed to point the operator to the correct location.  In any real-world 

scenario, there is simply too much water to cover for an operator to examine images pixel 

by pixel.  This study was able to evaluate the feasibility of two different detection 

algorithms. 
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1. RX Anomaly Detector 

a. Submerged Targets 

Without the ability to un-mix pixels using an input sample target 

spectrum, the RXD-UTD algorithm was unable to locate the submerged targets 

effectively.  The limited spectral features of the target spectra did not alter the mixed 

pixel enough to separate it from the background clutter, resulting in 0% submerged target 

detection.  This seems to indicate RX anomaly detection is not a valid solution to this 

problem.  

b. Surface Targets 

The RXD-UTD algorithm was able to locate the green and white surface 

targets, but as discussed earlier, the limitation of RX anomaly detectors is their 

susceptibility to high false alarm rates.  The previously provided example of Bab-el-

Mandeb showed the relatively high number of pixels that would be selected incorrectly 

by the RXD-UTD surface target detection process.  As a stand-alone detector, this would 

be prohibitive, but if used as a cueing mechanism, informing the operator of where to 

look, this process could increase the speed of detection.  Operationally, the user would 

have to sort through each false pixel (or grouping of pixels) to determine if they are a 

target or not.  Without the anomaly detector, this could be 5.2 million pixels (1 meter 

spatial resolution, covering an area of 5.2 million meters).  This number would be 

reduced by the RXD-UTD process proposed in this paper. 

c. Concerns 

(1) Black Target.  The success of RXD-UTD in locating the green 

and white surface targets is muted by the detector’s inability to locate the black surface 

target.  As noted earlier, if searching for mines, this is the most realistic color of the 

targets.  The lack of a significant sample size of dark targets prevented further analysis of 

this particular concern.   
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(2) Target Isolation.  Although target detection wizards exist for 

the RXD-UTD that are similar to the one used in this paper for MTMF, the RXD-UTD 

process does not have a logical or scientific way to isolate the target from the background 

clutter.  Even in a wizard the operator must threshold the image at rather arbitrary values 

until satisfied the targets are isolated.  ROC curves can give estimates of false positive 

and true positive ratios, but in practice, this technique leaves too much room for error and 

variability. 

2. MTMF 

a. Submerged Targets 

This study has shown the feasibility of using 1 meter hyperspectral data in 

conjunction with an MTMF target detection wizard in order to detect sub-pixel size 

mines.  With low false positive rates and high true positive rates, the process proposed in 

the previous chapters appears to be a valid option.  As noted in the principle component 

analysis, the submerged targets appear to have a spectral signature distinct from the 

surrounding water.   

b. Surface Targets 

Similar to the RX anomaly detector, the surface MTMF analysis had 

success in locating the surface targets.  With the Mixture-Tuned half of MTMF, the 

process is able to effectively reduce false alarms, increasing its productivity over other 

anomaly detectors like the RXD.  The principle component analysis showed that, while 

similar to other surface objects, the surface targets have unique spectral signatures and 

intensities when compared to the water.  Aside from 3 pixels, all of the false alarms were 

due to non-target surface objects being detected.  Operationally, visually distinguishing 

between false alarms caused by vessels or buoys and true positives is a simple task. 

c. Concerns 

(1) Black Target.  Much like the visual analysis and the RXD-

UTD, the MTMF had difficulties locating the black surface target.  As shown in the 
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principle component analysis, this might be due to similarities between the spectral 

signatures and intensities of the target and water.  In this case, the detection of the surface 

target was also hindered by the presence of the large and highly reflective M/V Merlin.  

Again, limited sample size prevents further analysis. 

(2) Large, Highly Reflective Objects.  As shown in the previous 

example, large, highly reflective objects overpower scatter plots, preventing the isolation 

of target pixels and increasing the false positive rate.  If this is the case, much like the 

littoral zones and land, the objects would have to be masked out prior to a MTMF 

analysis. 

(3) Input Targets.  Operationally, the most limiting factor of a 

MTMF analysis could be the lack of an input sample target spectrum.  This process 

requires a sample target, spectrally similar to those being searched for, to be imaged at 

radiometric conditions similar to search area.  It is the suggestion of the author that a 

sample target be placed near the search area and imaged prior to and post surveying of 

the target area. 

C. FUTURE WORK 

A similar test with a more statistically significant number of targets over a larger 

area would further validate these techniques.  Targets closer in shape and color to real 

mines, placed in a variety of water and weather conditions would also provide an analysis 

of the usefulness of this technique in real world situations. 

Ocean current modeling needs to be done to look at the movement of drifting 

mines in potential conflict areas.  If drifting mines can be found by hyperspectral surveys, 

their location will have changed by the time an EOD unit can deploy to the area.   

