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1. Introduction 

One-dimensionality of basic shock relations motivates scientists and engineers to design 

experiments using planar shocks (1).  However, single point initiation of chemical reactions 

proceeding at detonation velocity in an explosive material usually produces an outward radiating 

spherical shock wave.  Attempts to produce planar shock waves typically rely on flyer plates to 

initiate chemistry, or employ contoured and layered explosive mixtures in which detonation 

velocities of different components are used to achieve a shock wave profile at a given distance 

from the point of initiation (2). 

Planar shock waves achieved by the latter method use a device that is referred to as an explosive 

plane wave generator (PWG), or plane wave lens (PWL).  The plane wave generator appears as 

two concentric cones of explosive material.  The inner cone material exhibits a slower detonation 

velocity than the outer cone material (3).  A cross section of the plane wave generator 

manufactured at the U.S. Army Research Laboratory (ARL) is shown in figure 1. 

 
Figure 1.  A plane wave generator of  

the type manufactured at the ARL. 

The angle of the cone is chosen so that the vertical component of the detonation velocity in the 

outer cone explosive is equal to the detonation velocity of the inner cone explosive.  The 

detonation wave moving in the outer cone/higher velocity explosive continuously initiates 

detonation in the inner cone/low velocity explosive at the interface, such that the detonation front 

remains planar as it proceeds away from the point of initiation (3). 

 

TNT (slower)

Comp B (faster)

Detonator
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Determination of the planarity of the shock wave as it emerges from the PWG is usually 

accomplished using piezo pins to measure displacement of the free surface of the PWG, or 

measured optically using shock-induced light emission from a confined gas at the PWG surface 

(2). 

In the work described here, we record digital color images of light emitted by the explosive as 

the detonation proceeds within the material.  Each color component of the digital image is 

analyzed to determine if the detonation front within the solid explosive can be measured prior to 

emergence.  We investigate the use of digital signal processing techniques to evaluate the 

planarity of the shock wave within the interior of the explosive and as it emerges from the 

explosive.  Results using these techniques are compared to simulations using the CTH 

hydrodynamic computer code (4).   

2. Experimental 

The PWG used here was manufactured by the Energetics Technology Branch of the Weapons 

and Materials Research Directorate of the ARL.  The inner cone consisted of milspec 

trinitrotoluene (C7H5N3O6, detonation velocity 6.9 mm/microsecond).  The outer cone consisted 

of milspec Composition B (60:40 RDX (trimethylene trinitramine, C6H6N6O6):TNT, detonation 

velocity 8.7 mm/microsecond).  Initiation was provided by a RP-80 detonator (5).  Total weight 

of the PWG was approximately 510 grams.  A photograph of the PWG, with a test section of 

TNT attached to accept the shock wave, is shown in figure 2. 

 
Figure 2.  ARL explosive PWG with TNT test material. 

 

TNT PWG Detonator
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Digital color images of the PWG face during function were obtained using a Cordin Company 

Model 570 Digital Framing Camera.  This camera uses a rotating mirror assembly to sequentially 

expose 74 digital color cameras arranged in an arc about the mirror.  The camera was operated at 

its maximum speed of 2.5 million frames per second.  Exposure time per frame was 300 ns.  

Image resolution was 4 megapixels per frame.  A 30 cm wide square mirror was used to reflect 

light emitted from the face of the PWG to the framing camera.  The framing camera was 

equipped with a Nikon 70-300 telephoto lens at full aperture.  A photograph of the Cordin 

Company Model 570 framing camera is shown in figure 3. 

 

Figure 3.  The Cordin Company Model 570 digital color framing camera. 

 

3. Digital Color Imaging 

Most color cameras employ a Bayer-type mask to generate color images.  The Bayer-type mask 

generates sub-pixel output in red, green, and blue spectral regions for each frame recorded by the 

camera.  For work reported here, a MATLAB program generates the three separate pixel arrays 

from each frame, enabling color-band specific digital image processing.  To enable quantitative 

comparison of light output over the three filter bandwidths, each camera must go through a 

tedious calibration to map out the pixel response across the full visible spectrum (6).  Camera 

calibration involves comparing sub-pixel output with the output from a calibrated 

photomultiplier tube for narrow bandwidth radiation over the full visible spectrum.  Figure 4 

shows a schematic of the Bayer-type mask in front of the sensor element of a typical color 

camera (a), a calibration graph for a high speed digital camera (for example only, not for the 

PWG

Glass

mirror

a. b.
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Cordin imager) (b), and a schematic of the three color matrices generated per frame (c).  Because 

each color-specific matrix contains zero signal at pixels filtered for other colors, manufacturer-

specific zero-filling firmware is used to create complete color matrices for each frame (6). 

