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Abstract 
 

 With respect to military applications, classification systems are employed to 

remotely assess whether an element of interest falls into a “target” class or “non-target” 

class. The name of the classes is arbitrary, but the role of the classification system 

remains the same. These systems also have uses in fields as far ranging as biostatistics to 

search engine keyword analysis. The performance of the system is often summarized as a 

trade-off between the proportions of elements correctly labeled as “target” plotted against 

the number of elements incorrectly labeled as “target.” The first term is generally 

regarded as the “hit rate” and the second term as the “false alarm rate.” These are 

empirical estimates of the true positive and false positive rates. These rates are often 

plotted to create a receiver operating characteristic (ROC) curve that acts as a visual tool 

to assess classification system performance. The performance of the system(s) can 

possibly be increased if the information provided by both systems can be fused together 

to create a new, combined system using any number of techniques. The research 

contained in this thesis focuses specifically on the label fusion technique and the bias that 

can occur when using incorrect assumptions regarding the partitioning of the event set. 

This partitioning may be defined in terms of what will be called within and across label 

fusion. The major goals of this thesis are the formulaic development and quantification of 

performance bias between different types of across and within label fusion and analysis 

of the effects of individual classification system performance, correlation, and target 

environment on the magnitude of bias between these two types of label fusion. Formulas 

developed may be used to adjust optimal parameters and performance measures to 



 

xvii 
 

appropriately reflect fused system performance on various platforms. Thus, this research 

can be applied in the future to address the inherent bias that may be built into fused 

classification systems.  
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QUANTIFYING PERFORMANCE BIAS IN LABEL FUSION 
 

I Introduction 

1.1 Background 

As technology advances and access to inexpensive and efficient computing 

resources continues to rise, there is reason to believe that sole reliance on the human 

element in any number of decision-based applications will be reduced and there will be 

an increased use of automated systems. Such technology has advantages. For example, if 

a machine can take the place of a human being in a potentially life threatening situation, 

why not rely on autonomous processes? However, as research into the area of decision 

and classification system theory has evolved, it has become clear that the process of 

human-based decision making is a difficult task for a machine. Most notably, there are a 

considerable number of ways to analyze data and make a decision.  

 Classically, the goal of label fusion is to combine the output from multiple 

classification systems to improve predictive accuracy. This makes intuitive sense from 

the point of view that different classification systems excel at classifying different events. 

Further, the performance of different combinations of classification systems depends in 

large part on the fusion rule to be used. There are times, however, that fusing multiple 

classification systems together can actually decrease performance and in this instance, it 

may be best to not fuse and instead choose the optimally performing individual 

classification system.  

 Apart from fusion rule and choice of classification systems, the level of 

classification system dependence is a necessary consideration. Some methods make no 

assumption about the dependence of individual classification systems while others 
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inherently assume independence. For example, probabilistic neural networks make no 

assumptions regarding the level of dependence between individual classification systems 

(Leap et al: 2008). Instead, the probabilistic neural network is tuned to the targets it is 

designed to classify by using a portion of the available data as training material. The 

theory that this thesis is based upon, label fusion, requires that the individual 

classification systems are independent in order to derive the functions for the receiver 

operating characteristic (ROC) curve. The ROC curve is a graphical tool for depicting 

true hit rate along the vertical axis (the number of target events correctly classified as 

targets, i.e., true positive rate) as compared to false alarm rate along the horizontal axis 

(the number of target events incorrectly classified as non-targets, i.e., false positive rate). 

 With the notions of fusion and classification system dependence in place, the 

focus becomes how to optimize performance given the systems and fusion rules 

available. It is common to apply a series of logical rules and combinations of logical rules 

and choose the combination that optimizes performance (W. Khreich et al: 2012). 

Another common method is to treat the output of the individual classification systems as 

input to a neural network and run a regression-based analysis (Leap et al: 2008). Along 

with optimization of performance comes the consideration of optimization of available 

resources. Fusing classification systems tuned to different target types, perhaps from 

legacy systems, invokes concerns regarding the probability with respect to target 

prevalence and event set partitions. However, systems combined using label fusion rules 

are especially prone to simplifying assumptions which may overlook target partitions. 

Mathematical and computational modeling generally performs well in this regard relative 

to diagnostic testing or actual engineering testing. As such, the fused system should 



 

20 
 

outperform any individual system and perform efficiently despite environmental 

constraints such as target prevalence and classification system correlation. 

1.2 Problem Statement 

The research contained herein addresses the quantification of bias between what 

will be defined as across and within label-fused classification systems and the effects of 

individual classification system performance, correlation, and target environment on such 

bias. Specifically, fused systems that do not account for differences in the partitioning of 

targets between fused systems produce errors, or a bias, in system performance. 

Depending on how the specific target partitions of the event set are defined for the 

classification systems to be fused gives rise to the notion of within versus across label 

fusion. It is in mistaking between what can be labeled as within and across fusion that the 

bias in system performance occurs. Thus, this research involves the derivation of 

formulas that allow for quick and easily implementable bias correction algorithms. 

Building on the work of (Schubert: 2005), (Leap et al: 2008), (Schubert et al: 2005), 

(Oxley, Bauer: 2003), who have previously investigated and derived functions for the 

ROC curves of label-fused systems, the formulas for bias will be derived using these 

formulas. The algorithm developed here will create a graphical and analytical tool for 

measuring bias in the form of a bias curve. Using the work of (Schubert: 2005), 

correlation between classification systems will be examined. Individual system 

performance and structure of the target environment is also considered. 

1.3 Research Methodology 

Prior to developing a functional form for the bias, some rudimentary classification 

system theory and label fusion theory must be derived along with the functions for ROC 
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curves under both Boolean AND/OR rules and within and across label fusion. The theory 

of correlation under these Boolean rules will be discussed briefly. With the ROC curves, 

the bias can be defined as the difference in true positive rate for two ROC curves under 

different label fusion rules. These formulas have been derived under the assumption of 

conditional independence with respect to the non-target partition of the event set. This 

will have important implications when it comes to assessing the correlation between 

different label-fused classification systems. A specific bias function is derived for 

comparing each type of across versus within label-fused system under a given Boolean 

rule. Using simulations, the performance of classification systems in different target 

environments under different assumptions of correlation and the bias between different 

combined label-fused systems are compared. 

1.4 Assumptions    

The main assumptions made in this document have been largely inherited from 

previous research. First, it is assumed that there is a two-class label set. From the point of 

view of military application, the two-class label set may generally be composed of the 

target class and non-target class, though it need not be. Consider a simple example 

involving a two-class label set. Suppose a classification system is built to classify a 

specific type of radar signature for a type of enemy aircraft. This system could employ a 

vector of probability values that favors (that is, employs a higher weighting of 

probability) the classification of high velocity fighter jets. Perhaps other, less highly 

weighted parameters are concerned with classifying support aircraft. Now suppose that an 

array of these systems is put out into the field and a high velocity aircraft is correctly 

classified as a target. After a series of aircraft have been classified by the systems, the 
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performance of the array can be depicted graphically using the ROC curve where true 

positive or hit rate is plotted along the vertical axis and the false positive or false alarm 

rate is plotted along the horizontal axis. 

 Notice that the classification systems themselves did not identify the actual 

aircraft, but rather used classification systems to classify the aircraft into a specific class, 

e.g., a target. This is a subtlety that is inherent with classification system fusion: the 

classification systems cannot identify the elements of interest, only assign a class label 

determined by pre-defined thresholds. This loss of information is one disadvantage 

inherent to label based fusion. 

The second assumption inherited from prior research is that the classification 

systems are combined using label fusion. In label fusion, the fusion of classification 

systems occurs after both systems have produced their own label sets. These label sets are 

then combined using some combination of logical Boolean rules or other rules to produce 

a combined label set. There are other methods of fusion. Another type of fusion is feature 

fusion, where a decision is made with respect to analysis of target features (i.e. Does the 

vehicle have wheels or tracks?) and a decision is made using data from both systems. 

With respect to Boolean rules, only the logical AND/OR rules will be investigated in this 

thesis. The derivation of ROC curves and therefore the derivation of bias formulas are 

done with respect to label-fusion under these two rules. This does limit the concept of 

bias currently to single applications of Boolean rules, but considering they are easy to 

implement and used heavily in research, this limitation is minimal.  

A third assumption is the notion of conditional independence of classification systems 

with respect to the non-target partition of the event set. ROC curve formulas for the fused 
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classification system had been developed previously in a manner such that the formula 

could be written in terms of the ROC curves of the individual classification systems. In 

this manner, the performance of the combined system could be determined from the 

performances of the individual systems. Hence, the need for further testing is reduced and 

the use of previous testing results, as from legacy data sets, is leveraged.       

1.5 Research Implications 

The results from this research may be used to determine the difference in classification 

system performance between competing label-based fusion techniques in application. 

Most importantly, it may draw attention to the importance of choosing the correct type of 

label fusion rule when the partitioning of events is finer than either target type or non-

target type. This has not been scrutinized closely by many active researchers. Bias 

formulas may be used to adjust previously fused classification systems to a corrected 

performance by reweighting target prevalence, adjusting target environment, and 

adjusting the level of correlation between individual classification systems. This is 

accomplished through a simple and cost effective way of simulating the performance of 

classification systems a computer program. The groundwork may also be expanded upon 

by other researchers to develop techniques for comparing the performance of systems that 

are not based on Boolean rules as well as relaxing the notion of conditional independence 

of classification systems with respect to the non-target partition. 

1.6 Outline of Sections 

In section II, a brief literature review outlines the research conducted into the area 

of label based fusion up to the current point in time. In section III, the underlying theory 

of classification system fusion and across and within label based fusion is derived. In 
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section IV, a brief outline of the computer simulation will be given. Finally, in section V 

the formulas for bias between competing within and across label-fused systems is derived 

and the simulation data is analyzed.   
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II Literature Review 

 As budgets tighten and access to relatively inexpensive and efficient computing 

resources continues to rise, researchers are continuously searching for ways to improve 

the performance of autonomous classification systems. Generally the classification 

system being utilized is composed of an ensemble of classification systems that is then 

fused together using some sort of decision rule. As outlined in the introduction of 

(Liggins et al: 1997), “fusion is necessary to integrate the data from different sensors and 

extract the relevant information on the targets.” Traditionally, fusion occurred in a 

centralized architecture. That is, data from various sources were sent to a single location 

where the data was then fused in some way. Eventually this architecture evolved into a 

hierarchy of classification systems where low level systems process data and then send 

this information to more specialized classification systems to improve accuracy of 

decision. The means and manner in which information is being fused is rapidly changing 

to include a multitude of application specific methods.    

 There are many areas of active research where the fusion of information takes a 

lead role. For example, one of the more active areas of research involves the testing of 

hypotheses, and more specifically, either the identification or classification of an element 

of interest. In classification, information is fused to put an element of interest into one of 

a series of classes where common features are shared. Human face recognition and 

gender recognition are two areas where automated machine classification is of current 

interest (Y. Pang et al: 2012). Identification is a more specific form of classification 

where the element can be physically labeled with regard to its true identity. Another 

example of active research with regard to information fusion is automatic target 
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recognition (ATR). In ATR research, the goal is to develop methods which permit the 

tracking and classification of objects through time and space. This has clear military and 

civilian applications, but is not the primary subject of this thesis. Further information on 

the subject can be gleaned from any number of sources such as (Pilcher and Khotanzad: 

2008), (Gross: 1999), and (Padgett and Woodward: 1997).   

2.1 Fusion Methods 

 There are a number of ways to fuse classification systems. Among the more 

prevalent methods in modern research are the use of neural networks, Boolean rules or 

voting rules, and statistical methods. 

 The fusion of classification systems or classification systems tends to occur most 

commonly on either the features of the data or on the labels produced by the system. In 

feature fusion, classification systems make decisions by analyzing the distinguishing 

attributes of those elements in question. In label fusion, the fusing of information occurs 

after the individual classification systems have already given a class label to the element 

in question. These two fusion approaches are arguably the most common in literature. 

The use of neural networks is ubiquitous in literature (Sinha, Gupta, Rao: 2001), 

(Sani et al: 2009), (Werbos: 1991), (Won, Cho: 2003),etc. Generally speaking, “a neural 

network conducts an analysis of the information and associates a probability estimate that 

the data matches the characteristics it has been trained to classify.” (Sani et al: 2009). 

This training is done by modifying the thresholds of the system so that the neural network 

returns the classifications described by the end user. Neural networks are popular because 

they are relatively simple to design, make few assumptions regarding the underlying 



 

27 
 

distributions of elements it is tuned to classify, and is highly adaptable through the 

training process.  

Boolean rules make use of Boolean algebra to classify elements of interest. Two 

of the simplest Boolean rules that are used heavily in research are the AND (conjunctive) 

rule and the OR (disjunctive) rule. These rules can be combined in various ways to create 

new decision or voting rules. Popular voting rules include the majority vote rule and the 

sensor dominance rule. The majority vote rule considers all permutations of the 

application of the AND rule to the classification systems and then applies the OR rule 

between each combination. The sensor dominance rule permits a single classification 

system to dominate the decision for the fused classification systems (Schubert: 2005).  

Some novel optimization approaches for receiver operating characteristic (ROC) curves 

have been proposed using a set of Boolean functions. The ROC curve is a graphical tool 

for depicting true positive rate along the vertical axis (hit rate) as compared to false 

positive rate along the horizontal axis (false alarm rate). This BCALL approach developed 

by (W. Khreich et al: 2012). Applies a set of a 10 Boolean rules to two ROC curves and 

chooses the rule that optimizes performance at each point on the curve. Most Boolean 

rules that are used in the fusion of classification systems must have their performances 

determined after the actual fusion process. The work of (Oxley M.E., Bauer, K.W.:2003) 

and earlier papers began the notion of being able to describe the performance of fused 

classification systems prior to any sort of formal testing. This was done by deriving an 

expression for the performance of the combined system using properties of the 

performances of the individual classification systems. Oxley and Bauer originally 

developed an expression for the logical OR rule assuming independence between the 
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individual classification systems. The work of (Schubert: 2005) and (Schubert et al: 

2004) has extended this work considerably, developing expression for the logical AND 

rule and developing the concepts of within and different types of across label fusion. This 

thesis relies on the theory developed in these fusion methods. In these works, the 

performance of the fused classification systems are expressed through the use of the ROC 

curve using the assumption of a two class label set.  

 Finally, there is the use of statistical modeling in fusion research. Generally this 

takes the form of some type of generalized linear model (GLM). A generalized linear 

model is a linear regression model that allows the response variables to be non-normally 

distributed. However, it is most common in literature to assume that the error or noise in 

statistical fusion is Gaussian or normally distributed. Though it is uncommon to work 

with non-Gaussian statistical models, industrial noise often shows non-Gaussian 

characteristics (Niu, Zhu, Gu, Chu: 2009). In statistical modeling, the goal is to 

approximate the distribution of those elements of interest generally through the use of 

least squares analysis or the method of maximum likelihood. Some advantages of 

statistical fusion are that modern software packages make this analysis very easy to 

conduct. A statistical model can be rigid in the fact that most linear regression techniques 

require that error terms be normal, independent, and identically distributed.  

2.2 Independence and its Effects on Fusion 

 Some methods described above make no assumptions regarding the level of 

dependence between classification systems. Most neural networks do not make 

assumptions regarding the level of dependence between elements being classified or 

between individual networks as any level of dependence present can be accounted for in 
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the training process. Dependence between classification systems has been one of the 

hurdles to the development of mathematical expressions for the performance of 

classification systems. In the works of Oxley and Bauer, it was assumed that the 

individual classification systems to be fused (and therefore their ROC curves) are 

statistically independent. This allows for the Boolean fusion rules to be defined. In 

probability theory, if two events are independent, then the probability of both events 

occurring simultaneously is equal to the product of the probabilities of the individual 

events occurring, that is, the occurrence of one or a set of events does not affect the 

outcome or occurrence of another event or set of events. If the two events are not 

independent, then calculating the probability of both events occurring simultaneously 

may either not be tractable or it may be very difficult. The Boolean AND rule for fusing 

individual classification systems takes the form of the independent AND rule in 

probability. Analogously, the Boolean OR rule takes the form of the independent OR rule 

in probability; that is, the sum of the probability of events A and B minus the product of 

the probability of events A and B.  

 When fusing ROC curves using label based fusion as presented in (Schubert: 

2005), it is further required that the false positive values (the probability of false alarm 

rate) of the fused classification system be conditionally independent with respect to the 

non-target partition of the event set. Conditional independence of events is a stronger 

assumption than simply independence of events. As defined in (Dawid: 1979), two 

random variables X and Y are conditionally independent with respect to a third random 

variable, Z, if the probability of X and Y given Z is the product of the probability of X 

given Z and the probability of Y given Z. More importantly, this should imply that the 
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probability of X given Y and Z is equivalent to the probability of X given Z. That is to 

say, any information about the random variable Y is superfluous and has no impact on the 

probability of X given Z. Dawid cautions that the use of improper distributions/random 

variables can lead to erroneous results. It may be possible in this instance to factor the 

conditional probability of X and Y given Z into the product of individual conditional 

probabilities, but the probability of X given Y and Z is no longer equal to the probability 

of X given Z. This is known as the marginalization paradox. This is important to discuss 

here as the research of this thesis along with the work of Schubert, Oxley, and Bauer 

requires the use of proper random variables. If this is not the case, this can lead to 

erroneous results.   

 The notions of independence between label-fused ROC curves were eased in the 

work of (Schubert: 2005) through the derivation of an expression for the correlation. This 

is a unique approach in that the level of dependence between classification systems can 

be calculated through the use of formulas involving only the ROC curves. Using this 

concept, functions were derived that accounted for a fixed level of correlation and hence 

independent label-fused ROC curves were those functions where the correlation 

coefficient, ρ, is zero.  

 Finally, there has been some research into the effects of correlation on the 

performance of classification systems. In (Petrakos, Kaanelopoulous, Benediktsson, 

Pesaresi: 2000) the researchers investigated the effects of correlation on fusion of 

classification systems using satellite imagery data. They did this by assessing the measure 

of agreement between different classification methods. In the work of (Won, Cho: 2003) 

the researchers selected ideal features from DNA microarray data that were negatively 
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correlated in an attempt to boost the performance of classification methods. This 

demonstrates that the presence of dependence can actually be used to enhance the 

performance of fused classification systems. 

2.3 Importance of Deriving a Method for Quantifying Bias in Label Fusion 

  Classically speaking, the term bias in regards to classification theory generally 

implies that the data being classified is unequally weighted or that a subset of classes is 

more heavily favored. A good example of this comes from (Abiantun and Savvides: 

2009), where the researchers refine the Adaboost algorithm to offset the bias inherently 

built into facial feature classification systems. Up to this point, most, if not all, research 

into the effects of imbalanced and biased classification systems has been done with 

respect to feature fusion. Given the derivation of a mathematical expression for 

quantifying both the performance and correlation of classification systems as provided by 

(Schubert: 2005) and (Schubert, Oxley, and Bauer: 2005), it has become possible to 

characterize the inherent bias that exists in label fusion. The purpose of this thesis is to 

form a method and an algorithm to both quantify and adjust for the bias that exists 

between different types of label-fused classification systems with respect to event set 

partitions. This is important for the following reasons. To date, there has been almost no 

investigation into the effect of event set partitions on the performance of the fused 

system. Secondly, any bias that does exist between different label fusion methods could 

possibly be used as tools to tweak the performance of label-fused systems.   
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III Methods and Theoretical Development 
 

The mathematical theory of classification systems and Boolean fusion rules will 

be developed here. This will be achieved by developing the notion of conditional 

probability to describe the performance of a classification system, the receiver operating 

characteristic (ROC) curve to evaluate classification system performance, and defining 

the across and within label fusion rules. Further detail for much of these methods and 

theoretical development can be found in (Schubert, et al: 2005) and (Schubert: 2005). 

