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Abstract 

Models of category learning can take two different approaches 
to representing the relationship between objects and cate- 
gories. The generative approach solves the categorization 
problem by building a probabilistic model of each category and 
using Baycs' rule to infer category labels. In contrast, the dis- 
criminative approach directly learns a mapping between inputs 
and category labels. With this distinction in mind, we revisit a 
previously studied categorization experiment that showed peo- 
ple are biased towards categorizing objects into a category with 

•.liability. Modelling results predict that generative 
learners should be more greatly affected by category variabil- 
ity than discriminative learners. We show that humans can 
be prompted to adopt either a generative or discriminative ap- 
proach to learning the same input, resulting in the predicted 
effect on use of category variability. 
keywords: human category learning; generative models; dis- 
criminative models; rational models; Bayesian models 

Introduction 
Categories can be learned using a variety of approaches. Here 
we examine two distinct approaches that humans can use 
to learn categories: generative and discriminativelezming. 
While relatively unexplored in human categorization, this dis- 
tinction has been widely studied in machine learning (e.g., Ng 
& Jordan, 2001). The distinction comes down to whether the 
ability to categorize objects is the result of estimating a distri- 
bution for each category, or learning a mapping from objects 
to categories. Both of these strategies can be used in learning 
real life categories. For example, you could learn the food 
preferences of a friend by observing the foods he eats and 
trying to infer a probability distribution, or by recording his 
affective responses to different kinds of foods and trying to 
identify which factors lead to positive or negative reactions. 

More formally, generative and discriminative models rep- 
resent two distinct strategies for estimating the probability 
that a particular object belongs to a category. Generative 
learners solve this problem by building a probabilistic model 
of each category, and then using Bayes' rule to identify which 
category was most likely to have generated the object. Dis- 
criminative learners estimate the probability distribution over 
category labels given objects directly. These different strate- 
gies have implications for the performance of these mod- 
els. Theoretical and empirical analyses have shown that gen- 
erative and discriminative models differ in their generaliza- 
tion behavior, as well as the speed and accuracy of learning 
(Efron. 1975; Ng & Jordan. 2001; Xue & Titterington, 2008). 

While the generative/discriminative distinction has been 
studied extensively in machine learning and statistics, it has 
been little examined in human behavior. A recent study has 

shown humans can adopt these two different strategies while 
learning an artificial language (Hsu & Griffiths, 2009). In this 
paper, we explore whether people can adopt these two strate- 
gies in category learning. 

The paper will be presented as follows. First we will pro- 
vide an overview of generative and discriminative categoriza- 
tion models. Second, we will review related work from the 
existing human categorization literature. Third, we will re- 
visit a previously studied paradigm that showed people are 
sensitive to category variability, being more likely to assign 
an object equidistant from the mean of two categories to the 
category with higher variance (Stewart & Chater, 2002; Co- 
hen, Nosofsky. & Zaki, 2001; Rips. 1989; Smith & Sloman, 
1994). Modelling results show that a generative model ex- 
hibits greater sensitivity to category variability than a dis- 
criminative model. We use this analysis as the basis for 
an empirical investigation of whether human learners can be 
prompted to take these two distinct learning approaches. Our 
results support the idea that humans adopt generative and dis- 
criminative approaches when appropriate. This provides new 
insight into the factors affecting human category learning. 

Generative and discriminative models 
Rational models of categorization identify the underlying 
problem as one of estimating the probability of a given ob- 
ject x belonging to a category c, as expressed by the distri- 
bution p(c\x). The difference between generative and dis- 
criminative approaches to categorization comes down to how 
this probability distribution is estimated. Generative models 
build a probabilistic model of the input by learning the prob- 
ability that an object x is generated given that the category is 
c. p(x\c). and then solving the categorization problem by ap- 
plying Bayes' rule. Discriminative models estimate p{c\x) di- 
rectly. Generative models thus assume that observed objects 
are sampled in a way that reflects p(x\c). while discriminative 
models do not make any assumptions about the distribution 
from which the input is sampled. These two approaches to 
categorization are illustrated schematically in Figure 1. 

