

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2012 2. REPORT TYPE

3. DATES COVERED
 00-07-2012 to 00-08-2012

4. TITLE AND SUBTITLE
CrossTalk. The Journal of Defense Software Engineering. Volume 25,
Number 4. July/August 2012

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

THE END OF THE PC

2 CrossTalk—July/August 2012

CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Advisor Kasey Thompson
Article Coordinator Lynne Wade
Managing Director Tracy Stauder
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-775-5555
E-mail stsc.customerservice@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF);
and the U.S. Department of Homeland Defense (DHS). USN
co-sponsor: Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National Cyber Security
Division in the National Protection and Program Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

The PC is Dead—Long Live the PC:
Making Computing More Personal
Is the PC really dead, or are advances in technology simply allowing the PC to
morph into something new and even more exciting?
by Dean A. Klein

Software Doctrine for Fixed-Price Contracting
The DoD faces austerity challenges and needs to ensure that defense indus-
try senior executives are committed to meeting these challenges. Consequent-
ly, there is a need for a software doctrine for large-scale, software-intensive
systems development on fixed-price contracts.
by Don O’Neill

Uncovering Weaknesses in Code With Cyclomatic Path Analysis
Today, software plays an increasingly important role in the infrastructure
of government agencies. These entities outsource and use open-source
software within their critical infrastructure; however, the origins and security
characteristics of this code are rarely certified.
by Thomas J. McCabe Sr., Thomas J. McCabe Jr., and Lance Fiondella

Efficient Methods for Interoperability Testing
Using Event Sequences
Many software testing problems involve sequences of events. Using combina-
torial methods makes it possible to test sequences of events using signifi-
cantly fewer tests than previous procedures.
by D. Richard Kuhn, James M. Higdon, James F. Lawrence,
Raghu N. Kacker, and Yu Lei

Building Confidence in the Quality and Reliability
of Critical Software
Formal methods-based software verification and testing approaches applied to
critical software projects in civil and military aerospace and defense projects.
by Jay Abraham and Jon Friedman

Process Performance: Words of Wisdom
To understand how the use of process performance measures affect an
organization, it is good to look back at some words of wisdom related to the
concepts behind the use of performance measures and results.
by Dale Childs and Paul Kimmerly

7

4

9

15

19

24

The End of the PC

Departments

Cover Design by
Kent Bingham

 3 From the Sponsor

 28 Upcoming Events

 31 BackTalk

CrossTalk—July/August 2012 3

 FROM THE SPONSOR

The End of the PC

CrossTalk would like to thank
309 SMXG for sponsoring this issue.

I find solace in the knowledge that technological innova-
tions continue to develop at ever-increasing speeds in a realm
where increasing complexity and intricacy also come along
as a certainty. This gives me faith that, technologically, we
are only at the mere beginning of what we will achieve in the
future. Processing speed has been exponentially increasing
for decades, while the space and power needed to harness
that speed has been decreasing dramatically. It is no wonder,
then, that innovation would eventually lead us to technological
innovations such as the mobile world we live in today.

Whether or not we are living in a “post-PC” world is often
disputed, but there is little question that our lives and comput-
ing needs are becoming increasingly mobile. Our computing
needs have been trending towards the cloud, with computing
increasingly being migrated server side, and raw comput-
ing power becoming less and less important. What, then, is
the fate of the personal computer as we understand it? To
answer this question, we turn to Dean Klein’s analysis of this
shifting trend towards mobile and cloud computing solutions
in The PC is Dead – Long Live the PC: Making Computing
More Personal. Here we see that it may not be the end of the
personal computer, but perhaps a re-envisioning of it. Perhaps
the “personal computer” may need to evolve with technical
innovation; insofar as that today’s mobile solutions are much
more of a personal computing device than the traditional PC.

With technology becoming increasingly complex, com-
pounded with new platforms and environments that are on
the forefront of technology, there has been an increasingly
large call to evaluate a strategic shift to more fixed-price con-
tracting to reduce acquisition costs and program risks for the
DoD. Don O’Neill champions this view, advocating large-scale
fixed-priced contracts for software-intensive system develop-
ment in Software Doctrine for Fixed-Price Contracting. Mr.
O’Neill tackles the common concerns of fixed-price contract-
ing with viable solutions as well as advocates his vision of

affordability and innovation through a doctrine of tenets.
With an increase in hardware complexity also brings the

caveat of software complexity as well. To move forward with
mission-critical software and still maintain the exacting quality
and security requirements needed for aerospace and defense
projects, we see an increasing reliance on the realm of test-
ing and software assurance. In Uncovering Weaknesses in
Code With Cyclomatic Path Analysis, the authors argue
for a tighter integration of development and testing as a way
to reduce security vulnerabilities, with a fascinating analysis
between code coverage software testing methodologies for
detecting vulnerabilities early in development.

With increasing intricacy of code necessitating complex
sequence of events tests, the authors of Efficient Methods
for Interoperability Testing Using Event Sequences pro-
vide a framework for using combinatorial methods, such as
sequence covering arrays, with significantly fewer tests than
previous procedures. The authors in Building Confidence
in the Quality and Reliability of Critical Software tackle the
issue of the imperative quality standards in aerospace and
defense projects by evaluating the formal methodologies
in software verification and testing to meet the high quality
standards. Finally, we conclude the issue with Dale Childs and
Paul Kimmerly’s enlightening comments on process improve-
ment by drawing connections to famous quotes in Process
Performance, Words of Wisdom.

I think you will agree this issue’s collection of articles
provides helpful insight into current computing trends and the
future of the PC.

Justin T. Hill
Publisher, CrossTalk

4 CrossTalk—July/August 2012

THE END OF THE PC

Abstract. The sphere of malware attacks is expanding to engulf
the compact world of smartphones. This paper sheds light on
exploitation tactics used by malware writers in designing iPhone
applications that exploit the integrity of the victim’s phone. Our
interest is in the harder problem of malware on iPhones that are
not jailbroken.

Dean A. Klein, Micron Technology, Inc.

Abstract. It has been more than 30 years since Steve Wozniak and Steve Jobs
built the first Apple I computer in Job’s garage and since IBM introduced the Model
5150 personal computer. In that time, the PC has become an integral part of our
lives; more than 80% of all households own at least one, and rare is the business
or workplace that can function without one.

Yet today, the dominance of the PC as our primary computing de-
vice is being threatened by new, emerging platforms like tablet com-
puters, cell phones and ultrabook platforms. The rapid success of
these new models, such as Apple’s iPad, is leading many to surmise
that the end of the PC era has arrived and that the PC is dead. But is
the PC really dead, or are advances in technology simply allowing the
PC to morph into something new and even more exciting?

Advances in Semiconductor Process Technology
In part, the tremendous advances brought about by the semi-

conductor industry have not only fueled the growth of personal
computers, but also enabled these impressive new computing
platforms. To put some scale on the advances of this industry,
consider the clock rates and memory densities put forth by the
leading manufacturers in the processor and memory arenas.
When the IBM PC was introduced, the CPU ran at a whopping
4.77 MHz. Today’s CPUs, running at 3.5 GHz with hyper-
threaded, multicore CPUs on one chip, provide an improvement
of almost 8,000 times. Similarly, consider that at the introduction
of the Apple I computer, a state-of-the-art memory device could
store 16K bits of information. Today’s state-of-the-art NAND
Flash chips store up to 128Gb of information on a single piece
of silicon—an 8-million-fold increase.

Along with semiconductor speed and density improvements,
we have seen a corresponding improvement in the power
required to support the chips’ circuits. There is also a tradeoff
that can be made between performance and power so that if
one is willing to accept a reduced level of performance, they
can realize tremendous savings in power. For example, the same
advances that can deliver a 3.5 GHz quad-core CPU that con-
sumes 65W of power can also deliver a 1.5 GHz dual-core CPU
that sips a miserly 5W of power.

Device-level Advancements
While Dynamic Random Access Memory (DRAM) devices have

benefitted from the advances in semiconductor processes, DRAM
power and performance are increasingly coming under pressure as
areas that need major improvements. Fortunately, the memory indus-
try has not been silent; it has delivered a stunning new technology
into the hands of system designers in the form of the Hybrid Memory
Cube (HMC). HMC makes a dramatic change to the architecture of
the CPU and memory interface and provides a 15-fold increase in
data bandwidth while lowering power consumption by 70%.

The HMC relies on a 3-D stack of semiconductor chips intercon-
nected with a new technology called Through-silicon Vias (TSVs).
The short length of these TSV interconnects gets much of the credit
for reducing the energy-sapping inductance and capacitance of
standard 2-D interconnects. However, equal credit must be given to
new device architecture and I/O. The device architecture ensures an
efficient use of the memory cells that get fetched by the system us-
ing the HMC device. In addition, unlike any previous memory device,
the HMC uses high-speed serializer/deserializer channels for its I/O.

Perhaps the biggest advancement in memory over the past
20 years has been the development of NAND Flash memory.
NAND Flash, which gets its name from the logical organization
of its memory cells (in a “Not-AND” formation), offers two major
advantages over DRAM: cost and power.

Although memory processes are generally the most cost-
effective semiconductor processes on the planet, NAND Flash

The PC is Dead—
Long Live the PC:
Making Computing
More Personal

THE END OF THE PC

CrossTalk—July/August 2012 5

is the king of cost effectiveness. This is due to the advanced
process technology employed to build these miniature marvels
and the relative simplicity of the process compared to other
semiconductor processes. Today’s most advanced NAND de-
vices are now in production with geometries below 20nm (1nm
= 1/1-billionth of a meter) and pack more than 128Gb (1Gb =
1 billion bits = 128 billion bytes) of storage on a single semi-
conductor die. Making NAND even more cost effective, consider
the cell size of a NAND cell is about two-thirds that of a DRAM
cell and one-tenth that of a Static Random Access Memory cell
(like that used in a CPU cache), and each NAND cell stores two
or three bits of digital data.

The power advantage of NAND Flash stems from the fact
NAND Flash is nonvolatile, meaning that the NAND memory
cells retain their value even when power is removed from the
chip. This nonvolatility has enabled NAND Flash to become the
predominant form of storage for cell phones and tablets. NAND
Flash is also making tremendous inroads into computing in the
form of Solid State Drives (SSDs) for both notebook and server
applications. The advantage of having no moving parts allows
SSDs to achieve extreme levels of reliability, performance, and
low power consumption in these applications.

The New Computing Paradigm
The advances in CPUs and memory have enabled a wide

variety of innovative and successful computing platforms,
including tablets and smartphones. In the U.S. alone, smart-
phones accounted for an estimated six out of every 10 mobile
phones sold in 2011 [1]. The successful iPad, its competitors
and e-readers accounted for an estimated $64 million to $66
million in tablet computer sales in 2011 [2]. At the 2012 Con-
sumer Electronics Show, the buzz about computers centered
on a new class of mobile computing platform—the ultrabook.
Ultrabooks are a new class of notebook computers that have
the advantage of being thin and light while also offering long
battery life. Smartphones, tablets, and ultrabooks represent
a true paradigm shift in computing, from traditional personal
computers to mobile and cloud-based solutions. Yet this shift is
really making computing more personal.

Much of computing today requires connectivity. Whether it
is e-mail, surfing the web, shopping, watching video, or gam-
ing, the network is a required component of the computing
experience. The growth in mobile network traffic has been
phenomenal. Mobile network traffic alone in 2010 was more
than three times the entire global Internet traffic in 2000 (237
petabytes per month versus 75 petabytes per month [3]). The
increase in mobile traffic volume is also scaling in speed with
the average smartphone network connection speed climb-
ing from 625 kb/s in 2009 to 1040 kb/s in 2010 [3]. This
increase in mobile network bandwidth and the overall increase
of mobile network availability are two of the forces behind the
enablement of the smartphone and tablet computer. The other
significant force has become known as “the cloud.”

Cloud Computing
If you happen to be fortunate enough to own an Apple iPhone

4S, you have probably used Siri, the voice-activated personal digital
assistant. For Siri to work, many components are required. The
most obvious component is the voice recognition used to interact

with Siri. You might think this voice recognition is a function of the
iPhone, but in reality very little processing is actually performed by
the handset. Instead, the phone uses its connection to the Internet
to send highly compressed code to servers that are set up to
process the encoded data. These servers pick out the context and
meaning of what was spoken to the phone. Once the context of
the spoken commands is determined, the cloud is again used to
provide the data being requested, in much the same way that you
might perform an Internet search. If you asked Siri a question about
the weather, the Siri servers would turn this into a web service re-
quest from a weather site accessing the site’s data to provide your
answer, which it would then deliver in text and speech.

There are countless other examples that might be given, but
the important effect of the cloud is that it can provide both com-
puting resources and data storage resources to computing de-
vices. It means your personal computing device does not need
the amount of processing power or storage that it would need if
it were trying to perform all of its tasks locally. A cell phone can
use the cloud to access data it does not have room to store in
its limited amount of local memory; and a tablet computer can
tap into cloud-based services to augment the compute power of
its lower-powered processing chip.

The Effect of Usage Models
Human interface factors of non-PC computing platforms

often dictate their usage. For the personal viewing of a YouTube
video, the large screen of a tablet computer may be just about
ideal. Tablets are also popular for watching movies on a plane,
writing e-mail, surfing the web and playing games. The screen
size is excellent for one-on-one viewing or sharing with another.
On the other hand, the small screen size of most cell phones
limits viewing to one user, and most web content is not opti-
mized for the limited viewing area.

Screen size is not the only factor that determines usage. For au-
thoring content, it is hard to beat the keyboard of a personal com-
puter. The touch screen keyboards of tablets and smartphones are
great for short e-mails and brief notes, but lack the tactile feedback
needed for extended typing. Even simple functions such as cut and
paste are made difficult by touch-based user interfaces.