3.1 Classification Systems 

 3.1.1 Single Classification System  

 Define Γ to be a population set of outcomes, i.e., the overarching or underlying 

event set. Let G be a σ-algebra of subsets of Γ. Then, (Γ, G) defines a measurable space 

(Schubert: 2005). Define PΓ to be a probability measure defined on G. This implies that 

(Γ, G, PΓ) defines a probability measure space. Let s be a sensor that maps outcomes from 

Γ to a new data set, Δ. Let D be a σ-algebra on Δ, implying that (Δ, D) defines a 

measurable space. Furthermore, define PΔ to be a probability measure defined on D; 

therefore (Δ, D, PΔ) defines a probability measure space. Some examples of data sets may 

include different segments of the electromagnetic spectrum, search engine keywords, or 

images. Sometimes this data is too nebulous to make an accurate decision, so another 

mapping p (a processor) is defined on Δ that can be used to produce an object f which is 

called a feature. Let Φ be a feature set and define F to be a σ-algebra of subsets of Φ. 

This makes (Φ, F) a measureable space. Letting PΦ be a probability measure defined on F 

defines the probability measure space (Φ, F, PΦ). In most circumstances, including this 

thesis, the feature f is a vector of real numbers, though it need not be. Let Θ be a set of 
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parameters. For each θ ∈ Θ, let aθ be a classification system mapping that takes elements 

of Φ into Λ, the label set. Defining L to be a σ-algebra on Λ makes (Λ, L) a measureable 

space. Letting PΛ be a probability measure defines a probability measure space (Λ, L, 

PΛ). The label may take any number of forms, but in this thesis, elements from Λ will 

take the form {non-target, target} ≅ {n, t}, depending on context. The composition of 

these mappings creates the single classification system, defined in this context to be Aθ. 

That is, for every θ ∈ Θ:  

 𝐴𝜃 = 𝑎𝜃 ○ 𝑝 ○ 𝑠 

𝛤
𝐴𝜃�� 𝛬 

(3.1) 

 

 3.1.2 Multiple Classification Systems   

It is possible to combine two or more classification systems together. In this 

thesis, only the fusion of two classification systems is considered. Further, the systems to 

be combined are fused together using label fusion. Label fusion may be loosely defined 

as the joint system decision based on processing the labels (the decisions) given to 

elements in the event set by individual classification systems. Consider two classification 

systems: Aθ and Bπ. Let Aθ be the system defined previously. Let system Bπ be defined as 

the classification system defined by the composition mapping: 

 𝐵𝜋 = 𝑏𝜋 ○ 𝑝2 ○ 𝑠2 (3.2) 

 

Classifier bπ maps elements from the feature set associated with system Bπ into its label 

set.  Note that the sensor, s2, and processor, p2, are different from those processors and 
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sensors defined for classification system Aθ. Now, consider that these two classifications 

systems observe the same element, x, in the event set, Γ. That is, for x ∈ Γ: 

 𝐴𝜃 = 𝑎𝜃 ○ 𝑝1 ○ 𝑠1(𝑥) 

𝐵𝜋 = 𝑏𝜋 ○ 𝑝2 ○ 𝑠2(𝑥) 

(3.3) 

 

The labels produced by these two compositions are then fused to create a system label as 

generated by both classification systems, hence label fusion. The following schematic 

outlines this process of label based fusion. 

 
Figure 3-1 - Mapping of element from the population of event sets, Γ, into the fused label set, Λ'. 

It is possible to develop other system mappings. Say for example that the two data sets 

from above are simultaneously mapped to the same feature set.  

The two labels sets 
are fused to create 
a combined label 

set, Λ'. 

Classifiers aΘ and 
bπ map into 

different, exclusive 
label sets. 

Processors p1 and 
p2 map into 

different and 
mutually exclusive 

feature sets.  

Sensors s1 and s2 
map into different 

and mutually 
exclusive data sets.   

Population event 
set 

Γ 
s1 ⇾ Δ1 p1 ⇾ Φ1 aΘ ⇾ Λ1 

s2 ⇾ Δ2 p2 ⇾ Φ2 bπ⇾ Λ2 
Λ' 
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Figure 3-2 - Alternate mapping of elements from Γ into Λ'. Note here that p1 and p2 map into the same feature set, 
Φ'. 

The act of fusing information at an earlier stage (fusing into the same feature set) 

may change the way that the classification systems label events. This is largely a question 

of design on the part of the experimenter and the environment in which the classification 

system is to be applied. Other types of mapping exist, but this thesis is concerned with 

those systems Aθ and Bπ that map into fused label sets.   

 3.1.3 Properties of Classification System Mappings  
 

 Before developing a formulaic approach to analyze the data returned by the 

classification system, a few properties must be outlined here.  

Definition 3.1 (Pre-image) Let X and Y be nonempty sets. Let f be a mapping that takes 

an element x ∈ X into Y. Given some subset Y ⊂ Y, the pre-image of f is defined to be the 

subset in X such that  

𝑓♮[𝑌] =  {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ∈ 𝑌 } 

The label sets 
are fused into a 

new label set  

Classifiers aΘ 
and bπ map into 
different label 

sets, Λ1 and Λ2. 

Processors p1 
and p2 map into 

the same 
feature set , Φ'. 

Sensors s1 and 
s2 map into 

different  data 
sets , Δ1 and Δ2.  

Population 
event set  

Γ 

s1 ⇾ Δ1 

s2 ⇾ Δ2 

p1 ⇾ Φ' 
p2 ⇾ Φ' 

aΘ ⇾ Λ1 
bπ ⇾ Λ2 

Λ' 
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Hence, the pre-image of a subset Y ⊂ Y are those elements in X that are mapped by f 

into Y.  

 In most mathematical texts, the pre-image is generally considered synonymous 

with the inverse image. Considering that the mapping f described above need not be 

invertible, the natural symbol (♮) as used by (Schubert, C., Oxley, M. E., Bauer, K: 2005) 

will be used here. The pre-image for a classification system allows a way to map 

backwards from the label set into some subset or element from the population event set, 

Γ. That is, the image and pre-image for Aθ can be written respectively as follows.  

 
𝐴𝜃 = 𝑎𝜃 ○ 𝑝 ○ 𝑠 

𝐴𝜃
♮ = 𝑎𝜃

♮ ○ 𝑝♮ ○ 𝑠♮ (3.4) 
 

The performance associated with a certain classification system is assessed using 

probability theory. Therefore, it will be necessary to develop the notion of a measurable 

space and probability measure space so that this may be done.  

Definition 3.2 (Measurable Mapping) Let Ξ be a σ-algebra of subsets of set X. Let Ψ be a 

σ-algebra of subsets of set Y. This implies that (Ξ, X) and (Ψ, Y) are measurable spaces. 

A mapping f is measurable if for every subset ψ ∈ Ψ 

𝑓♮[𝛹] = �𝜓 ∈ 𝛹: 𝑓♮(𝜓) ∈ 𝛯 � 

That is, the pre-image f♮(ψ) ∈ Ξ. 

Using this definition, the composition mapping described by Aθ
♮ is measurable. Thus, 

Aθ
♮: L⇾ D. That is, the mapping takes the subsets from the σ-algebra associated with the 

label set, Λ, into the σ-algebra associated with the data set, Δ. It is implied that the 

composition of measurable mappings must take the subsets from the σ-algebra associated 

with Λ into the σ-algebra associated with the feature set, Φ, before mapping back into the 
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σ-algebra of the data set. Furthermore, if it is assumed that the composition is 

measurable, a random variable may be defined for the system in question. Consider the 

measurable mapping defined by G = p(s). This mapping is a called a random element of 

the feature set, Φ, and is called a random variable when (Φ, F) = (ℝ, F(ℝ)) (Schubert: 

2005).  

Definition 3.3 – (Measurable Mapping) Let (Γ, G) and (Φ, F) be measurable spaces. M 

is called a random mapping if M: Γ ⇾ Φ is a Γ-Φ measurable mapping.  

Definition 3.4 – (Induced Probability Distribution) Let PΓ be a probability measure 

defined on G such that (Γ, G, PΓ) defines a probability measure space. Further, suppose 

that (Φ, F) defines a measurable space. Let M: Γ ⇾ Φ be a random mapping. Define the 

set function [PΓ ○M]♮ on F 

[𝑃𝛤 ○ 𝑴)]♮(𝑓) = 𝑃𝛤(𝑴♮(𝑓) ) 

for every f ∈ F. Thus, PΦ = PΓ ○M♮ defines a probability measure on (Φ, F) known as the 

induced probability/distribution measure of M and (Φ, F, PΦ) is a probability measure 

space.    

The concept and formulation of measurable mappings is necessary in order to 

analyze classification systems. Further information and technical development may be 

found in (Schubert: 2005). Measurable mappings and more importantly, probability 

distributions and measure spaces, allows a way to assign probability outcomes that can be 

mapped back to the original event sets. This is clearly important given that under most 

circumstances, the original event is unknown. In this thesis, these concepts will be used 
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to develop a way to quantify the difference in performance between within and across 

label fusion. 

3.2 Performance of Classification Systems 
 
 After the classification system of interest has assigned labels to the elements in 

the population event set, it is still unknown how well the system has performed. It is 

highly unlikely that the classification system has worked exactly as intended, i.e., made 

perfect classifications. Therefore, there must be a way to quantify the errors and 

successes. 

 The receiver operator characteristic curve allows a way to qualitatively and 

quantitatively assess classification system performance.  The ROC curve is useful as it 

graphically depicts the difference between false alarm rate and true hit rate for each 

parameter threshold of the classification system. The classification system produces a 

true positive (TP) when it labels an element from the target population event set to which 

it is tuned as a “target.” The classification system produces a false positive (FP) when it 

labels an element from the non-target population event set as “target.” A ROC curve is 

created by graphing FP rates along the horizontal (X) axis and TP rates along the vertical 

(Y) axis. The classification system approximates the true ROC curve using empirical data 

produced during the composition of mappings. 

 There are four possible probability outcomes given that an event can receive a 

target or non-target label and the event set is partitioned into target and non-target 

subsets. This is valid given that a probability measure space has been defined. Consider 

system Bπ. Note that Γ is composed of all subsets of targets and non-targets. For the sake 

of simplicity, assume that Γ is divided into two populations. Denote the event set 
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composed of targets system Bπ is tuned to classify as Γt. Denote the event set composed 

of non-targets system Bπ is tuned to identify as Γn. Let PTP(Bπ) denote the probability that 

Bπ correctly labels an element t ∈ Γt as a “target.” This is the definition of a true positive 

classification by system Bπ as the system correctly labeled a target with the target label. 

Mathematically, this can be modeled using conditional probability: 

 
𝑃𝑇𝑃(Bπ) = 𝑃{𝐵𝜋(𝑡𝐵) = 𝑡 ∶ 𝑡𝐵 ∈ 𝛤𝑡} =

𝑃(𝐵𝜋
♮(𝐿𝑡) ∩ 𝛤𝑡)
𝑃(𝛤𝑡)  

(3.5) 

 
Let PFP(Bπ) denote the probability that Bπ incorrectly labels an element n ∈ Γn as a 

“target.” This is a measure of a false positive classification by system Bπ as the system 

falsely labeled the non-target element with a target label. This too may be modeled using 

conditional probability  

 
𝑃𝐹𝑃(Bπ) = 𝑃{𝐵𝜋(𝑛𝐵) = 𝑡 ∶ 𝑛𝐵 ∈ 𝛤𝑡} =

𝑃(𝐵𝜋
♮(𝐿𝑡) ∩ 𝛤𝑛)
𝑃(𝛤𝑛)  

(3.6) 

 
Next, let PTN(Bπ) denote the probability that Bπ correctly labels an element n ∈ Γn 

as a “non-target.” This is the definition of a true negative classification by system Bπ as 

the system correctly labeled a non-target with the non-target label. Mathematically 

speaking: 

 
𝑃𝑇𝑁(𝐵𝜋) = 𝑃{𝐵𝜋(𝑛𝐵) = 𝑛 ∶  𝑛𝐵 ∈  𝛤𝑛} =

𝑃(𝐵𝜋
♮(𝐿𝑛) ∩ 𝛤𝑛)
𝑃(𝛤𝑛)  

(3.7) 

 
Lastly, let PFN(Bπ) denote the probability that Bπ incorrectly labels an element t ∈ 

Γt as a “non-target.” Then PFN(Bπ) is the probability that Bπ produced a non-target label 
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for an element that was, in truth, a target. This is more commonly known as a false 

negative designation and is described mathematically as follows:  

 
𝑃𝐹𝑁(𝐵𝜋) = 𝑃{𝐵𝜋(𝑡𝐵) = 𝑛 ∶  𝑡𝐵 ∈  𝛤𝑛} =

𝑃(𝐵𝜋
♮(𝐿𝑛) ∩ 𝛤𝑡)
𝑃(𝛤𝑡)  

(3.7) 

 
These definitions lead to two important properties involved with these probability 
statements. 

 𝑃𝑇𝑃(Bπ) + 𝑃𝐹𝑁(Bπ) =
𝑃�𝐵𝜋

♮(𝐿𝑡) ∩ 𝛤𝑡�
𝑃(𝛤𝑡) +

𝑃�𝐵𝜋
♮(𝐿𝑛) ∩ 𝛤𝑡�
𝑃(𝛤𝑡)  

                                           

=  
𝑃�𝐵𝜋

♮(𝐿𝑡) ∩ 𝛤𝑡� + 𝑃�𝐵𝜋
♮(𝐿𝑛) ∩ 𝛤𝑡�

𝑃(𝛤𝑡)   

                           =  
𝑃 ��𝐵𝜋

♮(𝐿𝑡) ∪ 𝐵𝜋
♮(𝐿𝑛)� ∩ 𝛤𝑡�

𝑃(𝛤𝑡)  

                           =
𝑃(𝛤𝑡)
𝑃(𝛤𝑡) = 1  

(3.8) 

 

 
𝑃𝐹𝑃(Bπ) + 𝑃𝑇𝑁(Bπ) =

𝑃�𝐵𝜋
♮(𝐿𝑡) ∩ 𝛤𝑛�
𝑃(𝛤𝑛) +

𝑃�𝐵𝜋
♮(𝐿𝑛) ∩ 𝛤𝑛�
𝑃(𝛤𝑛)  

                                       =
𝑃�𝐵𝜋

♮(𝐿𝑡) ∩ 𝛤𝑛� + 𝑃�𝐵𝜋
♮(𝐿𝑛) ∩ 𝛤𝑛�

𝑃(𝛤𝑛)  

                                       =
𝑃 ��𝐵𝜋

♮(𝐿𝑡) ∪ 𝐵𝜋
♮(𝐿𝑛)� ∩ 𝛤𝑛�

𝑃(𝛤𝑛)  

                                       =
𝑃(𝛤𝑛)
𝑃(𝛤𝑛) = 1  

(3.9) 

 
Note that for any of the above probabilities, all are dependent upon the parameters 

of the classification system. A single probability value is associated with a specific 

parameter. That is to say, for each parameter combination, a TP, FP, TN, and FN is 

associated with the given combination. These probabilities change as the parameter 

values change. Given that the goal is to produce a ROC curve for the classification 
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system Bπ, the focus will be on the TP and FP values. Define π to be the parameter set for 

system Bπ, then the following set of ordered triples defines the trajectory of ℬ. 

𝑇ℬ = ��𝜋, 𝑃𝐹𝑃(𝐵𝜋), 𝑃𝑇𝑃(𝐵𝜋)� ∶ 𝜋 ∈ 𝛱 � 
 

Projecting the trajectory onto the FP and TP components yields those points which define 

the frontier (denoted by ℱ) of the ROC curve. 

ℱℬ = ��𝑃𝐹𝑃(𝐵𝜋), 𝑃𝑇𝑃(𝐵𝜋)� ∶  𝜋 ∈ 𝛱 � 
 

Assuming that the set π is homeomorphic to ℝ, then the trajectory corresponds to 

a curve in ℝ3 and the frontier corresponds to a projection onto ℝ2 (Schubert: 2005). This 

frontier is the ROC curve for system Bπ. There may be other points that empirically exist 

on the curve, but the definition of a ROC curve requires that the ROC function be non-

decreasing. Considering that both PFP(Bπ) and PTP(Bπ) ∈ [0,1], ℱℬ is a projection onto 

[0,1] x [0,1], the unit square. In this instance the parameter set is one-dimensional; 

therefore ℱℬ is composed of a single curve that is projected onto ℝ2. The same is true for 

classification system Aθ.  Next, the ROC curve and ROC function is formally defined. 

Definition 3.5 (ROC curve) Assume that ℬ = {Bπ: 𝜋 ∈ 𝛱 } defines the classification 

family of interest. Let p ∈ [0, 1] correspond to the value of the false positive. Similarly, let           

q ∈ [0, 1] correspond to the value of the true positive. The ROC curve for ℬ is defined as  

ℱℬ = �(𝑝, 𝑞) ∶ 𝑝 ∈  [0, 1] 𝑎𝑛𝑑 𝑞 = 𝑚𝑎𝑥{𝑃𝑇𝑃(𝐵𝜋) ∶ 𝜋 ∈ 𝛱  𝑎𝑛𝑑 𝑃𝐹𝑃(𝐵𝜋) ≤ 𝑝 }� 

and the corresponding ROC function may be defined as 

ℱℬ(𝑝) =  𝑚𝑎𝑥{𝑃𝑇𝑃(𝐵𝜋) ∶  𝜋 ∈ 𝛱 𝑎𝑛𝑑 𝑃𝐹𝑃(𝐵𝜋) ≤ 𝑝 } 
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3.3 Across Label Fusion and Within Label Fusion 
 
 Now that a method is in place to create the ROC curve for individual 

classification systems, it is important to consider how to fuse these systems in an attempt 

to increase predictive power. In order to use the performance of the individual 

classification systems to quantify the performance of the fused system, there must be 

some accounting for the different target and non-target sets that the classification systems 

are tuned to label. Some formal definitions regarding how the classification systems 

partition the event set has been developed and will be briefly touched upon here. 

Definition 3.6 (Finite Partition) Let S be a non-empty set.  

1) If Am ∩ An = ∅ ∀ m = 1, …, M and n = 1, … , N; m ≠ n; M, N < ∞ (Pairwise 

disjoint) 

2) ∪𝑖=1
∞ 𝐴𝑖 = 𝑆  

Let {A1, …, Ak , …} be a countable collection of subsets of S. Then {A1, …, Ak , …}  

forms a finite partition of S. 

Definition 3.7 (True Partition) Assume the following 

1) (Γ,G) is a measurable space 

2) Λ = {λ1, λ2, …, λM} is a finite label set. Λ is the power set of Λ such that (Λ, Λ) is a 

measurable space. 

3) t : Γ ⇾ Λ is a measurable mapping . The domain of t is Γ and the range of t is Λ. 

Then t defines a truth mapping. The collection of pre-images {Γ1, Γ2, …, ΓN} defined 

by Γn = t♮({λn}) ∈ G ∀ n = 1, …, N forms a partition of Γ that is the true partition with 

respect to the truth mapping, t. (Schubert: 2005) 
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Definition 3.8 (Within-Fusion Rule) Assume the following 

1) (Γ, G) is a measurable space. 

2) Λ = {λ1, λ2, …, λM} is a finite label set. Λ is the power set of Λ such that (Λ, Λ) is a 

measurable space. 

3) 𝐺𝛬 = �𝛤𝜆1 , 𝛤𝜆2 , … , 𝛤𝜆𝑀�  ⊂ 𝐺 is the truth partition of Γ with respect to Λ. 

If the classification systems ℬ1, ℬ2, …, ℬN : Γ ⇾ Λ are measurable mappings 

designed to map 𝛤𝜆𝑀⇾ λM for each m = 1, …, M, then the fusion rule r that 

combines the collection of classification system systems yielding the new 

classification system 

ℬ0 = 𝑟(ℬ1, ℬ2, … , ℬ𝑁) 

is said to be a within-fusion rule. (Schubert: 2005) 

Definition 3.9 (Across-Fusion Rule) Assume the following 

1) (Γ, G) is a measurable space. 