Comparison of generative and discriminative approaches 
to category learning has been done in the machine learn- 
ing and statistics literature, where the classic generative- 
discriminative pair being compared is usually (generative) 
naive Bayes vs. (discriminative) logistic regression (Efron, 
1975; Ng & Jordan, 2001; Xue & Titterington. 2008). 
Under certain conditions, these two models are identical 
in the asymptotic form of the function p{c\x) that they 
produce, differing only in how that function is estimated. 
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Figure 1: Generative and discriminative models. Generative 
models aim to estimate the probability distribution over the 
input given the category label. Discriminative models find a 
direct mapping between inputs and category labels. 

Such generative-discriminative pairs can thus be used to ex- 
plore the consequences of adopting these different strategies 
through mathematical analysis and simulations. For exam- 
ple, if the training data consist of two normally distributed 
samples, generative models learn categories more quickly 
(Efron, 1975; Ng & Jordan, 2001). However, when the train- 
ing data come from other distributions, discriminative models 
are asymptotically more accurate (Xue & Titterington, 2008), 
though in some cases generative models may perform bet- 
ter initially and arrive at their (higher) asymptotic error more 
quickly (Ng & Jordan, 2001). 

Summary of related work 

Previous models of categorization have used both genera- 
tive and discriminative strategies, without necessarily rec- 
ognizing that the significance of the distinction.The com- 
monly cited prototype and exemplar models can be applied 
both generatively and discriminatively. Prototypes and ex- 
emplars are psychological models of category representation 
whereas discriminative and generative are statistical models 
of learning. Thus, prototype and exemplar models can be 
used under either approach, depending on how learning takes 
place. For instance, ALCOVE (Kruschke, 1992) is an ex- 
emplar model akin to discriminative kernel methods. SUS- 
TAIN (Love, Medin, & Gureckis, 2004) is a discriminative 
model that chooses between exemplar and prototype repre- 
sentations. Decision bounds (Maddox & Ashby, 1993) can be 
either discriminative or generative depending on how model 
parameters are estimated. While rational models of catego- 
rization can adopt either approach, the ones proposed so far 
have taken a generative approach (e.g., J. R. Anderson, 1990; 
Griffiths, Canini, Sanborn, & Navarro. 2007). These genera- 
tive categorization models span the range between exemplar 
and prototype representations. At the extremes, generative 
prototype models estimate parameters of category distribu- 
tions (usually a Gaussian with a mean and variance) and gen- 

erative exemplar models estimate category distributions using 
kernel density estimation (Ashby & Alfonso-Reese, 1995). 

Despite the prevalence of human categorization models 
with both discriminative and generative approaches, most ex- 
perimental paradigms seem more consistent with discrimi- 
native learning: stimuli are presented, participants guess the 
category and feedback is given. However, a few exceptions 
this can be seen in previous work on classification vs. in- 
ference learning, and observational vs. feedback learning. 
While not explicitly mentioned in previous work, both of 
these paradigms are potentially related to our discriminative 
vs. generative distinction. 

Classification vs. inference learning 

Another line of experiments has shown that human category 
learning can also be influenced by using different tasks to 
teach people about the relationship between categories and 
features. The effect of using these two different tasks is sim- 
ilar to that of changing the direction of a learned causal re- 
lationship. (A. L. Anderson, Ross, & Chin-Parker, 2002; 
Markman & Ross, 2003; Ross & Murphy, 1996). In these 
experiments, all participants were presented with exactly the 
same training stimuli, consisting of the features and category 
membership of a set of objects. In one condition, learning 
took place via through classification: Participants were pro- 
vided with the values for (some of) the features of an object 
asked to predict category membership. In the other condi- 
tion, learning was based on making a predictive inference: 
The category membership and/or values of some of the fea- 
tures were provided and participants were asked to predict 
the value of another feature. Because participants in both 
conditions were given feedback, they were both ultimately 
provided with exactly the same information about categories 
and features. However, learning results differed in terms of 
performance accuracy and generalizations made. For exam- 
ple, inference learners performed better than classification 
learners on single-feature classification tasks but more poorly 
when all of the features were provided (A. L. Anderson et 
al.t 2002). While this study was not motivated by generative 
and discriminative learning, people may have adopted these 
different strategies in the different conditions: Classification 
learning can be done using a discriminative model, while in- 
ference learning requires a generative model. 