Perhaps keyboard input will give way to speech input, allowing
tablets to fully take the place of PCs, but it is hard to imagine
an office full of people talking to their tablets in a productive
manner. At the 2012 Consumer Electronics Show, one Chinese
company was demonstrating a “thought-controlled” computer
interface. If only it worked reliably!

Some have said the differentiator between PCs and smart-
phones/tablets is that the latter are content consumption
devices, while PCs are content creation devices. This is true
in some cases, but dead wrong in one very big case: pictures
and video. All smartphones and most tablet computers sold
today have at least one camera sensor built in. Mobile video
consumption already accounts for more than 52% of mobile
video traffic. In fact, in October 2011 alone, 201.4 billion
online videos were watched around the world, reaching 1.2 bil-
lion unique viewers [4]. But where is all this video data coming
from? Increasingly, smartphones and tablet computers are cap-
turing video. At the end of 2011, users were uploading more
than 60 hours of content to YouTube every minute—a number
that is only expected to grow.

Secure Computing
One major concern for mobile devices of all types is data security.

Mobile devices carry an increased risk of data loss, a risk that will
restrict access to certain data by fixed (PC) computing resources.
Technologies are entering the mobile space to help mitigate this
concern. Micron’s own C400 SED SSD is a solid state drive that
incorporates 256-bit hardware encryption yet delivers the same
performance, power advantages, and reliability of Micron’s non- en-
crypted drives. Unlike software-based encryption, which is vulnerable
to attack through the memory, operating system, and BIOS, the
C400 SED’s hardware-based encryption is performed in the SSD
hardware, requiring user authentication to be performed by the drive
before it will unlock, independent of the operating system. While this
encryption technology is only shipping in personal computer drives
today, it will find its way into tomorrow’s mobile computing solutions.

One Size Does Not Fit All
The personal computer has been the driver and beneficiary

of tremendous advances in semiconductor processes and
products. Probably more than any other technology, the PC is re-
sponsible for huge gains in productivity in most developed parts
of the world, and it will continue to be the vehicle for productivity
advances in emerging economies around the globe. At the same
time, the ease of use and ubiquity of mobile networks will make
smartphone and tablet computing attractive for many users.

Is the PC dead? Hardly! But the definition of “personal computer”
must not be too narrow. Today’s smartphone or tablet is a much
more personal computing device than the traditional PC. These
platforms possess the processing and storage capability of the
desktop personal computer of only a few years ago, yet we carry
them in our pocket daily, and we talk to them and touch them.

The overall market for computing platforms has taken a leap as
these new mobile computing platforms have gained popularity. While
the growth of PC computing has stopped, the smartphone and
tablet have combined to fuel continued growth in the semiconductor
market for CPUs and memory—key components for all computing
platforms. Innovative computing platforms will drive new innovations
around the supporting circuitry for these platforms, fueling continued
development of CPU, DRAM, and NAND Flash technologies.

Conclusion
Computing solutions, both mobile and fixed, are placing in-

creased demands on cloud computing and storage infrastructure—
demands for better access to ever-increasing amounts of data and
unprecedented levels of server computing resources and storage
resources. Increased use of multicore CPUs, software virtualiza-
tion, high-speed DRAM, and SSDs are the key building blocks for
tomorrow’s cloud computing and storage environment.

So is the PC dead? Far from it! But the PC is changing. Our
smartphones and tablets have more computing power and storage
than our PCs did only a few years ago, enabling these platforms to
be much more personal forms of computing than the PCs we have
been used to. For many users (and many applications), smartphones
and tablets will be the preferred computing device. For others, the PC
will be irreplaceable until user interface technology makes the leap
forward to enable content creation on new computing models—mod-
els that may be far different from even smartphones or tablets.

6 CrossTalk—July/August 2012

THE END OF THE PC

Dean Klein joined Micron Technology in 1999 and is
Vice President of Memory System Development. Mr. Klein
earned Bachelor of Science and Master of Electrical
Engineering degrees from the University of Minnesota and
holds more than 220 patents in the areas of computer ar-
chitecture and electrical engineering. He has a passion for
math and science education and is a mentor to the FIRST
Robotics team <http://www.USFIRST.org> in the Meridian,
Idaho, school district.

Micron Technology, Inc.
8000 S. Federal Way
MS 1-407
Boise, ID 83716
Phone: 208-368-4000

ABOUT THE AUTHOR

1. “The NPD Group: Apple Leads Mobile Handsets in Q4 2011, But Android Attracts More First-Time
 Smartphone Buyers.” npd.com. 06 Feb. 2012. Web. 07 Feb. 2012.
2. Jakhanwal, Vinita. “Ebook Reader Display Market to Double in.” isuppli.com. 15 Dec. 2011. Web. 07 Feb. 2012.
3. “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
 2010–2015.” cisco.com. 1 Feb. 2011. Web. 07 Feb. 2012.
4. “More than 200 Billion Online Videos Viewed Globally in October.” comscore.com. 14 Dec. 2011. Web. 07 Feb. 2012.

REFERENCES

CrossTalk—July/August 2012 7

THE END OF THE PC

million fixed-price program [3, 4, 5, 6]. GPS is a high-assurance,
real-time system that provides continuous and accurate po-
sitioning information to properly equipped users. So, naturally
incentives were tied to achieving accuracy of results and a high
availability operation.

A team of IBM FSD and software engineers produced the
system of 500,000 source lines of code and experienced first
hand the challenges and benefits that come with a fixed-price
contract. The challenges and how they were met are high-
lighted as follows:

1. The first challenge was to convince John Akers, the presi-
dent of IBM, that we could successfully perform a sizable fixed-
price contract. A comprehensive set of technical performance
measurement incentives organized around the accuracy of results
was instrumental in securing that approval.

2. The second challenge was the commitment to systems
engineering and software engineering collaboration needed to
obtain the deepest possible user domain awareness. This was
done through early operations analysis and simulation in order
to integrate the needs of the systems, software, and user in the
best possible way. Every eyeball was trained on accuracy and
high availability incentives.

3. The third challenge was to structure the software develop-
ment plan as an incremental development with four-well specified
design levels each with fine grained cost accounts, formal soft-
ware inspections of design level artifacts, careful management
and visibility of systems engineering to-be-determined items, and
a relentless focus on the innovation needed to meet or exceed
the accuracy incentives. Designs were recorded in a program
design language and by the end of design level 4 represented
a 1:4 ratio of design language to estimated sources lines of
code. Design levels 1 and 2 supported the systems engineering
preliminary design review with intended functions of compo-
nents, interface specifications, and software architecture rules of
construction; design levels 3 and 4 comprised the basis for the
software engineering critical design review with provably correct,
stepwise refined elaborations of functionality.

4. The fourth challenge was to apply strict accountability
and control of cost accounts and work packages based on
a work breakdown structure and work responsibility matrix.
Cross charging was prohibited, that is, systems engineers were
prohibited from charging software engineering work packages.
Work packages were opened only when the entry gates had
been either met or waived by explicit decision. Work packages
were closed only when and as soon as the work package had
achieved 100% earned value so that unexpended funds in
completed work packages were not used to offset work pack-
ages that were over budget. An Estimate to Complete (ETC)
was made for each work package each month. Where actuals
to date combined with the ETC for a work package exceeded
the budget at completion, a corrective action plan was initiated
where possible.

In addition to the challenges of fixed-price contract perfor-
mance, the benefits that result from an improved culture of
performance where no one is outstanding until everyone meets
the minimum include the following:

Don O’Neill, Independent Consultant
Abstract. The DoD faces austerity challenges and needs to ensure that defense
industry senior executives are committed to meeting these challenges. Conse-
quently, there is a need for a software doctrine for large-scale, software-intensive
systems development on fixed-price contracts.

Software Doctrine
for Fixed-Price
Contracting

The Challenge of Fixed Price
The DoD faces austerity challenges. The government

understands what it needs. These needs were best stated by
the challenges outlined by Dr. Ashton Carter, Undersecretary
of Defense for Acquisition, Technology, and Logistics (AT&L)
[1]. The message here is to deliver “more without more” and to
accomplish this through “better buying power.” These may sound
like slogans, but they are backed by well-conceived guideposts
designed to rely on normal market forces in focusing the de-
fense industry on competitiveness, innovation, program manage-
ment, incentives, efficiency, profitability, and productivity.

The DoD needs to ensure that defense industry senior execu-
tives are committed to meeting the AT&L challenges and are
accountable for demonstrating game changing progress toward
solving these challenges.

For example, the most significant game changer a defense
industry senior executive can deliver is an “all in” commitment
to accept fixed-price contracts on large software-intensive
programs along with a convincing capability to deliver that re-
flecting an understanding of the cultural changes required. Both
the DoD and the defense industry need to populate a tool kit of
capabilities for successfully engaging in fixed-price contracts
and for evaluating the challenges and benefits of doing so.

Reluctance to accept fixed-price contracts within the defense
industry community is based on risk and fear of failure in cost,
schedule, and quality performance. This reluctance can be offset
by DoD incentives based on technical performance measures
designed to tilt the risk calculation in favor of fixed price for
those capable of delivering.

Meeting the Challenge on GPS
An example of how a fixed-price contract results in a win/

win outcome was turned in by IBM’s Federal Systems Division
(FSD) [2] performance on the GPS Ground Station, a $150

8 CrossTalk—July/August 2012

THE END OF THE PC

1. The value of the IBM FSD contract for GPS was $150
million. The actuals at completion were $165 million. The addi-
tional fee paid based on earned incentives was $25 million. This
project was a success.

2. Performing on a fixed-price contract disciplines the mind
on things that matter most and provides management the will
to align the best organizational capabilities to perform on the
essentials. It promotes a sense of priority. It promotes a sense of
urgency. It discourages waste of any kind.

3. Of real importance, performing on a fixed-price contract
had the effect of elevating the software engineering function
to a heightened level of importance because it is traditionally
the major source of program risk as the tall pole in the tent.
As a practical matter, the software development function held
the systems engineering function feet to the fire in insisting on
completed requirements and specifications documents delivered
on time with few to-be-determined items. This program tension
resulted in forging a cooperative peer relationship between
systems engineers and software engineers where the only rule
was, “The person with superior knowledge dominates.”

4. With the onus of cost management shifted to IBM FSD,
the Air Force acquisition focus was concentrated on accuracy
and high availability along with schedule and quality, not sparring
over cost and scope issues. Constructive changes were accom-
modated through value engineering.

Software Doctrine
The vision is to achieve affordability through fixed-price con-

tracting with the defense industrial base whereby the onus for
cost management and risk is transferred to the defense industry,
which is in turn accorded leeway intended to unleash the forces
of competitiveness and innovation. The preferred organization
software doctrine for large-scale, software-intensive systems de-
velopment on fixed-price contracts features the following tenets:

1. Requirements and the technical performance incentives for
their achievements are fully known at the beginning and man-
aged and controlled throughout the program life cycle.

2. The software engineering organization reports directly to
the program manager.

3. Both the systems engineering and software engineering
functions are jointly committed to obtain the deepest possible
user domain awareness.

4. Project goals for schedule, cost, and quality are explicitly
stated and matched by both the readiness to perform and actual
performance.

5. Strict accountability and control of cost accounts and work
packages are applied based on a work breakdown structure and
work responsibility matrix.

6. Software development planning is based on multiple de-
sign levels and staged incremental deliveries [7].

7. The frequency of software product releases is planned,
managed, and controlled.

8. Joint systems engineering and software engineering team
innovation management results in new ideas that are generated,
selected, and used in new product releases.

Conclusion
The market-driven transformation of the defense industry

must be fueled by the expectation of the DoD. The government
knows what it needs. It now needs to communicate that expec-
tation in practical terms.

Accomplishing this requires a cultural shift away from com-
moditized software engineering to a more tightly coupled
integration of software engineering and systems engineering
operating as peer functions reporting directly to the acquisition
program management function.

Program risk is directly proportional to the organizational dis-
tance among these functions. Being highly competitive
by anticipating and leading in the application domain requires
understanding the deep needs of the customer and delivering
transforming intersectional innovation. This is not achieved
by tiers of subcontractors and extended global supply chains.
Instead it requires closely-knit, well-integrated management and
engineering functions with extended time in market spurred on by
the challenge to succeed and not frozen by the fear of failure.

The DoD will know that the defense industry is hearing the
message and knows what is expected when prime contractors
begin to compete for fixed-price contracts.

Don O’Neill served as the President of
the Center for National Software Studies
from 2005 to 2008. Following 27 years
with IBM’s Federal Systems Division, he
completed a three-year residency at Carn-
egie Mellon University’s SEI under IBM’s
Technical Academic Career Program and
has served as an SEI Visiting Scientist. A
seasoned software engineering manager,
technologist, and independent consultant,
he has a Bachelor of Science degree in
mathematics from Dickinson College in
Carlisle, Pennsylvania.

