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Introduction

Prostate cancer is the second most common cause of cancer deaths in men. Diagnosis and
pathogenesis of this disease is poorly understood. Prostate specific antigen (PSA) test is still
the standard diagnostic marker for prostate cancer despite its serious limitations. Large
proportions of men are being diagnosed with prostate cancer but recent studies imply that many
of them don’t need prostate cancer treatment. There is clearly a need for better diagnostic and
prognostic marker in prostate cancer.

Recent advances in DNA microarray technology that enable the simultaneous
measurement of the expression of thousands of genes in a single experiment have
revolutionized current molecular biology. Already, the 21st century is witnessing an explosion in
the amount of biological information on normal and disease processes. A large and
exponentially growing volume of gene expression data from microarrays is now available
publicly. In addition to gene expression data, massive amounts of DNA copy number data is
also collected through CGH microarrays. Large amounts of high throughput genomic and
epigenomic data have been collected in prostate cancer. Although these datasets have been
analyzed in the literature, there are opportunities for mining these datasets in the context of all
other publicly available data. High throughput genomic data shows the promise for discovery of

better diagnostic and prognostic markers.
Body

Previously, we have published a novel approach to discover Boolean implications
between genes using these large number of gene expression datasets. Subsequently, we used
Boolean implications to successfully predict genes in B cell developmental pathway (MiDReG
algorithm) *°. My prostate cancer project proposes to build on our successful prediction of
human B cell developmental genes which can predict pathways based on human gene
expression datasets. In this report, we showed that Boolean implication predicts different state
of basal cell development in normal prostate tissue. The loss of basal cell expression in cancer

is correlated with the recurrence-free survival of the prostate cancer.

Boolean Implication (BooleanNet)

We downloaded 25,237 microarrays in human Affymetrix U133 Plus 2.0 platform from
NCBI's GEO (Gene Expression Omnibus) database ', and normalized using RMA (Robust
Multi-chip Average) algorithm 2. Within these datasets (with thousands of microarrays) we
identified expression relationships between pairs of genes (represented by probe sets on the

arrays) that follow simple “if-then” rules such as “if gene X is high, then gene Y is low,” or more



simply stated: “X high = Y low” (“X high implies Y low”). In this case gene X and gene Y are
rarely “high” together. We call these relationships “Boolean implications”. There are only six
different types of “Boolean implications” possible in these datasets. Figure 1 outlines the six
different types of Boolean implications discovered among the probe sets within the human data
sets. In these scatter plots, each point represents gene X’s expression versus gene Y’s
expression within an individual microarray. Each plot is divided, based on thresholds, into four
quadrants: (X low, Y low), (X low, Y high), (X high, Y low), and (X high, Y high).
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Figure 1. Boolean Implications. Scatter plots of 25,237 Affymetrix U133 Plus 2.0 human microarrays
downloaded from NCBI’s Gene Expression Omnibus and normalized together. Each probeset is assigned a
threshold t (red lines). Expression levels above t + 0.5 (blue lines) are classified as “high,” expression levels
below t — 0.5 (blue lines) are classified as “low,” and values betweent — 0.5 and t + 0.5 are classified as
“intermediate.” The plots show the six different types of Boolean implication relationships between a pair of
genes. Boolean implication is discovered by identifying a sparse quadrant in the scatter plot.

A Boolean implication exists when one or more quadrants is sparsely populated
according to a statistical test and there are enough high and low values for each gene (to
prevent the discovery of implications that follow from an extreme skew in the distribution of one
of the genes) °. There are four asymmetric Boolean implications, each corresponding to one
sparse quadrant. Two symmetric Boolean implications “equivalent” and “opposite” are
discovered when two diagonally opposite sparse quadrants are identified. Boolean implications
can also be extended to logical combinations of genes. For example the Boolean implication “A
= B” can be discovered where A and B are either single gene conditions (e.g., X high) or logical

combinations of multiple genes (e.g., X high AND Y high).



MiDReG algorithm

We developed a new method termed Mining Developmentally Regulated Genes (MiDReG) to
predict genes whose expression is either activated or repressed as precursor cells differentiate
4% MiDReG bases its predictions on Boolean implications mined from large-scale microarray

databases and requires two or more “end point” markers for a given developmental pathway.

Figure 2. MiDReG algorithm.
- Boolcan Tmplications Genes in B cell developmental pathway are discovered

. Thihs by using a Boolean interpolation between two known
g b () s genes KIT and CD19 that marks the endpoints. KIT is
Prodiction of gene X expressed early in B cell development and CD19 is

B Cell Devslopmest (‘l across numans and mice | | - exXpressed late. There is a robust Boolean implication
19 prodicted genes uslng KIT and CD10 KIT high = CD19 low is observed in the diverse
NASPIDTRALAIPGZCHHAVESEPIDBACH: collection of microarray dataset both in humans and
GEeTEL  RATZ | SERTL CTRREL mice. Genes that are expressed at an intermediate step

and remain high till the end are discovered by identifying
genes with KIT high = X low and CD19 high = X high
Boolean implications.

For example, in studies of B cell development, we used two known genes KIT and CD19 that
are expressed early and late respectively during B cell development (Figure 2). A conserved
Boolean implication KIT high = CD19 low is observed in the microarray dataset. MiDReG
searched for genes X that are expressed during development and satisfy the implications “KIT
high = X low” and “CD19 high = X high” (Figure 2), which represents the pattern of expression
we expect for genes that are not expressed early in development when KIT is highly expressed
(KIT high = X low), then upregulated later in development when CD19 is also upregulated
(CD19 high = X high). The predicted genes were successfully validated in collaboration with

the Weissman lab at Stanford University.

Novel prostate cancer pathway modeling using Boolean implication

We focused on modeling a differentiation pathway in human prostate cancer tissue using
Boolean implication. This approach was motivated by our previously published MiDReG
algorithm that predicts developmentally regulated genes using Boolean implication **. We first
collected publicly available gene expression datasets from human prostate cancer samples
(Supplementary Figure 1). To analyze the datasets using BooleanNet algorithm, we also
downloaded 25,237 Affymetrix U133 Plus 2.0 datasets.

In most human epithelial tissues both Keratin 5 (K5) and Keratin 14 (K14) are expressed
in the basal cell compartments. We analyzed gene expression values of K14 and K5 that is

presented in the form of a scatterplot with 25,237 points representing diverse microarrays on



human samples including different normal and cancer tissues (Supplementary Figure 2). We
summarize the gene expression relationship between K14 and K5 as “if K14 high then K5 high”
or alternatively a Boolean implication relationship “K14 high => K5 high”. The relationship clearly
suggests that K14+ arrays are a subset of K5+ arrays. Since not all cells within a sample
express K14 and K5, we could hypothesize that K14+ cells are a subset of K5+ cells
(Supplementary Figure 2A) based on the Boolean implication. Panel A shows a likely model of
developmental gene regulation between K14 and K5, where K14 is upstream of K5

(Supplementary Figure 2).

To evaluate whether Keratin gene expression is associated with patient outcome, we
investigated the status of three Keratin expression groups (KRT14+KRT5+, KRT14-KRT5+,
KRT14-KRT5-) on recurrence-free survival (RFS) in three independent prostate cancer cohorts
(Singh 2002 dataset, n=102; Glinsky 2004 dataset, n=78; Taylor 2010 dataset, n=185), The
results confirmed that KRT14-KRT5- tumors were associated with worse clinical outcomes (B).
In addition, KRT14+KRT5+ tumors were associated with best clinical and KRT14-KRT5+ tumors

were associated with intermediate clinical outcome.

Training tasks

The statement of work includes several tasks on career development. | attended the 2010
Scientific Management Series from the office of postdoctoral affairs. The goals and objectives of
the Scientific Management Series are to provide participants with laboratory or research
management skills that will help them to launch productive independent careers in academic
and other settings. All coursework was completed including Stats 141 in the Fall 2012 and the
Systems Biology in spring 2011. | have been meeting with Professor Joe Lipsick weekly and
Professor Jonathan Pollack biweekly. These meetings are extremely useful for my career
development as | get a lot of advice on both research as well as career from both of my
mentors. | have been attending the weekly seminar on Molecular Profiling Colloquium. | attend
urology seminars regularly every Monday. | have been developing biological skills at the Lipsick
lab and the Pollack lab. | have already acquired several biological skills such as PCR,
Immunostaining to perform my own biological experiments. Overall, my training on cancer
biology has been very extensive. | have already performed immunostaining on human tissues

myself.



Key Research Accomplishments

1. Collection of high-throughput genomic and epigenomic data.
As mentioned in my statement of work, | was planning to collect publicly available gene
expression datasets for Boolean implication analysis. During last two years | have
collected several publicly available gene expression datasets from National Center for
Biotechnology Information’s (NCBI) Gene Expression Omnibus (GEO) webpage and the
Array Express webpage . This collection not only includes prostate cancer but also
includes gene expression data on other human cancer and normal tissues. Since all
data available on a particular Affymetrix platform can be normalized together, a large
database of gene expression data can be built that can be analyzed simultaneously. My
largest database includes 45,000 Affymetrix microarrays. In addition to this, | have
collected 23 different prostate cancer datasets in different platforms (Supplementary
Figure 1). For my research work, it is important to have gene expression data annotated
with clinical information such as Survival. Among the 23 different prostate cancer
datasets, Survival data was available for only five different datasets (Glinsky et al.,
Lapointe et al., Gulzar et al., Sboner et al., Taylor et al.; Supplementary Figure 1) "'

Since these datasets are in different platform, they cannot be combined together. To

build a large prostate cancer specific database, | combined 14 different datasets (global

prostate cancer database, total n=891) that are in Affymetrix U133A (n=456), U133A 2.0

(n=72), or U133 Plus 2.0 (n=363), selected common probesets for normalization. All

these 891 samples were normalized together using standard RMA algorithm. Following

are the summaries of the accomplishments.

a. Collected 45,000 Affymetrix microarrays from NCBI's GEO

b. Collected 23 different prostate cancer datasets

c. Annotate five prostate cancer datasets with Survival data

d. Combine 14 prostate cancer database to build a global prostate cancer database
(n=891).

2. Analysis of the datasets.
| have performed all required analysis on the collected datasets using my previously
published algorithms. Following are the summaries of the accomplishments.
a. Built a complete Boolean implication network with 45,000 Affymetrix microarrays.
| used my previously published BooleanNet algorithm (Sahoo et al. Genome Biology.
2008 ) on the newly collected dataset of 45,000 Affymetrix microarrays.

b. Identified developmental genes using MiDReG approach.



| used an approach similar to MiDReG (Mining Developmentally Regulated Genes
%) to identify developmental genes in prostate tissue (Supplementary Figure 2).
Human prostate cancer is typically characterized by luminal cell expansion and the
absence of basal cells. In normal prostate tissue basal cell express Keratin 5 (KRT5)
and Keratin 14 (KRT14). There is a significant Boolean implication between KRT5
and KRT14: "KRT14 high => KRT5 high". In other words, KRT14+ cells are a subset
of KRT5+ cells. Assuming that basal cells differentiates to a luminal cell, luminal cells
are predominantly KRT14- cells, and KRT14 expression change once during the
development, we predict that KRT14+KRT5+ cells are upstream of KRT14-KRT5+
cells, which could be upstream of KRT14-KRT5- luminal cells in normal prostate
tissue.

c. ldentified correlation between developmental genes and clinical outcome.
| identified three groups of patients in three independent microarray datasets KRT14-
KRT5-, KRT14-KRT5+, and KRT14+KRT5+ (Supplementary Figure 3). Recurrence
free survival analysis of these three independent datasets revealed that KRT14-
KRT5- patients have the worst, KRT14+KRT5+ patients have the best, and KRT14-
KRT5+ patients have intermediate clinical outcome (Supplementary Figure 3). This

result correlates well with the systematic loss of basal cells in prostate cancer.

3. Verify the results

My validation experiment was performed directly on human prostate tissues instead of
human cell culture. We have performed KRT14 and KRT5 immunohistochemistry on 218
human prostate tissues using a tissue microarray. We discovered only 2 KRT5 positive
human prostate cancer tissues and all of them were KRT14 negative. This is consistent
with our hypothesis of systematic loss of basal cells in prostate cancer. Basal cells in
human prostate tissue express KRT14 and KRT5 and we do not see their expression in
human prostate cancer. Therefore, we believe that the correlation of KRT14 and KRT5
gene expression to recurrence-free survival must be coming from the surrounding
normal human prostate tissues in prostate cancer. This is an important finding that can

reveal the underlying biology of human prostate cancer.

Reportable Outcomes

1.

Abstract presentation in International Society for Stem Cell Research (ISSCR) 10"
Annual Meeting, Jun 13 - 16, 2012, Yokohama, Japan. (Appendix A)
Informatics databases:

a. Prostate cancer database (Supplementary Figure 1)

b. Global Affymetrix gene expression database (Supplementary Figure 2)

c. Bladder cancer database (Published in PNAS, Appendix B)



d. Colon cancer database (Submitted to NEJM)

e. Breast cancer database (Working draft)

f. Ovarian cancer database (Working draft)

g. Brain cancer database (Working draft)

3. Manuscript published:

a. [Appendix B '] Debashis Sahoo*, Jens-Peter Volkmer*, Robert Chin*, Philip
Levy Ho, Chad Tang, Antonina V. Kurtova, Stephen B. Willingham, Senthil K.
Pazhanisamy, Humberto Contreras-Truijillo, Theresa A. Storm, Yair Lotan,
Andrew H. Beck, Benjamin Chung, Ash A. Alizadeh, Guilherme Godoy, Seth P.
Lerner, Matt van de Rijn, Linda. D. Shortliffe, Irving L. Weissman, and Keith S.
Chan. Three differentiation states risk-stratify bladder cancer into distinct
subtypes. PNAS, 2012 Feb 7;109(6):2078-83.

b. [Appendix C ® Debashis Sahoo’, Piero Dalerba’, Tomer Kalisky', Pradeep S.
Rajendran, Mike Rothenberg, Anne A. Leyrat, Sopheak Sim, Jennifer Okamoto,
John D. Johnston, Dalong Qian, Maider Zabala, Janet Bueno, Norma Neff,
Jianbin Wang, Andy A. Shelton, Brendan Visser, Shigeo Hisamori, Mark van den
Wetering, Hans Clevers, Michael F. Clarke” and Stephen R. Quake’. High
throughput single-cell analysis of colon tumors: biological insights and clinical
applications. Nat Biotechnol. 2011 Nov 13;29(12):1120-7.

c. [Appendix D °] Debashis Sahoo. The power of Boolean implication networks.
Front. Physio. 23 July 2012, 3:276. doi:10.3389/fphys.2012.00276 (mini review)

4. Received NIH pathway to independence award (K99/R00) award (Appendix E).
5. Manuscript submitted:

e Debashis Sahoo’, Piero Dalerba’, Pradeep S. Rajendran, Stephen P. Miranda,
Shigeo Hisamori, and Michael F. Clarke. Gene/Protein expression predicts
survival in human colon cancer. NEJM (Under Review).