2) Λ = {λ1, λ2, …, λM} is a finite label set. Λ is the power set of Λ such that (Λ, Λ) is a 

measurable space. 

3) 𝐺𝛬 = �𝛤𝜆1 , 𝛤𝜆2 , … , 𝛤𝜆𝑀�  ⊂ 𝐺 is the truth partition of Γ with respect to Λ. 

4) Λ(0), Λ(1), …, Λ(N) ⊂ Λ are partitions of Λ. 

5) For each n = 0, …, N, the integer M(n) =card(Λ(n)) ≤ M, and the partition Λ(n)is 

congruent to the label set 𝛬(𝑛) = �𝑤1
(𝑛), … , 𝑤𝑀(𝑛)

(𝑛) � 

6) For each n = 0, …, N, the partition G(n)⊂ G is the true partition of Γ with respect 

to Λ(n). 
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If the classification systems ℬ1 : Γ ⇾ Λ(1), ℬ2 : Γ ⇾ Λ(2), …, ℬN : Γ ⇾ Λ(N)are 

designed to map each event set Γw ∈ G(n) to the corresponding w ∈ Λ(n), then for 

every n = 1, 2, …, N, the fusion rule r that combines the collection of 

classification systems yielding the new classification system system 

ℬ0 = 𝑟(ℬ1, ℬ2, … , ℬ𝑁) 

is said to be an across-fusion rule. (Schubert: 2005) 

For the sake of clarification, a within label-fused system is composed of 

individual classification systems which are both tuned to the same target and non-

target partitions of the event set. An across label-fused system is composed of 

individual classification systems that are tuned to different partitions of the target and 

non-target event set.  

3.3.1 Within Label Fusion 
  

Assume there exists two classification systems, Aθ and Bπ, which are to be fused 

under within label fusion. Further, assume that classification systems Aθ and Bπ are both 

designed to classify a single target type and a single non-target type. Thus, the label set in 

question is Λ = {t, n} where t denotes “target” and n denotes “non-target.” Furthermore, 

GΛ = {Γt, Γn} ⊂ G is the true partition of Γ with respect to Λ. Hence, system Aθ : Γ ⇾ Λ 

where Aθ is designed to map Γt ∈ GΛ to the corresponding t ∈ Λ and Γn ∈ GΛ to the 

corresponding n ∈ Λ. The partitions of the event set and label sets of systems Aθ and Bπ 

are the same. That is, for any target element, systems Aθ and Bπ will label the element 

using the same “t” label.  
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3.3.2 Across Label Fusion 
  

There are three ways that classification systems may be categorized as across 

label fusion in this thesis as previously outlined by (Schubert: 2005). 

1) Case I – Each classification system labels mutually disjoint targets. 

2) Case II – One classification system labels a subset of targets of the other classification 

system. 

3) Case III – The targets of the two classification systems overlap, creating a subset of 

targets labeled by both systems. 

Case I – Each classification system labels mutually disjoint targets.  
 
 Assume classification system Aθ is designed to classify target type 1 (t1) and 

classification system system Bπ is designed to classify target type 2 (t2). Thus, the label 

set of interest, Λ = {t, n} where 𝑡 = 𝑡1 ∪ 𝑡2 and 𝑡1 ∩ 𝑡2 = ∅. GΛ = �Γt1 , Γt2 , Γn� ⊂ G is the 

true partition of Γ with respect to Λ. The label set for classification system Aθ is Λ(A) = 

{t1, n1} and the label set for classification system Bπ is Λ(ℬ) = {t2, n2}. Note that n1 

denotes the complementary non-target type outcome that is composed of both “n” and 

“t2” elements. Similarly, n2 denotes the complementary non-target outcome that is 

composed of both “n” and “t1” elements. Hence, Aθ : Γ ⇾ Λ(A) where Aθ is designed to 

map Γt1∈ G(A) to the corresponding t1 ∈ Λ(A) and Γn1∈ G(A) to the corresponding n1 ∈ 

Λ(A). Analogously, Bπ : Γ ⇾ Λ(ℬ) where Bπ is designed to map Γt2∈ G(ℬ) to the 

corresponding t2 ∈ Λ(ℬ) and Γn2∈ G(ℬ) to the corresponding n2 ∈ Λ(ℬ). 

Case II – One classification system labels a subset of targets of the other classification 
system.   
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Assume classification system Aθ is designed to classify t1 events and assume 

classification system Bπ is designed to classify any target type (t). Thus, the label set of 

interest, Λ = {t, n}. GΛ = �Γt1 , Γt2 , Γn�⊂ G is the true partition of Γ with respect to Λ. The 

label set for classification system Aθ is Λ(A) = {t1, n1} and the label set for classification 

system Bπ is Λ(ℬ) = {t, n}. Note that n1 denotes the complementary non-target type 

outcome that is composed of both “n” and “t2” elements. Hence, Aθ : Γ ⇾ Λ(A) where Aθ 

is designed to map Γt1∈ G(A) to the corresponding t1 ∈ Λ(A) and Γn1∈ G(A) to the 

corresponding n1 ∈ Λ(A). Analogously, Bπ: Γ ⇾ Λ(ℬ) where Bπ is designed to map Γt∈ G(ℬ) 

to the corresponding t ∈ Λ(ℬ) and Γn∈ G(ℬ) to the corresponding n ∈ Λ(ℬ). 

Case III – The targets of the two classification systems overlap, creating a subset of 

targets labeled by both systems. 

   
Assume classification system Aθ is designed to classify target types 1 and 2 (t1 

and t2). Assume classification system Bπ is designed to classify target types 2 and 3 (t2 

and t3). The label set is Λ = {t, n} where 𝑡 = 𝑡1 ∪ 𝑡2 ∪ 𝑡3 and 𝑡1 ∩ 𝑡3 = ∅.    GΛ =

�Γt1 , Γt2 , Γt3Γn� ⊂ G is the true partition of Γ with respect to Λ. The label set for 

classification system Aθ is Λ(A) = {t1, t2, n12} and the label set for classification system Bπ 

is Λ(ℬ) = {t2, t3, n23}. Note that n12 denotes the complementary non-target composed of 

both “t3” and “n” labels for system Aθ. Similarly, n23 denotes the complementary non-

target type for system Bπ composed of both “t1” and “n” elements.  Hence, Aθ : Γ ⇾ Λ(A) 

where Aθ is designed to map �Γt1 , Γt2� ∈ G(A) to the corresponding t12 ∈ Λ(A) and {Γn, Γt3} 

∈ G(A) to the corresponding n12 ∈ Λ(A). Analogously, Bπ: Γ ⇾ Λ(ℬ) where Bπ is designed 
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to map �Γt2 , Γt3� ∈ G(ℬ) to the corresponding t23 ∈ Λ(ℬ) and {Γn, Γt1}∈ G(ℬ) to the 

corresponding n23 ∈ Λ(ℬ). 

3.4 Label Fusion Rules 
 
 In this thesis, the focus is within and across label-fusion under the Boolean AND 

and Boolean OR rules.  

3.4.1 Boolean AND Label Fusion Rule  
  

The AND rule is a binary operation that is defined on the label set, Λ. This 

operator will be defined using the logical AND symbol, ∧. It is defined in the following 

table. 

 

∧ t n 
t t n 
n n n 

Table 3-1 - Truth table of label outcomes for Boolean AND rule. 

Now, consider classification systems Aθ and Bπ. The Boolean AND label-fused 

classification system C(θ,π)
𝑎𝑛𝑑  may be defined as the following. 

𝐶(𝜃,π)
AND(𝑥) =  𝐴𝜃(𝑥) ∧ 𝐵𝜋(𝑥) ∀ 𝑥 ∈ 𝛤 

 
That is to say, the fused classification system returns a target label (t) only when 

both classification systems Aθ and Bπ label the same element in question as being a target 

from the target population event set. The fused classification system returns a non-target 

label (n) when either Aθ or Bπ returns a non-target label or Aθ and Bπ both return a non-

target label. The AND fusion rule is sometimes called a conservative label/decision rule 

because it requires that both individual classification systems label the element as a target 

in order to receive a combined target classification. Note that under the fusion rule it is 

not known which system returned the non-target label or whether both systems returned 
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the non-target label. The only information available is the combined decision made by the 

fused system. If knowledge of the feature set is available, implying that the true partition 

of the event sets is actually known, then it can be determined which system or systems 

returned the non-target label. 

3.4.2 Boolean OR Label Fusion Rule  
  

The Boolean OR rule is also a binary operation defined on Λ. The OR operator 

will be defined using the logical OR symbol, ∨. It is defined in the following truth table: 

 

∨ t n 
t t t 
n t n 

Table 3-2 - Truth table of label outcomes for Boolean OR rule. 

Consider systems Aθ and Bπ. The Boolean OR label-fused classification system is defined 

as the following  

𝐶(𝜃,π)
𝑂𝑅 (𝑥) = 𝐴𝜃(𝑥) ∨ 𝐵𝜋(𝑥) ∀ 𝑥 ∈ 𝛤 

 
Using the truth table as a reference, notice that the combined OR classification 

system labels an element x ∈ Γ as a target if either one or both classification systems 

labels the element as a target. A non-target label can only occur when both individual 

classification systems label the element in question as a non-target. Similar to the AND 

fusion rule, without knowledge of the true partition of the event set, it is not known which 

classification system(s) labeled the element as a target.  

3.4.3 Within AND/OR Label Fusion  
  
Now that the Boolean rules are in place, they can be applied to within label 

fusion. Consider first the within AND label fusion rule, which will henceforth be referred 

to using the shorthand ∧𝑤. Recall that in within label fusion, systems Aθ and Bπ classify 
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the same target and non-target types. Let t denote the targets and n denote the non-targets 

that Aθ and Bπ are tuned to classify. Consider the following table that outlines the four 

possible outcomes for systems Aθ and Bπ.  

Truth Aθ Bπ 
 t n t n 
t TP FP TP FP 
n FN TN FN TN 
Table 3-3 - Within AND label fusion for individual classification systems Aθ and BΠ. 

The corresponding probabilities for these outcomes as determined by label fusion are 

outlined below. 

 ∧𝑤 Γt  (True target partition) Γn (True non-target 
partition) 

A♮
θ({t}) ∩ B♮

π({t})  TP FP 
A♮

θ({t}) ∩ B♮
π({n}) FN TN 

A♮
θ({n}) ∩ B♮

π({t}) FN TN 
A♮

θ({n}) ∩ B♮
π({n}) FN TN 

Table 3-4 - Within AND label fusion for fused classification system with respect to partitions of the event set. 

As can be seen, the errors made by the individual classification systems add to the 

probability of a FN outcome for the fused classification system. However, the fused 

system determines true non-targets under the combined ∧𝑤 label fusion rule well due to 

the large number of partitions for a correct TN outcome.  

Next, consider the within OR label fusion rule which will be referred to using the 

shorthand notation ∨𝑤
. Table 3.3 also applies to the within OR label fusion rule, but the 

outcomes with respect to the different target partitions is different under the OR rule.  

 

∨𝑤 Γt  (True target partition) Γn (True non-target 
partition) 

A♮
θ({t}) ∪ B♮

π({t})  TP FP 
A♮

θ({t}) ∪ B♮
π({n}) TP FP 

A♮
θ({n}) ∪ B♮

π({t}) TP FP 
A♮

θ({n}) ∪ B♮
π({n}) FN TN 
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Table 3-5 - Within OR label fusion for combined classification system. 

Notice that under the within OR rule that the fused system excels at correctly 

classifying targets in the environment. However, if either one or both classification 

systems incorrectly labels a non-target with a target label, this significantly adds to the FP 

probability.  

3.4.4 Across AND/OR Label Fusion  
  

Recall that under across label fusion, the target and non-target event sets are 

partitioned in three different ways. For case I, classification system Aθ is tuned to t1 and 

the complementary non-target n1. Classification system Bπ is tuned to t2 and the 

complementary non-target set composed of t1 and n, that is, n2. Symbolically, the across I 

AND rule will be defined as ∧𝐼. The following truth table outlines the target and non-

target designation of the ∧𝐼 combined classification system. 

∧𝐼
 Aθ 

Bπ t1 n1 = {n,t2} 
t2 t n 

n2 = {n,t1} n n 
Table 3-6 – Across I AND truth table for fused system. 

In terms of the four probability outcomes and their associated probability 

statements 

 

Truth under ∧𝐼rule Aθ Bπ 
t1 n1 = {n, t2} t2 n2 = {n,t1} 

t1 TP FN FP TN 
t2 FP TN TP FN 
n FP TN FP TN 

Table 3-7 - Truth table for individual classification systems under across I AND label fusion. 
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∧𝐼 Γt1 (True target type 

I partition) 
Γt2 (True target 
type II partition) 

Γn (True non-target 
partition) 

A♮
θ({t1}) ∩ B♮

π({t2})  TP TP FP 
A♮

θ({t1}) ∩ B♮
π({n2}) FN FN TN 

A♮
θ({n1}) ∩ B♮

π({t2}) FN FN TN 
A♮

θ({n1}) ∩ 
B♮

π({n2}) 
FN FN TN 

Table 3-8 - Fused across I AND classification system outcomes with respect to true partitions of the event set. 

There is something peculiar about the individual classification systems under the 

∧𝐼fusion rule. The system will produce a FP if Aθ gives the t2 element a t1 label or it can 

produce a TN if it labels the t2 element as a non-target. Similarly, classification system Bπ 

has a similar issue when classifying elements from the t1 partition. If Bπ labels the t1 

event with a t2 label, then the classification system produces a FP, but if it labels the same 

t1 element with an n label, it produces a TN classification. Referring to the table above, 

this produces some interesting results for the fused system. It appears that if Aθ correctly 

identifies a type I target with the t1 label and Bπ labels the same element as belonging to 

n2, then the system should produce a true positive event. The reason this does not occur is 

that unless the true partition of the event sets is known, it is not known whether the 

element that system Bπ labeled was a true non-target or a t1.  

Consider the across I OR label fusion rule, which is denoted ∨𝐼. Note that table 

3.7 remains true for the ∨𝐼 combined classification system. Consider the labels with 

respect to the true partitions of the event set and label sets: 

 

∨𝐼
 Aθ 

Bπ t1 n1 = {n,t2} 
t2 t t 

n2 = {n,t1} t n 
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Table 3-9 - Truth table for across I OR fused classification system. 

∨𝐼 Γt1 (True target type 
I partition) 

Γt2 (True target 
type II partition) 

Γn (True non-target 
partition) 

A♮
θ({t1}) ∪ B♮

π({t2})  TP TP FP 
A♮

θ({t1}) ∪ B♮
π({n2}) TP TP FP 

A♮
θ({n1}) ∪ B♮

π({t2}) TP TP FP 
A♮

θ({n1}) ∪ 
B♮

π({n2}) 
FN FN TN 

Table 3-10 - Across I OR fused classification system outcomes with respect to the true partitions of the event set. 

There are a few events of interest in table 3.10. First, consider the instance where 

Aθ labels the element “t1” and Bπ labels the element as “n2” = {t1, n} and the combined 

classification system returns a TP with respect to Γt2. Both individual classification 

systems in this case are wrong, but considering that Aθ labeled the element as a target 

(even though it is the wrong target label), the combined system is correct in labeling the 

element a target. The other unusual occurrence happens when Aθ labels the element with 

an n1 label and Bπ labels the same element with a t2 label. With respect to the partition 

Γt1, both individual systems were incorrect, but because Bπ labeled the element with a 

target label, the combined classification system correctly labeled the element from Γt1as a 

target.   

The following is a brief treatment of the outcomes that one would expect from 

fused across II and across III fused classification systems. Note that for across case 2 

(∧𝐼𝐼\∨𝐼𝐼), the target partition that Aθ is tuned to classify is a subset of the target partition 

that classification system Bπ is designed to classify. Recall, also, that for across case 3 

(∧𝐼𝐼𝐼\∨𝐼𝐼𝐼) that Aθ is designed to classify targets t1 and t2 and classification system Bπ is 

designed to classify targets t2 and t3, where t2 forms a subset for both classification 

systems. 
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∧𝐼𝐼
 Aθ 

Bπ t1 n1 = {n,t2} 
t = {t1, t2} t n 

n n n 
Table 3-11 - Across II AND combined classification system truth table. 

∨𝐼𝐼
 Aθ 

Bπ t1 n1 = {n,t2} 
t = {t1, t2} t t 

n t n 
Table 3-12 - Across II OR combined classification system truth table. 

∧𝐼𝐼 Γt1 (True target type 
I partition) 

Γt2 (True target 
type II partition) 

Γn (True non-target 
partition) 

A♮
θ({t1}) ∩ B♮

π({t})  TP TP FP 
A♮

θ({t1}) ∩ B♮
π({n}) FN FN TN 

A♮
θ({n1}) ∩ B♮

π({t}) FN FN TN 
A♮

θ({n1}) ∩ B♮
π({n}) FN FN TN 

Table 3-13 - Across II AND fused classification system outcomes with respect to the true partitions of the event set. 

 
∨𝐼𝐼 Γt1 (True target type 

I partition) 
Γt2 (True target 
type II partition) 

Γn (True non-target 
partition) 

A♮
θ({t1}) ∪ B♮

π({t})  TP TP FP 
A♮

θ({t1}) ∪ B♮
π({n}) TP TP FP 

A♮
θ({n1}) ∪ B♮

π({t}) TP TP FP 
A♮

θ({n1}) ∪ B♮
π({n}) FN FN TN 

Table 3-14- Across II OR fused classification system outcomes with respect to the true partitions of the event set. 

 
∧𝐼𝐼𝐼

 Aθ 
Bπ t12 = {t1, t2} n1 = {n,t3} 

t23 = {t2, t3} t n 
n23 = {n, t1} n n 

Table 3-15 - Across III AND combined classification system truth table. 

∨𝐼𝐼𝐼
 Aθ 

Bπ t12 = {t1, t2} n1 = {n,t3} 
t23 = {t2, t3} t t 
n23 = {n, t1} t n 

Table 3-16 - Across III OR combined classification system truth table. 
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∧𝐼𝐼𝐼 Γt1 (True 
target type I 

partition) 

Γt2 (True 
target type II 

partition) 

Γt3 (True target 
type III 

partition) 

Γn (True non-
target partition) 

A♮
θ({t12}) ∩ B♮

π({t23})  TP TP TP FP 

A♮
θ({t12}) ∩ B♮

π({n23}) FN FN FN TN 

A♮
θ({n12}) ∩ B♮

π({t23}) FN FN FN TN 

A♮
θ({n12}) ∩ B♮

π({n23}) FN FN FN TN 

Table 3-17 - Across III AND fused classification system outcomes with respect to the true partitions of the event set. 

∨𝐼𝐼𝐼 Γt1 (True 
target type I 

partition) 

Γt2 (True 
target type II 

partition) 

Γt3 (True target 
type III 

partition) 

Γn (True non-
target partition) 

A♮
θ({t12}) ∪ B♮

π({t23})  TP TP TP FP 

A♮
θ({t12}) ∪ B♮

π({n23}) TP TP TP FP 

A♮
θ({n12}) ∪ B♮

π({t23}) TP TP TP FP 

A♮
θ({n12}) ∪ B♮

π({n23}) FN FN FN TN 

Table 3-17 - Across III OR fused classification system outcomes with respect to the true partitions of the event set. 

3.5 Probability Theory and its Applications to Classification Theory  
 
 In order to create a ROC curve for a fused classification system, one must choose 

whether within or across fusion is applicable based on setting and then apply the Boolean 

rule of choice. Once these have been established, there exists a way to develop a 

probability expression that models the performance of the classification system, namely, 

the ROC curve. The background theory presented here provides a way to derive the ROC 

curve expression for within and across label fusion using only the performances of the 

individual classification systems. It is assumed that classification systems Aθ and Bπ are 
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conditionally independent with respect to the non-target event set. Independence and 

conditional independence of events are now defined. 