Observation vs. feedback training 

Another study, by Ashby, Maddox, and Bohill (2002), has 
also examined how learning of the exact same input was af- 
fected by presentation style. Here they compared what they 
called feedback training (where the category label appears af- 
ter the object) with observation training (where the category 
label appears before the object). Their results showed that 
participants in the feedback condition performed significantly 
better than those in the observation condition for information- 
integration categories, where category membership could not 
be expressed in terms of a rule using a single feature. These 
two forms of training might encourage learners to adopt gen- 



erative and discriminative strategies. Feedback training gives 
an error signal that can be used to adapt a discriminative 
model. Observation training is more relevant for learning ob- 
ject features based on the category label which is the gener- 
ative approach. 

Summary 
Generative and discriminative models use different ap- 
proaches to solve the problem of categorizing objects. Ex- 
isting models of human category learning differ in which of 
these approaches they use. Previous work has not explored 
whether people are able to switch the approach they take in 
learning categories, although the effects of different training 
regimes that might encourage one approach over the other 
have been investigated. In the remainder of the paper, we ex- 
plicitly test whether people can adopt these two approaches 
to learning categories, using a phenomenon that is diagnostic 
for one generative-discriminative pair of models. 

Differential use of category variability 
Several experiments have shown an effect of category vari- 
ability on human categorization judgments. In these experi- 
ments, the stimuli belong to one of two categories with dif- 
ferent means and variances. The key question is how stimuli 
with features lying (perceptually) in between the two cate- 
gories are categorized. The results of these experiments all 
showed that there was a bias towards categorizing stimuli into 
the high-variance category (Stewart & Chater, 2002; Cohen 
et al.. 2001; Rips, 1989; Smith & Sloman, 1994). Here we 
propose that the degree of preference for the high variance 
category may be affected by whether the learner is adopting 
a generative or discriminative approach. 

Intuitively, we expect category variability to have a greater 
effect on generative learners because estimating p{x c) for 
each category requires being sensitive to the variance of that 
category. In contrast, one need not consider the variance of 
the stimuli in simply learning a function from x to c. p(c\x). 
Indeed many discriminative models used in machine learn- 
ing, such as support vector machines (Schölkopf & Smola, 
2002), focus just on the location of the most extreme mem- 
bers of each category. We are not claiming that all generative 
models are sensitive to category variance, or that all discrimi- 
native models are insensitive, but that these approaches differ 
in the extent to which they are sensitive to this property of the 
stimuli. To illustrate this, we will explore the predictions of 
one generative-discriminative pair of models. 

We follow previous work exploring the difference between 
generative and discriminative models (e.g., Ng & Jordan, 
2001) and focus on the generative-discriminative pair of naive 
Bayes and logistic regression. Since we will focus on contin- 
uous stimuli, we assume a Gaussian generative model, with 

p(x\c = /) = ATfa,  ,) (1) 

by maximizing the likelihood J"=, log p(x}\cj,p, ). where 
Cj and Xj are the category membership and features of the 
y'th stimulus respectively. The probability a novel stimulus 
belongs to a category, p{c\x). is then computed by applying 
Bayes' rule, with the prior probability of each category being 
proportional to the number of observed stimuli from that cat- 
egory. The naive Bayes model is similar to the Gaussian deci- 
sion bound model used in Normal general recognition theory 
(Stewart & Chater, 2002; Maddox & Ashby, 1993). 