6. Manuscript in preparation:
e Debashis Sahoo’, Jonathan R. Pollack, Joseph Lipsick, and James D. Brooks.

Gene/Protein expression predicts survival in human prostate cancer.

Conclusion
We showed that Boolean implication predicts different state of basal cell development in normal
prostate tissue. The loss of basal cell expression in cancer is correlated with the recurrence-free

survival of the prostate cancer.
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F-2247 - SYSTEMS BIOLOGY APPROACH TO STUDY STEM AND PROGENITOR CELLS OF
NORMAL AND MALIGNANT HUMAN TISSUES.

Sahoo, Debashis?, Dalerba, Piero?, Volkmer, Jens-Peter3, Chin, Robert K.#, Tang, Chad2, Willingham,
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Many, if not all organs and tissues consist of self-renewing stem cells that give rise to distinct, sequential
progenitors with increasingly limited development potential, ultimately producing functional mature cells.
All malignancies develop from cells within such hierarchies, requiring progression of events resulting in
tumor cells that are capable of self-renewal, survival, migration, and likely also differentiation. The
identification and characterization of stem, progenitor, and mature cells within normal and diseased
tissue are not only critical for the understanding of underlying biology but also in developing more
effective therapeutic strategies. Previous attempts to identify markers for cells at hierarchical stages of
tissue differentiation involved either 1) large screening studies using antibody libraries or gene
expression arrays, or 2) focused trials of established markers identified in other normal and diseased
tissues. Unfortunately, this “random” approach is insufficient to trace complex cellular differentiation
stages, and thus most often fails. Therefore a systematic approach to identify cells within tissue
differentiation hierarchies is required. We applied systematic computational approaches to identify
markers of stem and progenitor cells by analyzing publicly available, high-throughput gene expression
datasets consisting of more than 2 billion measurement points, and subsequently to validate them using
tissue microarrays. We used a new method called MiDReG (Mining Developmentally Regulated Genes)
that uses Boolean implications to successfully predict genes in developmental pathways. We developed a
new software tool called HEGEMON (Hierarchical Exploration of Gene Expression Microarray Online) to
identify genes expressed in the stem and progenitor cells in malignant tissue development. HEGEMON
explores gene expression data with its clinical information using a scatterplot of gene expression values
from two genes and provides a simple framework for automatic selection of genes correlated with
distinct patient information, e.g. progression and survival. Using the above tools we demonstrate a new
concept that human cancers can be used as a platform to study normal developmental steps of the
human tissues. We use examples of human bladder and colon cancer to show the power of this
computational approach.

8/20/2012 11:28 AM



Appendix B

Debashis Sahoo*, Jens-Peter Volkmer*, Robert Chin*, Philip Levy Ho, Chad Tang, Antonina V.
Kurtova, Stephen B. Willingham, Senthil K. Pazhanisamy, Humberto Contreras-Truijillo, Theresa
A. Storm, Yair Lotan, Andrew H. Beck, Benjamin Chung, Ash A. Alizadeh, Guilherme Godoy,
Seth P. Lerner, Matt van de Rijn, Linda. D. Shortliffe, Irving L. Weissman, and Keith S. Chan.
Three differentiation states risk-stratify bladder cancer into distinct subtypes. PNAS, 2012 Feb
7;109(6):2078-83.



-

Three differentiation states risk-stratify bladder cancer

into distinct subtypes

Jens-Peter Volkmer®®<"2, Debashis Sahoo®'?, Robert K. Chin®"2, Philip Levy Ho®, Chad Tang? Antonina V. Kurtova®,
Stephen B. Willingham?, Senthil K. Pazhanisamy®, Humberto Contreras-Trujillo?, Theresa A. Storm?, Yair Lotan',
Andrew H. Beck?, Benjamin I. Chung®, Ash A. Alizadeh", Guilherme Godoy®, Seth P. Lerner®, Matt van de Rijn?,

Linda D. Shortliffe®, Irving L. Weissman®"2, and Keith S. Chan®"'-2

2Institute of Stem Cell Biology and Regenerative Medicine, ®Department of Urology, Department of Pathology, "Division of Hematology, and Department
of Internal Medicine, Stanford University, Stanford, CA 94305; “Department of Urology, Heinrich Heine University, Dusseldorf, NRW 40225, Germany;
dDepartment of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, IL 60637; fDepartment of Urology, University of Texas
Southwestern Medical Center, Dallas, TX 75390-9110; ®Scott Department of Urology, and 'Department of Molecular and Cellular Biology, Dan L. Duncan
Cancer Center, Center for Cell Gene and Therapy, Baylor College of Medicine, Houston, TX 77030

Contributed by Irving L. Weissman, December 21, 2011 (sent for review November 23, 2011)

Current clinical judgment in bladder cancer (BC) relies primarily on
pathological stage and grade. We investigated whether a molecular
classification of tumor cell differentiation, based on a developmental
biology approach, can provide additional prognostic information.
Exploiting large preexisting gene-expression databases, we devel-
oped a biologically supervised computational model to predict
markers that correspond with BC differentiation. To provide mech-
anistic insight, we assessed relative tumorigenicity and differentia-
tion potential via xenotransplantation. We then correlated the
prognostic utility of the identified markers to outcomes within gene
expression and formalin-fixed paraffin-embedded (FFPE) tissue
datasets. Our data indicate that BC can be subclassified into three
subtypes, on the basis of their differentiation states: basal, interme-
diate, and differentiated, where only the most primitive tumor cell
subpopulation within each subtype is capable of generating xeno-
graft tumors and recapitulating downstream populations. We found
that keratin 14 (KRT14) marks the most primitive differentiation
state that precedes KRT5 and KRT20 expression. Furthermore,
KRT14 expression is consistently associated with worse prognosis
in both univariate and multivariate analyses. We identify here three
distinct BC subtypes on the basis of their differentiation states, each
harboring a unique tumor-initiating population.

Boolean analysis | stem and progenitor cells | biomarker |
cancer stem cell | systems biology

ladder cancer (BC) is the sixth most common malignancy in
the United States (1), accounting for ~69,250 new cases and
14,990 deaths in 2010 (2). The vast majority (90%) of BCs are
histologically classified as urothelial carcinomas (UCs) (3). UCs
originate from the bladder urothelium, an epithelial tissue with
a clear hierarchical organization consisting of three morphologi-
cally distinct cell types: basal, intermediate, and umbrella cells (4),
representing early, mid, and later differentiation states, respec-
tively. Malignant transformation can occur in any of these cell
types thus giving rise to tumors with diverse phenotypes (5).
Currently, the World Health Organization (WHO) BC classi-
fication scheme relies primarily on pathologic stage and histolog-
ical grade for prognostic classification. Identification of new
molecular markers would allow for improved risk stratification so
that we may better use risk-adapted therapies. Recent molecular
profiling of unfractionated BCs has identified unique prognostic
gene signatures (6—17). However, these gene signatures have not
been clinically used and their biological relevance has remained to
be elucidated. Here, we developed a biologically supervised
computational approach to mine the extensive repertoire of pub-
licly available gene expression array data to define molecular
markers of cellular differentiation consistent across the range
of mammalian cellular diversification (18). This algorithm uses
Boolean logic to evaluate large datasets to identify genes that

2078-2083 | PNAS | February 7,2012 | vol. 109 | no.6

sequentially change expression during differentiation (e.g., pro-
genitor genes that decrease during differentiation with the con-
comitant up-regulation of differentiation genes). In the current
study, we have successfully predicted and functionally validated
molecular markers for multiple differentiation steps in BC and
analyzed their association with patient survival.

Results

In the presented study we focus on UCs, hereafter synonymously
called BC, and excluded other BC subtypes (squamous and ade-
nocarcinomas) from gene-expression, phenotypical, functional,
and patient survival analyses.

Overall Strategy to Predict, Functionally Validate, and Associate Differ-
entiation States to Survival in BC. A biologically supervised approach
was used to predict markers of differentiation states in BC (Fig.
1). The expression patterns of our two previously published hi-
erarchically related differentiation markers in BC, keratin (KRT)
5 and KRT20 (19), were analyzed by the algorithm “mining de-
velopmentally regulated genes” (MiDReG), which revealed a
third differentiation marker, KRT14. We therefore hypothesized
the existence of three distinct differentiation states marked by
KRT14, -5, and -20, which are shared by both normal urothelium
and BC. We then used the algorithm “hierarchical exploration of
gene-expression microarrays online” (Hegemon) to identify cell
surface markers corresponding to each differentiation state.
FACS separation with these surface marker combinations
allowed for the isolation of the respective tumor-initiating cell (T-
IC) populations from clinical samples and analysis of their re-
spective tumorigenic and differentiation potential in xenotrans-
plantation models. We then analyzed the prognostic utility of
these differentiation markers using patient gene-expression arrays
(492 patients) and formalin-fixed paraffin-embedded (FFPE)
(275 patients) tissue sets.
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differentiation states (Hegemon)
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Y

Validation of differentiation states
in xeno-transplantation models

BC gene-expression datasets:
- Lindgren  ( 89 patients)
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Validation of the prognostic power
of differentiation markers in BC
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- Stanford (159 patients)
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— Validation
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Fig. 1. Flowchart of identification and validation of differentiation states in
BC. Markers of differentiation (keratins) are identified by using “mining
developmentally regulated genes” (MiDReG) and corresponding cell surface
markers are identified by using “hierarchical exploration of gene-expression
microarray online” (Hegemon). The hypothetical hierarchy of differentiation
is evaluated in patient tumor cell xenotransplantation mouse models. As-
sociation of differentiation states in bladder cancer with patient outcome is
validated with existing databases and archival tissues.

Keratin 14 Is Predicted to Precede Keratin 5 and -20 in Urothelial
Differentiation. KRTs are differentially expressed during epithelial
tissue differentiation, a phenotype that is often conserved in
neoplastic transformation (20, 21). During normal urothelial
differentiation, it is proposed that basal and intermediate cells
express KRTS, but not KRT20. Conversely, terminal differenti-
ation involves the loss of KRTS and gain of KRT20 expression
(22, 23) (Fig. 24). Immunofluorescence analysis confirmed our
previous finding that coexpression of CD44 and KRTS5 define
basal/progenitor cells in BC, whereas terminally differentiated
tumor cells express KRT20 but not CD44 and KRT5 (19)
(Fig. S14).

We developed a biologically supervised computational ap-
proach, which mines the repertoire of publicly available micro-
array data to identify genes that are down-regulated during cellular
differentiation (18). Starting with the knowledge that KRT5 and
KRT?20 expression is limited to progenitor and downstream pop-
ulations, respectively (Fig. 24), we applied MiDReG to predict
upstream keratins (KX) that satisfy two Boolean relationships (i)
when KX expression is high, expression of progenitor KRTS5 is
high (Fig. 2B, red/blue), and (ii) when KX expression is high, ex-
pression of terminal differentiation marker KRT20 is low (Fig. 2B,
red/green) (details described in SI Methods) (18, 24, 25). Using
AffyBC and Chungbuk datasets, we identified four keratins
(KRT14, KRT16, KRT6A, and KRT6B; Fig. S1F, details in SI
Methods) that fulfilled these criteria (Fig. 2 C and D). Analysis of
the Chungbuk dataset revealed two keratins significantly associ-
ated with outcome: KRT14 (hazard ratio (HR) 2.75, P < 0.05), and
KRT6B (HR 3.48, P < 0.05) (Fig. S1F). We further focused on
KRT14, as this marker was more highly and consistently expressed
within the AffyBC and Chungbuk datasets. Immunofluoresence
analysis confirmed KRT14 expression (Fig. 2E, green cells) marks
a subpopulation of KRT5™ cells in BC (Fig. 2, red cells) (double
positive cells, yellow, are indicated by white arrows). Analogous to
BC, KRT14 staining on normal bladder tissue shows a basal-cell-
restricted expression pattern (Fig. S2 D and E). On the basis of the
MiDReG analysis (Fig. S2 A-C). we predicted the existence of
three differentiation states in urothelial cells: basal (KRT14*
KRT5*KRT20"), intermediate (KRT14 KRT5"KRT20"), and
differentiated (KRT14"KRT5"KRT20") (Fig. 2F).

Identification of Corresponding Surface Markers to the Predicted
Keratin Differentiation States in BC. We identified surface markers
specific for each of the three BC differentiation states to allow for
prospective isolation by FACS and in vivo functional validation
via a xenotransplantation model. To perform this analysis, we
developed a software program named Hegemon (SI Methods)
to identify surface markers highly expressed in the basal cells
(KRT14™) and progressively down-regulated in intermediate
(KRT5™) and differentiated cells (KRT20™) (Fig. 34 and Fig.
S3F). Using Hegemon, we ranked each marker on the basis of

K5 K20

P

Differentiation

B ..
Criteria for KX:
1. if KX is high
then K5 is high
2. if KX is high
then K20 is low

pression

Differentiation

K14 K5

ression|Gen

D
|

[

(=}
SV}
X

Gene expression|Gene expression

Differentiation

Differentiation

K5 Dapi K14 Dapi K5 K14 Dapi

K14+K5+K20- K14-K5+K20- K14-K5-K20+

Fig. 2. Keratin 14, -5, and -20 define three differentiation states in BC. Keratins are abbreviated as KX. (A) K5 is expressed early during differentiation (blue)
and its expression is temporally exclusive with that of the terminal differentiation marker K20 (green) in bladder cancer (BC). The mutual relationship of K5
and K20 in their temporal expression is consistent across diverse tissues (totaling 75,000 data points) in multiple species (human, mouse, and rat; Fig. S1 B-E).
(B) Schematic illustrating the principle behind the computational strategy MiDReG used to predict a keratin X (KX, red), which is precursor to K5 and K20 by
fulfilling two Boolean relationships: (/) when KX expression is high (red), expression of the early progenitor marker K5 is also high (blue) and (ii) when KX
expression is high (red), expression of the differentiation marker K20 is low (green). (C) K14 fulfills the first Boolean relationship, its expression is high (red)
when the expression of early progenitor marker K5 is also high (blue). (D) K14 fulfills the second Boolean relationship, its expression is low (red) when the
expression of terminal differentiation marker K20 is high (green). (E) KRT14-expressing cells (Alexa 488/green) mark a subpopulation of KRT5* cells (Alexa
594/red) in BC; white arrows indicate double positive cells, yellow. (F) Schematic illustration of the three predicted differentiation states in urothelial biology.
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association with patient survival (via hazard ratios) (Dataset S1)
and identified CD248, S100A8, COL1A1, and CD90 (THY1) as
the top candidate markers (Fig. 34 and Fig. S3F and Dataset S1).
We focused on CD90, because a flow-cytometry—compatible an-
tibody was commercially available. As expected, our previously
identified marker, CD44, was also demonstrated to exhibit
a predominant basal (KRT14") distribution (Fig. 34 and Fig. S3F
and Dataset S1). We next used Hegemon to identify those sur-
face markers that are expressed in all cells but down-regulated in
the transition from basal to differentiated cells (Fig. 3B and Fig.
S3G and Dataset S1). From this group, we focused on CD49f
(ITGA®), as this marker has been reported to be coexpressed
with KRT14 and is down-regulated during differentiation in
various normal epithelial tissues and cancer types (26, 27).