Definition 3.11 Let (Γ, G, PΓ) define a probability measure space. Let C and D be any 

sets in G. Then the following are true: 

𝑃(𝐶 ∩ 𝐷𝐶) = 𝑃(𝐶) − 𝑃(𝐷 ∩ 𝐶) 

𝑃(𝐷 ∪ 𝐶) = 𝑃(𝐷) + 𝑃(𝐶) −  𝑃(𝐷 ∩ 𝐶)  

Definition 3.12 (Independence of Events) Let (Γ, G, PΓ) be a probability measure space. 

The collection of events {E1, E2, …,En} ⊂ G is said to be independent if 

𝑃 �� 𝐸𝑖

𝑛

𝑖=1

� = � 𝑃(𝐸𝑖)
𝑛

𝑖=1

 

Definition 3.13 (Conditional Independence of Events) Let (Γ, G, PΓ) be a probability 

measure space. The collection of events {E1, E2, …,En} ⊂ G are said to be conditionally 

independent with respect to event Ej if for any sub-collection�𝐸𝑖1 , 𝐸𝑖2 , … , 𝐸𝑖𝑗� ⊂ 

{𝐸1, 𝐸2, … , 𝐸𝑛} then  

𝑃 ���𝐸𝑖|𝐸𝑗�
𝑚

𝑖=1

� = � 𝑃�𝐸𝑖|𝐸𝑗�
𝑚

𝑖=1

 

3.6 Correlation 
  

In (Schubert et al: 2005), the functions for the ROC curves associated with the 

different types of label fusion were derived under the assumption that classification 

systems were correlated. Using the results of (Schubert et al: 2005) correlation between 

two classification systems takes the functional form below. 
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𝜌[𝐴𝜃, 𝐵𝜋] =

[𝐶𝐴∧𝐵 − 𝐶𝐴𝐶𝐵]

�𝐶𝐴(1 − 𝐶𝐴)�𝐶𝐵(1 − 𝐶𝐵)
 

(3.10) 

 

Where 

 𝐶𝐴 = 𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃) 

𝐶𝐵 = 𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋) 

𝐶𝐴∧𝐵 = 𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃 ∧ 𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃 ∧ 𝐵𝜋) 

(3.11) 

 

Notice that CA, CB, CA ∧ B, called the cost functions, are weighted functions 

involving the false positive and true positive rates that constitute the ROC curves of 

classification systems Aθ and Bπ. They arise naturally from the expressions for the 

expected value of classification systems Aθ and Bπ. When the two classification systems 

are independent, the correlation term goes to zero, i.e., when CA∧B  = CACB.  

Next, the functions TA(p) and TB(q) are defined.  

Def 3.16 – (T functions) – The T functions are defined to be the cost functions for 

classification systems Aθ and Bπ that are maximized over their respective parameter sets. 

These functions are the optimal performance points on the ROC curves of classification 

systems Aθ and Bπ, respectively.    

𝑇𝐴(𝑝) =  max
𝜃 ∈𝛩 

𝐶𝐴𝜃 

            =  max
𝜃 ∈𝛩

[𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)] 

            =  max
𝜃∈𝛩

[𝑃(𝛤𝑡)𝑓𝐴(𝑝) + 𝑃(𝛤𝑛)𝑝] 
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𝑇𝐵(𝑞) =  max
𝜋 ∈𝛱 

𝐶𝐵𝜋 

            =  max
𝜋 ∈𝛱

[𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)] 

            =  max
𝜋 ∈𝛱

[𝑃(𝛤𝑡)𝑓𝐵(𝑞) + 𝑃(𝛤𝑛)𝑞] 

These functions maximize over the parameters permitting the use of values from 

the ROC curve for classification systems Aθ and Bπ. These functions take the same 

general form for any type of label fusion, however the prior probability weighting on the 

TP and FP values changes depending on the type of across or within label fusion being 

applied.  

 It is further derived in (Schubert et al: 2005) that the ROC curve for any AND 

label-fused system where the correlation remains constant for any combination of 

parameters θ and π takes the following form. 

 
𝑓𝐶𝐴𝑁𝐷(𝑟) =

1
𝑃(𝛤𝑡) max

𝑝𝑞=𝑟
𝑔𝑝�𝑇𝐴(𝑝), 𝑇𝐵(𝑞)� −

𝑃(𝛤𝑛)
𝑃(𝛤𝑡) 𝑟 

(3.12) 

 

The value “r” is the product of FP values p and q from the ROC curves of 

individual classification systems Aθ and Bπ via the conditional independence assumptions 

on the non-target partition of the event set. The function gρ takes the following form. 

 
𝑔𝜌 = 𝜌�𝑇𝐴(𝑝)�1 − 𝑇𝐴(𝑝)��𝑇𝐵(𝑞)�1 − 𝑇𝐵(𝑞)�

+ 𝑇𝐴(𝑝)𝑇𝐵(𝑞) 

(3.13) 
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In a similar fashion, the ROC curve for any OR label-fused system under the assumption 

of constant correlation between the classification systems at each parameter combination 

may be defined. 

 
𝑓𝐶𝑂𝑅(𝑟) =

1
𝑃(𝛤𝑡) max

𝑝+𝑞−𝑝𝑞=𝑟
ℎ𝑝�𝑇𝐴(𝑝), 𝑇𝐵(𝑞)� −

𝑃(𝛤𝑛)
𝑃(𝛤𝑡) 𝑟 

(3.14) 

 

For the combined OR ROC curve, the quantity “r” takes the form of the OR probability 

statement for the false positive value of classification system Aθ or Bπ and hρ is defined as 

the following. 

 ℎ𝜌 = 𝑇𝐴(𝑝) + 𝑇𝐵(𝑞)

− 𝜌�𝑇𝐴(𝑝)�1 − 𝑇𝐴(𝑝)��𝑇𝐵(𝑞)�1 − 𝑇𝐵(𝑞)�

− 𝑇𝐴(𝑝)𝑇𝐵(𝑞) 

(3.15) 

 

For a more in depth discussion of the derivation of these terms, the reader is directed to 

(Schubert et al: 2005). 

 
3.7 ROC Curves for Different Types of Label Fusion 
 
 3.7.1 Within Label-Fused ROC Curves 
 
 Now that a general equation for a label-fused ROC curve has been developed, it 

can be applied to the different cases of label fusion. First, consider the within AND 
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combined classification system. As elaborated in (Schubert: 2005) the combined AND 

classification system under constant correlation takes the following form. 

Def 3.17 – Within AND ROC curve – Assume that the ROC curves for systems Aθ and Bπ 

are known. Then for a given parameter combination θ and π the (FP, TP) ordered pair 

constitutes a point on the ROC curve for the combined classification system Aθ AND Bπ.   

𝑃𝑇𝑃
𝑊 (𝐴𝜃 ∧ 𝐵𝜋) =

1
𝑃(𝛤𝑡) max

𝑝𝑞=𝑟
𝑔𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)� −

𝑃(𝛤𝑛)
𝑃(𝛤𝑡) 𝑟 

𝑃𝐹𝑃
𝑊 (𝐴𝜃 ∧ 𝐵𝜋) = 𝑃𝐹𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) 

                             = 𝑝𝑞 

Where  

𝑇𝐴
𝑊(𝑝) = max

𝜃∈𝛩
[𝑃(𝛤𝑡)𝑓𝐴(𝑝) + 𝑃(𝛤𝑛)𝑝] 

𝑇𝐵
𝑊(𝑞) = max

𝜋 ∈ 𝛱
[𝑃(𝛤𝑡)𝑓𝐵(𝑞) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)] 

𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� = 𝜌 ��𝑇𝐴
𝑊(𝑝)�1 − 𝑇𝐴

𝑊(𝑝)��𝑇𝐵
𝑊(𝑞)�1 − 𝑇𝐵

𝑊(𝑞)�� + 𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) 

 

Clearly, if the two systems are uncorrelated, then the correlation constant, ρ, is 

zero and the calculation of the TP value becomes the product of the T functions for 

classification systems Aθ and Bπ minus the weighted FP. Correlation, by definition, is 

bounded on the interval [-1, 1] where ρ = -1 implies the two classification systems are 

inversely correlated and ρ = 1 implies the two classification systems are directly 

correlated.  

The within OR combined classification system is defined in a similar fashion. 
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Def 3.18 – Within OR ROC curve - Assume that the ROC curves for systems Aθ and Bπ 

are known. Then for a given parameter combination θ and π, the (FP, TP) ordered pair 

constitutes a point on the ROC curve for the combined classification system.   

𝑃𝑇𝑃
𝑊 (𝐴𝜃 ∨ 𝐵𝜋) =

1
𝑃(𝛤𝑡) max

𝑝+𝑞−𝑝𝑞=𝑟
ℎ𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)� −

𝑃(𝛤𝑛)
𝑃(𝛤𝑡) 𝑟 

𝑃𝐹𝑃
𝑊 (𝐴𝜃 ∨ 𝐵𝜋) = 𝑃𝐹𝑃(𝐴𝜃) + 𝑃𝐹𝑃(𝐵𝜋) − 𝑃𝐹𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) 

                             = 𝑝 + 𝑞 − 𝑝𝑞 

Where 

𝑇𝐴
𝑊(𝑝) = max

𝜃∈𝛩
[𝑃(𝛤𝑡)𝑓𝐴(𝑝) + 𝑃(𝛤𝑛)𝑝] 

𝑇𝐵
𝑊(𝑞) = max

𝜋 ∈ 𝛱
[𝑃(𝛤𝑡)𝑓𝐵(𝑞) + 𝑃(𝛤𝑛)𝑞] 

ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)�

= 𝑇𝐴
𝑊(𝑝) + 𝑇𝐵

𝑊(𝑞) − 𝜌 ��𝑇𝐴
𝑊(𝑝)�1 − 𝑇𝐴

𝑊(𝑝)��𝑇𝐵
𝑊(𝑞)�1 − 𝑇𝐵

𝑊(𝑞)��

− 𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) 

If the two systems are uncorrelated, the hρ function simplifies to the form of the 

independent OR probability calculation using the T functions.    

 3.7.2 Across I Label-Fused ROC Curves 

The T functions for the across I label-fused ROC curves closely resemble those of 

the within label-fused ROC curves. The derivation of these functions can be found in 

(Schubert: 2005). The major difference between across and within label-fused ROC 

curves is the prior probability weighting on individual classification systems Aθ and Bπ. 



 

61 
 

Def 3.19 – Across I AND ROC curve - Assume that the ROC curves for systems Aθ and Bπ 

are known. Then for a given parameter combination θ and π, the (FP, TP) ordered pair 

constitutes a point on the ROC curve for the combined classification system.  

  

𝑃𝑇𝑃
𝐼 (𝐴𝜃 ∧ 𝐵𝜋) =

1
𝑃(𝛤𝑡) max

𝑝𝑞=𝑟
𝑔𝜌�𝑇𝐴

𝐼(𝑝), 𝑇𝐵
𝐼 (𝑞)� −

𝑃(𝛤𝑛)
𝑃(𝛤𝑡) 𝑟 

𝑃𝐹𝑃
𝐼 (𝐴𝜃 ∧ 𝐵𝜋) = 𝑃𝐹𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) 

                             = 𝑝𝑞 

Where 

𝑇𝐴
𝐼(𝑝) = max

𝜃∈𝛩
�𝑃�𝛤𝑡1�𝑓𝐴(𝑝) + 𝑃�𝛤𝑛1�𝑝� 

𝑇𝐵
𝐼 (𝑞) = max

𝜋 ∈ 𝛱
�𝑃�𝛤𝑡2�𝑓𝐵(𝑞) + 𝑃�𝛤𝑛2�𝑞� 

𝑔𝜌�𝑇𝐴
𝐼(𝑝), 𝑇𝐵

𝐼 (𝑞)� = 𝜌 ��𝑇𝐴
𝐼(𝑝)�1 − 𝑇𝐴

𝐼(𝑝)��𝑇𝐵
𝐼(𝑞)�1 − 𝑇𝐵

𝐼(𝑞)�� + 𝑇𝐴
𝐼(𝑝)𝑇𝐵

𝐼 (𝑞) 

 Note that the prior probability associated with the T functions has changed and is 

dependent upon choice of label fusion rule. 

 Next, the formula for the across I OR combined ROC curve is defined. 

Def 3.20 – Across I OR ROC curve - Assume that the ROC curves for systems Aθ and Bπ 

are known. Then for a given parameter combination θ and π, the (FP, TP) ordered pair 

constitutes a point on the ROC curve for the combined classification system.   

𝑃𝑇𝑃
𝐼 (𝐴𝜃 ∨ 𝐵𝜋) =

1
𝑃(𝛤𝑡) max

𝑝+𝑞−𝑝𝑞=𝑟
ℎ𝜌�𝑇𝐴

𝐼(𝑝), 𝑇𝐵
𝐼 (𝑞)� −

𝑃(𝛤𝑛)
𝑃(𝛤𝑡) 𝑟 

𝑃𝐹𝑃
𝐼 (𝐴𝜃 ∨ 𝐵𝜋) = 𝑃𝐹𝑃(𝐴𝜃) + 𝑃𝐹𝑃(𝐵𝜋) − 𝑃𝐹𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) 

                            = 𝑝 + 𝑞 − 𝑝𝑞 
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Where 

𝑇𝐴
𝐼(𝑝) = max

𝜃∈𝛩
�𝑃�𝛤𝑡1�𝑓𝐴(𝑝) + 𝑃�𝛤𝑛1�𝑝� 

𝑇𝐵
𝐼 (𝑞) = max

𝜋 ∈ 𝛱
�𝑃�𝛤𝑡2�𝑓𝐵(𝑞) + 𝑃�𝛤𝑛2�𝑞� 

ℎ𝜌�𝑇𝐴
𝐼(𝑝), 𝑇𝐵

𝐼 (𝑞)�

= 𝑇𝐴
𝐼(𝑝) + 𝑇𝐵

𝐼 (𝑞) − 𝜌 ��𝑇𝐴
𝐼(𝑝)�1 − 𝑇𝐴

𝐼(𝑝)��𝑇𝐵
𝐼(𝑞)�1 − 𝑇𝐵

𝐼(𝑞)��

− 𝑇𝐴
𝐼(𝑝)𝑇𝐵

𝐼 (𝑞) 

The prior probability has a significant effect on combined ROC curves for the 

across I combined classification system. Performance is greatly impacted under the AND 

rule as there are few instances where the combined classification system should agree 

about the target label for a given element.  

 3.7.3 – Across II Label-Fused ROC Curves 

 In the section below, the formulas for the AND and the OR ROC curves are 

derived for the across II combined classification system.  

Def 3.21 – Across II AND ROC curve - Assume that the ROC curves for systems Aθ and 

Bπ are known. Then for a given parameter combination θ and π, the (FP, TP) ordered 

pair constitutes a point on the ROC curve for the combined classification system.   

𝑃𝑇𝑃
𝐼𝐼 (𝐴𝜃 ∧ 𝐵𝜋) =

1
𝑃(𝛤𝑡) max

𝑝𝑞=𝑟
𝑔𝜌�𝑇𝐴

𝐼𝐼(𝑝), 𝑇𝐵
𝐼𝐼(𝑞)� −

𝑃(𝛤𝑛)
𝑃(𝛤𝑡) 𝑟 

𝑃𝐹𝑃
𝐼𝐼 (𝐴𝜃 ∧ 𝐵𝜋) = 𝑃𝐹𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) 

                             = 𝑝𝑞 

Where 

𝑇𝐴
𝐼𝐼(𝑝) = max

𝜃∈𝛩
�𝑃�𝛤𝑡1�𝑓𝐴(𝑝) + 𝑃�𝛤𝑛1�𝑝� 
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𝑇𝐵
𝐼𝐼(𝑞) = max

𝜋 ∈ 𝛱
[𝑃(𝛤𝑡)𝑓𝐵(𝑞) + 𝑃(𝛤𝑛)𝑞] 

𝑔𝜌�𝑇𝐴
𝐼𝐼(𝑝), 𝑇𝐵

𝐼𝐼(𝑞)� = 𝜌 ��𝑇𝐴
𝐼𝐼(𝑝)�1 − 𝑇𝐴

𝐼𝐼(𝑝)��𝑇𝐵
𝐼𝐼(𝑞)�1 − 𝑇𝐵

𝐼𝐼(𝑞)�� + 𝑇𝐴
𝐼𝐼(𝑝)𝑇𝐵

𝐼𝐼(𝑞) 

Note that the prior probabilities associated with the T functions of system Bπ 

under across II label fusion are identical to the prior probabilities associated with system 

Bπ under within label fusion. Hence, across II fusion becomes within fusion when the 

prior probabilities associated with system Aθ are equivalent to the prior probabilities 

associated with system Bπ.  

Next, the across II OR ROC curve formula is defined 

Def 3.22 – Across II OR ROC curve - Assume that the ROC curves for systems Aθ and Bπ 

are known. Then for a given parameter combination θ and π, the (FP, TP) ordered pair 

constitutes a point on the ROC curve for the combined classification system.     

𝑃𝑇𝑃
𝐼𝐼 (𝐴𝜃 ∨ 𝐵𝜋) =

1
𝑃(𝛤𝑡) max

𝑝+𝑞−𝑝𝑞=𝑟
ℎ𝜌�𝑇𝐴

𝐼𝐼(𝑝), 𝑇𝐵
𝐼𝐼(𝑞)� −

𝑃(𝛤𝑛)
𝑃(𝛤𝑡) 𝑟 

𝑃𝐹𝑃
𝐼𝐼 (𝐴𝜃 ∨ 𝐵𝜋) = 𝑃𝐹𝑃(𝐴𝜃) + 𝑃𝐹𝑃(𝐵𝜋) − 𝑃𝐹𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) 

                            = 𝑝 + 𝑞 − 𝑝𝑞 

Where 

𝑇𝐴
𝐼𝐼(𝑝) = max

𝜃∈𝛩
�𝑃�𝛤𝑡1�𝑓𝐴(𝑝) + 𝑃�𝛤𝑛1�𝑝� 

𝑇𝐵
𝐼𝐼(𝑞) = max

𝜋 ∈ 𝛱
[𝑃(𝛤𝑡)𝑓𝐵(𝑞) + 𝑃(𝛤𝑛)𝑞] 

ℎ𝜌�𝑇𝐴
𝐼𝐼(𝑝), 𝑇𝐵

𝐼𝐼(𝑞)�

= 𝑇𝐴
𝐼𝐼(𝑝) + 𝑇𝐵

𝐼𝐼(𝑞) − 𝜌 ��𝑇𝐴
𝐼𝐼(𝑝)�1 − 𝑇𝐴

𝐼𝐼(𝑝)��𝑇𝐵
𝐼𝐼(𝑞)�1 − 𝑇𝐵

𝐼𝐼(𝑞)��

− 𝑇𝐴
𝐼𝐼(𝑝)𝑇𝐵

𝐼𝐼(𝑞) 
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 3.7.4 Across III Label-Fused ROC Curves 

 Below, the ROC curves for across III label-fused systems are defined. 

Def 3.23 – Across III AND function - Assume that the ROC curves for systems Aθ and Bπ 

are known. Then for a given parameter combination θ and π, the (FP, TP) ordered pair 

constitutes a point on the ROC curve for the combined classification system.   