ABOUT THE AUTHOR

1. Dr. Ashton Carter, Undersecretary of Defense for Acquisition, Technology,
 and Logistics (AT&L), in his comments at TACOM on March 31, 2011
2. Robinson, William Louis, “IBM’s Shadow Force: The Untold Story of Federal
 Systems, The Secretive Giant That Safeguarded America”, ThomasMax Publishing,
 2008 ISBN-13: 978-0-9799950-3-5, 214 pages
3. O’Neill, Don, “Integration Engineering Perspective”, IBM FSD Software
 Engineering Exchange, Vol 2 No 2, January 1980
4. O’Neill, Don, “An Overview of Global Positioning System (GPS) Software Design”,
 IBM FSD Software Engineering Exchange, Vol 3 No 1, October 1980
5. O’Neill, Don, “Confident Software Estimation for the Global Positioning System (GPS)”,
 IBM FSD Software Engineering Exchange, Vol 4 No 2, October 1982
6. O’Neill, Don, “GPS Adaptation of Modern Software Design: An Update”,
 IBM FSD Software Engineering Exchange, Vol 4 No 2, October 1982
7. Larman, Craig, “Agile & Iterative Development: A Manager’s Guide”,
 Pearson Education, Inc., ISBN 0-13-111155-8, 2008, 342 pages

REFERENCES

CrossTalk—July/August 2012 9

THE END OF THE PC

nesses, the range of consequences mentioned above could
be realized. Any unprotected statements in code that could
lead to failure become fair game. The only way to ensure
compromised software can withstand external attacks is to
subject it to rigorous testing and identify weaknesses for re-
moval before they can ever be targeted for attack. A software
testing methodology that can eliminate the majority of flaws,
both intentional and unintentional, is essential for producing
and preserving software dependability.

Software Weaknesses
The Common Weakness Enumeration (CWE) [4] has

emerged as a knowledge base of software weaknesses and
vulnerabilities. This repository categorizes software flaws across
multiple dimensions, describing major properties. For each kind
of weakness, the CWE enumerates when it is introduced, com-
mon consequences, how likely it is to be exploited, and some
examples of code containing the weakness. The CWE was
designed to serve as “a standard measuring stick for software
security tools targeting these weaknesses” [4]. As such, the
CWE may be likened to a medical compendium that focuses
only on pathology, describing the conditions, processes, and
results of a disease. Treatment methodologies and medications
are beyond the scope of the CWE itself. Like medicine, diagno-
sis and prevention of software vulnerabilities will be critical to
limit the harm that can be done by those wishing to do damage.
Moreover, software testing will be a key tool for conducting this
vulnerability analysis.

Specific software testing methodologies identify some
weaknesses, but can fail to identify others. In the absence of a
single panacea to the software vulnerability epidemic, a remedy
against the majority of common software ailments will prove
highly effective. The most widely studied set of software testing
strategies are those that study various forms of code coverage
[5]. Code coverage is a part of the DO-178B [6] software verifi-
cation process, which provides guidelines for certifying software
in airborne systems and equipment. Code coverage approaches
characterize the static control flow paths of an application as
a graph with vertex nodes representing code statements, and
edges representing possible branches within the code like the if
and else statements.

This article is the first to compare the relative effective-
ness of the statement, branch, and cyclomatic code coverage
software testing methodologies for targeting weaknesses.
Statement coverage seeks to test all of the nodes, while
the goal of branch coverage is to traverse every edge of the
graph. Statement and branch testing have limitations because
interactions between decision outcomes can mask errors
during testing. As a result, neither statement nor branch
testing is adequate to detect vulnerabilities and verify control
flow integrity. Cyclomatic Path Analysis [7], on the other
hand, detects more CWE vulnerabilities. The fundamental
idea behind Cyclomatic Path Analysis, also known as Basis
Path or Structured Testing, is that decision outcomes within
a software function should be tested independently [8]. By
identifying software vulnerabilities with standard testing, a
majority of attack opportunities will be eliminated before they
can ever be exploited.

Thomas J. McCabe Sr., McCabe Technologies
Thomas J. McCabe Jr., McCabe Software
Lance Fiondella, University of Connecticut

Abstract. Software flaws represent a serious threat to system integrity. Today,
software plays an increasingly important role in the infrastructure of government
agencies. These entities outsource and use open-source software within their
critical infrastructure; however, the origins and security characteristics of this code
are rarely certified. We compare the relative effectiveness of the statement, branch,
and cyclomatic code coverage software testing methodologies for detecting flaws
in software.

Uncovering
Weaknesses
in Code With
Cyclomatic
Path Analysis

Foreign influence on DoD software is a major security con-
cern [1]. A programmer can insert a flaw into code that looks
like an honest mistake, but when triggered leads to unexpected
behavior in the system on which the software resides. The
consequences could be anything from system unavailability to
outright hijacking of the system and all of its functionality. Given
the potentially catastrophic consequences of allowing exploit-
able software flaws to reside in operational systems, software
testing is now being acknowledged as a critical step to mitigate
software supply chain risks [2].

Protecting against the “inside job” is not the only concern
for those wishing to protect software systems from at-
tack. Foreign adversaries persistently attempt to break into
the networks of defense facilities and their contractors. A
successful intruder would steal anything that could provide
economic or strategic advantage. The speculated compro-
mise of the Joint Strike Fighter [3] is a high profile example,
with tens of thousands of hours of programming feared lost.
Not only can code be copied, it can be studied intensively for
weaknesses. By interfacing operational systems running the
software and injecting attacks to trigger exploitable weak-

10 CrossTalk—July/August 2012

THE END OF THE PC

Detecting Security Flaws With Cyclomatic Com-
plexity-based Testing

A critical comparison of software testing methodologies is
essential to illustrate how competing approaches can fail to
identify particular weaknesses. The following three examples
consider this additional aspect and demonstrate that cyclomatic
complexity-based testing can successfully detect several com-
mon weaknesses.

Divide By Zero
CWE-369: Dividing by zero is a commonly occurring prob-

lem. In mathematics, dividing a number by zero is not permitted
because the result is defined to be infinity. This poses a challenge
for computers, which cannot work with such a large number.
Attempting to divide by zero on a computer leads to a condition
known as overflow. Though one may think this exception should
be simple to eliminate, overflows happen quite frequently because
many programming languages set a variable to zero before it
is ever assigned a value. All too often, programmers neglect to

initialize a variable before using it as the denominator
of a statement that performs division. This frequent
occurrence makes the divide by zero weakness a wide-
spread problem. Dividing by zero can lead to a variety of
unpredictable behavior in software. Potential outcomes
include unintended branching to error handling routines,
software crashes, and similar undesirable behaviors. A
programmer who intentionally or unwittingly introduces a
divide by zero flaw can induce system crashes, render-
ing a system unavailable to perform its appointed tasks.

Algorithm 1: Simple average routine.
1: void simpleAvg(int array[], int n)
2: int total = 0;
3: int count = 0;
4: for (count = 0; count < n; count++) do
5: total += array[count];
6: end for
7: return total / count;

The SimpleAvg routine computes an arithmetic aver-
age by adding up the first n numbers in the array and
then divides their total by n.

Figure 1 shows the statement graph of the simple
average routine.

The nodes in the graph correspond to the seven
lines of code and the edges represent the possible
transfer of control between these lines. This statement
graph is used to measure the coverage with respect to
each of the three testing methodologies under consid-
eration. Passing an array with one or more elements
and a positive value for the second parameter n will
lead to successful loop entry and exit, exercising 100%
of the statements and branches. For example, the fol-
lowing two lines of code achieve complete statement
and branch coverage.

1: int array[]= { 1, 2, 3, 4, 5, 6, 7 };
2: int avg = simpleAvg(array, 5);

This test invokes the simple average routine, passing it an
array with seven values and requests that the average of the
first five values be calculated. This test will execute successfully
and the tester who would be satisfied with statement or branch
coverage could consider their job complete. Note that with this
single test case, the condition (count < n) evaluates to true five
times, repeating the loop multiple times, and also evaluates to
false once to exit the loop. This test exercises both branches
into and out of the loop, but fails to consider the case where the
loop never runs.

Basis path testing requires a test that does not enter the loop.
The following additional test accomplishes this.

1: int array[]= { 1, 2, 3, 4, 5, 6, 7 };
2: int avg = simpleAvg(array, 0);

This test requests the average of the first zero elements of the
array. This will induce a divide by zero exception that could produce
a system crash because the loop on line four never increments the
variable count. As a result, count still contains the value zero when
line seven is reached, where it will generate an overflow exception.
Clearly, a statement to ensure that the second parameter of the
simple average routine is not zero would eliminate this vulnerability.
However, failure to add this guard exposes the code to an other-
wise preventable attack. Unlike cyclomatic path testing, path and
branch coverage could fail to detect the apparent weakness and
subsequently fail to identify the need for this additional check.

Memory Leaks
CWE-401 describes the failure to release memory before remov-

ing the last reference. This type of weakness is most commonly
known as a “memory leak.” Memory leaks occur when an application
does not properly track allocated memory so that it may be released
after it is no longer needed. Leaking memory slowly eats away at this
finite resource. If no scheduled restart of the system occurs [9] unde-
sirable outcomes like an operating system freeze can result. Memory
leaks contribute to the unreliability of software. A programmer who
intentionally conceals a memory leak provides a digital beachhead
from which an attacker can easily launch a denial of service attack
that whittles down the memory, crashing the program and unleashing
the unexpected consequences of system failure.

Algorithm 2 provides an instance of code containing an
exploitable memory leak.

Algorithm 2: Fill arrays routine.
1: void fillArrays(void **s1, void **s2, int size1, int size2)
2: if ((*s1=malloc(size1)) && (*s2=malloc(size2)) then
3: memset(*s1, 0, size1);
4: memset(*s2, 0, size2);
5: else
6: *s1 = *s2 = NULL;
7: end if

Figure 1: Statement
graph of simple
average routine.

CrossTalk—July/August 2012 11

THE END OF THE PC

The purpose of the fill arrays function is to allocate memory
for two pointers and set the pointers to these newly allocated
areas. The pointers are assigned if memory allocation succeeds,
but are set to NULL otherwise. At first blush, the implemen-
tation appears to be a harmless decision with two possible
outcomes. Figure 2 shows the statement graph corresponding
to the fillArrays routine.

One may think that the two tests given in the following
code fragment should be sufficient to achieve statement and
branch coverage.

1: void* ptr1 = 0;
2: void* ptr2 = 0;
3: fillArrays(&ptr1, &ptr2, 10, 100);
4: fillArrays(&ptr1, &ptr2, 0xFFFFFFFF, 2);

The first test, on line three, will cause the if statement to run,
while the test on line four will cover the else statement because the
attempt to allocate 0xFFFFFFFF memory will fail on machines with
less than four gigabytes of available memory. These tests achieve
statement coverage and appear to attain branch coverage. Note,
however, that the if statement is actually composed of two condi-
tions. When the first memory allocation (malloc) statement for string
pointer s1 succeeds, but the second memory allocation statement
fails, the code will still execute the else statement and set both
pointers to NULL. The memory from the first successful allocation
should be freed, but the reference to this memory is lost when line
six is run and the memory is “leaked.”

Thorough coverage must also account for scenarios where
only the first condition evaluates to true. Figure 3 shows this
more detailed cyclomatic graph, where line two is divided into
nodes 2a and 2b to represent the two malloc statements em-
bedded in the if statement.

The following code fragment provides the additional test
needed to exercise this basis path introduced by the compound
logic in the if statement.

1: void* ptr1 = 0;
2: void* ptr2 = 0;
3: fillArrays(&ptr1, &ptr2, 2, 0xFFFFFFFF);

The flaw lies on the edge between nodes 2b and 5 of Figure
3. This last test will trigger the memory leak because the first
amount of memory requested is very small, but the second will
fail. Repetitive execution of this last test could quickly chisel
away at the memory resources. This is yet another instance
where statement and code coverage can prove inadequate, but
cyclomatic basis path testing detects the weakness.

Out-of-bounds Read
CWE-125 is an out-of-bounds read. This type of behavior oc-

curs when software reads data before the beginning or past the
end of the intended buffer. This can happen when a pointer or its
index is increased or decreased to a position beyond the bounds
of the buffer or by pointer arithmetic that results in a location

Figure 2: Statement graph
of fill arrays routine.

Figure 3: Cyclomatic graph
of fill arrays routine.

WHAT IS CYCLOMATIC COMPLEXITY?
Important facts about the cyclomatic complexity metric include:

• Cyclomatic complexity enables defensive coding procedures
such as code flattening, which simplifies understanding the
structural characteristics of software.

• Cyclomatic complexity models information flow control and
can help discover sneak paths within source code.

outside of the appropriate memory location. Potential outcomes
include: software crashing, unintended execution of code, and
data corruption. A programmer who devises an out-of-bounds
read can do potentially unlimited damage. In the worst case, they
could hijack control of the system, turning it against its owners.

Algorithm 3 contains an exploitable out-of-bounds read.

Algorithm 3: Character copying routine.
1: void copyChars(char** dest, char** src, int start, int end)
2: int charsToCopy = 1;
3: int lastPos = strlen(*src) - 1;
4: if (end > lastPos) then
5: end = lastPos;
6: end if
7: if (start < 0) then
8: start = 0;
9: end if
10: if (end > start) then
11: copyToChars += (end - start);
12: end if
13: strncpy(*dest, (*src) + start, charsToCopy);

12 CrossTalk—July/August 2012

THE END OF THE PC

1: char* original = “Hello My World!”;
2: char* copy = (char*) malloc(80);
3: copyChars(©, &original, -10, 500);
4: copyChars(©, &original, 1000, 100);

The test case on line four initiates the opportunity for an
out-of-bounds read. The first test on line four evaluates to true
because the end variable equals 100, which is longer than the,
“Hello My World!” string. As a result, line five of the character
copying routine sets the end variable to the length of the source
string. The second test on line seven, however, evaluates to
false because the start variable equals 1,000, which is greater
than zero. Thus, line eight is skipped. Finally, the test on line 10
evaluates to false because 100 is not less than 1,000, so line
11 is not executed. Line 13 copies a byte from a location 1,000
positions beyond the start of the source string to the destination
because charsToCopy=1. This type of out-of-bounds read can
be used to feed an application the address of instructions to
execute, introducing the potential to commit serious violations of
system security. Cyclomatic path testing exposes this vulnerabil-
ity, but statement and branch coverage do not.