Next, we used flow cytometry to examine whether a combination
of these newly identified markers, CD90 and CD49f, and the
previously identified marker CD44 could subdivide BC into dis-
tinct differentiation states. Analysis of primary tumors revealed
four predicted BC populations: CD90* CD44*CD49f* (primitive/
basal) — CD90"CD44"CD49f* — CD90 CD44 CD49f* —
CD90"CD44 CD49f™ (terminal differentiated) (Fig. 3D). Gene
expression of KRT14, -5, and -20 in each of these purified sub-
population was analyzed by q-PCR (Fig. 3C). As expected, prim-
itive/basal CD90"CD44*CD49f* BC cells expressed high levels of
KRT14 and -5 (Fig. 3C, red and blue) and low levels of KRT20
(Fig. 3C, green). KRT14 and -5 expression were decreased in the
CDY0~CD44*CD49f™* intermediate population and had the low-
est expression in CD90~CD44-CD49f* differentiated population
(Fig. 3C). KRT20 expression was highest in the CD90~
CD44~CD49f* differentiated population (Fig. 3C).

Functional Validation of Three BC Subtypes. To functionally validate
these predicted BC differentiation states, we used our unique
surface marker profiles to isolate populations corresponding to
each differentiation state from patient BCs using FACS (Fig. 44).
These isolated populations were then transplanted in vivo into

immunodeficient SCID mice. As noted above, only the most up-
stream population harbored T-IC potential in all BCs tested. For
example, in a representative BC that contained all four differen-
tiation states (Fig. 44), only the most primitive tumor cells
(CDY0*CD44 " CD49f™) exhibited tumorigenicity in vivo (Fig. 4G,
basal), regenerating all downstream populations (Fig. 44) and
effectively reconstituting all cellular compartments from the
original BC. Interestingly, within this same tumor, transplantation
of a more downstream population (CD90~CD44* CD49(™) failed
to reestablish the tumor (Fig. 44).

Examination of a panel of patient BC specimens revealed sig-
nificant heterogeneity among tumors, some missing one or more
differentiation states (Fig. 4 C and E). On the basis of our analyses,
BCs could be generalized into at least three subtypes: the basal
subtype, which contains all four predicted differentiation states
(CDY0*CD44"CD49f*, CD90~CD44*CD49f*, CD90~CD44~
CD49f*, and CD90~CD44~CD49f") (Fig. 44); the intermediate
subtype, which lacks the basal state (no CD90"CD44* CD49f*
population) (Fig. 4C); and the differentiated subtype, which lacks
both the basal and intermediate (no CD90*"CD44"CD49f* or
CD90~CD44*CD49f* populations) states (Fig. 4F). FACS iso-
lation and subsequent xenotransplantation of sorted cells from
each differentiation state from specimens representing each BC
subtype revealed that only the most primitive upstream pop-
ulations formed tumors (Fig. 4G) (e.g., in basal BC subtype, CD90*
CD44*CD49f™" cells; in intermediate BC subtype, CD90~CD44*
CD49f* cells; and in differentiated BC subtype, CD90~CD44~
CD49f™* cells). Furthermore, the T-IC population from each BC
subtype reformed only those downstream and not any upstream
populations (Fig. 4 B, D, and F). These results revealed three
phenotypically distinct BC subtypes, each containing a distinct T-IC
population that invariably represented the most primitive differ-
entiation state from that tumor (Fig. 4G).

Basal Subtype Is Significantly Associated with Poor Overall Survival. To
evaluate the clinical significance of these three unique BC
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Fig. 4. Functional validation of the computationally predicted differentia-
tion states in BC. In vivo validation of three phenotypically distinct subtypes
of bladder cancer (BC) according to their differentiation states: (4) basal, (C)
intermediate, and (E) differentiated as defined by surface marker profiles
(CD90, CD44, and CD49f). BC cells were purified by FACS and xeno-
transplanted intradermally into immunodeficient mice in limited dilution
(10° and 10%. (B, D, and F) The immunophenotypes of xenograft tumors
derived from each BC subtype were reanalyzed by FACS postengraftment.
(A) The basal BC subtype is composed of all differentiation states
[CD90*CD44*CD49f* (red box) — CD90 CD44*CD49f" (blue box) —
CD90~CD44~CD49f* (green box) — CD90~CD44~CD49f~ (light blue box)]. (B)
Only the most upstream (CD90*CD44*CD49f*) population forms xenograft
tumors and recapitulates all downstream differentiation states
(CD90~CD44*CD49f* - CD90~CD44~CD49f* — CD90~CD44~-CD49f"). (C) The
intermediate BC subtype lacks the basal differentiation state
(CD90*CD44*CD49f*). (D) Only the most upstream differentiation state
(CD90~CD44*CD49f*) forms xenograft tumors and can reconstitute all
downstream states (CD90~CD44-CD49f* — CD90~CD44-CD49f"). (E) In dif-
ferentiated BCs that lack both the basal (CD90*CD44*CD49f*) and the in-
termediate (CD90~CD44*CD49f*) differentiation states, (F) only the existing
differentiation state (CD90~CD44 CD49f*) forms xenograft tumors and
recapitulates the terminally differentiated (CD90~CD44 CD49f") down-
stream state. (A, C, and E) The terminally differentiated subpopulations
(CD90~CD44-CD49f") never give rise to tumors. (G) Frequency of tumor for-
mation of all transplanted cell populations described in A, C, and E.
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subtypes, we analyzed their prognostic utility in two independent
BC gene-expression datasets with a total of 492 patients [Lindg-
ren n = 89 (9) and European n = 403 (6), Fig. 5]. Because the
Chungbuk dataset is used as a training dataset to identify our
markers, it was excluded from further validation analysis. These
datasets represent all publicly available BC datasets. Survival data
for two additional BC datasets were not available for analysis (10,
11). The basal BC differentiation subtype, defined by keratin
(K14*K5%K207) or surface (CD90*CD44" CD49f") marker
combinations were associated with worse overall survival com-
pared with both intermediate (K14 K5*K207/CD90-CD44*
CD49f*) and differentiated (K14 K5 K20*/CD90~CD44 CD49f")
subtypes (Fig. S4 A and B). This result was additionally validated in
two independent FFPE patient tissue registries with a total of 275
patients (Stanford, n = 158; Baylor, n = 117) on the basis of im-
munohistochemical analysis of KRT14, KRTS, and KRT20 expres-
sion (Fig. S5).

It is worth noting that a subset of patient samples in our analysis
did not fit easily into one of our three BC subtypes (others, gray; Fig.
S4). This additional heterogeneity may represent a block in differ-
entiation, which may occur at any stage of differentiation. We be-
lieve that such heterogeneity complements the proposed BC
differentiation states and reveals additional heterogeneity within BC
subtypes that should be investigated in future analyses (Fig. S4D).

Basal/Primitive Cell Marker Keratin 14 Is Significantly Associated with
Poor Overall Survival in BC. Because of the significantly worse
overall survival associated with the basal BC subtype, and the
clinical applicability of a single immunohistochemistry (IHC)
marker, we evaluated the clinical significance of KRT14 as a
single basal differentiation marker.

Our analysis revealed that KRT14 gene expression was associ-
ated with significantly worse overall survival in two independent
datasets (Lindgren, P = 0.005; European, P < 0.001) (Fig. 54 and
B). In the European dataset, the prognostic power of KRT14 was
statistically significant in both univariate and multivariate analysis
when accounting for stage, grade, age, and sex (multivariate P =
0.0077, respectively P = 0.021, including tumors treated with
intravesical bacillus Calmette—Guérin/chemotherapy) (Fig. 5B).
This prognostic power remained significant when KRT14 gene
expression was analyzed as a continuous variable in both uni- and
multivariate analysis in the European dataset (Table S1; multi-
variate P = 0.013, respectively P = 0.02, including bacillus Calm-
ette—-Guérin/chemotherapy). Validation by measuring KRT14
protein expression within two independent FFPE BC tissue cohorts
revealed a significant association between KRT14 and overall
survival (Stanford P < 0.0001, multivariate P = 0.0038; Baylor P =
0.009, multivariate P = 0.032; Fig. 6 A and B). It is important to
note that different datasets use different grading systems. Whereas
the gene expression datasets are based on the 3-grade (Lindgren)
or 4-grade (European) system, the FFPE BC cohorts (Stanford and
Baylor) are annotated with the more recently adopted 2-grade (low
and high) system. Nevertheless, the prognostic power of KRT14
holds regardless of different grading systems. Of note, although the
prognostic utility of KRT14 is not confounded by pathological
grade, high grade tumors are significantly enriched for KRT14
expression and vice versa (IHC datasets, Pearson’s y” test: Stan-
ford, P = 0.01; Baylor, P = 0.006). Finally, subgroup analysis of
clinically important BC groups, including muscle invasive disease
(>pT2), low stage disease (pTa), and patients treated with radical
cystectomy, could be consistently stratified by KRT14 expression in
all datasets tested (Figs. S6 and S7).

Discussion

Identification and characterization of differentiation steps are
critical to our understanding of both normal tissue development
and malignant transformation. During normal urothelial differ-
entiation, it is generally accepted that basal, intermediate, and
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Fig. 5. Keratin 14 gene expression is associated with worse patient survival
in BC. Kaplan—Meier analysis of the probability of cancer-specific (A) and
overall (B) survival according to differentiation states in bladder cancer as
defined by Keratin 14 (K14) gene-expression level in two independent
datasets, Lindgren (A) and European (B).

umbrella cells represent sequential differentiation, from primitive
to mature. It is likely that malignant transformation can occur in
any of these cell types to form tumors with distinct T-IC pop-
ulations (5). Our results indicate a multistep differentiation hier-
archy in BCs that parallels normal urothelial differentiation. The
resulting unique classification scheme broadly divides BC into
three differentiation subtypes—basal, intermediate, and differen-
tiated. We further demonstrated that each BC subtype possesses
its own phenotypically distinct T-IC population within its most
primitive compartment. Such a T-IC population exists at the top of
a hierarchical relationship and is capable of reconstituting all
downstream populations. These results add complexity to our
originally proposed T-IC model (19) and suggest BC conforms to
the cancer stem cell model (19, 28-33).

A subset of patient samples in our analysis does not fit into
the three BC subtypes, which may reflect additional diversity.
However, we did not find evidence of cellular plasticity as re-
cently described by Chaffer et al. (34). In our functional in vivo
studies, BC cells give rise to downstream differentiation states
but are incapable of reforming upstream populations. More
stringent biological assays such as lineage tracing in mice can be
explored in future to provide definitive evidence supporting our
hierarchy model.

Stratification of patients by BC subtypes, using keratin and cell
surface markers, showed significant prognostic utility. Moreover,
KRT14 expression is strongly associated with poor survival, in-
dependent of established clinical and pathological variables in-
cluding stage, grade, age, and sex. For example, KRT14 identifies
patients with worse outcome in both nonmuscle invasive (pTa) and
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Fig. 6. Keratin 14 protein expression is associated with worse patient sur-
vival in BC. (A and B) Kaplan—-Meier analysis of the probability of overall
survival according to differentiation states in bladder cancer as defined by
keratin 14 (K14) in two independent tissue datasets, Stanford (A) and Baylor
(B). (C) Representative micrographs of K14 IHC staining, scoring (0-3), and
stratification (negative, 0-1; positive, 2-3) are presented.

muscle invasive (pT2 and >pT2) tumors. Within the muscle invasive
cohort, identification of high-risk patients may allow for effective
early utilization of aggressive therapies like neoadjuvant chemo-
therapy and provide another means to stratify patients in clinical
trials. These considerations provide strong rationale for prospective
studies evaluating KRT14 expression as a risk-stratifying marker.
The prognostic utility of KRT14 held when tumors were ana-
lyzed by both gene expression and IHC, the latter being a tech-
nique easily added to the repertoire of clinical laboratories.
However, our IHC analysis identified relatively more KRT14
positive patients than gene-expression analysis. There are two
possible explanations: differences in patient cohorts and assay
sensitivity. The IHC data were obtained from patients treated at
Stanford University and Baylor College of Medicine, which are
tertiary referral centers that commonly treat advanced-stage BCs
(59% with invasive disease), whereas gene-expression data were
obtained from patients treated at multiple different European
centers (ranging from primary to tertiary centers) and therefore
had overall less advanced BCs (19% with invasive disease). Ad-
ditionally, gene-expression analysis averages mRNA expression
throughout an entire sample, whereas IHC provides resolution up
to a single cell. Therefore, the same patient who may appear
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KRT14 negative in a gene-expression analysis may be identified
through IHC as KRT14 positive. However, the fact that both gene-
expression and IHC analyses indicated KRT14 as an independent
prognostic marker speaks to the robustness of this early progenitor
cell marker in BC prognosis.