𝑃𝑇𝑃
𝐼𝐼𝐼(𝐴𝜃 ∧ 𝐵𝜋) =

1
𝑃(𝛤𝑡) max

𝑝𝑞=𝑟
𝑔𝜌�𝑇𝐴

𝐼𝐼𝐼(𝑝), 𝑇𝐵
𝐼𝐼𝐼(𝑞)� −

𝑃(𝛤𝑛)
𝑃(𝛤𝑡) 𝑟 

𝑃𝐹𝑃
𝐼𝐼𝐼(𝐴𝜃 ∧ 𝐵𝜋) = 𝑃𝐹𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) 

                             = 𝑝𝑞 

Where 

𝑇𝐴
𝐼𝐼𝐼(𝑝) = max

𝜃∈𝛩
�𝑃�𝛤𝑡12�𝑓𝐴(𝑝) + 𝑃�𝛤𝑛12�𝑝� 

𝑇𝐵
𝐼𝐼𝐼(𝑞) = max

𝜋 ∈ 𝛱
�𝑃�𝛤𝑡23�𝑓𝐵(𝑞) + 𝑃�𝛤𝑛23�𝑞� 

𝑔𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝), 𝑇𝐵

𝐼𝐼𝐼(𝑞)�

= 𝜌 ��𝑇𝐴
𝐼𝐼𝐼(𝑝)�1 − 𝑇𝐴

𝐼𝐼𝐼(𝑝)��𝑇𝐵
𝐼𝐼𝐼(𝑞)�1 − 𝑇𝐵

𝐼𝐼𝐼(𝑞)�� + 𝑇𝐴
𝐼𝐼𝐼(𝑝)𝑇𝐵

𝐼𝐼𝐼(𝑞) 

Def 3.24 – Across III OR ROC curve - Assume that the ROC curves for systems Aθ and Bπ 

are known. Then for a given parameter combination θ and π, the (FP, TP) ordered pair 

constitutes a point on the ROC curve for the combined classification system.   

𝑃𝑇𝑃
𝐼𝐼𝐼(𝐴𝜃 ∨ 𝐵𝜋) =

1
𝑃(𝛤𝑡) max

𝑝+𝑞−𝑝𝑞=𝑟
ℎ𝜌�𝑇𝐴

𝐼𝐼𝐼(𝑝), 𝑇𝐵
𝐼𝐼𝐼(𝑞)� −

𝑃(𝛤𝑛)
𝑃(𝛤𝑡) 𝑟 

𝑃𝐹𝑃
𝐼𝐼𝐼(𝐴𝜃 ∨ 𝐵𝜋) = 𝑃𝐹𝑃(𝐴𝜃) + 𝑃𝐹𝑃(𝐵𝜋) − 𝑃𝐹𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) 

                            = 𝑝 + 𝑞 − 𝑝𝑞 

Where 
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𝑇𝐴
𝐼𝐼𝐼(𝑝) = max

𝜃∈𝛩
�𝑃�𝛤𝑡12�𝑓𝐴(𝑝) + 𝑃�𝛤𝑛12�𝑝� 

𝑇𝐵
𝐼𝐼𝐼(𝑞) = max

𝜋 ∈ 𝛱
�𝑃�𝛤𝑡23�𝑓𝐵(𝑞) + 𝑃�𝛤𝑛23�𝑞� 

ℎ𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝), 𝑇𝐵

𝐼𝐼𝐼(𝑞)�

= 𝑇𝐴
𝐼𝐼𝐼(𝑝) + 𝑇𝐵

𝐼𝐼𝐼(𝑞) − 𝜌 ��𝑇𝐴
𝐼𝐼𝐼(𝑝)�1 − 𝑇𝐴

𝐼𝐼𝐼(𝑝)��𝑇𝐵
𝐼𝐼𝐼(𝑞)�1 − 𝑇𝐵

𝐼𝐼𝐼(𝑞)��

− 𝑇𝐴
𝐼𝐼𝐼(𝑝)𝑇𝐵

𝐼𝐼𝐼(𝑞) 

 In section IV, the results of the research will be discussed along with derivations 

for the functions that describe the bias between across and within label-fused 

classification systems. In section V, the simulation will be analyzed. This simulation 

compares the ROC curves of within and across combined classification systems, the bias 

that exists between these ROC curves, and different environmental factors that can affect 

the bias.     
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IV Results 

Recall that the aim of this research is to describe and quantify the bias between 

classification systems under the assumptions of within and across label fusion. The 

results of (Schubert et al: 2005) suggest that there is some inherent difference in the 

performance of classification systems under the different types of across fusion as 

compared to within fusion. First, the notion of bias must be developed.  Generally, bias 

will be defined as the difference in true positive rate for a given, fixed false positive rate.  

Thus, bias may be viewed graphically when depicting the within label-fused ROC curve 

and the across label-fused ROC curve on the same plot and observing the vertical 

distance between the two curves for a fixed, x-axis (false positive) value. Label-fused 

ROC curve formulas expressed in terms of the performance of the individual 

classification systems presented previously may be used to create computational formulas 

for bias in terms of the individual systems. Thus, adjustments to fused system 

performance may be generated in a flexible manner.  Formulas for bias between within 

label-fused ROC curves and each of the types of across label-fused ROC curves are 

derived below.   

4.1 Bias Between Across I and Within ROC Curves  

The bias between across I and within label-fused ROC curves may be expressed 

in terms of the fusion rule and the ROC curves of the individual classification systems. 

Definition 4.1.1 (Performance Bias: Across I versus Within, Boolean AND rule) The 

performance bias between fused across I and within ROC curves under the Boolean AND 

rule is defined to be the following. 
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𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝐴𝑁𝐷(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼 𝐴𝑁𝐷(𝑟) 

𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) �max

𝑝𝑞=𝑟
�𝑔𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)�� − max

𝑝′𝑞′=𝑟
�𝑔𝜌�𝑇𝐴

𝐼(𝑝′), 𝑇𝐵
𝐼 (𝑞′)��� 

 It is possible that the values p and q whose product produced the combined false 

positive rate, r, may not be the same for both label-fused ROC curves. Hence, p may not 

be equal to p’ and q may not be equal to q’. If the values p and q are the same for both 

label-fused ROC curves, then the formula can simplify slightly to the following: 

𝐵𝑖𝑎𝑠 𝐷𝐴⋏𝐵
𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) max

𝑝𝑞=𝑟
[𝑇𝐴

𝑊(𝑝)𝑇𝐵
𝑊(𝑞) − 𝑇𝐴

𝐼(𝑝)𝑇𝐵
𝐼 (𝑞)] 

For the false positive values p and q to be the same for across and within 

classification systems, the combined false positive rate must be invariant with respect to 

the type of label fusion. That is to say, if the false positive values are calculated in a way 

that the fusion rule has no bearing on the computation of values p and q for individual 

classification systems, then this assumption can be met. For example, in the simulation of 

section V, the values for p and q are generated using parameter values and the normal 

CDF. Random sampling of values from the non-target distribution may lead to instances 

where p ≠ p’ or q ≠ q’.  

 The following two theorems are concerned with deriving the formula for 

performance bias between the across I and within label-fused ROC curves under the 

Boolean AND rule. The first theorem makes no assumption about the equality of p, p’, q, 

and q’.  The second theorem is a simplification when p = p’ and q = q’. 

Theorem 4.1.1 (Performance Bias: Across I versus Within label-fused ROC curves, 

Boolean AND rule) Let 𝐷𝐴∧𝐵
𝐼  be the ROC curve for the Boolean AND label-fused across I 

system. Let 𝐷𝐴∧𝐵
𝑊  be the ROC curve for the Boolean AND label-fused within system. 
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Assume A and B are independent classification systems. Then, for a fixed false positive 

value, max pq = r = max p’q’, the bias between across I and within label-fused ROC 

curves under the AND rule is 

𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) �max

𝑝𝑞=𝑟
[𝑇𝐴

𝑊(𝑝)𝑇𝐵
𝑊(𝑞)] − max

𝑝′𝑞′=𝑟
[𝑇𝐴

𝐼(𝑝′)𝑇𝐵
𝐼 (𝑞′)]� 

Proof: Assume that classification systems A and B are independent and the correlation 

constant, ρ, is zero. Then, bias may be expressed as: 

𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝐴𝑁𝐷(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼 𝐴𝑁𝐷(𝑟) 

                    =
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

−
1

𝑃(𝛤𝑡) max
𝑝′𝑞′=𝑟

�𝑔𝜌�𝑇𝐴
𝐼(𝑝′), 𝑇𝐵

𝐼 (𝑞′)� − 𝑃(𝛤𝑛)𝑟� 

                     =
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑃(𝛤𝑛)𝑟] − max
𝑝′𝑞′=𝑟

[𝑇𝐴
𝐼(𝑝′)𝑇𝐵

𝐼 (𝑞′) − 𝑃(𝛤𝑛)𝑟]� 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)��

− max
𝑝′𝑞′=𝑟

��𝑃�𝛤𝑡1�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1�𝑃𝐹𝑃(𝐴𝜃)� �𝑃�𝛤𝑡2�𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃�𝛤𝑛2�𝑃𝐹𝑃(𝐵𝜋)��� 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞)] + max
𝑝′𝑞′=𝑟

[𝑇𝐴
𝐼(𝑝′)𝑇𝐵

𝐼 (𝑞′)]� 

∎ 

Theorem 4.1.2 (Performance Bias: Across I versus Within label-fused ROC curves, 

Boolean AND rule where p=p’ and q=q’) Let 𝐷𝐴∧𝐵
𝐼  be the ROC curve for the Boolean 
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AND label-fused across I system. Let 𝐷𝐴∧𝐵
𝑊  be the ROC curve for the Boolean AND label-

fused within system. Assume A and B are independent classification systems. Then, for a 

fixed false positive value, max pq = r, the bias between across I and within label-fused 

ROC curves under the AND rule is 

𝐵𝑖𝑎𝑠 𝐷𝐴∧𝐵
𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) �max

𝑝𝑞=𝑟
[𝑇𝐴

𝑤(𝑝)𝑇𝐵
𝑊(𝑞) − 𝑇𝐴

𝐼(𝑝)𝑇𝐵
𝐼 (𝑞)]� 

Proof: Assume that classification systems A and B are independent and the correlation 

coefficient, ρ, is zero. Assume the probability values p and q are invariant with respect to 

choice of label fusion rule. Then, bias may be expressed as: 

𝐵𝑖𝑎𝑠 𝐷𝐴∧𝐵
𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝐴𝑁𝐷(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼 𝐴𝑁𝐷(𝑟) 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

− max
𝑝′𝑞′=𝑟

�𝑔𝜌�𝑇𝐴
𝐼(𝑝′), 𝑇𝐵

𝐼 (𝑞′)� − 𝑃(𝛤𝑛)𝑟�� 

=
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�  

− 𝑃(𝛤𝑛)𝑟 – ��𝑃�𝛤𝑡1�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1�𝑃𝐹𝑃(𝐴𝜃)� �𝑃�𝛤𝑡2�𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃�𝛤𝑛2�𝑃𝐹𝑃(𝐵𝜋)�� + 𝑃(𝛤𝑛)𝑟� 

=  
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

�𝑃𝑇𝑃(𝐴𝜃)𝑃𝑇𝑃(𝐵𝜋) �𝑃(𝛤𝑡)2 − 𝑃�𝛤𝑡1�𝑃�𝛤𝑡2��

+ 𝑃𝑇𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) �𝑃(𝛤𝑡)𝑃(𝛤𝑛) − 𝑃�𝛤𝑡1�𝑃�𝛤𝑛2��

+ 𝑃𝐹𝑃(𝐴𝜃)𝑃𝑇𝑃(𝐵𝜋) �𝑃(𝛤𝑡)𝑃(𝛤𝑛) − 𝑃�𝛤𝑛1�𝑃�𝛤𝑡2��

+ 𝑃𝐹𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) �𝑃(𝛤𝑛)2 − 𝑃�𝛤𝑛1�𝑃�𝛤𝑛2��� 
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=
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

[𝑇𝐴
𝑤(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝐼(𝑝)𝑇𝐵

𝐼 (𝑞)] 

∎ 

 In a similar fashion to the Boolean AND rule, the bias formula for the Boolean OR 

rule will be defined and then the corresponding theorems for the two different cases 

regarding the false positive values will be derived. 

Definition 4.1.3 (Performance Bias: Across I versus Within Label-Fused ROC curves, 

Boolean OR rule) Bias between the Boolean OR label-fused within and across ROC 

curves is 

𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝑂𝑅(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼 𝑂𝑅(𝑟) 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)�� − max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼(𝑝′), 𝑇𝐵

𝐼 (𝑞′)��� 

Theorem 4.1.3 (Performance Bias: Across I versus Within Label-Fused ROC curves, 

Boolean OR rule) Let 𝐷𝐴∨𝐵
𝐼  be the ROC curve for the Boolean OR label-fused across I 

system. Let 𝐷𝐴∨𝐵
𝑊  be the ROC curve for the Boolean OR label-fused within system. 

Assume A and B are independent classification systems. Then, for a fixed false positive 

value, max p+q-pq = r =max p’+q’-p’q’, the bias between across I and within label-

fused classification systems is 

𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) � max

𝑝+𝑞−𝑝𝑞=𝑟
�ℎ𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)�� − max

𝑝′+𝑞′−𝑝′𝑞′=𝑟
�ℎ𝜌�𝑇𝐴

𝐼(𝑝′), 𝑇𝐵
𝐼 (𝑞′)��� 
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Proof: Assume that classification systems A and B are independent and the correlation 

coefficient, ρ, is zero. Then, bias may be expressed as: 

𝐵𝑖𝑎𝑠 𝐷𝐴∨𝐵
𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) max

𝑝+𝑞−𝑝𝑞=𝑟
�ℎ𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

−
1

𝑃(𝛤𝑡) max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼(𝑝′), 𝑇𝐵

𝐼 (𝑞′)� − 𝑃(𝛤𝑛)𝑟� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑃(𝛤𝑛)𝑟]

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

[𝑇𝐴
𝐼(𝑝′)𝑇𝐵

𝐼 (𝑞′) − 𝑃(𝛤𝑛)𝑟]� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝) + 𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑃(𝛤𝑛)𝑟]

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

[𝑇𝐴
𝐼(𝑝′) + 𝑇𝐵

𝐼 (𝑞′) − 𝑇𝐴
𝐼(𝑝′)𝑇𝐵

𝐼 (𝑞′) − 𝑃(𝛤𝑛)𝑟]� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)�

+ �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�

− �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)��

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

���𝑃�𝛤𝑡1
�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1

�𝑃𝐹𝑃(𝐴𝜃)�

+ �𝑃�𝛤𝑡2
�𝑃𝑇𝑃(𝐵𝜋) + 𝑃�𝛤𝑛2

�𝑃𝐹𝑃(𝐵𝜋)�

− �𝑃�𝛤𝑡1
�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1

�𝑃𝐹𝑃(𝐴𝜃)� �𝑃�𝛤𝑡2
�𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃�𝛤𝑛2
�𝑃𝐹𝑃(𝐵𝜋)���� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)�� − max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼(𝑝′), 𝑇𝐵

𝐼 (𝑞′)��� 

∎ 
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 Seeing as there is no simplification of the formula beyond attempting to group 

cross terms, it was decided to leave the result in the form of the h function for ease of 

interpretation.  

Theorem 4.1.4 (Performance Bias: Across I versus Within Label-Fused ROC curves, 

Boolean OR rule where p=p’ and q=q’) Let 𝐷𝐴∨𝐵
𝐼  be the ROC curve for the Boolean OR 

label-fused across I system. Let 𝐷𝐴∨𝐵
𝑊  be the ROC curve for the Boolean OR label-fused 

within system. Assume A and B are independent classification systems. Then, for a fixed 

false positive value, max p+q-pq = r, the bias between across I and within label-fused 

ROC curves is 

𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) max

𝑝+𝑞−𝑝𝑞=𝑟
�ℎ𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)� − ℎ𝜌�𝑇𝐴

𝐼(𝑝), 𝑇𝐵
𝐼 (𝑞)�� 

Proof: Assume that classification systems A and B are independent and the correlation 

coefficient, ρ, is zero. Further, assume that p and q are invariant with respect to choice of  

label fusion rule. Then, the bias may be expressed as: 

𝐵𝑖𝑎𝑠 𝐷𝐴∨𝐵
𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝑂𝑅 (𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼 𝑂𝑅(𝑟) 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟

− �ℎ𝜌�𝑇𝐴
𝐼(𝑝), 𝑇𝐵

𝐼 (𝑞)� − 𝑃(𝛤𝑛)𝑟�� 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

��𝑇𝐴
𝑊(𝑝) + 𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞)�

− �𝑇𝐴
𝐼(𝑝) + 𝑇𝐵

𝐼 (𝑞) − 𝑇𝐴
𝐼(𝑝)𝑇𝐵

𝐼 (𝑞)�� 
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=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)�

+ �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�

− �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�

− ��𝑃�𝛤𝑡1
�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1

�𝑃𝐹𝑃(𝐴𝜃)�

+ �𝑃�𝛤𝑡2
�𝑃𝑇𝑃(𝐵𝜋) + 𝑃�𝛤𝑛2

�𝑃𝐹𝑃(𝐵𝜋)�

− �𝑃�𝛤𝑡1
�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1

�𝑃𝐹𝑃(𝐴𝜃)� �𝑃�𝛤𝑡2
�𝑃𝑇𝑃(𝐵𝜋) + 𝑃�𝛤𝑛2

�𝑃𝐹𝑃(𝐵𝜋)��� 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑤(𝑝), 𝑇𝐵

𝑊(𝑞)� − ℎ𝜌�𝑇𝐴
𝐼(𝑝), 𝑇𝐵

𝐼 (𝑞)�� 

∎ 
4.2 Bias Between Across II and Within ROC Curves 

The bias between across II and within label-fused ROC curves may be expressed 

in terms of the fusion rule and the ROC curves of the individual classification systems. 

Definition 4.2.1 (Performance Bias: Across II versus Within Label-Fused ROC curves, 

Boolean AND rule) Bias between the Boolean AND label-fused within and across II ROC 

curves is defined to be the following 

𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝐴𝑁𝐷(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼 𝐴𝑁𝐷(𝑟) 

                     =
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)�� − max
𝑝′𝑞′=𝑟

�𝑔𝜌�𝑇𝐴
𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼(𝑞′)��� 

Recall from section III that classification system Bπ under the across II fusion rule 

is designed to classify all target types in the environment. As such, the system Bπ is the 

same for both the within and across II label-fused systems. That is to say  

𝑇𝐵
𝑊(𝑞) =  𝑇𝐵

𝐼𝐼(𝑞) 
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This permits a nice simplification of the formula when q = q’.  

Theorem 4.2.1 (Performance Bias: Across II versus Within Label-Fused ROC curves, 

Boolean AND rule) Let 𝐷𝐴∧𝐵
𝐼𝐼  be the ROC curve for the Boolean AND label-fused across 

II system. Let 𝐷𝐴∧𝐵
𝑊  be the ROC curve for the Boolean AND label-fused within system. 

Assume A and B are independent classification systems. Then, for a fixed false positive 

value, max pq = r = max p’q’, the bias between across II and within label-fused ROC 

curves is 

𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) �max

𝑝𝑞=𝑟
�𝑔𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)�� − max

𝑝′𝑞′=𝑟
�𝑔𝜌�𝑇𝐴

𝐼𝐼(𝑝′), 𝑇𝐵
𝐼𝐼(𝑞′)��� 

Proof: Assume that classification systems A and B are independent and the correlation 

coefficient, ρ, is zero. Then, bias may be expressed as: 

𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝐴𝑁𝐷(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼 𝐴𝑁𝐷(𝑟) 

=
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

−
1

𝑃(𝛤𝑡) max
𝑝′𝑞′=𝑟

�𝑔𝜌�𝑇𝐴
𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼(𝑞′)� − 𝑃(𝛤𝑛)𝑟� 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑃(𝛤𝑛)𝑟] − max
𝑝′𝑞′=𝑟

[𝑇𝐴
𝐼𝐼(𝑝′)𝑇𝐵

𝐼𝐼(𝑞′) − 𝑃(𝛤𝑛)𝑟]� 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)� − 𝑃(𝛤𝑛)𝑟�

− max
𝑝′𝑞′=𝑟

��𝑃�𝛤𝑡1�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1�𝑃𝐹𝑃(𝐴𝜃)� �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)� − 𝑃(𝛤𝑛)𝑟�� 
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=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)� − 1�

− max
𝑝′𝑞′=𝑟

��𝑃�𝛤𝑡1�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1�𝑃𝐹𝑃(𝐴𝜃)� �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)��� 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)�� − max
𝑝′𝑞′=𝑟

�𝑔𝜌�𝑇𝐴
𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼(𝑞′)��� 

∎ 

Theorem 4.2.2 (Performance Bias: Across II versus Within Label-Fused ROC curves, 

Boolean AND rule where p=p’ and q=q’) Let 𝐷𝐴∧𝐵
𝐼𝐼  be the ROC curve for the Boolean 

AND label-fused across II system. Let 𝐷𝐴∧𝐵
𝑊  be the ROC curve for the Boolean AND 

label-fused within system. Assume A and B are independent classification systems. Then, 

for a fixed false positive value, max pq = r, the bias between across II and within label-

fused ROC curves is 

𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) max

𝑝𝑞=𝑟
�𝑇𝐵

𝑊(𝑞)�𝑇𝐴
𝑊(𝑝) − 𝑇𝐴

𝐼𝐼(𝑝)�� 

Proof: Assume that classification systems A and B are independent and the correlation 

coefficient, ρ, is zero and the values p and q are invariant with respect to label fusion rule. 