Managing the Attack Map
Up until now, the article has focused on testing simple

modules for vulnerabilities. In large-scale software testing, this
search is not a mere hunt for vulnerable routines. Instead, it is
a more comprehensive examination of relationships to explore
control-flow graphs, routine reachability, and the attack map,
attack surface, and attack target, which are defined in the fol-
lowing discussion. The attack surface of software is the code
within a computer system that can be run by unauthenticated
users. Recent research [10] proposed an I/O automata model
of a system and its environment to formalize the notion of the
attack surface. A concrete implementation of this formalism is
cyclomatic path analysis.

The attack surface is the set of functions S that allow user
inputs affecting system behavior. Examples include operations
that read from configuration files, receive network data, and
keyboard inputs. Library functions of potential interest might
be input functions such as gets(), recv(), and scanf(). The
attack target is the set of routines T that can cause critical
impacts when exploits are attempted. Code that might trigger
reformat of the hard drive or shutdown certain services are
specific instances of attack targets. Calls that can perpetrate
these abuses include system functions like exec(), which starts
new processes, LoadLibrary(), which can load shared objects,
and dynamically linked libraries are all potential threats. Finally,
the attack map M is the application subgraph connecting
the attack surface and attack target. This structural context
promotes the joint analysis of routines that connect the sur-
face and target, which will prove more revealing than study of
the two in isolation. Identifying the control flow relationships
between the surface and target provides the opportunity to
apply a path-oriented approach to focus the review and test-
ing on these connected components. This addresses a major
challenge associated with vulnerability isolation, namely the
overwhelming amount of source code that must be analyzed.

The copyChars routine is intended to copy a range of char-
acters from the source to destination array. There are three
sequential checks that occur prior to this copying of characters.
The first, on line four, validates that the end position is within
the bounds of the source string. The second conducts a similar
check to ensure the start position is within bounds, and the third
ensures the end position is after the start.

Figure 4 shows the routine’s statement graph.

Note how the three consecutive
if tests on lines four, seven, and 10
create three separate branches in
the statement graph. A test case
that makes each of the three if tests
true achieves statement coverage. A
second test that makes each of the
if statements false attains complete
branch coverage. The two tests listed
on lines three and four of the follow-
ing code fragment achieve complete
statement and branch coverage.

1: char* original = “Hello My
World!”;

2: char* copy = (char*)
malloc(80);

3: copyChars(©, &original,
-500, 500);

4: copyChars(©, &original,
0, 0);

Both statement and branch cover-
age, however, fail to account for the
effect that a given decision may have
on subsequent decisions. The two
test cases that provide statement
and branch coverage are insuffi-
cient to detect the vulnerability. This
routine contains a defect that is only
realizable with a specific sequence of
decision outcomes. The cyclomatic
complexity of the routine is four,
meaning that four basis paths must
be exercised. The previous two test
cases that achieved complete branch
coverage exercised only half of these
paths. A software tool that supports
basis path testing can indicate the
sequence of decision outcomes that
need to be exercised to test the
remaining basis paths.

The following code fragment
shows the two additional tests to ex-
ercise these other two basis paths in
order to provide complete cyclomatic
path coverage.

Figure 4: Statement graph of
character copying routine.

CrossTalk—July/August 2012 13

THE END OF THE PC

Many times flaws reside within millions of lines of code and
are introduced somewhere along the software supply chain.
By accounting for the connectedness of components, cyclo-
matic path analysis simplifies graph complexity to the routes by
which an attacker can reach particular software vulnerabilities.

An additional advantage of structural security analysis is the
ability to define lists of functions that must be considered in the
performance of attack map analysis, modularizing the pro-
cess. An example is the list of Microsoft Secure Development
Lifecycle (SDL) [11] banned functions. Microsoft recommended
processes on secure development specify a list of standard C
functions. Microsoft discourages programmers from invoking
these routines because they are prone to vulnerabilities like
memory leaks and buffer overruns. This list of C functions is
ideal for conducting security analysis on legacy applications
to bring them into conformance with the Microsoft SDL. The
scanf() and printf() functions are banned members of the at-
tack surface and target respectively. Structural simplifications
can effectively constrain analysis by aggregating the modules
containing the surface and target into two “supercomponents”,
simplifying the view of the potential paths from entry points to

flaw exploitation. This grouping facilitates test specification, pro-
viding a global perspective on the analysis task at hand within
the context of the application.

Summary
Software vulnerabilities are a consequence of multiple factors.

Attackers can disrupt program operation by exercising a specific
sequence of interdependent decisions that result in unforeseen
behavior. To ensure program behavior is correct, these paths
must be identified and exercised as part of secure software de-
velopment. Software testing techniques that utilize complete line
and branch coverage are insufficient and leave too many gaps.
Cyclomatic complexity enables more comprehensive scrutiny
of the structure and control flow of code, providing significantly
higher vulnerability detection capabilities.

Static analysis for code review has been suggested as a
valuable aid for critical software assurance [12]. The future of
software engineering would benefit from tight integration of
development with testing. Automatically warning developers of
the security vulnerabilities present in their code will be a first
step toward eradicating common weaknesses.

The Software Maintenance Group at Hill Air Force Base is recruiting civilian positions
(U.S. Citizenship Required). Benefits include paid vacation, health care plans, matching retirement fund,

tuition assistance and time off for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
phil.coumans@hill.af.mil

or call (801) 586-5325
Visit us at:

http://www.309SMXG.hill.af.mil

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

14 CrossTalk—July/August 2012

THE END OF THE PC

Thomas J. McCabe Sr. is a mathematician, author, and
founder of McCabe Technologies <http://www.mccabe.
com>, which he grew to 175 people. In 1998, he testified
before Congress in the hearing entitled, “Year 2000: Biggest
Problems and Proposed Solutions.” He has authored three
books, is highly published in computer science, and lectures
internationally on software development and entrepreneur-
ship. In 2009, the ACM-SIGSOFT retrospectively selected
his publication on Software Complexity [8] as one of the 23
highest impact papers in computer science.

McCabe Technologies
5163 Harpers Farm Road
Columbia, MD, 21044
E-mail: tom@mccabetech.com

Thomas J. McCabe Jr. has worked with clients of McCabe
Technologies for more than 20 years to improve their quality
assurance (QA) and test processes. He has delivered nu-
merous presentations on software testing and QA to organi-
zations and conferences including IEEE, QAI, Sticky Minds,
DAU, NDU, and DHS. His recent Sticky Minds Webinar,
“Uncovering Security Vulnerabilities Off the Beaten Path,”
presented his experiences applying complexity metrics,
verifying control flow integrity, and leveraging path analysis
to uncover security vulnerabilities.

McCabe Technologies
3806 Spring Meadow Drive
Ellicott City, MD 21042
E-mail: skillssss@hotmail.com

Lance Fiondella is a Ph.D. student at the University of
Connecticut (UConn). In 2007, he received a scholarship
from the IEEE Reliability Society for his research on system
and software reliability. He also conducts network vulner-
ability research for UConn’s Department of Homeland
Security National Transportation Security Center of Excel-
lence (NTSCOE). He was an invited speaker at the 2011
DHS Student Day, where he presented his research on the
optimal deployment and protection of high-speed rail.

University of Connecticut
371 Fairfield Road
Storrs, CT, 06269-4155
Phone: 860-486-3665
E-mail: lfiondella@engr.uconn.edu

ABOUT THE AUTHORS
1. Defense Science Board Task Force. “Mission impact of foreign influence on
 DoD software.” The Journal of Defense Software Engineering
 (May 2008): 4-7.
2. Ellison, Robert and Woody, Carol. “Considering software supply chain risks.”
 The Journal of Defense Software Engineering
 (September-October 2010): 9-12.
3. The Wall Street Journal. “Computer spies breach fighter-jet project.”
 Last accessed: February, 21 2012, <http://online.wsj.com/article/
 SB124027491029837401.html, April 21, 2009>.
4. The MITRE Corporation. “Common weakness enumeration.” Last accessed:
 February, 21 2012, <http://cwe.mitre.org/>.
5. Miller, Joan and Maloney, Clifford. “Systematic mistake analysis of digital
 computer programs.” 6.2 Communications of the ACM (Feb 1963): 58-63.
6. RTCA, Inc. and EUROCAE, “Software considerations in airborne systems and
 equipment certification.” Technical Report DO-178B (1992).
7. Watson, Authur and McCabe Sr., Thomas. “Structured testing: A testing
 methodology using the cyclomatic complexity metric.” special publication 500-235,
 National Institute of Standards and Technology, Gaithersburg, MD, (August 1996).
8. McCabe Sr., Thomas. “A complexity measure.” 2.4 IEEE Transactions on Software
 Engineering (December 1976): 308-320.
9. Garg, Sachin, et al. Analysis of software rejuvenation using markov regenerative
 stochastic petri nets. Proc. of the 6th International Symposium on Software
 Reliability Engineering. Toulouse, France, 1995.
10. Manadhata, Pratyusa and Wing, Jeannette. “An attack surface metric.” 37.3 IEEE
 Transactions on Software Engineering (May-June 2011): 371-386.
11. Microsoft Corporation, “Microsoft security development.” Last accessed:
 February, 21 2012 <http://www.microsoft.com/security/sdl/default.aspx>.
12. Moy, Yannick. “Static analysis is not just for finding bugs.” The Journal of Defense
 Software Engineering (September-October 2010): 5-8.

REFERENCES

CrossTalk—July/August 2012 15

THE END OF THE PC

Definition
We define a sequence covering array, SCA(N, S, t) as an N x

S matrix where entries are from a finite set S of s symbols, such
that every t-way permutation of symbols from S occurs in at least
one row and each row is a permutation of the s symbols [6]. The
t symbols in the permutation are not required to be adjacent. That
is, for every t-way arrangement of symbols x1, x2, ..., xt, the regular
expression .*x1.*x2.*xt.* matches at least one row in the array.

Example 1
We may have a component of a factory automation system

that uses certain devices interacting with a control program. We
want to test the events defined in Table 1. There are 6! = 720
possible sequences for these six events, and the system should
respond correctly and safely no matter the order in which they
occur. Operators may be instructed to use a particular order, but
mistakes are inevitable, and should not result in injury to users
or compromise the operation. Because setup, connections, and
operation of this component are manual, each test can take a
considerable amount of time. It is not uncommon for system-
level tests such as this to take hours to execute, monitor, and
complete. We want to test this system as thoroughly as possible,
but time and budget constraints do not allow for testing all pos-
sible sequences, so we will test all 3- event sequences.

D. Richard Kuhn, NIST
James M. Higdon, Eglin AFB
James F. Lawrence, NIST
Raghu N. Kacker, NIST
Yu Lei, University of Texas at Arlington

Abstract. Many software testing problems involve sequences of events. The
methods described in this paper were motivated by testing needs of mission critical
systems that may accept multiple communication or sensor inputs and generate
output to several communication links and other interfaces, where it is important
to test the order in which events occur. Using combinatorial methods makes it
possible to test sequences of events using significantly fewer tests than previous
procedures.

Efficient Methods
for Interoperability
Testing Using Event
Sequences

Introduction
For many types of software, the sequence of events is an

important consideration [1, 2]. For example, graphical user inter-
faces may present the user with a large number of options that
include both order-independent (e.g., choosing items) and order-
dependent selections (such as final selection of items, quantity,
and payment information). The software should work correctly,
or issue an appropriate error message, regardless of the order
of events selected by the user. A number of test approaches
have been devised for these problems, including graph-covering,
syntax-based, and finite-state machine methods [3, 4, 5].

In testing such software, the critical condition for triggering
failures often is whether or not a particular event has occurred
prior to a second one, not necessarily if they are back to back.
This situation reflects the fact that in many cases, a particu-
lar state must be reached before a particular failure can be
triggered. For example, a failure might occur when connecting
device A only if device B is already connected, or only if devices
B and C were both already connected. The methods described
in this paper were developed to address testing problems of this
nature, using combinatorial methods to provide efficient testing.
Sequence covering arrays, as defined here, ensure that every t
events from a set of n (n > t) will be tested in every possible t-
way order, possibly with interleaving events among each subset
of t events.

Test Sequence
1 a b c d e f
2 f e d c b a
3 d e f a b c
4 c b a f e d
5 b f a d c e
6 e c d a f b
7 a e f c b d
8 d b c f e a
9 c e a d b f

10 f b d a e c
	

With six events, a, b, c, d, e, and f, one subset of three is {b,
d, e}, which can be arranged in six permutations: [bde], [bed],
[dbe], [deb], [ebd], [edb]. A test that covers the permutation
[dbe] is: [adcfbe]; another is [adcbef]. With only 10 tests, we
can test all 3-event sequences, shown in Table 2. In other words,
any sequence of three events taken from a..f arranged in any
order can be found in at least one test in Table 2 (possibly with
interleaved events).

Table 1. Example system events.

Table 2. All 3-event sequences of six events.

16 CrossTalk—July/August 2012

THE END OF THE PC

Returning to the example set of events {b, d, e}, with six
permutations: [bde] is in Test 5, [bed] is in Test 4, [dbe] is in Test
8, [deb] is in Test 3, [ebd] is in Test 7, and [edb] is in Test 2.

A larger example system may have 10 devices to connect,
in which case the number of permutations is 10!, or 3,628,800
tests for exhaustive testing. In that case, a 3-way sequence
covering array with 14 tests covering all 3-way sequences is a
dramatic improvement, as is 72 tests for all 4-way sequences
(see Table 4).

Example 2
A 2-way sequence covering array can be constructed by list-

ing the events in some order for one test and in reverse order
for the second test, as shown in Table 3:

Generating Sequence
Covering Arrays

Sequence covering arrays, as the name implies, are analogous
to standard covering arrays [7], which include at least one of every
t-way combination of any n variables, where t < n. We have devel-
oped several methods of generating SCAs, but the most efficient
approach is a simple greedy algorithm that iteratively generates
multiple candidate tests, then selects the one that covers the larg-
est number of previously uncovered sequences, repeating until
all sequences have been covered. This algorithm produces more
compact arrays than others developed so far.