In addition to the differences between gene expression and IHC
analysis, the nature of a retrospective study has its own limitations.
For example, important clinical parameters such as lymph node
status, detailed cytopathological features, and full treatment his-
tory are not always available. Additionally, the distribution of
clinicopathological features in the study cohorts may not reflect
the natural patient distribution. For example, carcinoma in situ
cases are relatively underrepresented in all of the datasets used in
this study. To overcome these limitations, the clinical utility of
KRT14 needs to be validated in future prospective trials.

In summary, we have developed a unique computational
strategy to identify prognostic markers linked to cellular differ-
entiation. We subsequently validated a set of distinct differen-
tiation markers in BC through in vivo assays and clinical
outcomes analyses. It is likely that this method can be readily
generalizable to other cancers. Our results hold immediate
implications to understanding BC biology and further de-
velopment of unique targeted therapies. Finally, our analysis
revealed a clinically applicable marker, KRT14, which we believe
is an ideal candidate for a large prospective trial to assess risk-
adapted therapies.

Methods

Data Collection, Processing, and Statistical Analysis. See S/ Methods for
further details.
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Single-cell dissection of transcriptional heterogeneity

INn human colon tumors
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Anne A Leyrat?, Sopheak Sim!, Jennifer Okamoto>>, Darius M Johnston!*>, Dalong Qian!, Maider Zabala!,
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Yohei Shimono!, Marc van de Wetering®, Hans Clevers®, Michael F Clarke!->® & Stephen R Quake*>*

Cancer is often viewed as a caricature of normal developmental processes, but the extent to which its cellular heterogeneity truly
recapitulates multilineage differentiation processes of normal tissues remains unknown. Here we implement single-cell PCR
gene-expression analysis to dissect the cellular composition of primary human normal colon and colon cancer epithelia. We show
that human colon cancer tissues contain distinct cell populations whose transcriptional identities mirror those of the different
cellular lineages of normal colon. By creating monoclonal tumor xenografts from injection of a single (n = 1) cell, we demonstrate
that the transcriptional diversity of cancer tissues is largely explained by in vivo multilineage differentiation and not only by
clonal genetic heterogeneity. Finally, we show that the different gene-expression programs linked to multilineage differentiation
are strongly associated with patient survival. We develop two-gene classifier systems (KRT20 versus CAl, MS4A12, CD177,
SLC26A3) that predict clinical outcomes with hazard ratios superior to those of pathological grade and comparable to those of

microarray-derived multigene expression signatures.

The in vivo cellular composition of solid tissues is often difficult to
investigate in a comprehensive and quantitative way. Techniques
such as immunohistochemistry and flow cytometry are limited by
the availability of antigen-specific monoclonal antibodies and by the
small number of parallel] measurements that can be performed on
each individual cell. Traditional high-throughput assays, such as gene-
expression arrays, when performed on whole tissues, provide infor-
mation on average gene expression levels, and can be correlated only
indirectly to quantitative modifications in cellular subpopulations.
These limitations become particularly difficult to overcome when
studying minority populations, such as stem cells, whose iden-
tification is made elusive by their low numbers and by the lack of
exclusive markers. Moreover, in pathological states, such as cancer,
it is usually impossible to determine whether perturbations in gene
expression detected in whole tissues are due to modifications in
the relative composition of different cell types or to aberrations in
the gene-expression profile of mutated cells.

For example, although it has been postulated that multilineage
differentiation can contribute to tumor heterogeneity!~3, this issue
remains controversial?. Many in the field view cancer heterogeneity
mainly as the result of clonal evolution secondary to genomic instabi-
lity>°. Previous studies addressed this question, but could rely only on
in vitro cultured cell lines and on simple morphological evidence”=°.

Moreover, recent evidence indicates that, in the absence of a molecular
proof of monoclonal origin, results from in vitro experiments based
on limiting dilution can be biased due to a dramatic increase in cell
survival by cell hetero-doublets. This phenomenon is best exemplified
in the case of the mouse small intestine, where growth and expansion
of LGR5™ progenitor cells is dramatically enhanced by the presence of
bystander epithelial feeder cells!’. Based on these studies, it remained
difficult to perform a quantitative measure of the degree of multiline-
age differentiation in cancer tissues and, above all, to investigate to
what degree it actually translated into the differential activation of dis-
tinct transcriptional programs that would mirror and recapitulate the
physiological processes observed in normal tissues. In this study we
developed a method to dissect and investigate at the single-cell level
the gene-expression profile of the distinct cell populations contained
in primary human colon epithelia, both normal and neoplastic.

RESULTS

Description and technical validation of single-cell PCR

We combined fluorescence activated cell sorting (FACS) and single-
cell PCR gene-expression analysis to perform a high-throughput
transcriptional analysis of the distinct cellular populations
contained in solid human tissues (Supplementary Figs. 1 and 2).
This method exploits the capacity of modern flow cytometers to sort
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individual single cells with accuracy and precision (Supplementary
Fig. 3), together with the use of microfluidic technologies to perform
high-sensitivity multiplexed PCR from minute amounts of mRNA,
thereby allowing parallel analysis of the expression of up to 96 genes
for each individual cell. The large number of measurements per cell
and the possibility to analyze several hundred cells in parallel from
the same sample allow the use of statistical clustering algorithms to
associate cells with similar gene expression profiles into well-defined
subpopulations (Supplementary Fig. 2). Microfluidic platforms have
been previously validated for single-cell gene-expression analysis'! 13,
Consistent with those results, our control experiments with titrated
mRNA standards as well as single-cell experiments on a cell line vali-
dated the sensitivity of this approach for high-throughput analysis
across multiple genes (Supplementary Fig. 4).

Analysis of normal human colon epithelium

We first applied single-cell PCR to the study of normal human colon
epithelial cells. Human colon epithelium is composed of heterogene-
ous populations of cells that express different protein markers based
on their lineage, differentiation stage and functional status. Many of
these cell subsets can be identified by immunohistochemistry against
well-characterized markers, such as MUC2, expressed by goblet cells;
MKI67, expressed by proliferating cells; KRT20 and CEACAMI (also
known as CD66a), preferentially expressed by cells at the top of the
colonic crypt (Fig. 1a-d)!*.

Under normal conditions, immature colon epithelial cells reside
at the bottom of the colonic crypts (bottom-of-the-crypt cells) and
express high levels of the surface marker CD44, whereas differentiated
mature cells progressively migrate to the top (top-of-the-crypt cells)
and progressively lose CD44 expression'*15. We focused our analysis
on the stem and progenitor cell compartments of the colonic epi-
thelium by sorting the EpCAMP8"/CD44* population (Fig. le,f; P12)
which, in normal tissues, corresponds to the bottom of the human
colonic crypt'. To study the more mature, terminally differentiated
cell populations, we sorted and analyzed an equal number of cells
from the EpCAM*/CD44~/CD66a"¢" population, which corresponds
to the top of the human colonic crypt (Fig. le,f; P11)16.

We first tested the ability of single-cell PCR gene-expression ana-
lysis to distinguish different cell populations using well-established
reference markers. We analyzed and clustered colon epithelial cells
using three genes encoding markers linked to either one of the two
major cell lineages (that is, MUC2 for goblet cells and CA1 for ente-
rocytes) or the immature compartment (that is, LGR5) of the colon
epithelium!%17-1°. This experiment showed that genes encoding
lineage-specific markers are frequently expressed in a mutually exclu-
sive way, mirroring the expression pattern of corresponding proteins
(Supplementary Fig. 5).

We then searched for gene-expression markers of the different cell
populations, with a special focus on putative stem cell markers. We
mined 1,568 publicly available gene-expression array data sets from
human colon epithelia (Supplementary Table 1), using a bioinformatics
approach designed to identify developmentally regulated genes based on
Boolean implication logic (Supplementary Fig. 6)2°. The search yielded
candidate genes whose expression was associated with that of other
markers previously linked to individual colon epithelial cell lineages
(Supplementary Figs. 7-9). Using an iterative approach, we screened
>230 genes on eight independent samples of normal human colon epithe-
lium by single-cell PCR gene-expression analysis. At each round, genes
that were noninformative (that is, not differentially expressed in either
positive or negative association with CA 1, MUC2 or LGR5) were removed
and replaced with new candidate genes. Thereby, we progressively
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built a list of 57 TagMan assays that allowed us to analyze the expression
pattern of 53 distinct genes (3 housekeeping, 3 proliferation-related and
47 differentially expressed genes; Supplementary Table 2) with high
robustness (Supplementary Fig. 10). This allowed us to characterize
multiple cell populations, using both hierarchical clustering (Fig. 1g)
and principal component analysis (PCA; Fig. 1h,i).

Analysis of the EpCAM*/CD447/CD66aM8 population (enriched
for top-of-the-crypt cells) revealed that this subset, although tran-
scriptionally heterogeneous, was almost exclusively composed of cells
expressing high levels of genes characteristic of mature enterocytes
(e.g., CAI*, CA2*, KRT20", SLC26A3*, AQP8* and MS4A12+)1421-23
and led to the discovery of at least two gene expression markers
whose differential expression pattern—to our knowledge—has not
been reported before (CD177 and GUCA2B) (Fig. 1g). To validate
the reliability of single-cell PCR gene-expression analysis results, we
evaluated the distribution of SLC26A3 and CD177 protein expression
in tissue sections and we confirmed its preferential expression at the
top of the human colonic crypts (Supplementary Figs. 11 and 12).

We could also distinguish different subsets of cells with different
transcriptional profiles within the EpCAM*/CD44~/CD66aMgh popu-
lation (e.g., CAI*/SLC26A3* versus GUCA2B™). At the present time,
it is not clear whether they represent distinct stages of differentiation
or distinct functional subsets of colonic enterocytes. Nonetheless,
their clearly unique transcriptional programs identify them as part
of a distinct cellular population.

Analysis of the EpCAMP8"/CD44* population (enriched for
‘bottom-of-the-crypt’ cells) revealed the presence of multiple
populations, including: (i) a cell compartment characterized by
the expression of genes linked to goblet cells (MUC2*, TFF3high,
SPDEF*, SPINK4")?%25, (ii) a cell compartment characterized by
the co-expression of genes associated with immature cells as well as
genes known to be expressed by enterocytes (OLFM4*, CA2"igh) and
(iii) a cell compartment whose gene-expression profile mirrors that
of a stem and/or progenitor cell compartment in the mouse small
intestine (LGR5*, ASCL2*, PTPRO*, RGMB*)'72%. A synopsis of
the key genes that define the gene-expression profile of the different
populations is provided in Supplementary Table 3.

The OLMF4*/CA2Migh and the LGR5*/ASCL2* compartments
shared expression of several genes of functional interest in both stem
cell and cancer biology, such as genes involved in self-renewal and
chromatin remodeling (EZH2, BMI1)?’-2°, Wnt-pathway signaling
(AXIN2)3, cell growth and chemotaxis (CXCL2)3!, stem cell qui-
escence (LRIGI)*? and oncogenes (MYC)*. The expression of pro-
liferation markers, such as, MKI67, TOP2A, BIRC5 (also known as
Survivin) appeared to be restricted to the EpCAMD8"/CD44* (bottom-
of-the-crypt) population and particularly to the LGR5*/ASCL2* and
MUC2*/TFF3high cells. This was partially expected based on both
previously published data!4171° and our own immunohistochemistry
results (Supplementary Fig. 13c).

We also observed that MUC2*+/ TFF3"ig" cells were characterized by
high expression levels of several genes of interest, including DLLI and
DLL4, encoding for two Notch ligands, and KRT20. The expression
of KRT20 at the bottom of the crypt appears contrary to the notion of
KRT20 as a terminal differentiation marker. However, a more careful
examination of immunohistochemical stainings identified scattered
KRT20* cells, which can be morphologically identified as goblet cells
(Supplementary Fig. 13a,b). We also noticed that MUC2*/TFE3high
cells, for the most part, did not express CFTR, the gene mutated in
cystic fibrosis. The differential expression of DLL4 is of potential rele-
vance to the clinical development of novel anti-tumor therapeutic
agents directed against this molecule®*.
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Figure 1 Single-cell PCR gene-expression analysis of human normal colon epithelium. (a—d) Immunohistochemistry of normal human colon epithelium,
stained for MUC2 (a), labeling goblet cells, MKI67 (b), labeling proliferating cells, KRT20 (c) and CEACAM1 (d), preferentially labeling top-of-the-crypt
cells. (e,f) Flow cytometry sorting strategy for top-of-the-crypt and bottom-of-the-crypt epithelial cells. (e) Colon epithelial cells, both CD44"¢& and
CD44+*, were separated from stromal cells based on their EpCAM* phenotype. (f) Bottom-of-the-crypt epithelial cells were defined as EpCAMNgh/CD44+
(f, P12 blue sort gate) and top-of-the-crypt epithelial cells as EpCAM*/CD44-/CD66aMeh (f, P11 orange sort gate). (g) Hierarchical clustering of
single-cell PCR gene-expression analysis data visualized distinct cell populations, including enterocyte-like cells (CAI*/SLC26A3* and GUCAZB?),
goblet-like cells (MUC2+/TFF3high) and two compartments defined by gene-expression profiles reminiscent of more immature progenitors (OLFM4+*/
CA2hieh and LGR5*/ASCL2%). (h,i) Principal component analysis of single-cell PCR gene-expression data visualized different cell types and different
gene families. Different cell types were characterized by different scores along the two main principal components (PC1 and PC2) (h). Different

gene families were characterized by different contributions to the two main principal components. To allow comparisons between hierarchical clustering
and PCA results, we displayed each cell or gene in PCA plots with the color corresponding to the cell type or gene family it was assigned to based on

hierarchical clustering (i).
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Analysis of a primary human colon adenoma