The discriminative model uses logistic regression to esti- 
mate p(c\x) directly, with 

p(c = \\x,w,b) = 1/(1 +exp{-wTx)-b}) (2) 

where w and b are the parameters of the model and x is a vec- 
tor of feature values. The parameters vv and b are estimated by 
maximizing the log likelihood £"= j log p(cj\xj,w,b). In gen- 
eral, w and b are vectors of length equal to the number of stim- 
ulus features. However, we will be using one-dimensional 
stimuli (JC; is scalar), so w and b will be scalars in our case. 

where /J, and   , are the mean and variance of the rth category 
with r € {1,2}. The parameters /y, and   , can be estimated 
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Figure 2: Stimuli used in the experiment. Category A and B 
were the low and high variance categories respectively 

To examine the predictions of these models, we used stim- 
uli based largely on those of Cohen et al. (2001). Stimuli 
consisted of vertical lines of varying lengths. Training stim- 
uli belonged to one of two categories, A and B. Category A 
is the low variance category. Category A contained Lines of 
length 110. 120,130, 140 and 150 pixels. Category B was the 
high variance category. Category B contained lines of length 
300, 375, 450, 525 and 600 pixels. All stimuli were equally 
likely within each category (categories had a flat distribution 
of stimuli). We also included novel transfer stimuli in the te^t 



stimuli. There were eight transfer stimuli, equally spaced be- 
tween the highest value of A and the lowest value of B (see 
Figure 2). A range of intermediate transfer stimuli were used 
in case the middle stimulus in psychological space differed 
from the numerical middle stimulus. The precise location of 
the middle stimulus is not important for our purposes, as the 
difference in results between generative and discriminative 
models is the question of interest. 

Model categorization results 
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Figure 3: Generative and discriminative model predictions 
for the probability of categorization stimuli into the high vari- 
ance category. The model predictions are that a generative 
learner is more likely to categorize in between stimuli in the 
high variance category 

We trained a generative naive Bayes model and discrimi- 
native logistic regression model on all labeled examples from 
category A and B. Our naive Bayes model had uniform cate- 
gory priors, i.e. both categories were assumed to be equally 
likely. Parameters for both models were fit using maximum 
likelihood estimation. To compare the outcomes of the two 
models, we analysed categorization predictions for our trans- 
fer stimuli using these generative and discriminative models. 
The generative model predicts intermediate transfer stimuli 
will be classified to the high-variance category more often 
than the discriminative model (see Figure 3).This is because 
it is more likely that intermediate stimuli are extreme val- 
ues from the high-variance category than the low-variance 
category. These results illustrate that sensitivity to category 
variability may be a diagnostic indicator of whether learn- 
ers are using a generative or a discriminative strategy. In the 
next section we present an experiment that uses this indicator 
to determine whether human learners switch between these 
strategies depending on the way in which a categorization 
task is presented. 

Human generative and discriminative learning 
Method 

Participants We collected data from 24 participants (12 in 
each condition). Participants wereundergraduates at the Uni- 
versity of California, Berkeley and received course credit. 

Stimuli Stimuli was the same training and transfer stimuli 
used in the model simulations described in the previous sec- 
tion. In the experiment, these stimuli were presented as white 
vertical lines in a black circle. 
Procedure While previous related work had paradigms that 
may have encouraged discriminative or generative learning 
(Ashby et al.. 2002; A. L. Anderson et al., 2002), the connec- 
tion between these paradigms and the distinction was tenta- 
tive. Thus, we will use our own experimental manipulation 
in order to encourage participants to adopt the distinct ap- 
proaches as strongly as possible. Participants in both learn- 
ing conditions were trained under the same randomized se- 
quence of trials. In order to prompt generative or discrimina- 
tive learning, the two conditions differed in the instructions, 
category-stimulus presentation order and question presented 
during testing blocks. Participants in both conditions were 
told they will see "signs" from an alien tribe. Participants in 
the generative condition were told that two aliens, one from 
each tribe (A and B) will appear and produce signs from their 
respective tribes. A picture of two aliens, who were identi- 
cal except for the letter on their chest, was shown alongside 
the instructions. These instructions were intended to make it 
clear that the observed stimuli were generated from a prob- 
ability distribution associated with the target category, con- 
sistent with the assumptions of a generative model. Partici- 
pants in the discriminative condition were told that there are 
signs from two alien tribes and they would be shown a single 
alien translator who can report which tribe a sign was from. 
A single alien was shown alongside these instructions with a 
question mark on its chest. These instructions were intended 
to establish a situation in which participants learned a func- 
tion from stimuli to category membership, consistent with a 
discriminative model. 