Then, bias may be expressed as: 

𝐵𝑖𝑎𝑠𝐶𝐴⋏𝐵
𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝐴𝑁𝐷(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼 𝐴𝑁𝐷(𝑟) 

=
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

−
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝐼𝐼(𝑝), 𝑇𝐵

𝐼𝐼(𝑞)� − 𝑃(𝛤𝑛)𝑟� 



 

76 
 

=
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑔𝜌�𝑇𝐴
𝐼𝐼(𝑝), 𝑇𝐵

𝐼𝐼(𝑞)�� 

Substitute in TB
W where appropriate 

=
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝐼𝐼(𝑝)𝑇𝐵

𝐼𝐼(𝑞)] 

      =
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

�𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝐼𝐼(𝑝)�𝑇𝐵

𝑊(𝑞)�� 

  =
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

�𝑇𝐵
𝑊(𝑞)�𝑇𝐴

𝑊(𝑝) − 𝑇𝐴
𝐼𝐼(𝑝)�� 

∎  

 The bias formulas for across II versus within combined label-fused systems under 

the Boolean OR rule will be defined analogously. 

Def 4.2.3 (Performance Bias: Across II versus Within Label-Fused ROC curves, Boolean 

OR rule) Bias between the Boolean OR label-fused within and across II ROC curves is 

defined to be the following 

𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝑂𝑅(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼 𝑂𝑅(𝑟) 

                    =
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)�� − max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼(𝑞′)��� 

Theorem 4.2.3 (Performance Bias: Across II versus Within Label-Fused ROC curves, 

Boolean OR rule) Let 𝐷𝐴∨𝐵
𝐼𝐼  be the ROC curve for the Boolean OR label-fused across II 

system. Let 𝐷𝐴∨𝐵
𝑊  be the ROC curve for the Boolean OR label-fused within system. 

Assume A and B are independent classification systems. Then, for a fixed false positive 

value, the bias between across II and within label-fused ROC curves is 
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𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) � max

𝑝+𝑞−𝑝𝑞=𝑟
�ℎ𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)��

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼(𝑞′)��� 

Proof: Under the assumption of independent classification systems A and B, the 

correlation constant, ρ, is zero. Then, bias may be expressed as: 

𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝑂𝑅(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼 𝑂𝑅(𝑟) 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

−
1

𝑃(𝛤𝑡) max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼(𝑞′)� − 𝑃(𝛤𝑛)𝑟� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝) + 𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑃(𝛤𝑛)𝑟]

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

[𝑇𝐴
𝐼𝐼(𝑝′) + 𝑇𝐵

𝐼𝐼(𝑞′) − 𝑇𝐴
𝐼𝐼(𝑝′)𝑇𝐵

𝐼𝐼(𝑞′) − 𝑃(𝛤𝑛)𝑟]� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)�

+ �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�

− �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)��

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

���𝑃�𝛤𝑡1
�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1

�𝑃𝐹𝑃(𝐴𝜃)�

+ �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�

− �𝑃�𝛤𝑡1
�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1

�𝑃𝐹𝑃(𝐴𝜃)� �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)���� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)�� − max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼(𝑞′)��� 

∎ 
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Theorem 4.2.4 (Performance Bias: Across II versus Within Label-Fused ROC curves, 

Boolean OR rule where p=p’ and q=q’) Let 𝐷𝐴∨𝐵
𝐼𝐼  be the ROC curve for the Boolean OR 

label-fused across II system. Let 𝐷𝐴∨𝐵
𝑊  be the ROC curve for the Boolean OR label-fused 

within system. Assume A and B are independent classification systems. Then, for a fixed 

false positive value max p+q-pq = r, the bias between across II and within label-fused 

classification systems is 

𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) max

𝑝+𝑞−𝑝𝑞=𝑟
��1 − 𝑇𝐵

𝑤(𝑞)��𝑇𝐴
𝑊(𝑝) − 𝑇𝐴

𝐼𝐼(𝑝)�� 

Proof: Assume that classification systems A and B are independent and the correlation 

coefficient, ρ, is zero. Further, assume that the values p and q are invariant with respect to 

label fusion rule. Then, bias may be expressed as: 

𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝑂𝑅(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼 𝑂𝑅(𝑟) 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

−
1

𝑃(𝛤𝑡) max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼(𝑞′)� − 𝑃(𝛤𝑛)𝑟� 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

�𝑇𝐴
𝑊(𝑝) + 𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞)

− �𝑇𝐴
𝐼𝐼(𝑝) + 𝑇𝐵

𝐼𝐼(𝑞) − 𝑇𝐴
𝐼𝐼(𝑝)𝑇𝐵

𝐼𝐼(𝑞)�� 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

�𝑇𝐴
𝑊(𝑝) + 𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞)

− �𝑇𝐴
𝐼𝐼(𝑝) + �𝑇𝐵

𝑊(𝑞)� − 𝑇𝐴
𝐼𝐼(𝑝)�𝑇𝐵

𝑊(𝑞)��� 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝) − 𝑇𝐴

𝑊(𝑝)𝑇𝐵
𝑤(𝑞) − 𝑇𝐴

𝐼𝐼(𝑝) + 𝑇𝐴
𝐼𝐼(𝑝)𝑇𝐵

𝑊(𝑞)] 
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=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

��𝑇𝐴
𝑊(𝑝) − 𝑇𝐴

𝐼𝐼(𝑝)� − 𝑇𝐵
𝑊(𝑞)�𝑇𝐴

𝑊(𝑝) − 𝑇𝐴
𝐼𝐼(𝑝)�� 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

��1 − 𝑇𝐵
𝑊(𝑞)��𝑇𝐴

𝑊(𝑝) − 𝑇𝐴
𝐼𝐼(𝑝)�� 

∎ 

4.3 Bias Between Across III and Within ROC Curves 

The bias between across III and within label-fused ROC curves may be expressed 

in terms of the fusion rule and the ROC curves of the individual classification systems. 

Definition 4.3.1 (Performance Bias: Across III versus Within Label-Fused ROC curves, 

Boolean AND rule) Bias between the Boolean AND label-fused within and across III 

ROC curves is defined to be the following 

𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝐴𝑁𝐷(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼𝐼 𝐴𝑁𝐷(𝑟) 

                     =
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)�� − max
𝑝′𝑞′=𝑟

�𝑔𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼𝐼(𝑞′)��� 

Theorem 4.3.1 (Performance Bias: Across III versus Within Label-Fused ROC curves, 

Boolean AND rule) Let 𝐷𝐴∧𝐵
𝐼𝐼𝐼  be the ROC curve for the Boolean AND label-fused across 

III system. Let 𝐷𝐴∧𝐵
𝑊  be the ROC curve for the Boolean AND label-fused within system. 

Assume A and B are independent classification systems. Then, for a fixed false positive 

value, max pq = r = max p’q’, the bias between across III and within label-fused ROC 

curves is 

𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼𝐼𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) �max

𝑝𝑞=𝑟
�𝑔𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)�� − max

𝑝′𝑞′=𝑟
�𝑔𝜌�𝑇𝐴

𝐼𝐼𝐼(𝑝′), 𝑇𝐵
𝐼𝐼𝐼(𝑞′)��� 

Proof: Assume that classification systems A and B are independent and the correlation 

coefficient, ρ, is zero. Then, bias may be expressed as: 
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𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝐴𝑁𝐷(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼𝐼 𝐴𝑁𝐷(𝑟) 

=
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

−
1

𝑃(𝛤𝑡) max
𝑝′𝑞′=𝑟

�𝑔𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼𝐼(𝑞′)� − 𝑃(𝛤𝑛)𝑟� 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑃(𝛤𝑛)𝑟] − max
𝑝′𝑞′=𝑟

[𝑇𝐴
𝐼𝐼𝐼(𝑝′)𝑇𝐵

𝐼𝐼𝐼(𝑞′) − 𝑃(𝛤𝑛)𝑟]� 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�� − max
𝑝′𝑞′=𝑟

��𝑃�𝛤𝑡12�𝑃𝑇𝑃(𝐴𝜃)

+ 𝑃�𝛤𝑛12�𝑃𝐹𝑃(𝐴𝜃)� �𝑃�𝛤𝑡23�𝑃𝑇𝑃(𝐵𝜋) + 𝑃�𝛤𝑛23�𝑃𝐹𝑃(𝐵𝜋)��� 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)��

− max
𝑝′𝑞′=𝑟

��𝑃�𝛤𝑡1�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛1�𝑃𝐹𝑃(𝐴𝜃)� �𝑃�𝛤𝑡23�𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃�𝛤𝑛23�𝑃𝐹𝑃(𝐵𝜋)��� 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)�� − max
𝑝′𝑞′=𝑟

�𝑔𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼𝐼(𝑞′)��� 

∎ 

Theorem 4.2.2 (Performance Bias: Across III versus Within Label-Fused ROC curves, 

Boolean AND rule where p=p’ and q=q’) Let 𝐷𝐴∧𝐵
𝐼𝐼𝐼  be the ROC curve for the Boolean 

AND label-fused across III system. Let 𝐷𝐴∧𝐵
𝑊  be the ROC curve for the Boolean AND 

label-fused within system. Assume A and B are independent classification systems. Then, 

for a fixed false positive value, max pq = r, the bias between across III and within label-

fused ROC curves is 
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𝐵𝑖𝑎𝑠𝐷𝐴∧𝐵
𝐼𝐼𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) max

𝑝𝑞=𝑟
[𝑇𝐴

𝑤(𝑝)𝑇𝐵
𝑊(𝑞) − 𝑇𝐴

𝐼𝐼𝐼(𝑝)𝑇𝐵
𝐼𝐼𝐼(𝑞)] 

Proof: Assume that classification systems A and B are independent and the correlation 

coefficient, ρ, is zero. Further, assume that the values p and q are invariant with respect to 

choice of label fusion rule. Then, bias may be expressed as: 

𝐵𝑖𝑎𝑠 𝐷𝐴∧𝐵
𝐼𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝐴𝑁𝐷(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼𝐼 𝐴𝑁𝐷(𝑟) 

=
1

𝑃(𝛤𝑡) �max
𝑝𝑞=𝑟

�𝑔𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

− max
𝑝′𝑞′=𝑟

�𝑔𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼𝐼(𝑞′)� − 𝑃(𝛤𝑛)𝑟�� 

=
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�  

− 𝑃(𝛤𝑛)𝑟 – ��𝑃�𝛤𝑡12�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛12�𝑃𝐹𝑃(𝐴𝜃)� �𝑃�𝛤𝑡23�𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃�𝛤𝑛23�𝑃𝐹𝑃(𝐵𝜋)�� + 𝑃(𝛤𝑛)𝑟� 

=  
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

�𝑃𝑇𝑃(𝐴𝜃)𝑃𝑇𝑃(𝐵𝜋) �𝑃(𝛤𝑡)2 − 𝑃�𝛤𝑡12�𝑃�𝛤𝑡23��

+ 𝑃𝑇𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) �𝑃(𝛤𝑡)𝑃(𝛤𝑛) − 𝑃�𝛤𝑡12�𝑃�𝛤𝑛23��

+ 𝑃𝐹𝑃(𝐴𝜃)𝑃𝑇𝑃(𝐵𝜋) �𝑃(𝛤𝑡)𝑃(𝛤𝑛) − 𝑃�𝛤𝑛12�𝑃�𝛤𝑡23��

+ 𝑃𝐹𝑃(𝐴𝜃)𝑃𝐹𝑃(𝐵𝜋) �𝑃(𝛤𝑛)2 − 𝑃�𝛤𝑛12�𝑃�𝛤𝑛23��� 

=
1

𝑃(𝛤𝑡) max
𝑝𝑞=𝑟

[𝑇𝐴
𝑤(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝐼𝐼𝐼(𝑝)𝑇𝐵

𝐼𝐼𝐼(𝑞)] 

∎ 
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 The bias formulas for across III versus within combined label-fused systems 

under the Boolean OR rule will be defined analogously. 

Def 4.2.3 (Performance Bias: Across III versus Within Label-Fused ROC curves, 

Boolean OR rule) Bias between the Boolean OR label-fused within and across III ROC 

curves is defined to be the following 

𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝑂𝑅(𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼 𝑂𝑅(𝑟) 

                    =
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼𝐼(𝑞′)� − 𝑃(𝛤𝑛)𝑟�� 

Theorem 4.2.3 (Performance Bias: Across III versus Within Label-Fused ROC curves, 

Boolean OR rule) Let 𝐷𝐴∨𝐵
𝐼𝐼𝐼  be the ROC curve for the Boolean OR label-fused across III 

system. Let 𝐷𝐴∨𝐵
𝑊  be the ROC curve for the Boolean OR label-fused within system. 

Assume A and B are independent classification systems. Then, for a fixed false positive 

value, max p+q-pq = r = max p’+q’-p’q’, the bias between across III and within label-

fused ROC curves is 

𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼𝐼𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) � max

𝑝+𝑞−𝑝𝑞=𝑟
�ℎ𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)��

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼𝐼(𝑞′)��� 

Proof: Assume that classification systems A and B are independent and the correlation 

coefficient, ρ, is zero. Then, bias may be expressed as: 
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𝐵𝑖𝑎𝑠 𝐷𝐴∨𝐵
𝐼𝐼𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) max

𝑝+𝑞−𝑝𝑞=𝑟
�ℎ𝜌�𝑇𝐴

𝑊(𝑝), 𝑇𝐵
𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟�

−
1

𝑃(𝛤𝑡) max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼𝐼(𝑞′)� − 𝑃(𝛤𝑛)𝑟� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑃(𝛤𝑛)𝑟]

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

[𝑇𝐴
𝐼𝐼𝐼(𝑝′)𝑇𝐵

𝐼𝐼𝐼(𝑞′) − 𝑃(𝛤𝑛)𝑟]� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

[𝑇𝐴
𝑊(𝑝) + 𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞) − 𝑃(𝛤𝑛)𝑟]

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

[𝑇𝐴
𝐼𝐼𝐼(𝑝′) + 𝑇𝐵

𝐼𝐼𝐼(𝑞′) − 𝑇𝐴
𝐼𝐼𝐼(𝑝′)𝑇𝐵

𝐼𝐼𝐼(𝑞′) − 𝑃(𝛤𝑛)𝑟]� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)�

+ �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�

− �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)��

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

���𝑃�𝛤𝑡12
�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛12

�𝑃𝐹𝑃(𝐴𝜃)�

+ �𝑃�𝛤𝑡23
�𝑃𝑇𝑃(𝐵𝜋) + 𝑃�𝛤𝑛23

�𝑃𝐹𝑃(𝐵𝜋)�

− �𝑃�𝛤𝑡12
�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛12

�𝑃𝐹𝑃(𝐴𝜃)� �𝑃�𝛤𝑡23
�𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃�𝛤𝑛23
�𝑃𝐹𝑃(𝐵𝜋)���� 

=
1

𝑃(𝛤𝑡) � max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)��

− max
𝑝′+𝑞′−𝑝′𝑞′=𝑟

�ℎ𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝′), 𝑇𝐵

𝐼𝐼𝐼(𝑞′)��� 

∎ 
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Theorem 4.2.4 (Performance Bias: Across III versus Within Label-Fused ROC curves, 

Boolean OR rule where p=p’ and q=q’) Let 𝐷𝐴∨𝐵
𝐼𝐼𝐼  be the ROC curve for the Boolean OR 

label-fused across II system. Let 𝐷𝐴∨𝐵
𝑊  be the ROC curve for the Boolean OR label-fused 

within system. Assume A and B are independent classification systems. Then, for a fixed 

false positive value max p+q-pq = r = max p’+q’-p’q’, the bias between across III and 

within label-fused ROC curves is 

𝐵𝑖𝑎𝑠𝐷𝐴∨𝐵
𝐼𝐼𝐼 𝑣𝑠 𝑊 =

1
𝑃(𝛤𝑡) max

𝑝+𝑞−𝑝𝑞=𝑟
�ℎ𝜌�𝑇𝐴

𝑤(𝑝), 𝑇𝐵
𝑊(𝑞)� − ℎ𝜌�𝑇𝐴

𝐼𝐼𝐼(𝑝), 𝑇𝐵
𝐼𝐼𝐼(𝑞)�� 

Proof: Assume that classification systems A and B are independent and the correlation 

coefficient, ρ, is zero. Further, assume that probabilities p and q are invariant with respect 

to choice of label fusion rule. Then, the bias may be expressed as: 

𝐵𝑖𝑎𝑠 𝐷𝐴∨𝐵
𝐼𝐼𝐼 𝑣𝑠 𝑊 = 𝑓𝐶

𝑊𝑖𝑡ℎ𝑖𝑛 𝑂𝑅 (𝑟) − 𝑓𝐶
𝐴𝑐𝑟𝑜𝑠𝑠 𝐼𝐼𝐼 𝑂𝑅(𝑟) 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑊(𝑝), 𝑇𝐵

𝑊(𝑞)� − 𝑃(𝛤𝑛)𝑟

− �ℎ𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝), 𝑇𝐵

𝐼𝐼𝐼(𝑞)� − 𝑃(𝛤𝑛)𝑟�� 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

��𝑇𝐴
𝑊(𝑝) + 𝑇𝐵

𝑊(𝑞) − 𝑇𝐴
𝑊(𝑝)𝑇𝐵

𝑊(𝑞)�

− �𝑇𝐴
𝐼𝐼𝐼(𝑝) + 𝑇𝐵

𝐼𝐼𝐼(𝑞) − 𝑇𝐴
𝐼𝐼𝐼(𝑝)𝑇𝐵

𝐼𝐼𝐼(𝑞)�� 
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=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)�

+ �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�

− �𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐴𝜃) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐴𝜃)��𝑃(𝛤𝑡)𝑃𝑇𝑃(𝐵𝜋) + 𝑃(𝛤𝑛)𝑃𝐹𝑃(𝐵𝜋)�

− ��𝑃�𝛤𝑡12
�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛12

�𝑃𝐹𝑃(𝐴𝜃)�

+ �𝑃�𝛤𝑡23
�𝑃𝑇𝑃(𝐵𝜋) + 𝑃�𝛤𝑛23

�𝑃𝐹𝑃(𝐵𝜋)�

− �𝑃�𝛤𝑡12
�𝑃𝑇𝑃(𝐴𝜃) + 𝑃�𝛤𝑛12

�𝑃𝐹𝑃(𝐴𝜃)� �𝑃�𝛤𝑡23
�𝑃𝑇𝑃(𝐵𝜋)

+ 𝑃�𝛤𝑛23
�𝑃𝐹𝑃(𝐵𝜋)��� 

=
1

𝑃(𝛤𝑡) max
𝑝+𝑞−𝑝𝑞=𝑟

�ℎ𝜌�𝑇𝐴
𝑤(𝑝), 𝑇𝐵

𝑊(𝑞)� − ℎ𝜌�𝑇𝐴
𝐼𝐼𝐼(𝑝), 𝑇𝐵

𝐼𝐼𝐼(𝑞)�� 

∎ 

  The bias formulas that are concerned with the across I and across III label fusion 

rules are very similar in appearance. It will be seen in section V that this similarity 

extends to the ROC curves themselves, but the presence of the common type 2 target in 

across III fusion will lead to different results as compared to across I label fusion.  