We then turned to cancer and investigated whether the cellular
composition of the normal colonic epithelium is preserved
in colorectal tumors, both benign and malignant. Analysis by
single-cell PCR gene-expression analysis of EpCAMPigh/CD44*
cells from a primary tubulo-villous adenoma (sample name:
SU-COLON#76; Supplementary Table 4) revealed the presence
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of at least two different cell populations (that is, LGR5*/ASCL2*
and MUC2*/TFF3"¢") characterized by distinctive gene signatures,
closely mirroring the subpopulations observed in corresponding
EpCAMPMg/CD44* populations of normal tissues (Fig. 2a-c).
These observations were confirmed at the protein level by par-
allel immunohistochemical investigations for KRT20 and MUC2
(Fig. 2d,e) and are in agreement with the recent finding that
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Figure 2 Single-cell PCR gene-expression analysis of human colon tumor tissues. (a) Hierarchical clustering of single-cell PCR gene-expression data from the
EpCAM*/CD44+ population of a large primary benign adenoma (sample: SU-COLON#76; see Supplementary Table 4). The analysis revealed the presence of
multiple cell populations characterized by distinct gene signatures, closely mirroring lineages and differentiation stages observed in the EpCAM*/CD44+ population
from the normal colon epithelium. (b,c) Principal component analysis (PCA) of single-cell PCR gene-expression analysis data confirmed hierarchical clustering
results, visualizing cell types (b) and gene families (c) similar to those identified in normal tissues. (d,e) Gene-expression data were confirmed at the protein level
by immunohistochemistry, testing for expression of KRT20 (d) and MUC2 (e) on corresponding tissue sections. (f—j) A similar study on a monoclonal colon cancer
xenograft obtained from injection of a single (n= 1) cell in a NOD/SCID/IL2Ry~~ mouse (UM-COLON#4 clone 8) produced similar results in terms of hierarchical
clustering (f), cell types identified by PCA (g), gene families identified by PCA (h), immunohistochemistry results for KRT20 (i) and immunohistochemistry results
for MUC2 (j). Results from the monoclonal tumor xenograft indicated that the distinct cell populations visualized by single-cell PCR did not arise as the result of
the coexistence within the tumor tissue of independent genetic subclones, but as the result of multilineage differentiation processes during tumor growth. Color
coding of normalized threshold cycle (Ct) values in hierarchical clustering plots and of gene families in PC loading plots are identical to those of Figure 1.
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Figure 3 Analysis of a monoclonal human
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colon cancer xenograft obtained from injection
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in NOD/SCID/IL2Ry™~ mice varies based on
the xenograft line, as shown by comparative
limiting-dilution experiments. (b) Single (n=1)
lentivirus-infected EGFP*/EpCAM"ig/CD44+
cancer cells can be sorted by flow cytometry
for injection in mice. (c,d) Analysis by flow
cytometry of a monoclonal tumor derived from
injection of a single (n= 1), lentivirus-tagged,
EGFP+/EpCAMMNgN/CD44+ cancer cell from the
human colon cancer xenograft UM-COLON#4
(clone 8) confirmed that human cells expressed
EGFP (c¢) and contained both EpCAM'®V/CD44~
and EpCAMNig"/CD44+ populations (d). (e) The
monoclonal origin of the UM-COLON#4 clone
8 tumor was confirmed by LM-PCR, showing
the presence of a unique lentivirus integration
site in both EGFP*/EpCAM'*%/CD44~ and
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EGFP*/EpCAMNig"/CD44+ populations, contrary to what was observed in its polyclonal parent tumor. A larger image of the LM-PCR gel is provided in
Supplementary Figure 24. (f,g) Immunohistochemistry of monoclonal tumor tissues revealed heterogeneous and mutually exclusive expression patterns
of KRT20 (f) and MKI67 (g). (h) Similar to what is observed in parent tumors, EpCAM"€"/CD44+ and EpCAM'®%/CD44~ populations from UM-COLON#4
clone 8 were characterized by different tumorigenic capacity, as evaluated by tumorigenicity experiments in NOD/SCID/IL2Ry~~ mice.

KRT20 is frequently expressed in a mutually exclusive pattern
with respect to LGR5 (ref. 19). This primary adenoma appeared
depleted in CAI*/SLC26A3*, GUCA2B*and OLFM4*/CA2"gh cell
populations. A careful examination of public gene-expression array
databases indicated that this unexpected feature is likely common
to many benign adenomas (Supplementary Fig. 14).

Analysis of a human colon cancer xenograft derived from a
single cancer cell

Tumor tissues, both benign and malignant, are known to undergo
perturbations of normal differentiation processes, but it is unclear to
what extent those perturbations reflect quantitative changes in cell
composition or qualitative changes in gene-expression programs. This
topic has historically been controversial*=%3°. Our own systematic
study of KRT20 and MUC2 protein expression in human malignant
colorectal cancer tissues, for instance, revealed that both markers are
frequently expressed heterogeneously, in patterns that mirror those
observed in normal colorectal epithelium (Supplementary Fig. 15).
It remained unclear, however, to what extent cancer transcriptional
heterogeneity is the result of clonal genetic heterogeneity®® or epige-
netic heterogeneity due to multilineage differentiation processes’.

To address this question from a functional perspective, we investi-
gated whether a single (n = 1) human colorectal cancer cell can recreate
the heterogeneous cell composition of parent tumor tissues, including
the subpopulations that we discovered in this study. We injected NOD/
SCID/IL2Ry'~mice with single (1 =1) EpCAM"8"/CD44* cancer cells
purified by flow cytometry from one of our well-characterized solid
xenograft lines?’, following infection with a lentivirus vector encoding
enhanced green fluorescence protein (EGFP; Fig. 3a,b).

Notably, the single cell-derived, lentivirus-tagged, EGFP* xenograft
line generated in this experiment (UM-COLON#4 clone 8) closely
reproduced the phenotypic diversity of its parent tumor both in terms
of tissue histology (Figs. 2i,j and 3f,g) and surface-marker phenotypic
repertoire of cellular populations (Fig. 3c,d). The line’s monoclonal
origin was confirmed by identification of a unique lentivirus integra-
tion site in all cancer cells (Fig. 3e).
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Tumorigenicity experiments done in NOD/SCID/IL2Ry™/~ mice
revealed that, as observed in the parent tumors®’, EGFP*/ EpCAMhigh/
CD44* and EGFP*/EpCAM!"/CD44~/1°" cell populations were
endowed with different tumorigenic capacity (Fig. 3h). A single-cell
PCR gene-expression analysis of the EpCAMM8P/CD44* population
from these monoclonal tumors demonstrated its heterogeneous line-
age composition, showing the presence of three distinct compartments
(that is, LGR5*/ASCL2*, OLFM4*/CA2high, MUC2+/TFF3high),
again characterized by distinctive gene signatures, closely mirroring
those observed in corresponding immature populations of normal
tissues (Fig. 2f-h).

Taken together, these data formally prove that, in a subset of
tumors, transcriptional heterogeneity is, at least partly, explained by
multilineage differentiation processes that tend to recapitulate those
observed in normal tissues.

Prognostic role of biomarkers identified by single-cell PCR

To gain further insight into the potential functional implications of
these observations, we compared the gene-expression pattern of genes
associated with cell proliferation (that is, MKI67, TOP2A and BIRC5)
in normal and cancer tissues. In this case too, we observed that the
expression pattern observed in malignant tissues frequently mirrored
that of normal ones.

Both in the normal tissue and in the monoclonal human colon
cancer xenograft, for instance, all three proliferation markers were
frequently expressed in a mutually exclusive way as compared to the
differentiation marker KRT20 (Supplementary Fig. 16). This obser-
vation was subsequently confirmed at the protein level by a systematic
study of MKI67 and KRT20 expression in serial sections from seven
human colorectal cancer tissues, where MKI67 expression was often
inversely associated with KRT20 (Supplementary Fig. 17).

These observations suggest that, in at least some cases, bulk short-
term tumor growth is principally driven by a specific subset of the
cancer cell population, characterized by a gene-expression repertoire
characteristic of more immature cell compartments. This concept has
important implications for the modeling of tumor growth kinetics

NATURE BIOTECHNOLOGY
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Figure 4 KRT20 and top-crypt genes can be used as prognostic markers in colorectal cancer patients. (a—d) We used the Hegemon software to graph
individual arrays according to the expression levels of KRT20 and one of four genes characteristic of top-of-the-crypt CA1*/SLC26A3* enterocyte-like
cells: KRT20 versus CAI (a), KRT20 versus MS4A12 (b), KRT20 versus CD177 (c), KRT20 versus SLC26A3 (d). We used the StepMiner algorithm to
define gene-expression thresholds and identify three distinct gene-expression groups: Group 1 (green), defined as KRT20*/CA1Mgh KRT20+/MS4A12high,
KRT20*/CD177+ or KRT20*/SLC26A3*, respectively; Group 2 (blue), defined as KRT20*/CA1~10%, KRT20*/MS4A12-/"ow, KRT20*/CD177" or
KRT20%/SLC26A3-, respectively; Group 3 (red), defined as KRT20~/CA1~°%, KRT20-/MS4A12~1°w KRT20-/CD177- or KRT20/SLC26A3",
respectively. (e-h) Survival analysis using Kaplan-Meier curves showed that, in all four cases, an increasingly immature gene-expression profile
corresponded to a progressively worse prognosis. (i-l) Multivariate analysis of survival data based on the Cox proportional hazards model indicated

that the prognostic effect of these two-gene classifiers was not confounded by clinical stage, age or sex. The analysis was performed on a pooled
database of 299 primary colon cancer gene-expression arrays annotated with disease-free survival (DFS) data*!:42 (Supplementary Table 1). *P < 0.05,
**P < 0.001. Age modeled as a continuous variable. HR, hazard ratio; Cl, confidence interval; M, male; F, female.

and the response to anti-tumor drugs in different experimental set-
tings. Although very common, this feature is not absolute, as we have
observed exceptions characterized either by homogenous expression
of KRT20 in almost the entirety of the malignant epithelium or by
complete absence of it in selected human tumors (Supplementary
Fig. 17, samples SU87 and SU98, respectively). In accordance with
our model, tumors characterized by the complete absence of KRT20
expression were very poorly differentiated and contained high per-
centages of MKI67* cells (Supplementary Fig. 17, SU98).

We next tested whether these insights in the functional anatomy
of the colon epithelium could have clinically useful applications.
We evaluated whether quantitative expression levels of genes asso-
ciated with differentiation processes could be used as a substitute
measure for the cellular composition of the corresponding tumors
and thereby serve to stratify colon cancer patients and predict
clinical outcome. Our single-cell PCR gene-expression analysis
data identified a set of sensitive and exclusive markers of top-of-
the-crypt CAI"/SLC26A3* cells (that is, CAI, MS4A12, CD177,
SLC26A3). It also implicated KRT20 as a more promiscuous differ-
entiation marker, whose expression is high in CAI1*/SLC26A3* cells
and a subset of MUC2*t/TFF3high cells, is absent in LGR57/ASCL2*
cells, and is inversely associated with that of proliferation markers
(MKI67, TOP2A, BIRCS). In addition, KRT20 expression can be
easily detected by immunohistochemistry and is commonly used

NATURE BIOTECHNOLOGY VOLUME 29 NUMBER 12 DECEMBER 2011

as a diagnostic marker in surgical pathology?®, thus representing
an attractive candidate for further clinical applications°.

Our first analysis of a pool of 1,568 independent human colon
gene-expression arrays revealed that expression levels of genes charac-
teristic for the CAI*/SLC26A3* cell population are strongly correlated
(Supplementary Fig. 18). The relationship between the expression of
these top-of-the-crypt genes and KRT20 was described by a Boolean
implication: tumors expressing high levels of top-of-the-crypt genes
(top-crypt"8h) were always KRT20", whereas tumors expressing
low-to-negative levels of top-of-the-crypt genes (top-crypt/1ov)
could be clearly separated into two groups: KRT20* and KRT20~
(Supplementary Fig. 7). Importantly, KRT20~ tumors expressed high
levels of ALCAM/CD166 (Supplementary Fig. 19), a gene encoding
for a surface marker characteristic of colon cancer cells with high
tumorigenic potential in mouse xenotransplantation experiments3’.

We developed software (‘hierarchical exploration of gene expres-
sion microarrays on-line, or Hegemon) to analyze the survival
outcomes of human colon cancer patients after stratification into
distinct gene-expression subsets, based on the expression of KRT20
and one of the marker genes of CAI*/SLC26A3* top-of-the-crypt
cells (Fig. 4a-d). These subsets, or gene-expression groups, were
numbered from more to less mature (group 1, KRT20*/top-crypthish;
group 2, KRT20*/top-crypt""; group 3, KRT20~/top-crypt /"), We
used a computer-assisted method to determine the threshold level
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Table 1 The prognostic effect of KRT20/top-crypt gene-expression
groups

HR? 95% CIP Pvalue
KRT20/CA1
Prognostic variable
Group (1-3) krT20/cAl 2.93 1.37-6.27 0.0056*
Grade (G1-G4) 1.09 0.58-2.04 0.80
Stage (I-1V) 3.43 2.20-5.34 < 0.001**
Age® 0.99 0.97-1.01 0.43
Sex (M/F)d 1.18 0.86-1.61 0.31
KRT20/MS4A12
Prognostic variable
Group (1-3) krRT20/Ms4A12 2.93 1.37-6.28 0.0057*
Grade (G1-G4) 1.07 0.57-2.00 0.84
Stage (I-1V) 3.41 2.19-5.31 <0.001**
Age® 0.99 0.97-1.01 0.41
Sex (M/F)d 1.19 0.87-1.63 0.28
KRT20/CD177
Prognostic variable
Group (1-3) krT20/cD177 1.94 0.97-3.90 0.062
Grade (G1-G4) 1.19 0.63-2.22 0.59
Stage (I-1V) 3.21 3.03-7.06 <0.001**
Age°® 0.99 0.97-1.01 0.39
Sex (M/F)d 1.20 0.87-1.64 0.26
KRT20/SLC26A3
Prognostic variable
Group (1-3) KrRT20/sLC26A3 2.36 1.14-4.88 0.021*
Grade (G1-G4) 1.12 0.60-2.10 0.72
Stage (I-1V) 3.34 2.16-5.15 <0.001**
Age® 0.99 0.97-1.01 0.45
Sex (M/F)d 1.19 0.87-1.63 0.27

Multivariate analysis based on the Cox proportional hazards model, testing the
KRT20/top-crypt two-gene scoring systems in parallel with pathological grading, clinical
stage, age and sex, using the KRT20/CA1 two-gene classifier, the KRT20/MS4A12
two-gene classifier, the KRT20/CD177 two-gene classifier or the KRT20/ SLC26A3 two-
gene classifier. Contrary to pathological grade, KRT20/top-crypt gene expression groups
were associated with statistically significant (p < 0.05) hazard ratios (HR), with the
only exception of the KRT20/CD177 two-gene classifier. The analysis was performed on
a subset database of 181 microarrays annotated with grading information (database

from ref. 42, n = 181, see Supplementary Table 1). *, P < 0.05; **, P< 0.001.
aHR, hazard-ratio. PCl, confidence interval. “Age modeled as a continuous variable. 4M/F,
male versus female.

between positive and negative expression, based on the StepMiner
algorithm (Supplementary Fig. 20)*°, and compared the clinical
outcome of colon cancer patients in the three groups, using a pool
of three independent data sets, containing 299 patients at different
clinical stages (either AJCC stage I-IV or Dukes stage A-D) from
the H. Lee Moffit Cancer Center, the Vanderbilt Medical Center and
the Royal Melbourne Hospital*!42, all of which were annotated with
disease-free survival (DFS) data.