 

Figure 4.  a. A schematic of the Bayer-type mask; b. A calibration  

spectrograph for the Bayer-type mask; and c. A schematic  

of deconvolution of a raw color image. 

Figure 5a shows an image of a dispersed He:Ne laser beam, reflected by a sheet of paper, at a 

wavelength of 635 nanometers, obtained using the Cordin Model 570 camera.  Figure 5b shows 

the red pixel matrix for this image.  Figures 5c and 5d show the green and blue pixel matrices, 

respectively.  Although the image appears predominantly in the red pixel matrix, careful 

examination shows some response in the green matrix.  Note:  The small arrow in figure 4b 

shows the wavelength position of the He:Ne laser on a Bayer-type calibration spectrograph. 

Figure 5.  a. A color image of a dispersed, reflected He:Ne laser  

near a wavelength of 635 nm; b. The red matrix corresponding  

to a; c. The green matrix corresponding to a. (note some  

response) and d. The blue matrix corresponding to a. 
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4. Results 

Figure 6 shows a series of color images of the PWG face following initiation.  A glass cover 

slide was glued to the surface of the PWG to confine a small air gap (see figure 3 b).  Shock-

induced light emission from this air gap was used to determine time of shock wave arrival at the 

PWG surface (denoted as time t0).  The dark stripe in the image in figure 6, t0 + 400 ns, is caused 

by the glass cover slide becoming non-transparent after shock wave passage. 

 

Figure 6.  A series of images of light emission from the face of the PWG following  

initiation. The frame denoted as t0 corresponds to arrival of the shock  

wave at the PWG face. R,G,B refer to pixel color matrices (red, green,  

blue) used by the camera to produce color images. 

Figure 7 shows contour maps of red matrices from images up to shock wave emergence (denoted 

as t0) at the face of the PWG, in time increments (400 ns) corresponding to the maximum speed 

of the camera.  Since the exposure time of the camera is 300 ns per frame, each matrix in figure 7 

corresponds to an integration of light over that period.   

 

 

 

 

t0-1200 ns t0 - 800 ns t0 - 400 ns

t0 t0 + 400 ns t0 + 800 ns

G,B saturated R,G,B saturated
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Figure 7.  Contour maps of red matrices up to the time of the shock wave emerging from the face of the 

PWG. 

Note: The intense band in the matrix for time t0 is caused by light emission from the small air gap between the glass 

cover slide and the face of the PWG.  In each map, the vertical Z axis corresponds to light intensity, and the 

horizontal axes correspond to image pixel number. 

Figure 8 shows contour maps of cross sections through the three sets of color matrices 

corresponding to light emission from the face of the PWG.  The cross section is measured 

through the center of the image, 1 pixel wide, perpendicular to the long axis of the glass cover 

slide.  In each cross sectional contour map, the horizontal x-axis denotes frame number, the y-

axis denotes pixel number within the cross section (1 pixel wide), and the vertical axis is light 

intensity.  In each contour map, the shockwave reaches the surface of the PWG at frame 19.   

Red Matrix

t0t0 – 400 ns

t0 – 800 nst0 – 1200 ns
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This is evident by the spike in intensity near cross section center at frame 19 in each contour 

map.  Following passage of the shock through the glass cover slide, there is a sharp drop in 

intensity at cross section center caused by a loss in transparency of the glass.  Each cross section 

also shows that there is significant light emission from within the PWG prior to shock wave 

emergence.  For the three color matrices, the red matrix is last to saturate following shock 

emergence. 

 
 

Figure 8.  Cross sectional contour maps of the three color matrices. 

Note: In each cross sectional contour map, the horizontal x-axis denotes frame number, the y-axis denotes pixel 

number within the cross section (1 pixel wide), and the vertical axis is light intensity.  In each contour map, the 

shockwave reaches the surface of the PWG at frame 19.  For the three color matrices, the red matrix is last to 

saturate following shock wave emergence. 