 In the following section the simulation that was produced will be discussed and 

the results analyzed. Finally, in section VI, the discussion will highlight those results that 

were discovered through this work.  
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V Simulation 
 

A computer simulation was used to determine the extent of performance bias that 

may exist between classification systems that use within label fusion as opposed to across 

label fusion. In addition, individual classification system performance, correlation, and 

target prevalence were varied in order to establish how these factors affect any potential 

bias. All coding for the simulation was developed using MATLAB®. 

5.1 Construction of the Simulation 

5.1.1 Simulated Classification Systems 

 Assume that classification systems Aθ and Bγ,ε exist and are the same mapping 

compositions as outlined in section 3.1.2. In this instance, the parameter set, π, is a two 

dimensional set composed of parameters γ and ε. Define the parameter sets θ = [-4, 6] 

and the parameters sets γ = [-4, 6] and ε = [0, 10]. Assume that the features of the non-

target distribution, Φn, is distributed as N(0, 1). Also, assume that the features of the 

target distribution, Φt, is normally distributed with variance of 1. Let the two 

classification systems be defined thusly: 

   𝑎𝜃 = �𝑡 ∶  𝑥 ∈  𝛤𝑡;   𝑥 ≥ 𝜃
𝑛 ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

𝑏𝛾,𝜀 =  �𝑡 ∶ 𝑥 ∈  𝛤𝑡;   𝛾 ≤  𝑥 ≤ (𝛾 + 𝜀)
𝑛 ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 
(5.1) 

 
Hence for classifier aθ, if the element from the feature set is greater than or equal to the 

parameter value θ, then the classification system gives the element a “t” label. If not, the 

element is given an “n” label. For classifier bγ,ε, if the element from the feature set is 

between the parameter value γ and the sum (γ + ε), then the element receives a “t” label 

and an “n” label otherwise. 
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5.1.2 Area under a ROC Curve  
 

In order to examine the effects of individual classification system performance on 

any bias that exists between within and across fused systems, area under the ROC curve 

(AUC) was used. AUC has a specific interpretation in that a perfect classification system 

has an AUC of 1 whereas an equivalently random classification system has an AUC = 

0.5. Any ROC curve with AUC less that 0.5 performs worse than chance. Thus, by 

exploiting the statistical properties of the AUC, specific classification system 

performances may be determined. Using these properties, it will be assumed that the 

target and non-target partitions from the feature set come from different N(µ, σ2) 

distributions. Assume that there are three levels of classification system performance: 

good, fair, and poor. A good classification system will have a corresponding AUC of 

0.95, a fair classification system will have an AUC of 0.85, and a poor classification 

system will have an AUC of 0.75. Fixing system performance by these three levels of 

AUC implies specific distributions for the features. Hence, there exists a way to solve for 

the mean and standard deviations of the distributions for targets and non-targets that 

generates the ROC curve with specific AUC.  

Definition 5.1 (Normal Area under a ROC curve) Let a = (μ+ - μ-) (the difference 

between the mean of the target distribution and non-target distribution). Let b = (σ- / σ+) 

(the ratio of the standard deviation of the non-target distribution over the standard 

deviation of the target distribution). Let Φ-1 be the inverse Normal CDF. Then the area 

under an ROC curve for normally distributed event partitions is  
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𝐴𝑈𝐶 =  𝛷−1 �
𝑎

√1 + 𝑏2
� = 𝛷−1

⎝

⎛ (𝜇+ − 𝜇−)

�1 + �𝜎−
𝜎+

�
2

⎠

⎞ 

 
Let the distribution of the non-targets be N(0, 1). Thus, for a good classification 

system, µt = 2.326. For a fair classification system, µt = 1.465, and for a poor 

classification system µt = 0.954. The classification systems defined in 5.1.1. were 

constructed specifically so that each of the three previously described levels of 

performance using AUC criteria could be established with the target means as defined 

above. 

5.1.3 Simulation Scenarios 
 

The probability of true positive (TP) and false positive (FP) for classification 

systems Aθ and Bγ, ε is defined to be the following. 

𝑃𝑇𝑃(𝐴𝜃) = 𝑃�𝐴𝜃
♮ (𝛬𝑡)|𝛤𝑡� =

𝑃�𝐴𝜃
♮ (𝛬𝑡) ∩ 𝛤𝑡�
𝑃(𝛤𝑡) = �

1
√2𝜋

𝑒
−(𝑥−𝜇𝑡)2

2

∞

𝜃

𝑑𝑥 

𝑃𝐹𝑃(𝐴𝜃) = 𝑃�𝐴𝜃
♮ (𝛬𝑡)|𝛤𝑛� =

𝑃�𝐴𝜃
♮ (𝛬𝑡) ∩ 𝛤𝑛�
𝑃(𝛤𝑛) = �

1
√2𝜋

𝑒
−(𝑥)2

2 𝑑𝑥
∞

𝜃

 

𝑃𝑇𝑃�𝐵𝛾,𝜀� = 𝑃�𝐵𝛾,𝜀
♮ (𝛬𝑡)|𝛤𝑡� =

𝑃�𝐵𝛾,𝜀
♮ (𝛬𝑡) ∩ 𝛤𝑡�

𝑃(𝛤𝑡) = �
1

√2𝜋
𝑒

−(𝑥−𝜇𝑡)2

2

(𝛾+𝜀)

𝛾

𝑑𝑥 

𝑃𝐹𝑃�𝐵𝛾,𝜀� = 𝑃�𝐵𝛾,𝜀
♮ (𝛬𝑡)|𝛤𝑛� =

𝑃�𝐵𝛾,𝜀
♮ (𝛬𝑡) ∩ 𝛤𝑛�

𝑃(𝛤𝑛) = �
1

√2𝜋
𝑒

−(𝑥)2

2

(𝛾+𝜀)

𝛾

𝑑𝑥 

 
Using Matlab programming software, these values and their corresponding ROC 

curves were generated for each of the two Boolean rules (Boolean AND and OR) and for 

each of the three combinations of performances for Aθ and Bγ,ε, (toggling between good, 

fair, and poor) as determined by AUC.  In addition to varying the performance of 
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competing classification systems, the effects of correlation between classification systems 

were examined. Seven different levels of correlation were considered; -0.8, -0.5, -0.3, 0 

(independence), 0.3, 0.5, and 0.8.  It was also of interest to investigate the effects 

associated with altering target populations. Three target populations were investigated, a 

target rich population, a target enhanced population, and a target deficient population. In 

the target rich environment, probability of observing a target event is P(Γt) = 4/5 and the 

probability of observing a non-target event is P(Γn) = 1/5. In the target enhanced 

environment, the probability of observing a target event P(Γt) = 2/3 and the probability of 

observing a non-target event is P(Γn) = 1/3. Finally, in the target deficient environment, 

the probability of observing a non-target event is P(Γt) = 1/5 and the probability of 

observing a non-target event is  P(Γn) = 4/5. 

5.1.4 Algorithm Outline 
 
 In this section, a brief outline of the algorithm is given. Both the source code 

comments are given in appendix C.   

1) Create parameters θ, γ, and ε 
𝜃 = ℝ𝑁𝑥1 
𝛾 = ℝ𝑁𝑥1 
𝜀 = ℝ𝑁𝑥1 

 
2) Generate the probabilities of true and false positive at each parameter value for 

individual systems Aθ and Bγ,ε.  

𝑓𝑜𝑟 𝑖 = 1: 𝑁 

𝑃𝑇𝑃�𝐴𝜃(𝑖)� = �
1

√2𝜋
𝑒

−�𝑥−𝜇𝑡�
2

2 𝑑𝑥
∞

𝜃(𝑖)

 

𝑃𝐹𝑃�𝐴𝜃(𝑖)� = �
1

√2𝜋
𝑒

−(𝑥)2

2 𝑑𝑥
∞

𝜃(𝑖)

 

𝑒𝑛𝑑 
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𝑓𝑜𝑟 𝑖 = 1: 𝑁 
     𝑓𝑜𝑟 𝑗 = 1: 𝑁 

           𝑃𝑇𝑃 �𝐵𝛾,𝜀(𝑖, 𝑗)� = �
1

√2𝜋
𝑒

−(𝑥−𝜇𝑡)2

2 𝑑𝑥

𝛾(𝑖)+𝜀(𝑗)

𝛾(𝑖)

 

            𝑃𝐹𝑃 �𝐵𝛾,𝜀(𝑖, 𝑗)� = �
1

√2𝜋
𝑒

−(𝑥)2

2 𝑑𝑥

𝛾(𝑖)+𝜀(𝑗)

𝛾(𝑖)

 

    𝑒𝑛𝑑 
𝑒𝑛𝑑  

 
3) The ROC curve for systems Aθ and Bγ,ε are computed from the probabilities of 2).   

 
𝑓𝐴𝜃

= max
𝜃∈𝛩

[𝑃𝐹𝑃(𝐴𝜃) 𝑃𝑇𝑃(𝐴𝜃)] 
𝑓𝐵𝛾,𝜀

= max
𝛾∈𝛤′

𝜀∈𝛦

�𝑃𝐹𝑃�𝐵𝛾,𝜀� 𝑃𝑇𝑃�𝐵𝛾,𝜀�� 

 
4) Input the true positive and false positive values associated with the ROC curves 

for systems Aθ and Bγ,ε into one of the ROC curve formulas for either within or 

across fusion to generate the label-fused ROC curve for the within and across 

combined systems.   

 

The figures above are examples of ROC curves. For the figure on the right, the 

disparity in true positive rate (height of the curve) is the performance bias 

between label-fused ROC curves. ROC curves were generated for each possible 

combination of performance, prevalence, and target environment. They are 
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supplementary material, but as the focus of this document is in the performance 

bias between ROC curves, the ROC curves themselves will not be discussed 

further here. The ROC curves are catalogued in appendix A. 

  
5) Compute the performance bias for a given Boolean rule, a given level of 

performance for classification systems Aθ and Bγ,ε, and positive or negative 

correlation. Each output consists of four curves depending on whether 

investigating positive or negative correlation coefficients.   

 

 
6) Plot bias versus false positive rate to create the bias curve between within and 

across label-fused ROC curves. The bias curve graphically depicts the difference 

in true positive rate at every combined false positive. The figures above are 

examples of these bias curves.  

5.2 Correlation and its Effects on Bias between Across and Within Combined 

Classification Systems 

In the prior section, all of the formulas for the bias were derived under the 

assumption that the two systems were uncorrelated. The cost functions defined in section 

III were derived under the assumption of a fixed level of correlation. In the case that the 
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two classification systems are indeed independent, the correlation coefficient, ρ, is zero. 

Other values of the correlation coefficient were investigated to see the effect on 

performance bias between label-fused ROC curves. 

 Recall from section III that the correlation between classification systems Aθ and 

Bγ,ε was defined as: 

 
𝜌[𝐴𝜃, 𝐵𝜋] =

[𝐶𝐴∧𝐵 − 𝐶𝐴𝐶𝐵]

�𝐶𝐴(1 − 𝐶𝐴)�𝐶𝐵(1 − 𝐶𝐵)
 

(5.1) 

 

The correlation expression is built into the gρ and hρ functions (3.13 and 3.15, 

respectively). Six different levels of non-zero correlation coefficient values were chosen 

such that a trend may be seen in the corresponding bias curve output. 

ρ1 = -0.8 

ρ 2 = -0.5 

ρ 3 = -0.3 

ρ 4 = 0.3 

ρ 5 = 0.5 

ρ 6 = 0.8 

Table 5-18 - Different levels of correlation to be tested. 

In the context of this document, a ROC curve, regardless of the level of 

correlation, can never attain a true positive rate greater than the value “1.” 

Simultaneously, a lower bound must be placed on the true positive rate when negative 

correlation is considered. As it is not possible for a probability to be less than zero, the 
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lower bound on the true positive rate is the max of either zero or the value returned by the 

ROC function. These bounds may be defined as:  

 
max

𝑟
�𝑓𝑐(𝑟)� = min

𝑟
{1, 𝑓𝑐(𝑟)} 

min
𝑟

�𝑓𝑐(𝑟)� = max
𝑟

{0, 𝑓𝑐(𝑟)} 

(5.2) 

 

In the following subsections, the effects of altering probability weights for across 

specific targets, altering the level of dependence between individual classification 

systems, and altering target environment are investigated and their effect on performance 

bias is analyzed.  

5.2.1 – The Effect of Correlation on Bias between Across I and Within Combined 

Classification Systems 

The difference in performance between across I label-fused systems as compared 

to within label-fused systems can be significant. Recall that in the context of across I 

label fusion, it is assumed that there are two mutually exclusive target types that 

classification systems Aθ and Bγ,ε are tuned to classify. Under this assumption, the 

likelihood that both classification systems Aθ and Bγ,ε label the same element in question 

with a target label is quite low; particularly given that those target types to which Aθ and 

Bγ,ε are not tuned (t1 and t2, respectively) have been scaled to the non-target N(0, 1) 

distribution. On the other hand, under the assumption of within label fusion, the target set 

for both individual classification systems Aθ and Bγ,ε is the same and constitutes all 

element with target features in the event set.  



 

94 
 

In this simulation, the probability weights associated with the within label-fused 

classification system are equivalent to the probability of observing any target event (as 

determined by target environment). For the across I label-fused classification system, it 

was decided that two cases should be considered: 1) the probability of observing a t1 

event is equal to the probability of observing a t2 event 2) the probability of observing a t1 

event is not equal to the probability of observing a t2 event. This alteration of individual 

target probability gives the experimenter the ability to change the performance of the 

across I system without altering the within label-fused system. In section 5.2, all of the 

cases investigated here were simulated in the target enhanced environment. The other 

two environments will be analyzed in section 5.3. Not all figures will be presented here. 

For a complete listing of the figures, refer to appendix B.  

5.2.1.1 – Effect on Bias when ρ ≥ 0 under the AND rule 

 Suppose that two classification systems are highly positively correlated. Given 

that this is the case, it would be reasonable to believe that the two classification systems 

under the AND rule may exhibit increased performance. There is a clear trend that arises 

from the investigation of the bias between across I versus within correlated classification 

systems under the AND rule: as the correlation between classification systems Aθ and Bγ,ε 

increases, the performance bias decreases. 

It was hypothesized that altering both target prevalence and classification system 

performance should have an effect on the level of bias between within and across label-

fused ROC curves. Consider first the case that both classification systems have equal 

levels of performance (both systems are either good, fair, or poor) and the probability 
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weighting associated with across target types is equally distributed among the two 

classification systems under the across I label fusion rule.   

 

 

Figure 5-1 – Bias curves across I and versus within AND. The y – axis is a measure of the bias between the two 

classification systems at a fixed fpr (x – axis). In the three graphs above, classification systems Aθ and Bγ,ε are fused 

at equal levels of performance. For reference, P(Γt1) = P(Γt2)= 1/3 and P(Γn1) = P(Γn2) = 2/3 under the across I label 

fusion rule. 

Altering the performance of individual classifications indeed plays a role in the 

magnitude of performance bias between different label-fused ROC curves. As is 

demonstrated in figure 5-1, as the level of performance of classification systems Aθ and 

Bγ,ε decreases, the difference in performance between the types of label fusion also 

decreases. The change in performance for the within label-fused ROC curves is more 
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pronounced whereas the across I label-fused curves aren’t performing much better than 

chance even at the good level. This makes sense for the across I system as Aθ and Bγ,ε are 

tuned to mutually exclusive target types, so it is unlikely that the systems will 

simultaneously label any target event with the target label.  

Correlation also has a clear effect on the bias between fused ROC curves. As the 

level of positive correlation increases (the dashed, dotted, and bold curves in the figures), 

notice that under the AND rule the level of bias between across I and within label-fused 

systems decreases appreciably. It is arguable that this increase in performance of both 

systems is the result of redundant information given that the individual classification 

systems Aθ and Bγ,ε are positively correlated.  

 Next, consider the case where two classification systems are being fused under 

the AND rule where the level of performance is different for each individual system.  

 

Figure 5-2 – Fusing two classification systems that do not have equal performance. The level of bias between the 

fused systems is most heavily influenced by the superior individual classification system.  

Surprisingly, if difference in performance of two classification systems differs by 

± 0.20 AUC, the level of bias between across I and within combined classification 

systems remains largely unchanged with respect to the superior classification system. For 
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example, consider figure 5-2 where the performance of classification system Aθ is fair 

and Bγ,ε is good. The amount of bias between the across I and within AND label-fused 

ROC curves is comparable to that when both systems have good performance.    

 Next, suppose that the prior target prevalence for classification systems Aθ and 

Bγ,ε is altered such that the probability of observing a type I target is greater than the 

probability of observing a type II target.  

 

 

Figure 5-3 – Altering the target prevalence for classification systems Aθ and Bγ,ε under across I label fusion has a 

considerable effect on the bias between systems. In this case, P(Γt1) = 1/2 and P(Γt2) = 1/6.   

Perhaps the most unusual aspect of the change in target prevalence is the effect it 

has on the bias curves. In the case where target prevalence was distributed equally 
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between the two classification systems, the shape was generally smooth and concave. The 

magnitude of bias between the within and across I combined classification systems under 

the AND rule decreases when performance levels of individual classification systems are 

equivalent. By shifting the majority of probability weight onto either t1 or t2 for the 

across I fused system, it is acting more like a within classification system. This is only 

true when the classification system tuned to the target type with the majority of target 

weight performs at a level greater than or equal to the opposing system. The opposite is 

true when the system with the majority of target weight performs at a lower level. In the 

following figure, the probability of observing a t1 event is greater than the probability of 

observing a t2 event.   

  

Figure 5-4 – If system Aθ has superior performance to system Bγ,ε, the bias between across I and within and fused 

systems can be greatly decreased. If system Aθ performs poorly, regardless of the performance of system Bγ,ε, the 

fused across I and classification system will be severely influenced by system Aθ. In this case, P(Γt1) = 1/2 and P(Γt2) = 

1/6. 

  If the performance of Aθ is good when the performance of Bγ,ε is poor (fig 5-4, 

left hand side), the magnitude of bias between within and across I ROC curves reaches a 

maximum of roughly ±0.20 tpr (ρ = 0). If the performance of Aθ is poor when the 
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performance of Bγ,ε is good (figure 5-4, right hand side) the maximum level of bias can 

be as high as approximately ±0.55 tpr (ρ = 0). Even in the case that both classification 

systems are significantly positively correlated (ρ = 0.8), the bias between the two 

classification systems can still be as high as ±0.40. This is to say that altering target 

weights for across I targets can be a useful tool for manipulating the performance bias.     

5.2.1.2 – Effect on Bias when ρ ≤ 0 under the AND rule 

 When two classification systems are negatively correlated, they are said to be 

inversely related.  First consider two classification systems with equal levels of 

performance and equally distributed target weight (for the across system). If both 

classification systems have good performance (fig 5-5, bottom), it is seen that there is 

only a minor relationship between negative correlation of classification systems and 

performance bias between within and across I label-fused ROC curves. Negative 

correlation has small and erratic effects on the performance bias between label-fused 

ROC curves under the Boolean AND rule. The results from the simulation suggest that 

the only noticeable difference in bias between within and across I AND label-fused ROC 

curves occurs when ρ = 0 and appears more or less constant for all tested levels of 

negative correlation.  
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Figure 5-5 – Negative correlation has a minor influence on the level of bias between within and across I fused 

classification systems. For reference, P(Γt1) = P(Γt2)= 1/3 and P(Γn1) = P(Γn2) = 2/3 under the across I label fusion rule.   