The three patient groups identified by these simple two-gene
classifiers displayed substantially different clinical outcomes. An
increasingly immature gene-expression profile corresponded to a pro-
gressively worse prognosis (Fig. 4e-h). This result was independent
of the gene chosen as marker of CA1*/SLC26A3* cells (that is, CAI,
MS4A12,CD177, SLC26A3) and a multivariate analysis indicated that
the prognostic value of the two-gene grouping system was not con-
founded by stage or other clinical variables (Fig. 4i-1).

Tumors with a more immature gene-expression profile (group 3,
KRT20/top-crypt~"") were more likely to be of high pathological
grade (G3-G4; Supplementary Fig. 21) and of microsatellite instability
status (MSI; Supplementary Fig. 22). These enrichments, however,
did not confound the prognostic value of the two-gene classifier
system, as the high hazard-ratios associated with more immature gene-
expression groups remained statistically significant (P < 0.05), when
tested against pathological grade in multivariate analysis (Table 1;
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with the exception of KRT20/CD177, P = 0.06), and because MSI*
tumors are known to be usually associated with a better prognosis*3.
The prognostic effect of the two-gene classifier system was also inde-
pendent of the recently described multigene EphB2 intestinal stem
cell signature!®, and was associated with comparable, if not superior,

hazard ratios (Supplementary Fig. 23).

DISCUSSION

In this study, we implemented a method to investigate the cellular
composition of solid tissues based on high-throughput parallel ana-
lysis of the gene-expression repertoire of single cells sorted by flow
cytometry. We used this methodology to identify distinct cellular sub-
sets of the human colon epithelium and to discover gene expression
markers to define them. We then examined human colorectal tumors,
both benign and malignant, and characterized them in terms of cell
lineage composition and maturation. We showed that tumor tissues
contain multiple cell types whose transcriptional identities mirror
those of the cellular lineages of the normal epithelium. Moreover, we
showed that tumor tissues generated from a single cell can recapitulate
the lineage diversity of parent tumors, demonstrating that multiline-
age differentiation represents a key source of in vivo functional and
phenotypic cancer cell heterogeneity.

Using these concepts as a guide, we identified biological subsets of
human colorectal cancer, based on the expression of genes charac-
teristic of specific cell types. These biological subsets were associated
with substantially different clinical outcomes and could be identified
by a simple two-gene classifier system. This prognostic scoring sys-
tem appeared independent of and superior to pathological grading,
which is, to this date, one of the few parameters incorporated into the
design of therapeutic algorithms for colon cancer patients*4. Owing
to its simplicity and quantitative nature, this two-gene scoring system
has the potential to move beyond the realm of purely experimental
medicine and is a viable candidate for clinical applications.

METHODS
Methods and any associated references are available in the online
version of the paper at http://www.nature.com/naturebiotechnology/.

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METHODS

Human primary tissues and colon cancer xenografts. Human primary
colon tissues, normal or malignant, were collected according to guidelines
from Stanford University’s institutional review board. Human colon cancer
tissues used in this study, either from primary samples or xenograft lines, are
listed in Supplementary Table 4, together with clinical information relative
to corresponding patients. Human colon cancer xenograft lines were estab-
lished and serially passaged in immunodeficient mice following previously
published protocols®’. A detailed description of these protocols is provided
in the Supplementary Methods.

Cell lines. Calibration experiments to measure accuracy and precision of
single-cell sorting by flow cytometry, as well as to measure single-cell sensi-
tivity of single-cell PCR, were performed on a clone of the HCT116 human
colon cancer cell line infected with the pLL3.7 lentivirus (Addgene no. 11795).
HCT116 cells are available from the American Tissue-type Culture Collection
(ATCC; CCL-247) and were maintained in RPMI-1640 medium, supplemented
with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 120 p1g/ml
penicillin, 100 pg/ml streptomycin, 20 mM HEPES and 1 mM sodium pyru-
vate, as previously described*.

Solid tissue disaggregation. Solid tissues, normal and neoplastic, collected
from primary surgical specimens or mouse xenografts, were mechanically
and enzymatically disaggregated into single-cell suspensions, following pre-
viously published protocols®”. Briefly, solid tissues were minced into small
chunks (2 mm?3), rinsed with Hank’s balanced salt solution (HBSS), finely
chopped with a razor blade into minute fragments (0.2-0.5 mm?), resuspended
in serum-free RPMI-1640 medium (2 mM vL-glutamine, 120 pg/ml penicillin,
100 ug/ml streptomycin, 50 pug/ml ceftazidime, 0.25 ug/ml amphotericin-B,
20 mM HEPES, 1 mM sodium pyruvate) together with 100 units/ml DNase-I
and 200 units/ml Collagenase-IIT (Worthington) and incubated for 2 h at
37 °C to obtain enzymatic disaggregation. Cell suspensions were serially
filtered with sterile gauze, 70-pum and 40-pm nylon meshes. Red blood cells
were removed by osmotic lysis with ACK hypotonic buffer (150 mM NH,CI,
1 mM KHCOyj; 5 min on ice).

Flow cytometry and single-cell sorting experiments. To minimize loss of
cell viability, we performed experiments on fresh cell suspensions, prepared
shortly before flow cytometry®”. Antibody staining was performed in HBSS
supplemented with 2% heat-inactivated calf serum, 120 pg/ml penicillin,
100 pg/ml streptomycin, 50 ug/ml ceftazidime, 0.25 pg/ml amphotericin-B,
20 mM HEPES, 1 mM sodium pyruvate and 5 mM EDTA. To minimize
unspecific binding of antibodies, cells were first incubated with 0.6% human
IgGs (Gammagard Liquid; Baxter) for 10 min on ice, at a concentration of
3-5 x 10° cells/100 pl. Cells were subsequently washed and stained with
antibodies at dilutions determined by appropriate titration experiments.
Antibodies used in this study include anti-human EpCAM-FITC or PE
(clone EBA-1; BD Biosciences), anti-human CD44-APC (clone G44-26;
BD Biosciences) and anti-human CD66a-PE (clone 283340; R&D Systems).
Cells positive for expression of nonepithelial lineage markers (Lin*) were
excluded by staining with PE.Cy5-labeled antibodies using different strate-
gies for primary tissues and mouse xenografts. In experiments on primary
human tissues, stromal cells were excluded by staining with anti-human
CD3-biotin (clone UCHT1; BD Biosciences), CD16-biotin (clone 3G8; BD
Biosciences), CD45-biotin (clone HI30; BD Biosciences), and CD64-biotin
(clone 10.1; BD Biosciences) + streptavidin-PE/Cy5 (BD Biosciences). In
experiments on human colon cancer xenografts, mouse cells were excluded
by staining with anti-mouse CD45-PE/Cy5 (clone 30-F11; BD Biosciences)
and anti-mouse H-2K4-biotin (clone SF1-1.1; BD Biosciences) +
streptavidin-PE/Cy5 (BD Biosciences). After 15 min on ice, stained cells
were washed of excess unbound antibodies and resuspended in HBSS with
2% heat-inactivated calf serum, 20 mM HEPES, 5 mM EDTA, 1 mM sodium
pyruvate and 1.1 uM DAPI dilactate (Molecular Probes). Flow-cytometry
analysis was performed using a BD FACSAriall cell-sorter (Becton
Dickinson). Forward-scatter height versus forward-scatter width (FSC-H
versus FSC-W) and side-scatter height versus side-scatter width (SSC-H
versus SSC-W) profiles were used to eliminate cell doublets. Dead cells
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were eliminated by excluding DAPI* cells, whereas contaminating human
or mouse Lin* cells were eliminated by excluding PE/Cy5™ cells.

In single-cell sorting experiments, each single (n = 1) cell was individually
sorted into a different well of a 96-well PCR plate, using a protocol already
built-in within the FACSAriall software package, with appropriate adjustments
(device: 96-well plate; precision: single-cell; nozzle: 130 um).

Single-cell PCR. Single-cell gene-expression experiments were performed
using Fluidigm’s M96 quantitative PCR (QPCR) DynamicArray microfluidic
chips (Fluidigm). Single cells were sorted by FACS into individual wells of
96-well PCR plates as described above. Each 96-well plate was preloaded
with 5 pl/well of CellsDirect PCR mix (Invitrogen) and 0.1 pl/well (2 U)
of SuperaseIn RNase-inhibitor. Following single-cell sorting, each well was
supplemented with 1 ul (Applied Biosystems) of SuperScript-III RT/Platinum
Taq (Invitrogen), 1.5 pl of Tris-EDTA (TE) buffer and 2.5 pl of a mixture of
96 pooled TagMan assays (Applied Biosystems) containing each assay at
1:100 dilution. Single-cell mMRNA was directly reverse transcribed into cDNA
(50 °C for 15 min, 95 °C for 2 min), pre-amplified for 20 cycles (each cycle:
95 °C for 155, 60 °C for 4 min) and diluted 1:3 with TE buffer. A 2.25 ul aliquot
of amplified cDNA was then mixed with 2.5 pl of TagMan Universal PCR
Master Mix (Applied Biosystems) and 0.25 pl of Fluidigm’s “sample loading
agent,” then inserted into one of the chip “sample” inlets. Individual TagMan
assays were diluted at 1:1 ratios with TE. A 2.5 pl aliquot of each diluted
TagMan assay was mixed with 2.5 pul of Fluidigm’s “assay loading agent” and
individually inserted into one of the chip “assay” inlets. Samples and probes
were loaded into M96 chips using an IFC Controller HX (Fluidigm), then
transferred to a BioMark real-time PCR reader (Fluidigm) following manu-
facturer’s instructions. A list of the 57 TagMan assays used in this study is
provided in Supplementary Table 2.

Analysis and graphic display of single-cell PCR data. Single-cell PCR data
were analyzed and displayed using MATLAB (MathWorks) as summarized
in Supplementary Figure 2. A minimum of 336 cells were analyzed for each
phenotypic population, corresponding to four PCR plates, each contain-
ing 84 single cells (84 x 4 = 336), eight positive and four negative controls.
As positive controls, we used replicates of a 1:1:1 mixture of total RNA stand-
ards from human normal colon (AM7986), human normal testes (AM7972)
and HeLa cells (AM7852), all from Applied Biosystems. Results from cells
not expressing ACTB (B-actin) and GAPDH (glyceraldehyde 3-phosphate
dehydrogenase), or expressing them at extremely low values (Ct >35), were
removed from the analysis. Gene-expression results were normalized by mean
centering and dividing by 3 times the standard deviation (3 s.d.) of expressing
cells (Supplementary Fig. 2), and visualized using both hierarchical cluster-
ing and PCA1246, Hierarchical clustering was performed both on cells and
genes, based on Euclidean or correlation distance metric and complete linkage.
Positive or negative associations between two genes were tested by Spearman
correlation, and P-values calculated based on 10,000 permutations. Both hier-
archical clustering and PCA were based on the results for 47 differentially
expressed genes (51 assays), and excluded results from housekeeping (ACTB,
GAPDH, EpCAM) and proliferation-related genes (MKI67, TOP2A, BIRC) to
avoid noise based on proliferation status. A detailed description of all these
procedures is provided in the Supplementary Methods.

Immunohistochemistry and immunofluorescence. Paraffin-embedded
tissue sections were stained with anti-human CK20 (clone Ks20.8,
DakoCytomation), MUC2 (clone Ccp58, Fitzgerald Industries), MKI67
(clone MIB-1, DakoCytomation), CEACAM1/CD66a (clone 283340; R&D
Systems) and SLC26A3 (lot no. R32905, Sigma Life Science) antibodies,
according to manufacturers’ instructions. Frozen tissue sections were stained
with an anti-human CD177 antibody (clone MEM-166, BD Biosciences) fol-
lowed by secondary staining with goat anti-mouse IgG-Alexa488 (Invitrogen).
A description of immunohistochemistry and immunofluorescence protocols
is provided in the Supplementary Methods.

Generation and characterization of monoclonal tumors. EpCAM"8h/CD44+

human colon cancer cells were infected with the pLL3.7 lentivirus (Addgene
#11795)%7. Cells were infected by spin-inoculation for 4 h and injected in bulk
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into the subcutaneous tissue of a NOD/SCID/IL2Ry™/~ mice. The resulting
tumors were analyzed to evaluate infection efficiency, and EGFP*/EpCAMPigh/
CD44* were re-sorted and injected as single cells, again into NOD/SCID/
IL2Ry/~ mice. Monoclonal origin of tumors originated from single (n = 1)
lentivirus-infected EpCAMM€"/CD44* cancer cells was confirmed by ligation-
mediated PCR (LM-PCR)*, followed by DNA sequencing of LM-PCR ampli-
fication products. In the case of UM-COLON#4 clone 8, DNA sequencing of
LM-PCR amplification products pinpointed the provirus integration-site on
the long arm of human chromosome 19 (19q13.3), in proximity of the AP3D1
gene (adaptor-related protein complex 3, delta 1 subunit). For a visual guide on
how to interpret LM-PCR results refer to Supplementary Figure 24.

Tumorigenicity experiments. Tumorigenicity experiments were performed
in NOD/SCID/IL2Ry™/~ immunodeficient mice following previously pub-
lished protocols3”4%°0 and Stanford University’s institutional animal welfare
guidelines. Tumorigenic cell frequencies were calculated by limiting dilution
using the L-Calc software (StemCell Technologies). A detailed description of the
protocols used for tumorigenicity experiments is provided in the
Supplementary Methods.