Novel work is already done by Leonard and Acker (2012), and Louchard, Farm, 

and Acker (2008), among others, using multi-look spectral imagers to reduce background 

clutter.  This would decrease false positives in survey conditions similar to those of this 

test.  More importantly, this technology may allow for mine detection in less ideal 

conditions, including littoral zones, poor weather and high glint situations. 
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D. OTHER USES 

Although this paper focused on military uses of the detection of sub-pixel objects 

in hyperspectral images, many other options exist.  The MTMF analysis was particularly 

effective in identifying bright targets, a fact that may prove useful in search and rescue 

operations.  Personal floatation devices tend to contain highly reflective and bright 

fabrics, an ideal target for MTMF anomaly detection.   
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APPENDIX A 

Table 9.   Original flight plan of survey area for the high resolution collection; the lines that were actually flown are highlighted 

Length Time 

Meters Feet Ell. Height mean min max [nm] [Min]

1 418 1,371 117° 16' 25.85"  W 32° 53' 6.35"  N 117° 14' 35.90"  W 32° 53' 1.29"  N 418 50 55 39 1.6 7

2 417 1,368 117° 16' 27.66"  W 32° 53' 3.48"  N 117° 14' 34.47"  W 32° 52' 58.26"  N 417 50 55 39 1.6 7

3 416 1,365 117° 16' 27.98"  W 32° 53' 0.57"  N 117° 14' 34.53"  W 32° 52' 55.34"  N 416 50 55 38 1.6 7

4 415 1,362 117° 16' 28.17"  W 32° 52' 57.67"  N 117° 14' 34.71"  W 32° 52' 52.44"  N 415 50 54 38 1.6 7

5 414 1,358 117° 16' 28.35"  W 32° 52' 54.78"  N 117° 14' 34.90"  W 32° 52' 49.56"  N 414 50 54 38 1.6 7

6 414 1,358 117° 16' 28.54"  W 32° 52' 51.90"  N 117° 14' 35.09"  W 32° 52' 46.67"  N 414 50 54 38 1.6 7

7 412 1,352 117° 16' 28.73"  W 32° 52' 49.01"  N 117° 14' 35.28"  W 32° 52' 43.79"  N 412 50 54 37 1.6 7

8 410 1,345 117° 16' 28.91"  W 32° 52' 46.15"  N 117° 14' 35.46"  W 32° 52' 40.92"  N 410 50 54 37 1.6 7

9 408 1,339 117° 16' 29.09"  W 32° 52' 43.30"  N 117° 14' 35.65"  W 32° 52' 38.07"  N 408 50 54 37 1.6 7

10 410 1,345 117° 16' 29.28"  W 32° 52' 40.46"  N 117° 14' 35.83"  W 32° 52' 35.24"  N 410 50 54 37 1.6 7

11 411 1,348 117° 16' 29.46"  W 32° 52' 37.61"  N 117° 14' 36.01"  W 32° 52' 32.38"  N 411 50 54 38 1.6 7

12 410 1,345 117° 16' 29.65"  W 32° 52' 34.76"  N 117° 14' 36.20"  W 32° 52' 29.53"  N 410 50 54 37 1.6 7

13 409 1,342 117° 16' 29.83"  W 32° 52' 31.91"  N 117° 14' 36.38"  W 32° 52' 26.68"  N 409 50 54 37 1.6 7

14 409 1,342 117° 16' 30.01"  W 32° 52' 29.07"  N 117° 14' 36.57"  W 32° 52' 23.85"  N 409 50 54 37 1.6 7

15 411 1,348 117° 16' 30.19"  W 32° 52' 26.24"  N 117° 14' 36.75"  W 32° 52' 21.01"  N 411 50 54 37 1.6 7

16 415 1,362 117° 16' 30.12"  W 32° 52' 23.38"  N 117° 14' 37.19"  W 32° 52' 18.18"  N 415 50 54 38 1.6 7

17 418 1,371 117° 16' 28.46"  W 32° 52' 20.44"  N 117° 14' 39.22"  W 32° 52' 15.41"  N 418 50 55 38 1.5 7

Ground pixel
Flight line

Flying height (MSL) Projected WGS84

line start line end
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Table 10.   Original flight plan of survey area for the low resolution collection; all lines were flown 

Ground pixel Length Time 

Meters Feet Ell. Height mean min max [nm] [Min]

1 803 2,635 117° 16' 27.42"  W 32° 53' 4.09"  N 117° 14' 34.62"  W 32° 52' 58.89"  N 803 100 104 88 1.6 5

2 801 2,628 117° 16' 28.18"  W 32° 52' 57.40"  N 117° 14' 34.73"  W 32° 52' 52.17"  N 801 100 105 88 1.6 5

3 799 2,622 117° 16' 28.62"  W 32° 52' 50.73"  N 117° 14' 35.16"  W 32° 52' 45.50"  N 799 100 104 88 1.6 5

4 796 2,612 117° 16' 29.05"  W 32° 52' 44.06"  N 117° 14' 35.60"  W 32° 52' 38.84"  N 796 100 104 87 1.6 5

5 796 2,612 117° 16' 29.47"  W 32° 52' 37.43"  N 117° 14' 36.03"  W 32° 52' 32.21"  N 796 100 104 88 1.6 5

6 796 2,612 117° 16' 29.90"  W 32° 52' 30.80"  N 117° 14' 36.46"  W 32° 52' 25.58"  N 796 100 104 87 1.6 5

7 799 2,622 117° 16' 30.25"  W 32° 52' 24.17"  N 117° 14' 36.96"  W 32° 52' 18.96"  N 799 100 105 88 1.6 5

line endline start

Projected WGS84Flying height (MSL)
Flight line
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APPENDIX B 