For all participants, the experiment contained 10 blocks 
of 20 trials (each of 10 training stimuli were shown twice). 
Training blocks (odd blocks) were interleaved with testing 
blocks (even blocks). During training trials, participants were 
shown a black circular background on which the "sign" ap- 
pears as a white vertical line, next to an alien with either A 
or B written on its chest. In the generative condition, the 
alien appeared 500 ms before the sign during training and the 
alien disappeared between trials to simulate different aliens 
appearing. In the discriminative condition, the sign appeared 
500 ms before the alien and the alien did not disappear be- 
tween trials to simulate one constant alien interpreter. In both 
conditions,once both stimulus and letter had appeared, both 
remained simultaneously on the screen for 1.5 s (see Figure 
4). The total length of each training trial was 2 s and there 
were 700 ms between each trial. 

During test trials, participants were shown a sign (white 
vertical line) on the black circular background. Participants in 
the generative condition were asked "Which alien was more 
likely to have produced this sign?". Participants in the dis- 
criminative condition were asked "Which alien tribe does this 
sign belong to?". Stimuli during each test block consisted of 



every example stimulus in categories A and B. along with the 
eight transfer stimuli that were equally spaced between and 
highest value of category A and the lowest value of category 
B. (The highest value of category A and lowest value of cat- 
egory B were seen twice during each test block to make up 
the 20 trials.) No feedback was given during testing in either 
condition. 

Sign 3/200 

Figure 4: Screen shot of the experiment 

Results 

The human learning results correspond to the predictions of 
the models: Generative learners are more likely to catego- 
rize transfer stimuli that lie in between the two categories in 
the high-variance category relative to discriminative learners 
(see Figure 5). A two-way within-between ANOVA revealed 
statistically significant effects of test stimulus (F(9,198) = 
76.88, MSE = 0.036. p < .001) and condition (F(l,22) = 
5.43, MSE = 0.216, p < .05) and a marginally significant 
interaction (F(9.198) = 1.90, MSE = 0.036, p = .054). 
Planned comparisons using two-sample t-tests showed statis- 
tically significant effects of condition for stimuli 216 (f (22) = 
2.57. p < .05) and 233 (r(22) = 2.46, p < .05). These statis- 
tics are calculated under the most conservative assumption, 
under which the responses from each participant for each 
stimulus are averaged together and treated as a single re- 
sponse. 

The "middle stimulus" that lies midway between the two 
categories in human perceptual space (i.e. equally likely to be 
categorized in both categories in the discriminative condition) 
is of length around 200 pixels. This is smaller than the nu- 
merical middle (225 pixels). This is approximately the same 
value as the perceptual "middle stimulus" that was found in 
previous work (Cohen et al.. 2001). Accounting for this shift, 
the discriminative model predictions match fairly well with 
the discriminative human results. The generative model pre- 
dictions are significantly shifted to the left compared with our 
generative human results, meaning the generative model pre- 
dicted an even stronger tendency to categorize the in-between 
stimuli in the high variance category. This difference in de- 
gree between model predictions and human judgments could 
be explained in many possible ways. One possibility is that 
perceptual stimuli might follow Weberian compression for 