Bioinformatic data collection and assemblage of the “human colon global
database.” A collection of 46,047 publicly available human gene-expression
arrays (25,721 arrays on Affymetrix U133 Plus 2.0, 16,357 arrays on Affymetrix
U133A4, 3,969 arrays on Affymetrix U133A 2.0) was downloaded from NCBI’s
GEO database and normalized using the RMA (Robust Multi-chip Average)
algorithm. Normalization was done either independently for each platform
or on the whole array collection, using a modified CDF (chip description file)
reduced to contain only shared probes. From this general collection, which
contained arrays from all types of human samples, we extracted a subset of
1,684 unique arrays from human colon tissues, either normal or cancerous.
We named this subset the “human colon global database,” and we annotated
all its samples as normal colon (n = 173), benign colonic adenoma (n = 68) or
colorectal cancer (n = 1443). To avoid redundancies (that is, identical samples
deposited two or more times in independent GEO data sets) we cross-checked
all samples and removed duplicates. When available, we collected all available
clinical, pathological and molecular information related to the corresponding
patients. As not all arrays were annotated for all variables, individual hypoth-
eses were tested on specific subsets of the “human colon global database.”
A list of all GEO data sets used in this study, and of their contribution to dif-
ferent experiments, is provided in Supplementary Table 1.

Mining of gene-expression arrays using Boolean implications. Gene-expression
thresholds between positive and negative samples were defined using the
StepMiner algorithm?’, and Boolean implication relationships between pairs
of genes using the BooleanNet software?’. Briefly, for each gene, individual
samples were ordered from low-to-high based on their gene-expression values,
and a rising step function was fit to the data, trying to minimize differences
between fitted and measured values. This method identifies a “step” at the
point of largest jump from low to high values (but only if a sufficient number
of gene-expression values is present on each side of the jump to exclude a
random oscillation due to noise) and sets the gene-expression threshold at the
value corresponding to the step*’. An intermediate region is defined around
the threshold, with a width of 1 (threshold +/-0.5), corresponding to a twofold
change in expression levels, which represents the minimum noise in these data
sets?%40. All samples below the intermediate region (< 1%t StepMiner threshold
- 0.5) are considered negative, and all samples above the intermediate region
(> 1%t StepMiner threshold + 0.5) are considered positive. When gene-expression
levels display a large dynamic range, the StepMiner algorithm can be used to
calculate two distinct thresholds: a first threshold to discriminate between
“negative” and “positive” samples (1% StepMiner threshold) and a second
threshold to split “positive” samples into two subgroups with “low” and “high”
gene-expression (2" StepMiner threshold; Supplementary Fig. 20).

We started our search for developmentally regulated genes on the “human
colon global database” (Supplementary Table 1). To minimize the risk of
results being affected by samples containing substantial contaminations
from tissues other than colorectal epithelium (e.g., normal liver tissue in
hepatic metastases), we restricted our investigation to the subset of arrays
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with an EpCAM*/albumin™ gene-expression profile (Supplementary Fig. 6).
Threshold gene-expression levels were calculated using the StepMiner
algorithm, based on the 1,684 arrays of the “human colon global database”
(EpCAM™: Affymetrix probe 201839_s_at >10.05; albumin™: Affymetrix
probe 211298_s_at <7.97). This operation removed 116 arrays (6.9%) and left
1,568 arrays (93.1%) for analysis (normal colon: n = 170; colorectal adenoma:
n = 68; colorectal carcinoma: n = 1,330).

Boolean implication relationships between pairs of genes were systemati-
cally computed using the BooleanNet software?’. Mature enterocyte genes were
predicted as genes highly expressed in KRT20* arrays and filtered based on the
fulfillment of the “X* implies KRT20*” Boolean implication (Supplementary
Fig. 7). Goblet genes were predicted as genes highly expressed in MUC2*
arrays and filtered based on the fulfillment of at least one of three independent
Boolean implications: “MUC2 is equivalent to X, “X* implies MUC2*”, “MUC2*
implies X*” (Supplementary Fig. 8). Immature genes were predicted as genes
highly expressed in KRT20™ arrays, and filtered based on the fulfillment of the
“KRT20~ implies X*” Boolean implication (Supplementary Fig. 9). Threshold
gene-expression levels were calculated using the StepMiner algorithm, based on
the global collection of 46,047 human arrays. Gene-expression patterns were
considered to fulfill a Boolean implication when the false-discovery rate (FDR)
of a sparsity test in the relevant quadrant was <0.05 (ref. 20).

Differences in gene-expression levels among different sample groups (e.g.,
normal versus adenoma) were evaluated using box plots and tested for statistical
significance using a 2-sample t-test (2-tailed). Correlations between two genes’
expression levels were measured using Pearson correlation coefficients.

Stratification of human colon cancer patients in distinct gene-expression
groups. Associations between gene-expression profiles and patient survival
were investigated using a new bioinformatics tool, named Hegemon. Hegemon
is an upgrade of the BooleanNet software, where individual gene-expression
arrays, after being plotted on a two-axis chart based on the expression of two
given genes®’, can be grouped and compared for survival outcomes, using both
Kaplan-Meier curves and multivariate analysis based on the Cox proportional
hazards method.

Survival analysis was done on a gene-expression database annotated with
disease-free survival (DFS) information on 299 patients from three institu-
tions: H. Lee Moffit Cancer Center (n = 164), Vanderbilt Medical Center
(n = 55) and Royal Melbourne Hospital (# = 80). This database was created
by pooling information from two publicly available and partially redundant
GEO data sets (GSE14333, GSE17538; Supplementary Table 1)*142, both
collected on Affymetrix U133 Plus 2.0. To avoid bias due to redundancies
(that is, identical samples deposited in both GEO data sets), we cross-checked
all samples and removed duplicates.

Guided by single-cell PCR results, we chose to stratify patients using four
genes characteristic of top-of-the-crypt CA1*/SLC26A3" cells (CAI, MS4A12,
CD177, SLC26A3) as markers of terminal differentiation, and using KRT20,
whose expression is observed in both top-of-the-crypt CA1*/SLC26A3" cells and
a subset of MUC2*/TFE3"8" goblet-type cells, as a more promiscuous marker
of both intermediate and terminal differentiation. The hypothesis behind this
approach was that, on average, a tumor’s overall gene-expression profile would
most closely resemble that of the most abundant cell population. Thus, tumors
highly enriched in mature, terminally differentiated cell types would be char-
acterized by a lower proliferation rate and/or a lower content of long-term self-
renewing cells, and be associated with a better prognosis as compared to tumors
predominantly composed by immature, progenitor-like cells.

Threshold gene-expression levels were calculated using the StepMiner
algorithm, based on the 25,576 arrays on Affymetrix U133 Plus 2.0. KRT20
expression (Affymetrix probe 213953_at) was tested as a marker to separate
poorly differentiated tumors (KRT20~) from differentiated ones (KRT20").
Based on our previous experience?’, we defined as KRT20™ all tumors whose
KRT20 expression values were < 1%t StepMiner threshold - 0.5 (Affymetrix
probe 213953_at < 7.00). Genes expressed in top-of-the-crypt CA1*/SLC26A3*
cells (CA1, MS4A12, CD177, SLC26A3) were tested as markers to separate
terminally differentiated tumors (top-crypt"") from moderately differentiated
ones (top-crypt™"). In the case of CD177 (Affymetrix probe 219669_at) and
SLC26A3 (Affymetrix probes 215657_at), the sensitivity of the probe appeared
lower, and its dynamic range narrower, as compared to CAI (Affymetrix probe
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205950_s_at) or MS4A 12 (Affymetrix probe 220834_at) (Supplementary Fig. 7).
To maintain consistency in grouping samples with the highest expression levels,
we adopted a scaled approach designed to match the different sensitivity of
individual gene-expression probes (Supplementary Fig. 20). In the case of
CD177 and SLC26A3, we chose to separate negative samples from positive ones
(CD177~ versus CD177%, SLC26A3~ versus SLC26A3"), whereas in the case of
CA1 and MS4A12 we chose to separate low-to-negative expression samples
from high expression ones (CA1~"" versus CA1"8", MS4A 127" versus
MS4A12Mighy. As a result, when we tested CD177 or SLC26A3 we defined
as top-crypt"sh all tumors that scored as CD177* or SLC26A3", defined as
expression values > 1% StepMiner threshold + 0.5 (CD177: Affymetrix probe
219669_at > 8.14; SLC26A3: Affymetrix probe 215657_at > 5.43), and when
we tested CA1 or MS4A12 we defined as top-crypt"" all tumors that scored as
CA1"8h or MS4A 128", defined as expression values > 24 StepMiner thresh-
old (CAI: Affymetrix probe 205950_s_at > 11.14; MS4A12: Affymetrix probe
220834 _at > 9.27).

Based on these definitions, we stratified colon tumors into three “gene-expres-
sion groups”: Group 1 (KRT20"/top-crypt"€"), Group 2 (KRT20*/top-crypt %),
Group 3 (KRT20~/top-crypt™"¥). As predicted by the strong Boolean relation-
ship linking KRT20 to all mature enterocyte genes (Supplementary Fig. 7),
no tumors were observed that corresponded to the theoretical fourth group
(KRT20~/top-crypt"€h), with the only exception of one isolated sample in the
KRT20/SLC26A3 experiment. In experiments involving comparisons to the
EphB2* “intestinal stem cell” (EphB2-ISC) signature (Supplementary Fig. 23),
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tumors were grouped in three categories (EphB2-ISC°¥, EphB2-ISCmedium,
EphB2-I1SChigh), as described in Merlos-Suarez et al.'®.

Survival analysis and other statistical tests. Once grouped based on gene-
expression profiles, patient subsets were compared for survival outcomes using
Kaplan-Meier curves and multivariate analysis based on the Cox proportional
hazards method. Differences in Kaplan-Meier curves were tested for statistical
significance using the log-rank test. Enrichment of selected pathological or
molecular features, such as high pathological grade (G3-G4) or microsatellite
instability (MSI), in groups characterized by immature gene-expression
patterns (Group-3, KRT20 /top-crypt™"") was measured using odds-ratios
and tested for significance using Pearson’s % test.
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Human diseases have been investigated in the context of single genes as well as complex
networks of genes. Though single gene approaches have been extremely successful in
the past, most human diseases are complex and better characterized by multiple interact-
ing genes commonly known as networks or pathways. With the advent of high-throughput
technologies, a recent trend has been to apply network-based analysis to the huge amount
of biological data. Analysis on Boolean implication network is one such technique that dis-
tinguishes itself based on its simplicity and robustness. Unlike traditional analyses, Boolean
implication networks have the power to break into the mechanistic insights of human dis-
eases. A Boolean implication network is a collection of simple Boolean relationships such
as "if Ais high then B is low.” So far, Boolean implication networks have been employed
not only to discover novel markers of differentiation in both normal and cancer tissues,
but also to develop robust treatment decisions for cancer patients. Therefore, analyses
based on Boolean implication networks have potential to accelerate discoveries in human
diseases, suggest therapeutics, and provide robust risk-adapted clinical strategies.

Keywords: bioinformatics, cancer, computational biology, differentiation, microarray analysis, prognostic biomark-

ers, stem cell, systems biology

INTRODUCTION

In the past detailed single gene investigations in the context of
human diseases was extremely successful and produced many
useful drugs (Miller et al., 1982; Slamon et al., 2001; Cunning-
ham et al., 2004; Scott et al., 2012). However, the progress was
extremely slow and the success was achieved at the cost of a huge
number of failed investigations with multiple billions of dollars
in investments (Arrowsmith, 2011; Allison, 2012). Unlike in the
past years, it is now easy to gather information from tens of thou-
sands of genes simultaneously. Modern approaches can leverage
these huge amounts of biological data to understand human dis-
eases. Therefore, a recent trend in analysis has been shifted to
multiple genes that are part of a single functional unit commonly
known as networks or pathways. The new approaches have been
termed network analysis or systems biology. Clearly, these new
approaches have the potential to tackle the complexity of human
diseases (Mootha et al., 2003; Segal et al., 2003; Basso et al., 2005;
Subramanian et al., 2005; Margolin et al., 2006; Bonneau et al.,
2007; Lee et al., 2009; Schadt et al., 2010; Bousquet et al., 2011;
Gupta et al., 2011; Jornsten et al., 2011). However, the systematic
noise in the system has always challenged these approaches. The
noise in the system is due to experimental or biological noise and
also noise in measuring gene expression values in a microarray
hybridization experiment. In addition to noise, other challenge to
the network-based approaches is to translate the discoveries to the
clinic.

In this mini review, we discuss a systems biology or network-
based analysis using Boolean implication network (Sahoo et al,,
2008). A Boolean implication network is simply a collection of
Boolean implication relationships as described by Sahoo et al.
(2008). Boolean typically means a logic calculus of two values,

which are high and low gene expression values in this context. A
Boolean implication relationship is a simple “if-then” relationship
between the high and low gene expression values between a pair of
genes. For example, “if A is high, then B is high” is a Boolean impli-
cation relationship between a pair of genes A and B, where A high
and B low is ruled out as a possible scenario as shown in Figure 1.
Therefore, whenever gene expression of A is high, we observe gene
expression of B is also high. In other words, A high is a subset of
B high. In a two dimensional scatter plot between two genes and
their thresholds for high and low values, there are four possible
quadrants: “A low B low;” “A low B high,” “A high B low,” and “A
high B high.” One or more sparse quadrants in this plot is math-
ematically represented as a Boolean implication. For example, the
Boolean implication “if A high, then B high” represent a sparse
“A high B low” quadrant. There are six possible Boolean impli-
cation relationships, two of them are symmetric, and other four
are asymmetric. The symmetric Boolean implication relationship
has two diagonally opposite sparse quadrant and the asymmetric
Boolean implication relationship has only one sparse quadrant.
As shown in Figure 1, the threshold to define “high” and “low”
gene expression levels are determined using StepMiner (Sahoo
etal., 2007). The expression levels of each probeset are sorted and
a step function fitted (using StepMiner) to the sorted expression
level that minimizes the square error between the original and
the fitted values. We determined the noise margin by using very
tightly correlated genes and found that there is still a difference of
twofold change (in log scale a value of Miller et al., 1982) among
the values that are linearly related. Therefore, we used a noise
margin of 1 (threshold —0.5 to threshold +0.5) and discarded all
the microarrays that fall within these region for Boolean implica-
tion analysis. The noise margin was an important consideration
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FIGURE 1 | Boolean implication in gene expression database.
Boolean implication is a pairwise gene expression relationship between
two genes with respect to their gene expression values. (A) Schematic
example of a Boolean implication between two genes A and B. Threshold
to separate high and low gene expression values are computed using
StepMiner. A noise margin of 0.5 is used for statistical calculations. Each
of the four quadrant is tested for their sparsity. In this case, A high and B

sparse quadrant

B Boolean implication analysis
- if ESR1 high, then CD9 high

201005_at: CD9

8 1IO 12 14
205225_at: ESR1

low quadrant is sparse representing the Boolean implication “if A high,
then B high.” (B) An example of a significant Boolean implication
between ESR1 and CD9: if ESR1 high, then CD9 high. Every point is a
microarray experiment performed on human samples on Affymetrix
platform. There are 46,045 microarrays in this scatter plot all of which
were downloaded from NCBI's Gene Expression Omnibus (GEO)
website.

that allowed us to identify many significant Boolean implication
relationships.