Red cross section Green cross section

Blue cross section

Leading edge of chemical

reaction that produces

shock wave
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5. Discussion 

Figure 9 shows a detailed side view contour map of the red matrix cross section shown in 

figure 8.  In this figure, the horizontal x-axis denotes frame number, the y-axis (into the plane of 

the page) denotes pixel number within the cross section (1 pixel wide), and the vertical axis is 

light intensity.  The shock wave reaches the PWG surface at frame 19, denoted t0.  Figure 9 

shows that there is appreciable light intensity in the red pixel matrices before and after the shock 

wave reaches the surface of the PWG. 

 

Figure 9:  Side view of a contour map of red matrix cross sections near the  

time when the shock wave emerges from the face of the PWL. 

Note: The horizontal x-axis denotes frame number, the y-axis (into the plane of the page) denotes pixel number 

within the cross section (1 pixel wide), and the vertical axis is light intensity.  The shock wave reaches the PWG 

surface at frame 19, denoted t0.   

saturation
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Figure 10 shows a series of 2-dimensional graphs of single cross sections through the red 

matrices viewed perpendicular to the long axis of the glass cover slide.  In this figure, the 

horizontal x-axis corresponds to pixel number, and the vertical y-axis corresponds to single pixel 

intensity through the PWG surface centerline.  Prior to shock wave emergence at the cross 

section corresponding to t0, the profile of light emission intensity with pixel number appears to 

indicate a planar shock front in the material interior.  At shock emergence, the profile of light 

emission intensity with pixel number appears much less linear.  As a comparison, figure 11 

shows a CTH simulation of shock transit in the ARL PWG (4).  The CTH simulation predicts the 

PWG to produce a planar shock at most times following initiation (7). 

 

Figure 10.  A series of 2-dimensional graphs of single cross sections through the  

red matrices viewed perpendicular to the long axis of the glass cover slide. 

Note: The horizontal x-axis corresponds to pixel number, and the vertical y-axis corresponds to single pixel intensity 

through the PWG surface centerline.   
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Figure 11.  CTH simulations of shock wave transit in the ARL PWG. 

Note: The right side of each figure corresponds pressure; the left side corresponds to detonation product gas 

distribution.  The simulations predict a reasonably planar shock front at times near shock wave emergence from the 

face of the PWG. 

The data suggest that using digital color imaging in a way similar to that shown here is a 

reasonable method of determining shock wave planarity within a solid explosive.  The data also 

suggest that high speed digital imaging can provide quantitative information on explosive 

performance and chemistry.  Because light emission at different wavelengths can be quantified 

as described above, temperatures at the explosive surface can be calculated.  This has been done 

by us recently for outdoor explosions to predict influence of explosive casings on performance 

(6).  Additionally, the data indicates that light being emitted from within the detonating material, 

prior to surface arrival of the detonation front, may be measured.  We believe that this light is 

likely most influenced by incandescence from hot interior detonation products, but this light also 

includes that emitted by the detonation front within the explosive.  An attempt to differentiate 

that light emission from the detonation product incandescence is beyond the present scope of this 

work.  

t0t0- - 400 ns

t0 – 800 nst0 – 1200 ns
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6. Conclusions 

Digital images of light emission from the face of an explosive PWG have been measured, and 

analyzed for intensity in each color matrix populated by a Cordin Company Model 570 digital 

framing camera.  Light emission was measured before and after emergence of the shock wave 

from the face of the PWG.  By using the known camera framing rate and the detonation velocity 

of the explosives in the PWG, it is estimated that there is measurable light intensity to a depth of 

at least 10 mm in TNT.  At this depth, the measured light intensity appears relatively constant, 

correlating with simulation.  However, it should be noted that the light reaching the camera from 

this depth is scattered by its passage through unreacted material.  The nature of light reaching the 

camera prior to shock wave emergence from the face of the PWG is intriguing in that it should 

have at least a partial component emanating from the reaction zone.  Estimation of planarity off 

the shock wave as it emerges from the PWG seems feasible, but a faster camera utilizing an 

intensified imager is recommended. 
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