Table 11.   The wavelengths of bands 1 through 180 of the collected ProSpecTIR-VS3 data 

Band # (nm) Band # (nm) Band # (nm) Band # (nm) Band # (nm) Band # (nm)

1 391 31 528 61 669 91 812 121 966 151 1156

2 396 32 533 62 674 92 817 122 972 152 1162

3 400 33 538 63 679 93 822 123 978 153 1168

4 405 34 542 64 683 94 827 124 985 154 1175

5 409 35 547 65 688 95 831 125 991 155 1181

6 414 36 552 66 693 96 836 126 997 156 1187

7 419 37 556 67 698 97 841 127 1003 157 1193

8 423 38 561 68 702 98 846 128 1009 158 1199

9 428 39 566 69 707 99 851 129 1016 159 1205

10 432 40 570 70 711 100 855 130 1022 160 1211

11 437 41 575 71 716 101 860 131 1029 161 1218

12 442 42 580 72 721 102 865 132 1035 162 1224

13 446 43 585 73 726 103 870 133 1042 163 1230

14 451 44 589 74 731 104 875 134 1048 164 1236

15 455 45 594 75 735 105 880 135 1055 165 1243

16 460 46 598 76 740 106 884 136 1061 166 1249

17 465 47 603 77 745 107 889 137 1067 167 1255

18 469 48 608 78 750 108 894 138 1073 168 1261

19 474 49 613 79 754 109 899 139 1080 169 1268

20 478 50 618 80 759 110 904 140 1086 170 1274

21 483 51 622 81 764 111 909 141 1092 171 1280

22 487 52 627 82 769 112 914 142 1098 172 1286

23 492 53 632 83 774 113 919 143 1104 173 1293

24 497 54 636 84 778 114 924 144 1110 174 1299

25 501 55 641 85 783 115 929 145 1117 175 1305

26 506 56 646 86 788 116 934 146 1123 176 1311

27 510 57 650 87 793 117 939 147 1130 177 1318

28 515 58 655 88 798 118 946 148 1136 178 1324

29 519 59 660 89 803 119 952 149 1143 179 1331

30 524 60 665 90 807 120 959 150 1149 180 1337  
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Table 12.   The wavelengths of bands 181 through 360 of the collected ProSpecTIR-VS3 data 

Band # (nm) Band # (nm) Band # (nm) Band # (nm) Band # (nm) Band # (nm)

181 1343 211 1532 241 1720 271 1909 301 2095 331 2282
182 1350 212 1538 242 1726 272 1915 302 2101 332 2288
183 1356 213 1544 243 1732 273 1921 303 2107 333 2294
184 1362 214 1551 244 1738 274 1927 304 2113 334 2300
185 1369 215 1557 245 1744 275 1933 305 2120 335 2306
186 1375 216 1563 246 1750 276 1939 306 2126 336 2313
187 1381 217 1569 247 1756 277 1945 307 2132 337 2319
188 1387 218 1576 248 1762 278 1951 308 2139 338 2325
189 1393 219 1582 249 1768 279 1957 309 2145 339 2331
190 1400 220 1588 250 1775 280 1964 310 2151 340 2337
191 1406 221 1594 251 1781 281 1970 311 2157 341 2344
192 1412 222 1601 252 1787 282 1976 312 2164 342 2350
193 1418 223 1607 253 1794 283 1982 313 2170 343 2356
194 1425 224 1613 254 1800 284 1988 314 2176 344 2362
195 1431 225 1619 255 1806 285 1994 315 2182 345 2369
196 1437 226 1625 256 1813 286 2001 316 2188 346 2376
197 1444 227 1632 257 1819 287 2007 317 2194 347 2383
198 1450 228 1638 258 1826 288 2013 318 2200 348 2389
199 1456 229 1644 259 1832 289 2019 319 2206 349 2396
200 1463 230 1650 260 1838 290 2026 320 2213 350 2403
201 1469 231 1657 261 1845 291 2032 321 2219 351 2409
202 1475 232 1663 262 1851 292 2038 322 2225 352 2415
203 1482 233 1669 263 1857 293 2044 323 2232 353 2422
204 1488 234 1676 264 1864 294 2051 324 2238 354 2428
205 1495 235 1682 265 1870 295 2057 325 2244 355 2434
206 1501 236 1689 266 1876 296 2063 326 2251 356 2440
207 1507 237 1695 267 1883 297 2070 327 2257 357 2446
208 1514 238 1701 268 1889 298 2076 328 2263 358 2453
209 1520 239 1708 269 1896 299 2082 329 2269 359 2459
210 1526 240 1714 270 1902 300 2088 330 2276 360 2465
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