SYSTEMS BIOLOGY USING BOOLEAN IMPLICATION

It is possible to discover Boolean implication relationships in the
largest possible dataset that include all publicly available microar-
rays from Gene Expression Omnibus (GEO) or ArrayExpress.
These relationships represent natural invariants in a particular
species. For example, a Boolean implication relationship in a par-
ticular dataset that contains all human samples on Affymetrix
platform represents a natural invariant gene expression relation-
ship in human. Many of these invariants are due to tissue specific
gene expression. For example, a brain specific gene and a prostate
specific gene can never be expressed together. Therefore, they will
have a Boolean relationship of the form “if A high, then B low.”
Similarly, many of these relationships can be due to developmental
gene expression pattern or related to the biological process of dif-
ferentiation. Mining developmentally regulated genes (MiDReG)
is a simple algorithm that uses Boolean implication to identify
genes expressed at different stages of differentiation (Sahoo et al.,
2010). The key concept behind this algorithm is to use invariants
to predict state of the gene expression pattern. We describe here
how MiDReG and Boolean implication are used in B cell, bladder
cancer, and colon cancer differentiation.

B-CELL DIFFERENTIATION

B cells are special types of blood cell that are created from a
blood stem cell by the process of differentiation. As the stem cell
undergoes the process of differentiation, many genes changes their
expression pattern. There are genes that are specific to the stem

cell only and also there are genes that are specific to the differ-
entiated B cell. MiDReG algorithm takes advantage of these gene
pairs that have a significant Boolean implication “if A high, then
B low,” and predict other genes that are expressed in the prog-
enitors or precursors of B cells (Inlay et al., 2009; Sahoo et al,,
2010). Let’s assume that gene A is expressed at the blood stem
cells and it turns off as the stem cells differentiate to B cell. Sim-
ilarly, let’s assume that gene B is off at the stem cell and it turns
on as the stem cell differentiates to B cells (Figure 2A). There-
fore, in this narrow view of differentiation gene A and gene B are
mutually exclusively expressed. Let’s assume that there is a signif-
icant Boolean implication “if A high, then B low.” The significant
Boolean implication represents a global invariant in all microarray
datasets. In this case, if we want to identify a gene X that turns on
after gene A turns off and before gene B turns on, we could sim-
ply use Boolean implication “if A high, X low;,” and “if B high, X
high” (Figure 2A). Since the Boolean implication is an invariant,
we could hypothesize a state of differentiation where gene A is off,
gene X is on, and gene B is off. In addition, this state of differ-
entiation is between stem cell and the mature B cell. Therefore,
gene X could potentially mark precursors of the mature B cell.
We validated the gene expression patterns of the newly discovered
genes using this approach by gPCR on the sorted B-cell progeni-
tors from mouse blood and bone marrow. Review of the published
literature of knockout mice revealed that many of our discovered
genes were directly involved in B-cell differentiation. Out of 62
MiDReG genes, 41 genes were found to be knocked out in mice.
Out of these 41 mice knockouts, 26 (63.4%) genes show defects in
B-cell function and differentiation, 9 (22.0%) genes are associated
with known B-cell function according to other experiments, and 6
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FIGURE 2 | Discovery of markers of differentiation using MiDReG
algorithm. Mining developmentally regulated genes (MiDReG) is an
algorithm that uses Boolean implication to predict specific markers of
differentiation in normal and cancer tissues. (A) MiDReG algorithm is used
to predict markers of B-cell differentiation. (B) MiDReG algorithm is used to
predict markers of bladder cancer differentiation. (C) MiDReG algorithm is
used to predict markers of colorectal cancer differentiation.

(14.6%) genes could have a B-cell function based on their expres-
sion in the B cell and reported other hematopoietic functions.
A detailed analysis on mouse lineages using MiDReG revealed a
new earliest marker of B-cell differentiation Ly6D. This gene was
investigated in detail by Inlay et al. (2009). Overall, our results
on the B-cell differentiation suggested that MiDReG is a simple
but extremely powerful approach to discover novel markers of
progenitor cells.

BLADDER CANCER DIFFERENTIATION

Differentiation within cancer is a very controversial topic (Reya
et al., 2001). However, in bladder cancer it is established that there
are two different cell types identified by Keratin 5 and Keratin
20 (Chan et al.,, 2009). Keratin 5 marks immature cell types that
can differentiate to Keratin 20 positive cells (Chan et al., 2009).
MiDReG algorithm was used to identify an upstream marker Ker-
atin 14 (Volkmer et al., 2012). There is a significant Boolean
implication relationship between Keratin 5 and Keratin 20 “if
Keratin 5 high, then Keratin 20 low” that enabled the MiDReG

algorithm to predict upstream markers. In this case, we are inter-
ested in a marker X that goes down early compared to Keratin
5. Thus, it is expressed at the most immature state of the can-
cer cell. The candidate markers were chosen based on Boolean
implication “if X high, then Keratin 5 high” and “if X high, then
Keratin 20 low” (Figure 2B). Keratin 14 was one of the markers
that satisfied these two Boolean implication strongly. In addition,
Keratin 14 was a single prognostic marker in both gene and pro-
tein expression datasets. The prognostic power of Keratin 14 was
independent of currently established stage and grade. Therefore, a
simple immunohistochemical analysis can identify high risk blad-
der cancer patients. Since, clinicians decide whether to perform
cystectomy which is complete bladder removal based on stage and
grade, it is possible to incorporate Keratin 14 based risk stratifi-
cation into this important clinical decision endpoint. Clinicians
are currently developing risk-adapted clinical strategies based on
Keratin 14 for bladder cancer patients.

COLON CANCER DIFFERENTIATION

Many important markers in the differentiation of colon cancer
cells follow Boolean implication (Dalerba et al., 2011). For exam-
ple, there is a significant Boolean implication between Keratin
20 and CAl “if CA1 high, then Keratin 20 high” (Figure 2C).
This relationship is particularly strong with no exception. There
are no tumors with CA1l high and KRT20 low. Even in a tumor
when CA1 positive cells are present they have to go through
a KRT20 positive precursor cell during differentiation. Accord-
ingly, CA1 positive cells are a subset of Keratin 20 positive cells in
both normal colon and colorectal cancer tissues. In addition, Ker-
atin 20 negative patients have worse outcome compared to CAl
positive and Keratin 20 positive cancer patients. Other markers
such as MS4A12, CD177, and SLC26A3 follow similar Boolean
implication relationships.

STRENGTHS AND LIMITATIONS

In this review we show that Boolean implication can be used to
identify markers of differentiation in both normal and cancer tis-
sues. The strength of Boolean implication is its ability to identify
asymmetric gene expression relationships. In contrast, most other
approaches focus on using symmetric gene expression relationship
to build gene expression network. We have shown that some of the
gene expression patterns in differentiation can be modeled using
asymmetric Boolean implication. Therefore, it would be useful for
predicting important genes involved in the process of differentia-
tion. In addition, markers of differentiation are most likely robust
prognostic biomarkers in cancer patients. Using these markers,
clinicians may be able to develop better risk-adapted treatment
decisions for cancer patients. The limitation of Boolean implica-
tion is that it requires large number of samples. Also, it might
miss many other important genes that are involved in differentia-
tion but do not have significant Boolean implication. Accordingly,
Boolean implication is a very stringent criterion. Therefore, it pulls
out many important genes and appears to be less noisy compared
to traditional approaches.

An important distinction between Boolean implication analy-
ses compared to other traditional network-based analyses is that
most of these other analyses are focused on identifying gene
regulatory networks or signal transduction pathways. Boolean
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implication has not been utilized to identify gene regulatory net-
works or signaling networks which contains simple feed-back and
feed-forward structure. Instead, it was used to identify cell type or
tissue specific gene expression patterns and they are interpreted
in terms of development and differentiation. This is very differ-
ent from Bayesian or mutual information based networks that
primarily identify transcription factors and their targets (Segal
et al., 2003; Basso et al., 2005; Margolin et al., 2006; Lee et al.,
2009). Similarly, Boolean implication analyses are also different
from traditional Boolean networks that are used to build a func-
tional executable model or a circuit model (Glass and Kauffman,
1973; Shmulevich and Kauffman, 2004). There are also networks
based on ODE models which describes mechanistic biochemi-
cal interactions (Ferrell et al., 2011). Both the Boolean and ODE
based approaches described above models non-linear dynami-
cal systems (Glass and Kauffman, 1973; Shmulevich and Kauft-
man, 2004; Ferrell et al., 2011). In contrast, Boolean implication
analyses models static invariant relationships in a large biological
dataset.

In summary, Boolean implication is an empirically observed
relationship in the data, which may not hold for data gathered
for different tissue types or under different conditions. Like cor-
relation networks, Boolean implication networks do not capture

causality. Boolean implication captures both symmetric as well
as asymmetric relationships. It provides a powerful platform for
discovery of novel markers of differentiation in both normal and
cancer tissues.
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Supplmentary Figure 1: List of prostate cancer datasets

A. Prostate Cancer datasets

Name

Singh D
Glinsky GV
Lapointe J
Zuls
Chandran UR

Journal
Cancer Cell
J Clin Invest.
PNAS
Genome Res
BMC Cancer

Pressinotti NC Mol Cancer

Sboner A
Wang Y
Taylor BS
Setlur

BMC Med Genomics
Cancer Res

Cancer Cell

J Natl Cancer Inst

B. Global Prostate Cancer Database

Year Pubmed RAW GEO/AE

2002
2004
2004
2010
2007
2010
2010
2009
2010

12086878 yes
15067324 yes
14711987 yes
21521786 yes
17430594

20035634

20233430 yes
20663908 yes
20579941 yes

2008 18505969 yes

Year Pubmed RAW

Environ Health Perspect 2008 18560533 yes

Name Journal

Bakshi S

Berry PA Prostate

Best CJ Clin Cancer Res
Birnie R Genome Biol.
Chambers KF J Biomed Sci
Guyon |

Liu P Cancer Res
SunY Prostate

Traka M PLoS One.
Tsavachidou D J Natl Cancer Inst.
Varambally S Cancer Cell
Wallace TA Cancer Res
Wang Y Cancer Res
Wang Y Cancer Res

2011 21432868 yes
2005 16203770 yes
2008 18492237 yes
2011 21696611 yes
2011 yes
2006 16618720 yes
2009 19343730 yes
2008 18596959 yes
2009 19244175 yes
2005 16286247 yes
2008 18245496 yes
2010 20663908 yes
2010 20663908 yes

Platform Survival # patients

NA U95Av2 no 102
NA U133A2 yes 79
GSE3933 cDNA yes 112
NA HEEBO yes 131
GSE6919 HG_U95Av2 no 171
GSE15484 GPL3050 no 65
GSE16560 GPL5474 vyes 281
GSE17951  U133Plus2 no 154
GSE21034  HuEx-1_0O-styes 367
GSE8402 GPL5474 no 472
GEO/AE Platform Survival # patients
GSE9951 GPL570 19
E-MTAB-402 GPL570 14
GSE2443 GPL96 20
E-MEXP-993 GPL570 36
E-MEXP-2034 GPL570 40
E-TABM-456 GPL96 85
E-TABM-26 GPL96 57
GSE25136  GPL96 79
E-MEXP-1243GPL570 81
E-MEXP-1327 GPL96 85
GSE3325 GPL570 19
GSE6956 GPL571 72
GSE8218 GPL96 130
GSE17951  GPL570 154
Total 891

Supplementary Figure 1: List of prostate cancer datasets. Panel A shows a list of pub-
licly available prostate cancer datasets with clinical information (Only five dataset with
survival outcome). Panel B shows a list of prostate cancer datasets on Affymetrix
U133A (GPL96), U133A 2.0 (GPL571) or U133 Plus 2.0 (GPL570) microarray plat-
forms that are normalized together to build a large global prostate cancer database.
The lists include the first author, journal where it was first published, year in which it
was published, the PubMed id, GEO/ArrayExpress id, microarray platforms, survival
annotation, and number of patients.



Supplementary Figure 2: Infering developmental gene regulation from
Boolean implication relationship

A 1fK14 high then K5 high B 1fK14 high then K5 high
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Supplementary Figure 2: Infering developmental gene regulation from Boolean
implication relationship. To infer developmental gene regulation (A) we use Bool-
ean implication (B). In most human epithelial tissues both Keratin 5 (K5) and
Keratin 14 (K14) are expressed in the basal cell compartments. We analyzed
gene expression values of K14 and K5, that is presented in the form of a scatter-
plot with 25,237 points representing diverse microarrays on human samples
including different normal and cancer tissues. We summarize the gene expres-
sion relationship between K14 and K5 as “if K14 high then K5 high” or alterna-
tively a Boolean implication relationship “K14 high => K5 high”. The relationship
clearly suggests that K14+ arrays are a subset of K5+ arrays. Since not all cells
within a sample express K14 and K5, we could hypothesize that K14+ cells are
a subset of K5+ cells (A) based on the Boolean implication. Panel A shows a
likely model of developmental gene regulation between K14 and K5, where K14
is upstream of K5.



Supplementary Figure 3: Relationship between Keratin gene expression
and clinical outcome

A. Scatter Plot B. Survival Analysis
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Supplementary Figure 3: Relationship between Keratin gene expression and clinical outcome. To evaluate
whether Keratin gene expression is associated with patient outcome, we investigated the status of three Keratin
expression groups (KRT14+KRT5+, KRT14-KRT5+, KRT14-KRT5-) on recurrence-free survival (RFS) in three
independent prostate cancer cohorts (Singh 2002 dataset, n=102; Glinsky 2004 dataset, n=78; Taylor 2010 data-
set, n=185), The results confirmed that KRT14-KRT5- tumors were associated with worse clinical outcomes (B).
In addition, KRT14+KRT5+ tumors were associated with best clinical and KRT14-KRT5+ tumors were associated
with intermediate clinical outcome.
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