Table 4 shows the number of 3-way and 4 -way sequence
tests for event sets of varying sizes generated using the algo-
rithm. In another paper [6], we have shown the number of tests
generated is proportional to log n, for n events, making it practi-
cal to test complex systems with a large number of events using
a reasonable number of tests. Logarithmic growth in number of
tests can also be seen in Table 4.

Using Sequence Covering Arrays
The motivation for this work was a USAF mission-critical sys-

tem that uses multiple devices with inputs and outputs to a laptop
computer. (Confidentiality rules do not permit a detailed descrip-
tion of this system.) System functionality depends on the order
in which events occur, though it does not matter whether events
are adjacent to one another (in any sub-sequence), nor which
step an event falls under, without regard to the other events. The
test procedure for this system has eight steps: boot system, open
application, run scan, and connect peripherals P-1 through P-5. It
is anticipated that because of dependencies between peripherals,
the system may not function properly for some sequences. That
is, correct operation requires cooperation among multiple periph-
erals, but experience has shown that some may fail if their partner
devices were not present during startup. Thus the order of con-
necting peripherals is critical. In addition, there are constraints on
the sequence of events: cannot scan until the app is open; cannot
open app until the system is booted. There are 40,320 permuta-
tions of eight steps, but some are redundant (e.g., changing the
order of peripherals connected before boot), and some are invalid
(violates a constraint). Around 7,000 are valid, and non-redundant,
but this is far too many to test for a system that requires manual,
physical connections of devices.

The system was tested using a seven-step sequence covering
array, removing boot-up from test sequence generation. The initial
test configuration for 3-way sequences was generated using the
algorithm given in Sect. 2. Covering all 3-way sequences allowed
testing a much larger set of states than using 2-way sequences,
but could be accomplished at a reasonable cost. Some changes
were made to the pre-computed sequences based on unique
requirements of the system test. If 6=‘Open App’ and 5=‘Run Scan’,
then cases 1, 4, 6, 8, 10, and 12 are invalid, because the scan
cannot be run before the application is started. This was handled by
swapping items when they are adjacent (1 and 4), and out of order.
For the other cases, several were generated from each that were
valid permutations of the invalid case. A test was also embedded
to see whether it mattered where each of three USB connec-

Table 3. 2-way sequence covering array.

Table 4. Number of tests for combinatorial 3-way and 4-way sequences.

Test Sequence

1 a b c d

2 d c b a

	

Events 3-seq Tests 4-seq Tests
5 8 26

6 10 36

7 12 46

8 12 50

9 14 58

10 14 66

11 14 70

12 16 78

13 16 86

14 16 90

15 18 96

16 18 100

17 20 108

18 20 112

19 22 114

20 22 120

21 22 126

22 22 128

23 24 134

24 24 136

25 24 140

26 24 142

27 26 148

28 26 150

29 26 154

30 26 156

40 32 182

50 34 204

60 38 222

70 40 238

80 42 250

	

CrossTalk—July/August 2012 17

THE END OF THE PC

tions were placed. The last test case ensures at least strength 2
(sequence of length 2) for all peripheral connections and ‘Boot’, i.e.,
that each peripheral connection occurs prior to boot. The final test
array is shown in Table 5. Errors detected in testing included sev-
eral that could not be attributed to 2-way sub-sequences. These er-
rors would not have been detected using a simple 2-way sequence
covering array (which could consist of only two tests, as in Example
2), and may not have been caught with more conventional tests.

Conclusions
Sequence covering arrays can have significant practical value

in testing. Because the number of tests required grows only loga-
rithmically with the number of events, t-way sequence coverage is
tractable for a wide range of testing problems. Using a sequence
covering array for system testing described here made it possible
to provide greater confidence that the system would function

correctly regardless of possible dependencies among peripherals.
Because of extensive human involvement, the time required for a
single test is significant, and a small number of random tests or
scenario-based ad hoc testing would be unlikely to provide t-way
sequence coverage to a satisfactory degree.

Acknowledgments:
We are very grateful to Tim Grance for support of this work

within the NIST Cybersecurity program, and to Paul E. Black for
suggestions that helped clarify and strengthen the paper.

Disclaimer:
We identify certain software products in this document, but
such identification does not imply recommendation by NIST,
nor does it imply that the products identified are necessarily
the best available for the purpose.

	

Original Case Case Step1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

1 1 Boot P-1 (USB-RIGHT) P-2 (USB-BACK) P-3 (USB-LEFT) P-4 P-5 Application Scan

2 2 Boot Application Scan P-5 P-4 P-3 (USB-RIGHT) P-2 (USB-BACK) P-1 (USB-LEFT)

3 3 Boot P-3 (USB-RIGHT) P-2 (USB-LEFT) P-1 (USB-BACK) Application Scan P-5 P-4

4 4 Boot P-4 P-5 Application Scan P-1 (USB-RIGHT) P-2 (USB-LEFT) P-3 (USB-BACK)

5 5 Boot P-5 P-2 (USB-RIGHT) Application P-1 (USB-BACK) P-4 P-3 (USB-LEFT) Scan

6A 6 Boot Application P-3 (USB-BACK) P-4 P-1 (USB-LEFT) Scan P-2 (USB-RIGHT) P-5

6B 7 Boot Application Scan P-3 (USB-LEFT) P-4 P-1 (USB-RIGHT) P-2 (USB-BACK) P-5

6C 8 Boot P-3 (USB-RIGHT) P-4 P-1 (USB-LEFT) Application Scan P-2 (USB-BACK) P-5

6D 9 Boot P-3 (USB-RIGHT) Application P-4 Scan P-1 (USB-BACK) P-2 (USB-LEFT) P-5

7 10 Boot P-1 (USB-RIGHT) Application P-5 Scan P-3 (USB-BACK) P-2 (USB-LEFT) P-4

8A 11 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-LEFT) Application Scan P-5 P-1 (USB-BACK)

8B 12 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-BACK) P-5 Application Scan P-1 (USB-LEFT)

9 13 Boot Application P-3 (USB-LEFT) Scan P-1 (USB-RIGHT) P-4 P-5 P-2 (USB-BACK)

10A 14 Boot P-2 (USB-BACK) P-5 P-4 P-1 (USB-LEFT) P-3 (USB-RIGHT) Application Scan

10B 15 Boot P-2 (USB-LEFT) P-5 P-4 P-1 (USB-BACK) Application Scan P-3 (USB-RIGHT)

11 16 Boot P-3 (USB-BACK) P-1 (USB-RIGHT) P-4 P-5 Application P-2 (USB-LEFT) Scan

12A 17 Boot Application Scan P-2 (USB-RIGHT) P-5 P-4 P-1 (USB-BACK) P-3 (USB-LEFT)

12B 18 Boot P 2 (USB RIGHT) Appli ti Sc P 5 P 4 P 1 (USB LEFT) P 3 (USB BACK)

Table 5. Final test array.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

Software Project Management: Lessons Learned
Jan/Feb 2013 Issue

Submission Deadline: Aug 10, 2012

Supply Chain Risk Management
Mar/Apr 2013 Issue

Submission Deadline: Oct 10, 2012

Large Scale Agile
May/Jun 2013 Issue

Submission Deadline: Dec 10, 2012

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

18 CrossTalk—July/August 2012

THE END OF THE PC

Richard Kuhn is a computer scientist in the Com-
puter Security Division of NIST. His current inter-
ests are in information security, empirical studies of
software failure, and software assurance, focusing on
combinatorial testing. He received an MS in computer
science from the University of Maryland College Park.

James Higdon is a senior analyst in Technical
Engineering and Acquisition Support with Jacobs En-
gineering, at the 46th Test Squadron, Eglin Air Force
Base, Florida. His current interests are in experimen-
tal design and combinatorial testing of hardware/soft-
ware systems. He received an MS from the Air Force
Institute of Technology.

James Lawrence is a Professor in the Department
of Mathematics at George Mason University, Fair-
fax, VA, and a faculty associate at NIST. His current
interests are in convexity and combinatorics, including
applications in software testing. He received a Ph.D.
from the University of Washington.

Raghu Kacker is a researcher in the Applied and
Computational Mathematics Division of NIST. His
current interests include software testing and evalu-
ation of the uncertainty in outputs of computational
models and physical measurements. He has a Ph.D.
in statistics and is a Fellow of the American Statistical
Association, and American Society for Quality.

Yu Lei is an Associate Professor in Department of
Computer Science and Engineering at the University
of Texas, Arlington. His current research interests
include automated software analysis and testing, with
a special focus on combinatorial testing, concurrency
testing, and security testing. He received his Ph.D.
from North Carolina State University.

ABOUT THE AUTHORS
1. D.L. Parnas, “On the Use of Transition Diagrams in the Design of User
 Interface for an Interactive Computer System,” Proc. 24th ACM Nat’l Conf.,
 pp. 379-385, 1969.
2. W. E. Howden, G. M. Shi: Linear and Structural Event Sequence Analysis.
 ISSTA 1996: pp. 98-106, 1996.
3. S. Chow, “Testing Software Design Modeled by Finite-State Machines,”
 IEEE Trans. Softw. Eng., vol. 4, no. 3, pp. 178 187, 1978.
4. J. Offutt, L. Shaoying, A. Abdurazik, and P. Ammann, “Generating Test Data
 From State-Based Specifications,” J. Software Testing, Verification
 and Reliability, vol. 13, no. 1, pp. 25-53, March, 2003.
5. B. Sarikaya, “Conformance Testing: Architectures and Test Sequences,”
 Computer Networks and ISDN Systems, vol.17, no. 2,
 North-Holland, pp. 111-126, 1989.
6. D.R. Kuhn, J.M. Higdon, J.F. Lawrence, R.N. Kacker, Y. Lei, “Combinatorial
 Methods for Event Sequence Testing”, 8 Oct 2010 (submitted for publication).
 <http://csrc.nist.gov/groups/SNS/acts/documents/event-seq101008.pdf>
7. X. Yuan, M.B. Cohen, A. Memon, “Covering Array Sampling of Input Event
 Sequences for Automated GUI Testing”, November 2007 ASE ‘07: Proc.
 22nd IEEE/ACM Intl. Conf. Automated Software Engineering, pp. 405-408.

REFERENCES

CrossTalk—July/August 2012 19

THE END OF THE PC

2. Embedded Software Design, Implementation,
and Verification

Typically, embedded software design starts by gathering system
and software requirements. The code is then written or gener-
ated to implement the software. Verification processes focus on
confirming the software requirements are implemented correctly
and completely, and that they are traceable to the system require-
ments. The software must be tested and analyzed to ensure that
it not only performs as required, but does not include any unin-
tended operations. Additional tests are performed as the software
is integrated with the hardware and validated at the system level.
The design and verification process described above is often
referred to as the V diagram process (see Figure 2).

Jay Abraham, MathWorks
Jon Friedman, MathWorks

Abstract. Software in critical civilian and military aerospace applications, including
avionics and other systems in which quality and reliability are imperative, contin-
ues to become both more common and more complex. The embedded software
development organizations that build these systems must meet stringent quality
objectives that are mandated by their organizations or required by customers or
governments. For engineering teams to meet these objectives, and to ideally deliver
high quality software, state of the art testing and verification solutions are needed.
This article examines formal methods based software verification and testing ap-
proaches that have been applied to critical software projects in civil and military
aerospace and defense projects. Examples are provided to illustrate how these
verification techniques can be deployed in practice to improve the quality and reli-
ability of complex avionics systems.

Building Confidence
in the Quality
and Reliability of
Critical Software

1. The Components of Avionics Embedded Software
Avionics software implemented in critical aerospace applica-

tions consists of special purpose embedded software. This soft-
ware often operates in real time and is responsible for critical
operations. Examples include digital flight control systems, full
authority digital engine control, guidance navigation control, and
similar systems. The embedded software responsible for these
systems will consist of multiple components, including automati-
cally generated, handwritten, and third-party code as well as
libraries (see Figure 1).

Generated code: Generated code is synthesized from
models that are used to describe and analyze the behavior of
complex systems and algorithms.

Handwritten code: Handwritten code may include inter-
faces to hardware (for example, driver software for a cockpit
display system, airspeed sensor, or another hardware subsys-
tem), or it may be translated manually from specification docu-
ments or models.

Third-party code: Third-party code may be delivered by sup-
pliers or it may be required as part of larger software system (for
example, to interface with the real-time operating system).

Libraries: Object code is part of the application code that
exists as a library or as compiled legacy code. By definition this
software is delivered or is only available in the form of object
code (binary files).

Figure 1: Components of embedded software.

Figure 2: Embedded software design, implementation,
and verification (V Diagram).

Even with robust verification processes, complex systems can
fail. Causes of failure include insufficient specification, design
errors, software coding errors or defects, and other issues
unrelated to software. Ideally design and coding errors should
be detected on the right-hand side of the V diagram during soft-
ware, hardware, and aircraft testing and integration processes.

20 CrossTalk—July/August 2012

THE END OF THE PC

Unfortunately, testing phases may fail to detect some errors
unless exhaustive testing is employed. A study by the SEI found
that for every 100 defects injected in the left-hand side of the
V diagram, on average 21 latent defects remain in the system
after the testing and verification processes were completed (see
Figure 3) [1]. These bugs remain because exhaustive testing is
generally not practical. Other techniques must be used to elimi-
nate remaining defects; however, in a report on the use of static
analysis to improve quality of code, the authors found that early
detection of defects was important, but challenging to accom-
plish [2]. The difficulty was primarily due to human factors such
as the inability to triage results from the tool to identify where
code is safe and where it may fail.

