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The work supported by this grant resulted in the solution by Michael Hill. 
Michael Hopkins and Doug Ravenel of the "Kervaire Invariant" problem. The 
Kervairr invariant problem was .»ne of the longest standing open problems in al- 
gebraic topology, and its solution represents major breakthrough. The many new 
innovative teelmiques developed for this purpose arc making a strong impact on the 

4 algebraic topology. The solution hints at a relationship between quantum 
dt'Id theory in dimension four and the Kervaire invariant, making an unexpected 
connection between this old problem and theoretical phy- 

SCIENTIFIC FINDINGS 

Topological automorphic forms. The initial phase of this program involved 
studying the interaction between the theory of topological automorphic forms, and 
the    Hopkins Miller" cohomology theo: Tin- hope was to use the theory 
of Shiinura varieties to prove an old conjecture of Hopkins on the action of finite 
subgroups of the Morava stabilizer group on the homotopy groups of En. The first 
question one faces is to relate the theories at all: given a prime p, and a chromatic 
level n. does t litre <-xist a unitary Shiinura variety such that there is an equivalence 

EOn ~ TAFK(n)? 

Behrens and Lawson [1] have shown that there is an equivalent e 

\  Mp) 

TAFK(n)^n^G") 

Here, the number of terms in the product corresponds to a certain non-abelian 
class number for the unitary group U, and the groups G, are finite subgroups of 
the Morava stabilizer group. The groups Gt are the automorphism groups of mod 
/* points of the associated Shiinura stack. The problem is therefore equivalent to 
finding Shimura data for which there exisi- ii that d is a maximal finite 
subgroup with maximal p-torsion. 

Behrens and Hopkins were able to determine that for n = (p — l)pr_1. there is 
a canonical choice of Shimura variety having the desired mod p-pomt. answering 
this question in the affirmative. The result appears in [2]. 

At this point two unexpected developments occurred. First. Hill. Hopkins am! 
< I. using new methods, proved the conjecture of Hopkins on the action of 

finite subgroups of the Morava stabilizer group.  Their work did not make use of 
the theory of Shimura varieties, and raised the possibility of reversing the intended 
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relationship and using these methods to make new computations in the theory of 
topological automorphic forms It also allowed Hill, Hopkins and Ravenel to make 
many new computations in chromatic homotopy theory. Tins ted to the second 
unexpected development. Using the information from these new computations. 
Hill. Hopkins and Ravenel solved the longstanding "Kervaire invariant problem.*' 

The Kervaire invariant problem. The Kervaire invariant problem is one of 
the oldest problem! in differentia] and algebraic topology. It originates in the 
1930's in the work of Pontryagin describing the maps between spheres in terms 
of the geometry of the Inverse image of a regular value. Pontryagin introduced 
the rudiments of what is now know as the theory of "surgery" on manifolds, and 

d an inCORect argument that every framed manifold of dimension 2 could be 
transformed using surgery into the sphere. He later discovered his error, and the 
somewhat subtle invariant he had overlooked. 

first form oi the Kervaire invariant problem has its origins in Pontryagin's 
work of the 1930's. 

Question 1. When can a stably framed manifold be transformed into a Bphere. 
precisely, when is a framed manifold cobordant to a homotopy spi 

The topic was taken up again in late 1950's and early 1960's by Thorn. Milnor. 
Kervaire and others. Milnor startled the mathematical world in 1957 by const met- 
ing a smooth manifold honieomorphie. but not ditfeomoi-phie to the sphere S7 of 
dimension 7. He also introduced the theory of "surgery" and made great strides 
in classifying manifolds using surgery to transform one into another. Kervaire 
discovered the deeper nature of Pontryagins subtle error and defined an impor- 
tant invariant, the Kervain tnrariant for (almost) framed manifolds of din;' 
(4A* + 2). Using it he produced an example of a triangulable manifold of dimension 
10 which did not admit a smooth structure. Working together. Kervaire and Milnor 
introduced the group 0n of smooth structures on (homotopy) spheres of dimension 
n. with the group operation of connected sum.  For n co: to 0 or 3 mod  1 
they were able to determine B7, in terms of the homotopy groups of spheres. For 
n congruent to 1 or 2 mod 4 they were unable to settle a factor of 2 in the order 
of 0n. They showed that settling the mysterious factor of 2 was equivalent I 
question stated above. They also showed that the question is equivale: 

Question 2. In which dimension n can there exist a smooth stably framed manifold 
with Kervaire invariant 1. 

By the mid 1960's little progress had been made on this question, and the avail- 
able information was largely anectodal. It was known that manifolds of Kervaire 
invariant one existed in dimensions 2, 6 and 14, and Kervaire had shown that his 
invariant was always zero in dimensions 10 and 18. The difficulty was the lack of a 
robust homotopy th' -cription of Kervaires invariant. The next significant 
step WSJ taken in the 1966 paper of Brown and Peterson who IfiOWfjd that, no framed 
manifold of Kervaire invariant one could exist in dimension of the form (&k + 2) 
with fc > 1, thus extending Kervaire's sequence of 10 and 18. But the definitive 
result came a couple of years later, in the famous 1969 paper of Browder, "The 
Kervaire invariant of framed manifolds and its generalizations." Browder showed 
that if a framed manifold of Kervaire invariant 1 were to exist, the dimension of the 
manifold must be of the form 2J+1 -2, and in that case that such a manifold sa 



if an only if there was an element 0, in the homotopy grou, res repn » 
at the /v-term of the classical Adams spectral sequence by frr With Ekowder'fl 
work, the methods of homotopy theory could be brought to bear on the problem, 
and Barratt and Mahowald and their co-workers Tangora and Jones extended the 
sequence of existence results to include 30 and 62. The question was also related to 
many deep issues in homotopy theory, «'specially in connection with the homotopy 
groups of spheres. By the mid 1980's Kervaire invariant one manifolds were known 
to exist in dimensions 2, <i. 11. 30, and 62, and the issue was completely open in 
dimensions 2J+1 - 2 for j > 6. No significant progress was made a: 

Under the support of this grant, Mike Hill, Hopkins and Doug Ravenel proved 
the following result 

Theorem 3. If M is a stably framed smooth, closed manifold of Kervaire invariant 
one. the the dimension of M is 2, 6, 14, 30, 62, or 126. 

settles this problem in all dimensions except 126. 
The solution to the Kervaire invariant problem involves two key technical in- 

novations. One is the introduction of the Z/2n+1-equivariant E^ ring spectrum 
M£/((»)). The spectrum MU^0^ is Landweber'fl Bpectrum MUR of real bordmn 
equipped with the action of the Galois group of C over R (which is cyclic of order 

: .rtrum MU^n» is the 2n-fold smash product of ML'?, with the action 
of Z/2n generated by 

Oi A • • • A 02« *->■ 02« A Oi A • • • A 02« -1. 

The other is an equivariant refinement of the Postnikov tower called the slice fil- 
tration. The slice filtration is engineered to produce a convenient output when the 
group in question is cyclic of order a power of 2, especially in the case of MU^n^. 
These new tools harness a remarkable range of information in topology. 
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