the larger stimuli (Stewart & Chater, 2002). As a result of this 
compression, the perceptual variability of the longer length 
lines (which made up the high variability category) may have 
been significantly smaller than the absolute numerical vari- 
ability values that were used in our models. If this were the 
case, a suitable transformation, such as to log space, would 
leave our qualitative results the same, while resulting in an 
appropriately less strong variability preference for the gener- 
ative model. Another possibility is that people are not making 
the Gaussian assumption that was made by our model. This is 
plausible as our stimuli were very non-Gaussian. In this case, 
it is possible that the probability of belonging in the high vari- 
ance category under a Gaussian assumption is greater than the 
probability estimates that generative participants might have 
made for our actual stimuli. Finally, participants may not be 
behaving fully generatively, or that the instructions resulted in 
a mixed population of generative and discriminative learners 
in this condition. 

Human categorization results 
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Figure 5: Probability of categorizing transfer stimuli in high 
variance category for participants in the generative and 
criminative learning conditions. Total values are the average 
of all probabilities for individual stimulus lengths. 

Discussion 
The distinction between generative and discriminative ap- 
proaches to categorization has played an important role in 
machine learning research, but has not previously been ex- 
plored in cognitive psychology. Our results show that people 
can be cued to take these two different approaches to category 
learning through the way in which a categorization task is 
presented. These results have implications for understanding 
human category learning, and for establishing links between 
the communities studying human and machine learning. 

The finding that people behave differently when encour- 
aged to adopt these two different approaches to category 
learning may shed light on previous empirical results in 
cognitive psychology. For example, some previous experi- 
ments have shown effects that may be partly due to learn- 
ing paradigms that encouraged participants to adopt genera- 
tive or discriminative learning approaches (e.g., Ashby et al.. 



2002). The generative/discriminative distinction also has po- 
tential implications for previously proposed models of cate- 
gorization. For example, it seems appropriate that connec- 
tionist models (Kruschke, 1992: Love et al., 2004) will best 
characterize behavior when humans adopt a discriminative 
learning approach whereas rational models (J. R. Anderson, 
1990; Griffiths et al., 2007) will best describe behavior when 
humans adopt a generative learning approach. Developing 
a deeper understanding of how this distinction plays out in 
human learning may provide additional insights into long- 
standing debates on category learning. 

Showing that people can adopt both generative and dis- 
criminative learning strategies establishes a new connection 
between human and machine learning. While many of the 
goals of machine learning are inspired by human capabilities 
(e.g., the ability to recognize and categorize complex struc- 
tures quickly and efficiently), the principal issues that are 
topical in machine and human learning seldom coincide. By 
showing that a key distinction long studied in machine learn- 
ing research is also significant to human learning, this work 
begins to build an important bridge between machine learn- 
ing and human learning communities. This will encourage 
collaboration between the two research communities where 
computational models of learning provide insight into human 
learning and human learning, in turn, inspires computational 
modelling. It also establishes a way to know how advances 
in specific aspects of machine learning, such as improved dis- 
criminative models, might be relevant to predicting aspects of 
human learning. 

Identifying the relevance of the generative/discriminative 
distinction in human categorization also opens up many new 
avenues of research questions. For the neuroscience com- 
munity, one can ask: What neural mechanisms are imple- 
menting these two very different learning strategies? Are the 
neural circuits involved similar or different? This research 
also provokes many questions about learning more generally: 
When does human learning tend to be generative or discrimi- 
native? How flexible are learners in alternating between gen- 
erative and discriminative learning approaches? Can learn- 
ing approaches be retrospectively altered? (i.e. if input is 
learned with a discriminative perspective and learners were 
later made to understand that the data was generated from a 
probability distribution, would they switch their categoriza- 
tion judgments?) Since much of human learning in everyday 
life consists of a mix of scenarios in which one or the other of 
these strategies is more appropriate, clarifying when people 
use generative and discriminative approaches will help us un- 
derstand differences in learning among individuals and across 
situations. We anticipate that exploring these questions will 
result in improved models of human category learning, and 
a tighter coupling between research on human and machine 
learning. 
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