A complete discussion on improving the quality of complex
systems by addressing every failure point is beyond the scope
of this article. Instead, this article focuses on two points: design
errors and software coding errors. These errors will manifest in
the software design and coding phases of the V diagram.

Examples of design errors include:
•	Dead	logic	(for	software	combinatorial	logic	involving	AND,	
 OR, and NOT)
•	Unreachable	states	or	modes	in	state	machines
•	Deadlock	conditions
•	Nondeterministic	behavior
•	Overflow	or	divide-by-zero	conditions	in	arithmetic	
 operations

There are many different types of coding errors. This article
covers those that are classified as run-time errors, that is, errors
that only express themselves under particular conditions when
the software is running. These errors are particularly troublesome
because the code may appear to function normally under general
test conditions, but may later cause unexpected system failures
under other conditions. Some causes of run-time errors include:

•	Uninitialized	data.	When	variables	are	not	initialized,	they	may	
 be set to an unknown value.

•	Out	of	bounds	array	access.	This	occurs	when	data	is	written	
 or read beyond the boundary of allocated memory.
•	Null	pointer	dereference.	This	occurs	when	attempting	to	
 reference memory with a pointer that is NULL.
•	Incorrect	computation.	This	is	caused	by	an	arithmetic	error	
 due to an overflow, underflow, or divide-by-zero operation, or
 when taking a square root of a negative number.
•	Concurrent	access	to	shared	data.	This	occurs	when	two	or	
 more different threads try to access the same memory location.
•	Dead	code.	Although	dead	code	(code	that	will	never	execute)	
 may not directly cause a run-time failure, it is important to
 understand why the code will not execute.

3. Traditional Methods of Verifying and
Testing Software

Typical software verification processes include manual reviews
and dynamic testing. Code review involves line-by-line manual
inspection of the source code with the goal of finding errors in
the code. The process comprises a team that will perform the
review (moderator, designer, coder, and tester), the preparation
process (including the creation of a checklist), and the inspec-
tion activity itself. Based on the outcome, the development team
may need to address errors found and others in the organization
will follow up to ensure that issues and concerns raised during
inspection are resolved. With this process, detecting subtle
run-time errors can be difficult. For example, an overflow due
to complex mathematical operations that involve programmatic
control can easily be missed. Additionally, the code review pro-
cess can be inconsistent; since it is highly dependent on human
interpretation, results can vary based on the team and context of
the review process.

Complementing code reviews, dynamic testing is used to veri-
fy the execution flow of software, that is, to verify decision paths,
inputs, and outputs. This process involves creation of test cases
and test vectors and the execution of the software using these
tests. Dynamic testing is well suited to the goal of finding design
errors, in which the test cases often match functional require-
ments. Test teams then compare the results to the expected
behavior of the software. Because of the complexity of today’s
software and tight project deadline requirements, dynamic test-
ing is often not exhaustive. Although many test cases can be
generated automatically to supplement those created manually,
it is not feasible to expect dynamic testing to exhaustively verify
every aspect of embedded software. This kind of testing can
show the presence of errors, but not their absence.

In theory, performing code review and executing the right
set of test cases can catch every defect no matter the type. In
practice, however, the challenge is the amount of time spent
reviewing code and applying enough of the right tests to find
all the errors in today’s complex systems. Even for the sim-
plest operations, such as adding two 32-bit integer inputs, one
would have to spend hundreds of years to complete exhaustive
testing, which is not realistic [3]. Viewed from this perspective,
code review and dynamic testing are bug detection techniques
more than proving techniques because they cannot in practice
exhaustively show that design errors and code defects have
been eliminated.

Figure 3: Errors often manifest in the design and coding phases.

CrossTalk—July/August 2012 21

THE END OF THE PC

4. Employing Formal Methods for Verification
To address the shortcomings of code reviews and dynamic test-

ing, which are not exhaustive and can miss design or coding errors,
engineers are turning to tools that implement formal methods
to prove the absence of certain design and run-time errors, and
ultimately to gain greater confidence. Formal methods refers to
the application of theoretical computer science fundamentals to
solve difficult problems in software and hardware specification and
verification. Applying formal methods to models and code gives
engineers insight about their design or code and confidence that
they are robust when exhaustive testing is not practical.

To better understand formal methods, consider the following
example. Without the aid of a calculator, compute the result of
the following multiplication problem within three seconds:

–4586 × 34985 × 2389 = ?

Although computing the answer to the problem by hand will
likely take you longer than three seconds, you can quickly apply
the rules of multiplication to determine that the result will be a
negative number. Determining the sign of this computation is
an application of a specific branch of formal methods known
as abstract interpretation. The technique enables you to know
precisely some properties of the final result, such as the sign,
without having to fully multiply the integers. You also know from
applying the rules of multiplication that the result will never be a
positive number or zero for this computation.

Now, consider the following simplified application of the
formal mathematics of abstract interpretation to software
programs. The semantics of a programming language can be
represented by concrete and abstract domains. Certain proof
properties of the software can be performed on the abstract
domain. In fact, it is simpler to perform the proof on the abstract
domain than on the concrete domain.

The concept of soundness is important in the context of a
discussion on abstract interpretation. Soundness means when
assertions are made about a property, those assertions are
proven to be correct. The results from abstract interpretation are
considered sound because it can be mathematically proven with
structural induction that abstraction will predict the correct out-
come. When applied to software programs, abstract interpretation
can be used to prove certain properties of software, for example,
that the software will not exhibit certain run-time errors [4].

Cousot and Cousot [5] describe the application and success
of abstract interpretation to static program analysis. Deutsch
describes the application of this technique to a commercial soft-
ware tool [6]. The application of abstract interpretation involves
computing approximate semantics of the software code with the
abstraction function, which maps from the concrete domain to
the abstract domain such that it can be verified in the abstract
domain. This produces equations or constraints whose solution is
a computer representation of the program’s abstract semantics.

Lattices are used to represent variable values. For the sign
example described earlier, the lattice shown in Figure 4 can be
used to propagate abstract values in a program (starting at the
bottom and working to the top for conditions such as <0, =0,
and so forth). Arriving at any given node in the lattice proves a

certain property. Arriving at the top of the lattice indicates that a
certain property is unproven.

Over approximation is applied to all possible execution paths
in a program. Analysis techniques can identify variable ranges.
That information is used to prove either the existence or the
absence of run-time errors in source code.

To better understand the application of abstract interpretation
to code verification, consider the following operation:

X := X / (X – Y);

If X is equal to Y, then a divide by zero will occur. In order to
conclusively determine that a divide by zero cannot occur, the
range of X and Y must be known. If the ranges overlap, then a
divide-by-zero condition is possible.

In a plot of X and Y values (see Figure 5), any points that fall
on the line representing X=Y would result in a run-time error.
The scatter plot shows all possible values of X and Y when the
program executes the line of code above (designated with +).
Dynamic testing would execute this line of code using various
combinations of X and Y to determine if there will be a failure.
However, given the large number of tests needed to be run,
this type of testing may not detect or prove the absence of the
divide-by-zero run-time error.

Figure 4: Lattice representation of variables.

Figure 5: Plot of data for X and Y.

22 CrossTalk—July/August 2012

THE END OF THE PC

Another methodology would be to approximate the range
of X and Y in the context of the run-time error condition (that
is, X=Y). In Figure 6, note the bounding box created by this
method. If the bounding box intersects X=Y, then there is a po-
tential for failure. Some static analysis tools apply this technique.
However, approximation of this type is too pessimistic, since it
includes unrealistic values for X and Y.

The application of formal methods enables engineers to apply
automation to software verification tasks. Unlike manual code re-
views, automated application of formal methods is consistent. Formal
methods will also provide a complete answer when it can be applied
to the problem. Verification based on formal methods can be applied
in the software design and coding phases of the V diagram.

5. Application of Formal Methods to Model
and Code Verification

Model Verification
During the software design phase, which today typically

involves creating models of the advanced control algorithms, en-
gineers need to verify that the design they produce is robust. For
example, they need to be certain that their design will not contain
overflow errors or state machines with unreachable states. Be-
cause engineering teams develop and work with models in this
phase, the application of formal methods for verification in this
phase is termed model verification. The purpose is to produce
a robust software design by ideally detecting all design errors or
proving their absence.

However, use of models alone does not ensure a robust design.
As an example, consider an algorithm that contains an addition
operation. The two inputs to the addition operation are generated
by other complex mathematical operations. Both inputs are 8-bit
signed integers and the output is of the same type. In this scenario,
it is possible that the addition operation may result in an overflow.
For example, an overflow will occur if the first input has a maximum
value of 27-1 and the other input is greater than 0. Using the tra-
ditional methods of design reviews and dynamic testing, the exact
condition that results in the overflow might be missed. In contrast,
using formal methods tools, engineers can determine the minimum
and maximum ranges of the input to the addition. Furthermore, for-
mal methods tools can determine that it is possible for an overflow
to occur and can produce a test case or counter example to show
how this overflow design error can occur.

Code Verification
During the coding phase, engineering teams either manually or

automatically translate the design documents or models into code.
The application of formal methods for verification in this phase is
termed code verification and the purpose is to produce robust
code by identifying and proving the absence of code defects such
as run-time errors. This can be accomplished with formal methods
coupled with static code analysis—the analysis of software without
dynamic execution. This technique identifies the absence, presence,
and possible presence of a certain class of run-time errors in the
code. As a result, engineers can use this technique to prove that
the code is free of detectable run-time errors.

During code development and integration, it is important
to thoroughly understand the interface between various code
components. For example, consider a situation in which handwrit-
ten code produced by one team generates an index value that
is used for an array access in generated code produced by a
second team. The first team believes that the index range can be
0 to 599. The second team believes the maximum index value
is 399 and has developed the software with that understanding.
Unless there is a test case that causes the index value to exceed

Figure 6: Creating a bounding box to identify potential errors.

Figure 7: Abstract interpretation.

With abstract interpretation, a more accurate representation of
the data ranges of X and Y are created. Since various program-
ming constructs could influence the values of X and Y (for ex-
ample, arithmetic operations, loops, if-then-else, and concurrency)
an abstract lattice is created. A simplified representation of this
concept is to consider the grouping of the data as polygons as
shown in Figure 7. Since the polygons do not intersect X=Y we
can conclusively say that a division by zero will not occur.

The abstract interpretation concept can be generalized as
a tool set that can be used to determine variable ranges and
to detect a wide range of run-time errors in software. Abstract
interpretation investigates all possible behaviors of a program—
that is, all possible combinations of values—in a single pass to
determine how and under what conditions the program may
exhibit certain classes of defects. The results from abstract
interpretation are considered complete because it can be math-
ematically proven that the technique predicts the outcome as it
relates to the operation under consideration.

CrossTalk—July/August 2012 23

THE END OF THE PC

399, this run-time error may not be detected during the integra-
tion test. It is even possible that if this illegal array access were
to occur during the execution of a test case, the error may not be
detected. For example, writing to out-of-bounds memory may not
cause a program to fail, unless the data at that location were to
be used in some fashion.

The application of formal methods coupled with static code
analysis does not require execution of the source code, so it can
be used as soon as code is available. Using formal methods and
static code analysis tools, engineers can validate software at the
component level or as an integrated application. Because these
tools propagate variable range values, they can detect or prove
that the illegal array access in the example described above may
or may not occur.

6. Summary and Conclusion
Today’s sophisticated civilian and military aerospace applica-

tions often include a complex combination of handwritten and
automatically generated code. Even after formal code reviews
and dynamic testing is performed on the right-hand side of the V
diagram, latent errors can still remain in a system because tradi-
tional verification and test methods are often incomplete. Formal
methods enable teams to prove that aspects of their models and
code are free of a specific type of error, enabling them to focus
their verification efforts on the model components or code that
require further attention. Applying formal methods for model and
code verification instills more confidence in the engineers building
modern embedded systems.

Jay Abraham is the Product Marketing Manager of
Polyspace products at MathWorks. Jay is part of the team
leading product strategy and business development of Pol-
yspace products, specializing in the American marketplace.
Prior to joining MathWorks, Jay was a Product Marketing
Manager at companies such as Wind River and Magma
Design Automation, starting his career with IBM. Jay has
a B.S. degree from Boston University, a Master’s from
Syracuse, and is a graduate of the Institute of Managerial
Leadership from The Red McCombs School of Business at
The University of Texas at Austin.

E-mail: Jay.Abraham@mathworks.com

Dr. Jon Friedman is the Aerospace & Defense and
Automotive Industry Marketing Manager at MathWorks.
Jon leads the marketing effort to foster industry adoption
the MATLAB and Simulink product families and Model-
Based Design. Prior to joining MathWorks, he worked at
Ford Motor Company where he held positions ranging from
software development research to electrical systems prod-
uct development. Jon has also worked as an Independent
Consultant on projects for Delphi, General Motors, Chrysler
and the US Tank-Automotive and Armaments Command.
Jon holds a B.S.E., M.S.E. and Ph.D. in Aerospace Engi-
neering as well as a Master’s in Business Administration,
all from the University of Michigan.

E-mail: Jon.Friedman@mathworks.com

ABOUT THE AUTHORS

1. SEI, How Good Is the Software: A Review of Defect Prediction Techniques.
 Brad Clark, Dave Zubrow, 2001
2. Challenges in deploying static analysis; Jain, Rao, Balan, CrossTalk – August 2011
3. Dependable Embedded Systems, Software Testing. Jiantao Pan 1999.
4. Cousot, “Abstract Interpretation”, ACM Computing Surveys, 1996
5. Cousot and Cousot “Abstract Interpretation Based Formal Methods and
 Future Challenges”, Informatics. 10 Years Back. 10 Years Ahead, 2001)
6. Deutsch, “Static Verification of Dynamic Properties, SIGAda, 2003
7. Regehr, J., Reid, A., Webb, K.: Eliminating stack overflow by abstract
 interpretation. In Proc. of the 3rd International Conf. on Embedded Software
 (EMSOFT), Philadelphia, PA, October 2003
8. <http://www.di.ens.fr/~cousot/projects/DAEDALUS>
9. Spoto A., “JULIA: A Generic Static Analyser for the Java Bytecode”, 1982
10. <http://www.mathworks.com/products/polyspace>

REFERENCES

24 CrossTalk—July/August 2012

THE END OF THE PC

This is true of the use of process performance measures.
To understand how the use of process performance measures
affect an organization, it is good to look back at some words of
wisdom related to the concepts behind the use of performance
measures and results. This article will illustrate the practical
meaning and benefits of understanding process performance by
drawing connections to famous quotes.

Setting the Foundation
Managers often struggle for a clear understanding of what is

happening on their projects. They find themselves in the same situ-
ation as Alexandre Ledru-Rollin when he said, “There go my people.
I must find out where they are going so that I can lead them.2”

Good use of process performance data depends on estab-
lishing a foundation of measurement collection. In the CMMI,
this starts with the Measurement and Analysis (MA) process
area. In MA, an organization identifies its information needs
and measurement objectives. Managers are always looking
for information to help them answer questions like Mr. Ledru-
Rollin. By starting with information needs, an organization can
specify what is needed to answer some of those management
questions. It is important to define those measures clearly so
everyone is collecting the same data, the same way. Operational
definitions of measures are critical to measurement success. For
example, as a measure, a work hour can represent many things.
An organization should define what it needs to collect. Is it a di-
rect hour, an indirect hour, a billable hour or a support hour? By
clearly defining each measure an organization sets itself up for
more accurate and meaningful reporting. Care should be taken

to ensure that the data is collected accurately and analyzed
appropriately. Managers should also communicate the results
of the measurement activities back to the people collecting the
measures. By doing so, the managers give the practitioners a
stake in the measurements. The measures will mean more to
the practitioners, which will lead to more accurate reporting.
Without this communication, an organization ends up boxed in
as Rowan D. Williams stated, “Bad human communication leaves
us less room to grow.3”

Measurement establishes the foundation that grows into the
ability to use process performance data to help an organization
improve. Inaccurate reporting stifles that growth.

Dwight D. Eisenhower said, “Things are more like they are
now than they have ever been before.4”

While that may seem obvious, in the world of process per-
formance, it cannot be taken for granted. In order to know how
things are now, an organization must measure the current state of
its process performance and compare it to historical performance.
Each of the high-maturity process areas in the CMMI contains
practices that look at historical results, measure current perfor-
mance, forecast future performance, and look to make improve-
ments. As Philip Crosby said, “Making a wrong decision is under-
standable. Refusing to continually search for learning is not.5”

Organizational Process Performance

As mentioned above, an organization establishes measure-
ment goals based on information needs. As the organization
accumulates historical measurement data, it can begin to predict
process performance based on past results. In the Organization-
al Process Performance (OPP) process area in the CMMI, the
organization refines those goals based on a statistical analysis
of historical data and business needs for quality and process
performance. This is important because as Douglass Lurtan
pointed out, “When you determine what you want, you have
made the most important decision of your life. You have to know
what you want in order to attain it.6”

A statistical analysis of historical data is necessary to validate
these goals as attainable. Organizations should avoid setting
goals like, “We want to be a world-class provider of choice.” No
one knows what that means, but it sounds cool. People relate
to goals like, “We want to reduce customer found defects by
25% in the next year.” Organizations should set goals that are
clear, measureable, realistic, and easy to understand. After the
organization sets its goals, it needs to identify which processes
contribute to achieving those goals. Organizations should not
reach for too much in analyzing processes. It takes time and
money to perform quantitative analysis. Concentrate on those
processes that are of concern or that provide the most insight
into the achievement of business needs. There must be busi-
ness reasons for choosing the processes for analysis.

To determine if they can attain what they want, an organiza-
tion establishes process performance baselines to understand
past performance and process performance models to predict
future behavior. Keep in mind that these are just tools because
as H. Thiel said, “Models are to be used, not believed.7”

These tools give insight into process performance. A process
performance baseline shows an organization its expected range

Dale Childs, Double Play Process Diagnostics
Paul Kimmerly, USMC-TSO Kansas City

Abstract. Process performance forms the cornerstone of the high-maturity
concepts in the CMMI®. High maturity generates great discussion in the CMMI-
based process improvement world. However, understanding process performance
provides benefits to an organization whether or not it adopts the CMMI. The CMMI
provides a framework for an organization’s process improvement efforts. At its
highest levels, the CMMI describes how an organization can use process perfor-
mance measures to understand and improve its business processes. While this
article will mention the high-maturity process areas from the CMMI, it will primarily
focus on the analysis of process performance to help an organization. Comments
from wise men and women throughout history illustrate ideas related to process
performance. In one of his songs, Jimmy Buffett said, “Chasing illusions can get
quite confusing.1”

Process
Performance
Words of Wisdom

CrossTalk—July/August 2012 25

THE END OF THE PC

of performance based on past performance. By knowing the
expected range of performance, an organization understands
whether or not a given process can meet its performance goals.
Bertrand Russell said, “The degree of one’s emotion varies
inversely with one’s knowledge of the facts—the less you know,
the hotter you get.8”

Without the facts, managers can make reactive, emotional
decisions. Such decisions often lead an organization down the
wrong path. Understanding expected performance reduces
emotional decisions by giving managers an objective view and
reasonable performance expectations. Emotional reaction goes
away and objective decision making becomes possible.

Process performance models allow an organization to explore the
relationships between different pieces of their process. By using past
performance to understand how the different parts of the process
relate to one another, organizations can begin to predict what will
happen in later parts of the process based on what happens in an
earlier part of the process. This gives an organization understanding
of what it can do, not just what it has done. John Wooden stressed,
“Do not measure yourself by what you have accomplished, but by
what you should have accomplished with your ability.9”

Process performance models enable managers to understand
their ability, and understand when actual results vary from that
ability. In the CMMI, process performance models start with a
controllable factor, like project size, and create predictive models
based on the understanding of the effects of changes to that
factor. For example, an organization knows that a size increase
of more than 10% during the design phase causes increases
in test defect rates. Such knowledge can be used to determine
if additional peer reviews or testers are needed to accommo-
date the size change and prevent a significant increase in test
defects. Other models, while they may not be considered process
performance models in CMMI terms can also help organizations
understand and manage their projects. For example, if an organi-
zation knows that finding a higher than predicted rate of require-
ments review defects historically means a reduction in test and
customer-found defects, it can anticipate performance results and
make decisions related to those future lifecycle phases.

Quantitative Project Management (QPM)
In QPM, the project managers within the organization select

the measures and techniques they will use to manage process
performance. Sharon Salzberg stated, “Each decision we make,
each action we take, is born out of intention.10”

In QPM, the measures and techniques used in the project are
selected based on the objectives established in OPP and any
unique aspects of the project. If there is no connection to the
organization’s objectives, the organization goes back to chas-
ing illusions or, as Bob Seger offered, “Working on mysteries
without clues.11”

Organizations should consider which items to include and
which to leave out. Joshua Schachter said it well when he made
the point, “Every decision has a cost. Do I make this decision at
all or can I move on to the next thing? What we decided to leave
out is almost as important as what we put in.12”

The baselines and models that an organization creates give
insight into the quality and performance objectives set by the or-

ganization. As Confucius said, “The expectations of life depend
on diligence; the mechanic that would perfect his work must
first sharpen his tools.13”

Process performance baselines and models provide the tools,
which an organization sharpens over time as it gains an under-
standing of its process performance. But, tools must be used. As
Debra Wilson explains, “People who do not use the tools given
to them only injure themselves.14”

If an organization does not make use of QPM tools, it loses an
opportunity to meet business goals and improve performance.
QPM is where projects use the models and baselines that are
established in OPP to help manage their projects.

Process Performance and Decisions
Not every process is ripe for process performance measure-

ment. An organization should concentrate on those that directly
address business and performance objectives. Start with a small
set and build from there. Once an organization understands
its past results, other areas of opportunity present themselves.
Organizations must start somewhere, because as Washington
Irving said, “One of the greatest and simplest tools for learning
more and growing is doing more.15”

When projects use the tools available to them, they gain in-
sight and make better management decisions. When the actual
performance, or prediction of performance, does not match
expectations set by the baselines and models, managers should
ask questions and take action.

Lee Iococca said, “If I had to sum up in one word what makes
a good manager, I would say decisiveness. You can use the fan-
ciest computers to gather the numbers, but in the end you have
to set a timetable and act.16”

Iococca correctly contends that numbers are not answers.
Numbers represent indicators that managers should use to ask
questions that lead to better decisions. By establishing base-
lines and models, an organization sets its managers up to make
decisions based on an understanding of process performance.
Using our size example from earlier, if an organization knows
that an increase in project size of more than 10% causes a cor-
responding increase in test defects, a manager can adjust staff
levels or increase test time to allow for what it expects based on
past performance.

Causal Analysis and Resolution
As Crosby pointed out in the earlier quote, organizations must

continually learn by looking at their past mistakes and problems.
That concept forms the basis for Causal Analysis and Resolu-
tion (CAR). Catherine Aird stated, “If you cannot be a good
example, then you will just have to be a horrible warning.17”

Both good examples and horrible warnings should be looked
at when selecting outcomes for analysis in CAR. When ana-
lyzing process performance, the organization should look at
what has worked well in addition to what needs improvement.
Successes should be leveraged across the organization and
the root causes of problems should be resolved to prevent the
recurrence of the problem. As Chuck Berry told us, “Do not let
the same dog bite you twice.18”

Often organizations focus on symptoms rather than root

26 CrossTalk—July/August 2012

THE END OF THE PC

causes. Getting the right people in the room, which means
those involved in the process, helps identify root causes of prob-
lems or successes. Organizations leverage their successes by
analyzing the causes behind them just as they fix problems by
analyzing the causes behind them. It may be true as Mark Twain
said, “Few things are harder to put up with than the annoyance
of a good example.19”

However, successes can create peer pressure for others in
an organization to improve. By using CAR, an organization can
identify which annoying good examples are worth promulgating.
On the flip side, it is also true that, “The best way to escape from
a problem is to solve it, 20” as Alan Saporta pointed out. CAR
allows an organization to find root causes and prevent problems
from recurring again and again and again and …

Organizational Performance Management
Organizational Performance Management (OPM) asks an

organization to select the improvements it wants to make and to
put structure in place to deploy and analyze improvement pro-
posals. The potential improvements can come from a variety of
sources. One source is when a project’s results historically show
that they cannot reach performance goals. For example, if the
goal is to be within 10% of estimates and the project is always
25% to 40% off, the project is unlikely to ever meet the goal
without making a process change. Winston Churchill pointed
to this when he said, “Success consists of going from failure to
failure without loss of enthusiasm.21”

However, that success only comes from making change. The
results of a CAR discussion can also be the source for potential
improvements. For CAR groups to be successful, an organiza-
tion must provide feedback that shows the results are consid-
ered important and that the results are being used. As Colin
Powell said, “The day soldiers stop bringing you their problems
is the day you have stopped leading them. They have either lost
confidence that you can help them or concluded that you do not
care. Either case is a failure of leadership.22”

Another source comes from looking outside the organization
for innovations. Organizations often become enamored with
their own ideas and refuse to look outside of themselves. This is
the trap Friedrich Nietzsche spoke of when he said, “Many are
stubborn in pursuit of the path they have chosen, few in pursuit
of the goal.23”

All available information and sources, internal and external
to the organization should be used to support improvement
initiatives. Jimmy Buffett summed this up when he told us, “I
have read dozens of books about heroes and crooks, and I have
learned much from both of their styles.24”

Business goals should drive organizational improvements. Out-
side ideas can be just as valid as those that come from within.

Validation plays an important role in OPM. There are several
ways to validate if an improvement is successful. These include
piloting changes, modeling behavior and simulating results. To
the extent possible, improvements driven by process changes
should be validated statistically to ensure that observed chang-
es are not random. In other words, a quantitative look should
be taken to ensure that a significant change has occurred. This
prevents the pitfall that Mr. Spock addressed when he said, “A
difference that makes no difference is no difference.25”

Whatever method is chosen, organizations must find proj-
ect managers willing to take the first steps in trying out new
improvements. They should be willing to follow Frank Zappa’s
words, “I will do the stupid thing first and then you shy people
follow.26”

Improvement proposals do not always work. An organization
should not try to force an idea because it seems like it should
work. Use the validation results to determine if the change is
worth adopting. W.C. Fields explained that by saying, “If at first
you do not succeed, try, try again. Then quit. There is no use be-
ing a damned fool about it.27”

However, if the organization determines that the improvement
was a success, then a plan should be put in place to deploy it.

Using Process Performance Measures
to Manage Change

All improvements require change. Ideas may be easily under-
stood and accepted, but change always comes hard. Charles
Kettering explained, “The world hates change, yet it is the only
thing that has brought progress.28”

While change is critical for improvement, change must be
managed. Changes deployed to the organization should be as
timely as possible, but accomplished in an orderly fashion. As
John Wooden told his teams, “Be quick, but do not hurry.29”

Unmanaged change creates chaos, but managed change brings
benefits. As Francis Bacon pointed out, “Things alter for the worse
spontaneously, if they are not altered for the best designedly.30”

Organizations have to deal with unplanned, spontaneous
change. Managed change is easier to accept and sets the foun-
dation for future improvement.

Using process performance measures greatly aids an organi-
zation in making improvements. However, organizations should
not blindly follow the numbers. Numbers can be manipulated as
Mark Twain said, “Get your facts first, and then you can distort
them as much as you please.31”

As stated previously, numbers are just indicators. To create
useful indicators, organizations should clearly define the analysis
techniques that will be used and the rationale for using them.
Organizations must never lose sight of the fact that the percep-
tion of the staff is just as important as the numbers. George
Santayana explained, “Those who speak most of progress
measure it by quantity and not by quality.32”

Both the hard numbers and soft perceptions determine the
success of any improvement effort. If the numbers look good,
but the people have legitimate reasons for objection, the orga-
nization must consider their viewpoint. Malcolm Gladwell said it
well when he explained the need for balance, “Truly successful
decision making relies on a balance between deliberate and
instinctive thinking.33”

Organizations collect a lot of numbers, but real value comes
when they are used. Establishing a measurement foundation
enables the use of process performance measures once an
organization builds some historical data. The high-maturity pro-
cess areas in the CMMI provide guidance on how quantitative
information and process performance measures can be used
to help an organization meet its business goals. Remember as
Hesiod stated around 800 BC, “Observe due measure, for right
timing is in all things the most important.34”

CrossTalk—July/August 2012 27

THE END OF THE PC

The time is now for building a measurement program with the
vision for how performance measures will be used. Understand-
ing process performance can be perplexing. Others weathered
the storms of change in the past. In order to plan for the future
of process improvements and make meaningful change, organi-
zations should consider words of wisdom from those who came
before us.

Disclaimer:
CMMI® is registered in the U.S. Patent and Trademark Office
by Carnegie Mellon University.

Dale Childs is a certified CMMI High
Maturity Lead Appraiser, a certified CMMI
instructor, a certified Lean Six Sigma Green
Belt, and a trained Malcolm Baldrige National
Quality Award examiner. Dale is an SEI af-
filiate and the CEO of Double Play Process
Diagnostics, Inc. Mr. Childs retired form the
DoD in 2008. While at the DoD he was re-
sponsible for coordinating his agency’s CMMI
efforts. Dale is the 2011 recipient of the SEI’s
Member Representative Award. Mr. Childs’
efforts are currently focused on working with
organizations pursuing CMMI high maturity
and business growth.

Double Play Process Diagnostics Inc.
P.O. Box 17015
Pensacola, FL 32522
Phone: 850-450-5626
E-mail: dale.childs@doubleplayconsulting.com

Paul Kimmerly has nearly 25 years experi-
ence in software development for the differ-
ent incarnations of the United States Marine
Corps Technology Services Organization. He
recently retired from full-time employment,
but remains in a consulting role. He was a
member of the organization’s Software Engi-
neering Process Group for 18 years, serving
as the group’s lead for more than 15 years.
Paul is a certified HMLA and CMMI instructor
for the CMMI for Deveopment and the CMMI
for Acquisition. He is an SEI affiliate and a
member of CROSSTALK’s editorial board.
He has presented at past SEPG conferences
and contributed several articles on process
improvement to CrossTalk. In addition to his
part-time duties with the USMC TSO, he
works with private clients through Double
Play Process Diagnsotics Inc.

4921 W. 72nd Street
Prairie Village, KS 66208
E-mail: paul.kimmerly@mcw.usmc.mil
or pjkimmerly@kcnet.com

1. Written by Jimmy Buffett, The Legend of Norman Paperman, Don’t Stop the Carnival, Island, 1998
2. Alexandre Ledru-Rollin, Suzy Platt, ed. Respectfully quoted: a dictionary of quotations (Barnes & Noble, 1993), p. 194
3. Rowan D. Williams. (n.d.). BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
4. Dwight D. Eisenhower. (n.d.). BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
5. Philip Crosby, Philip Crosby’s Reflections on Quality: 295 Inspirations from the World’s Foremost Quality Guru,
 McGraw-Hill, September 1, 1995
6. Douglass Lurtan, Quotationsbook.com, retrieved September 28, 2011, from quotationsbook.com
7. Henri Thiel, Famousquotes.com, retrieved September 28, 2011, from famousquotes.com
8. Russell, Bertrand, BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
9. Wooden, John, BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
10. Sharon Salzberg, O Magazine, The Power of Intention, January 2004
11. Written by Bob Seger, Night Moves, Night Moves, Capitol, 1976
12. Schachter. quotationspage.com. Retrieved September 28, 2011, from quotationspage.com
13. Confucius. BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
14. Wilson, Debra. BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
15. Irving, Washington, BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
16. Iococca, Lee, quotationspage.com. Retrieved September 28, 2011, from quotationspage.com
17. Aird, Catherine, quotesdaddy.com. Retrieved September 28, 2011, from quotesdaddy.com
18. Berry, Chuck. searchquotes.com. Retrieved September 28, 2011, from searchquotes.com
19. Twain, Mark. BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
20. Saporta, Alan. Quotationspage.com. Retrieved September 28, 2011, from quotationspage.com
21. Churchill, Winston. BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
22. Powell, Colin. . Quotationspage.com. Retrieved September 28, 2011, from quotationspage.com
23. Nietzsche, Friedrich. BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
24. Written by Jimmy Buffett. Son of a Son of a Sailor, Son of a Son of a Sailor, MCA, 1978
25. Blish, James. Spock Must Die, Spectra, March 1, 1985
26. Written by Frank Zappa. Don’t Eat the Yellow Snow, Apostrophe, Zappa Records, 1974
27. Fields, W.C., BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
28. Kettering, Charles. BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
29. Wooden, John. goodreads.com. Retrieved September 28, 2011, from goodreads.com
30. Bacon, Francis. BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
31. Twain, Mark. BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com
32. Santayana, George. Quotationspage.com. Retrieved September 28, 2011, from quotationspage.com
33. Gladwell, Malcolm. Quotationspage.com. Retrieved September 28, 2011, from quotationspage.com
34. Hesiod. . BrainyQuote.com. Retrieved September 28, 2011, from BrainyQuote.com

ABOUT THE AUTHORS

REFERENCES

28 CrossTalk—July/August 2012

UPCOMING EVENTS

Upcoming
Events

Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

INCOSE International Symposium 2012
9-12 July 2012
Roma, Italy
http://www.incose.org/newsevents/events/details.
aspx?id=142

Practical Software and Systems Measurement (PSM)
16 July 2012
Mystic, CT.
http://psmsc.com/Events.asp

COMPSEC 2012
16-20 July 2012
Izmir, Turkey
http://compsac.cs.iastate.edu/

CrossTalk—July/August 2012 29

UPCOMING EVENTS

GFIRST8
19-24 August 2012
Atlanta, GA
http://www.us-cert.gov/GFIRST

26th International Biometrics Conference
26-28 August 2012
Kobe, Japan
http://www.ourglocal.com/event/?eventid=11988

Diminishing Manufacturing Sources and
Material Shortages & Standardization
27-30 August 2012
New Orleans, LA
http://www.dmsms2012.com/

AUTOTESTCON 2012
10-13 September 2012
Anaheim, CA
http://www.autotestcon.com/general/autotestcon-2012

ASIS/(ISC)2 Security Congress
10-13 September 2012
Philadelphia, PA
https://www.isc2.org/congress2012/default.aspx

15th Annual Systems Engineering Conference
22-25 October 2012
San Diego, CA
http://www.ndia.org/meetings/3870/Pages/default.aspx

OWASP AppSec USA 2012
22-26 October 2012
Austin, TX
https://www.owasp.org/index.php/Category:OWASP_App-
Sec_Conference

12th Annual CMMI Technology Conference
5-8 November 2012
Denver, CO
http://www.ndia.org/meetings/3110/Pages/default.aspx

WA R F I G H T I N G T E C H N O L O G I E S
ENHANCE ADVANCE MODERNIZE

 WWW.SSTC-ONLINE.ORG
http://www.facebook.com/TheSSTC

Follow Us On Facebook

Thank
You!

See you next
year!

24th Annual

Thank you to all of the sponsors, exhibitors, and attendees that
helped make the 24th Annual Systems & Software Technology
Conference a big success in April 2012! Visit www.sstc-online.org or
follow our Facebook page for information about next year's event.

CrossTalk—July/August 2012 31

BACKTALK

During the early 1800s in England, there was a movement
protesting progress. In particular, a young man named either
Ludham or Ludd (history is murky on this point) gave his name
to a movement dedicated to smashing technology to protest the
industrial revolution. While their reasons might be considered
sound (the new technology allowed the hiring of less-skilled and
cheaper labor to replace skilled artisans), their methodology was
certainly illegal. The Luddite movement lasted only a few years,
but for a brief time the British had more soldiers fighting the
Luddites than they had fighting Napoleon. Nowadays, Luddite is
used to describe one who is opposed to industrialization, auto-
mation, computerization, or new technologies in general.

All I can say about the Luddites is…sometimes I feel their
pain; like when buying gas.

I recall that in the good old days I would fill up, walk in, and
give the attendant some cash.

When charge cards became popular, you walked into the sta-
tion, the attendant zipped your card on a paper receipt, and you
signed it and were done. Within a few years, the process improved
so that you simply inserted your card at the pump, and after filling
up, a small receipt emerged from the pump, and you drove off.
The system was almost perfect. However, the last time I was at
the gas station, I was forced to go through the following process:

•	Upon	inserting	my	credit	card	I	was	asked,	“David,	are	you	a	
member of the rewards program? If so, scan your rewards card!”
(The pump knew my name, surely it could keep tract of the fact
that I am a rewards member, and get a $0.03 discount).

•	After	scanning	my	rewards	card.	It	asked,	“Do	you	want	to	
apply your $0.03 discount?” (Why, would I not want my discount?)

•	After	pressing	yes,	the	pump	replied,	“Do	you	want	a	car	wash?”
•	No.	The	pump	then	replied,	“Is	this	a	credit	or	debit	card?”	

(Well, legitimate question, other than I was using my American
Express, which really is always a credit card.)

•	I	pressed	credit,	then	I	was	asked	to	enter	my	zip	code.	(I	
am going to figure that if a thief has my credit card and name,
he can probably figure out where I live—probably because he
has my wallet. Mind you, had I pressed debit I would have been
asked for a PIN.)

•	Now	I	am	asked,	“Do	you	want	a	receipt?”	(Do	they	realize	
that the printer on the pump has been broken for two years now?)

•	Finally,	am	prompted	with	the	words,	“Please	select	grade”.	

•	Nope—not	done	yet.	After	I	select	87	octane,	it	responds,	
“Please hit start to begin”. (Please note that this button will
either be hidden among many other keys, and/or the word, start,
will have long worn off the button, and I am guessing. Heaven
forbid I hit cancel instead and start over. Can we please make
the start button large, bright red, and extremely well labeled? For
that matter, can we assume that once I select the grade of gas
and remove the pump nozzle, I am pretty sure I am going to use
the fuel. Just turn the pump on!)

I often find myself talking to the pump, explaining that I just
want gas—not a hand/eye coordination and reading test before I
can start the pump. By the way, once the entire above process is
complete, I forgot the final step:

•	As	soon	as	the	gas	starts	flowing,	the	pump	now	responds	
with a blaringly loud obnoxious advertisement for the weekly
store specials, usually along the lines of, “Now on sale this week
for only $4.99—EZSprinkle Shoe Deodorizer.” Which, of course,
makes me press blindly for the mute button. Heaven forbid I ac-
cidentally hit cancel.

Things I used to do on a full-sized computer I now do on a
tablet or a smart phone. I find myself using full-sized comput-
ers less and less, and other devices such as inter-connected
cable boxes and DVD players more and more. My personal
smartphone is now my mailbox, contact list, and Google search
interface. There will always be a need for personal computers—
but, now, instead of a “personal computer,” I use devices that are
“more personal.” The software that runs it all, however, continues
to increase in size and complexity. And sometimes decreases in
end-user simplicity.

We cannot neglect the human element. The need for software
that is simple and understandable remains. Maybe I am a Lud-
dite. I am deeply opposed to progress that makes my life harder.
I want things to evolve towards simple and easy to use. The
need for end-user buy-in and reliable and understandable soft-
ware is constant—regardless of the size or shape or evolution of
its processor. As it should be.

David A. Cook
Stephen F. Austin State University
cookda@sfasu.edu

Luddites of the World, Unite!

CrossTalk thanks the
above organizations for
providing their support.

Exciting
and Stable
Workloads:
 �Joint Mission Planning System
 �Battle Control System-Fixed
 �Satellite Technology
 �Expeditionary Fighting Vehicle
 �F-16, F-22, F-35
 �Ground Theater Air Control
System
 �Human Engineering
Development

Employee
Benefits:
 �Health Care Packages
 �10 Paid Holidays
 �Paid Sick Leave
 �Exercise Time
 �Career Coaching
 �Tuition Assistance
 �Retirement Savings Plans
 �Leadership Training

Location,
Location,
Location:
 �25 minutes from Salt Lake City
 �Utah Jazz Basketball
 �Three Minor League Baseball
Teams
 �One Hour from 12 Ski Resorts
 �Minutes from Hunting, Fishing,
Water Skiing, ATV Trails, Hiking

Visit us at www.309SMXG.hill.af.mil. Send resumes to shanae.headley@hill.af.mil.
Also apply for our openings at USAjobs.gov

	Front Cover
	Table of Contents
	From the Sponsor
	The PC is Dead—Long Live the PC: Making Computing More Personal
	Software Doctrine for Fixed-Price Contracting
	Uncovering Weaknesses in Code With Cyclomatic Path Analysis
	Efficient Methods for Interoperability Testing Using Event Sequences
	Building Confidence in the Quality and Reliability of Critical Software
	Process Performance: Words of Wisdom
	Upcoming Events
	BackTalk
	Back Cover