If the performances of individual systems are not the same, then it is reasonable to 

suspect that there may be a noticeable shift in the bias between classification systems. 

However, the simulation provided no evidence to support this hypothesis. Results from 

the simulation strangely suggests that when the performances of classification systems Aθ 

and Bγ,ε are different, any value from ρ = 0 to ρ = -0.8 has no effect on the performance 

bias between fused within and across I label-fused ROC curves (fig 5-6). It was also 

tested to see whether altering the weighting of across I target types affected bias when 

the individual systems were negatively correlated under the Boolean AND rule.  
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Figure 5-6 – When two classification systems are fused with differing performance, the presence of negative 

correlation has little to no effect.  

Altering the weights of across I target types demonstrates that negative 

correlation does have some effect, but it is minor under the Boolean AND rule. In figure 

5-7, it is seen that that are small differences in the performance bias when systems Aθ and 

Bγ,ε are performing at different levels, but hardly pronounced enough to see visibly.  
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Figure 5-7 – By increasing the prevalence of t1, the influence of negative correlation becomes easier to identify. 

Though the effects are minimal, under the and rule, the level of bias does decrease between within and across I 

systems. In this case, P(Γt1) = 1/2 and P(Γt2) = 1/6. 

5.2.1.3 – Effect on Bias when ρ ≥ 0 under the OR rule 

  The results provided by the simulation suggest that positive correlation has 

minute effects on the bias between label-fused OR classification systems. This is a 

strange parallel with the negatively correlated label-fused AND curves. What can be said 

about the performance bias between label-fused OR curves is that the magnitude 

decreases at an accelerated rate as compared to the AND label-fused ROC curves. This is 

largely due to the fact that within label-fused curves under the OR rule reach a maximum 

level of performance (tpr = 1) at a lower corresponding false positive rate.   
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Figure 5-8 – When the levels of performance are equal between systems Aθ and Bγ,ε, it appears that positive 

correlation negatively impacts bias. For reference, P(Γt1) = P(Γt2) =1/3 and P(Γn1) = P(Γn2) = 2/3 under the across I 

label fusion rule.   

 As seen in figure 5-8, the uncorrelated curve attains the highest magnitude of 

performance bias, but drops below the bias curves where systems Aθ and Bγ,ε are 

positively correlated under the OR rule. What is even more unusual is what occurs when 

the two classification systems Aθ and Bγ,ε have different levels of performance.  
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Figure 5-9 – When systems are fused with different levels of performance, the effect of positive correlation causes 

an increase in bias between the within and across I or systems.  

If the performances of the two classification systems in question are different, it is 

interesting to note the relative lack of effect on positively correlated classification 

systems. From the figure above, the correlated bias curves overlap considerably while the 

uncorrelated curve is clearly influenced by the change in combined classification system 

performance. Note again that the maximum magnitude of bias seems to remain on par 

with the individual classification system with superior performance.  

The effects of altering target weight for across I target types was also considered 

for those ROC curves fused under the OR rule. A trend similar to that seen under the 

AND rule can be seen in figure 5-10. 
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Figure 5-10 – In the figure on the left, the uncorrelated fused classification system has the highest level of bias 

when both systems have fair performance. On the right, fusing a poor Aθ system with a good Bγ,ε system in a 

positively correlated environment inflates the bias when positive correlation grows. 

By altering the prior probability associated with one of the targets in the across I 

combined classification system, one can increase the performance of the combined across 

I OR ROC curve if the system associated with the target that has the majority of 

probability weight has superior performance (fig 5-10, left). As was seen under the AND 

rule, if the system associated with the increased target weight has inferior performance, 

this leads to increased bias between within and across I OR ROC curves (fig 5-10, right).  

5.2.1.4 – Effect on Bias when ρ ≤ 0 under the OR rule 

 The presence of negative correlation can have a significant impact on the 

magnitude of bias between within and across I label-fused ROC curves under the OR 

rule. Under any level of negative correlation, the boost to performance for an OR ROC 

curve is considerably greater than when ρ = 0. If the performance levels are varied, this 

same trend continues.  
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Figure 5-11 – When the classification systems are negatively correlated (bold, dashed, and dotted curves), the bias 

between within and across I combined classification systems under the OR rule decreases. Altering the prior target 

prevalence of either t1 or t2 can exaggerate these levels of bias (bottom).    

As seen in figure 5-11, when the individual classification systems are negatively 

correlated and fused under the OR rule, the magnitude of bias between within and across 

I label-fused ROC curves is decreased. This trend is seen when performances of 

individual systems are different and when across target weights are altered as well.  
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5.2.2 – The Effect of Correlation on Bias between Across II and Within Combined 

Classification Systems 

5.2.2.1 – Effect on Bias when ρ ≥ 0 under the AND rule  

In an across II environment, classification system Aθ is tuned to target type I and 

classification system Bγ,ε is tuned to all elements in the target partition. Given that system 

Bγ,ε classifies the same set of targets for both the within and across II systems leads to 

interesting results for the performance bias between across II versus within label-fused 

ROC curves. 

 

Figure 5-12 – The magnitude of performance bias between within and across II label-fused ROC curves is 

considerably smaller than that seen in the previous case. This is likely caused by system Bγ,ε being tuned to same 

partitions under both label fusion rules. 

Recall from theorem 4.2.3 that when the values of p and q are the same for both 

classification systems, the bias at a given false positive value is 

1
𝑃(𝛤𝑡) max𝑝𝑞=𝑟�𝑇𝐵

𝑊(𝑞)�𝑇𝐴
𝑊(𝑝) − 𝑇𝐴

𝐼𝐼(𝑝)��. Hence, the bias is largely a function of the 

difference in performance of classification system Aθ under the competing label fusion 

rules. Under the AND rule, the magnitude of bias between within and across II combined 

label-fused ROC curves is considerably smaller than that observed between within and 
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across I curves. This comparison highlights the relative dominance of classification 

systems that are designed to label all target elements in the environment. The presence of 

the common system Bγ,ε produces cases where the level of performance for both fused 

systems is quite comparable. The across II label-fused system does not always compete 

on par with the within label-fused system. In particular, it is necessary that the 

performance of classification system Bγ,ε is at least as good as that for system Aθ. In 

figure 5-12, the bias curve on the right shows the output for all tested levels of correlation 

greater than or equal to zero. The performance bias between within and across II label-

fused ROC curves under that AND rule drops to zero quickly for any level of positive 

correlation when the performance of system Aθ is equal to the performance of Bγ,ε (good 

performance in this instance). However, if the performance of the two individual systems 

is not the same as seen in figure 5-13 (top left), the magnitude of performance bias 

between the two label-fused ROC curves reaches levels that were common when 

comparing within and across I fusion.  
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Figure 5-13 – As demonstrated in the case of the unequal weight distribution in across I, if system Bγ,ε performs at a 

lower level than system Aθ, the ROC curve of the combined system is “anchored” by the performance of system 

Bγ,ε. Increasing the prior target prevalence of system Aθ (bottom graphs) further decreases the bias between within 

and across II and ROC curves. 

 It appears that as the performance of system Bγ,ε decreases, the difference in 

partitioning of events for classification system Aθ under the two competing label fusion 

rules takes precedence in determining the performance bias between the two systems.  

 It is important to note that under the AND rule, positive correlation between 

individual classification systems appears to increase the magnitude of performance bias 

between label-fused ROC curves when system Bγ,ε is operating at an equal or higher level 

of performance than system Aθ. This is unexpected given the results that are seen in the 

across I and also the across III cases where under the AND rule, positive correlation 

decreases the magnitude of performance bias between within and across systems 

regardless of performance levels. Though difficult to see, in figures 5-12 and 5-13, if 

system Bγ,ε is operating at an equal or superior level of performance, the uncorrelated 

ROC curves show the lowest amount of performance bias. However, this does make 

sense. Though the performance of system Bγ,ε is scaled equivalently for both within and 
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across II label fusion, the difference in performance of system Aθ becomes more drastic 

between the two label fusion rules, leading to increased performance bias between the 

two systems.  

5.2.2.2 – Effect on Bias when ρ ≤ 0 under the AND rule 

 Negative correlation appears to have small and unpredictable effects on the 

magnitude of performance bias between label-fused within and across II ROC curves. 

This parallels quite nicely with the effects that were documented when investigating the 

same scenario for across I and within label-fused ROC curves under the AND rule.  

 

 

Figure 5-14 – Negative correlation has little to no effect on the bias between within and across II label-fused 

systems under the AND rule. For bottom pictures, P(Γt1) =1/2 and P(Γt) = 2/3.  



 

111 
 

Figure 5-14 highlights four examples of the effects (or lack thereof) on bias when 

altering certain properties of the environment. On the left hand side, when both individual 

classification systems are operating at a poor performance level, the uncorrelated curve is 

well above the negatively correlated curves. Notice that on the bottom, increasing the 

likelihood of a t1 event reduces the magnitude of bias in both situations. It is more clearly 

pronounced when altering the performance of systems Aθ and Bγ,ε.   

5.2.2.3 – Effect on Bias when ρ ≥ 0 under the OR rule 

  When comparing label-fused ROC curves for the within and across I systems 

under the OR rule, it was noted that positive correlation had small and unusual effects and 

negative correlation produces a clear trend of decreasing performance bias. This same 

general trend is seen again here.  

 In figure 5-15, the focus is on those instances where the levels of performance of 

individual systems Aθ and Bγ,ε is different. It is seen that when system Bγ,ε has 

considerably superior performance, the effect of positive correlation is hardly noticeable 

as the maximum magnitude never exceeds 0.045 tpr. On the right hand side, switching 

the performance of the systems inflates the bias. Hence, it is seen again that as long as 

system Bγ,ε is performing at an equal or superior level of performance, positive 

correlation decreases bias and the opposite is true when the roles are reversed.  
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Figure 5-15 – Notice the varying magnitudes of bias when classification system Bγ,ε is respectively good and poor. If 

Bγ,ε has good performance, the performance of system Aθ hardly matters (max bias of approximately 0.04). 

Conversely, if the performance of Bγ,ε is poor, the bias between within and across II classifications systems can be 

considerable. Finally, on the bottom is the bias curve when both systems perform at the fair level. 

5.2.2.4 Effect on Bias when ρ ≤ 0 under the OR rule  

 Given the results that were seen in section 5.2.1.4, it is anticipated that in the 

presence of negative correlation, the bias between within and across II combined systems 

will decrease when the correlation coefficient is negative. Indeed, this is the case.  
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Figure 5-16 – When ρ ≤ 0 the magnitude of bias between within and across II label-fused ROC curves under the OR 

rule decreases.  

It was demonstrated in (Won, Cho: 2003) that correlation can impact the 

performance of classification systems. Although that particular document was not 

concerned with label fusion, it is seen here that the boost to performance of the fused 

systems is causing the two ROC curves to become closer in value. Some of this bias may 

appear artificial as this perceived boost is being dramatized by setting a maximum true 

positive rate of 1, however, if the two curves are permitted to break the measure of the 

set, it can be seen that the relative difference in performance is indeed decreasing. The 

sharp decline in bias seen in the bias curves under the OR rule is caused by the within 

label-fused system reaching its max true positive rate and remaining constant as the 

across II label-fused ROC curve converges to the same maximum true positive rate. 

As seen in figures 5-16 and 5-17, the level of performance of system Bγ,ε has the 

most dramatic effect on magnitude of bias between the two label-fused ROC curves. This 

magnitude is cut nearly in half when increasing the probability of observing a t1 event for 

system Aθ.  
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Figure 5-17 – Increasing the prevalence of t1 in an across II label-fused system decreases the bias. In this instance, 

P(Γt1) = 1/2 and P(Γt) = 2/3.  

5.2.3 – The Effect of Correlation on Bias between Across III and Within 

Combined Classification Systems 

The effect of correlation on the bias between across III label-fused systems and 

within label-fused classification systems shares many similarities with the bias between 

within and across I systems. This largely has to do with the fact that the target sets for 

classification systems Aθ and Bγ,ε have one mutually exclusive target type (t1 and t3 for 

classification system Aθ and Bγ,ε, respectively) and both also label the same subset of 

targets, t2. This decreases the bias between label-fused ROC curves as compared to 

across I where the target sets for both classification systems were mutually exclusive.  

5.2.3.1 – Effect on Bias when ρ ≥ 0 under the AND rule  

Consider the event where the prior probability of observing a target event is equal 

for classification systems Aθ and Bγ,ε under the across III label fusion rule.  In the case 

that two classification systems are positively correlated under both the within and across 

III label rule, it is seen that the magnitude of bias decreases. This is to be expected given 

the similarity to the across I scenario 
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Figure 5-18 – When ρ > 0 (bold, dashed, and dotted curves), the bias between combined within and across III 

systems under the AND rule is decreased. 

When the correlation coefficient takes on values 0.3 and 0.5 (dashed and dotted 

curves respectively in figure 5-18), the reduction in performance bias is minimal 

compared to the drastic case when the coefficient takes the value 0.8 (bold x curve). The 

change in performance bias is muted in some respects in this scenario likely because of 

the presence of the common t2 subset for both systems. As noted earlier, the magnitude of 

bias appears to be most closely related to the classification system with the superior level 

of performance. This is a trend that has persisted through all tested scenarios and appears 

again in figure 5-19 where the levels of performance of individual systems was altered.   



 

116 
 

 

Figure 5-19 – Combining two individual systems of different performance under the across III and within label 

fusion rules. 

Consider altering the target weight of observing a t12 event to 𝑃(t12) = 17
20

 and the 

probability of observing a t23 event to 𝑃(t23) = 3
20

 for the across III combined 

classification system under the AND rule.  

 

 

Figure 5-20 – The bias decreases when the individual classification system with the majority of prior target 

prevalence has a higher or equivalent level of performance. The opposite is true when the system with the majority 

of target prevalence has poorer performance.  
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Not surprisingly, the bias curves output when quantifying the bias between across 

III and within ROC curves strongly resemble the results of section 5.2.1  

5.2.3.2 – Effect on Bias when ρ ≤ 0 under the AND rule 

 When the two individual classification systems are negatively correlated under the 

AND rule, the bias curves overlap considerably. It is unclear why negative correlation 

seems to affect both within and across III fused systems equally (that is, there is no 

difference in performance for the within and across III label-fused ROC curves).  

 

Figure 5-21 – Negative correlation has little effect on combined AND classification systems. 

Altering prior target prevalence can be beneficial to decreasing the difference in 

responses between within and across III systems when the system responsible for 

classifying the majority of elements performs at a level equal to or superior to the other 

system. The converse is true when the system tasked with classifying the majority of 

elements in the environment has inferior performance. 
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Figure 5-22 – Oddly, combining systems of different performance seems to eliminate fluctuations in bias under the 

AND rule. 

5.2.3.3 – Effect on Bias when ρ ≥ 0 under the OR rule  

 Under the OR rule, if the two individual classification systems are positively 

correlated, then the closer the two systems are to being independent, the less performance 

bias exists. This makes sense as this same trend occurred when investigating the 

performance bias between across I and within label-fused ROC curves under the OR rule 

when the correlation coefficient was non-negative.   

 

Figure 5-23 – When the two classification systems are independent, the bias between across III and within label-

fused ROC curves is minimized under the OR rule and the correlation coefficient is non-negative.  
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Not depicted here is the altering of individual target prevalence for across III 

target types. The trend is the same as that seen in the previous two subsections and will 

not be discussed here to avoid redundancy.   

5.2.3.4 – Effect on Bias when ρ ≤ 0 under the OR rule 

 When the correlation constant is negative, the results are what one would expect: 

negative correlation under the OR rule implies decreased bias between within and across 

III combined classification systems. The magnitude of performance bias between within 

and across III systems is less than that observed in the across I scenario due to the 

common t2 subset.  

 

Figure 5-24 – Negative correlation leads to “improvement” in the performance of the combined OR ROC curves. 

5.3 – Altered Target Environments and its Effects on Bias 

 Recall that there are three different types of target environments being 

investigated in this simulation. The first target environment, the target enhanced 

environment, has been expounded upon in the section above. In a target enhanced 

environment, the proportion of targets to non-targets is 2/3 to 1/3. The other two target 

environments, the target rich and target deficient environments will be summarized here. 

Recall that in a target rich environment, the proportion of targets is 4/5 to 1/5 and in a 
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target deficient environment, the proportion of targets to non-targets is 1/5 to 4/5. Note 

that only the overall probability of observing a target or non-target event is being changed 

here.  

5.3.1 – Altered Target Environment Across I versus Within   

 Depending on the type of target environment, the resulting difference in bias can 

be quite drastic. In a target rich environment, the bias between within and across I 

classification systems under the AND rule is increased marginally. The type of 

environment does not appear to change the trends that were seen in the target enhanced 

environment, though the magnitude of bias may be affected. This is most notably seen in 

the target deficient environment. It appears that reducing probability of observing a target 

event in an environment has the greatest effect on bias between within and across I 

combined classification systems (figure 5-25 middle row). In the target rich environment, 

the shape of the bias curve resembles that of the target enhanced environment, but notice 

that the curve appears stretched over the x-axis. This occurs as the false positive rate at 

which these levels of performance are being registered is increasing. That is to say, the 

higher the probability of observing a target event, the more likely it becomes that the 

individual classification systems incorrectly label targets with the non-target label. 

Therefore, it makes logical sense in an environment with proportionally few target events 

that classification systems with good performance would correctly label the true target 

events with the target label very effectively. That is to say, given that it is unlikely to 

observe a target event, the probability that a target is mislabeled is proportionally smaller.  

Even at a modest positive correlation of 0.3 (dashed line), the bias between across I and 
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within classification systems drops off tremendously under the AND rule (figure 5-25). 

Increasing this constant only drives the bias to zero at a faster rate.  

 

 

 

Figure 5-25 – Altering the distribution of targets and non-targets across the entire event set has huge implications 

for the performance of combined systems. In a target deficient environment, the bias between within and across 
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systems approaches zero in the presence of positive correlation under the AND rule. In a target rich environment, 

the overall bias increases between within and across classification systems. 

Altering the prior target prevalence for across type targets in different 

environments for systems combined under the AND rule also produces similar results as 

were seen in section 5.2 (figure 5-26). Negatively correlated classification systems under 

the AND rule and positively correlated classification systems under the OR rule will not 

be discussed here. If the reader wishes to visually inspect these cases, he or she is 

directed to the contents of appendix B.  

 

 

Figure 5-26 – Altering individual target prevalence produces similar results regardless of target environment. 
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Consider the label-fused ROC curves under the OR rule in these altered 

environments. As suggested before, by reducing the probability of a target event 

occurring, the relative performance of within and across label-fused classification 

systems at correctly labeling their respective target types should increase. Furthermore, if 

the two classification systems are negatively correlated under the OR rule, this boost to 

performance can be dramatic (figure 5-27, middle row).  
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Figure 5-27 – As was observed under the AND rule, the relationship between performance bias and probability of 

observing a target event in the environment in inversely proportional. That is to say, by increasing the probability 

of observing a target event, the individual classification systems are more likely to incorrectly label targets with a 

non-target label.  

  

 As there are no clear trends that can be analyzed when two classification systems 

are positively correlated under the OR rule, these results will not be discussed here. The 

bias curves are included in appendix B if the reader wishes to observe the output for him 

or herself.  

5.3.2 – Altered Target Environments Across II versus Within  

 Altering the target environment when comparing across II label-fused ROC 

curves to within label-fused ROC curves seems to dramatize the results from section 5.2.  

Decreasing the number of targets in the event set causes the bias between the systems to 

decrease more sharply and increasing the number of targets in the environment increases 

the bias between systems. Altering the ratio of t1’s for classification system Aθ has the 

same effects as before, but is not pictured here. These figures have been included in 

appendix B.  
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Figure 5-28 – Decreasing the proportion of targets in the environment greatly affects bias between within and 

across II label-fused systems under the AND rule.  

As seen above, the proportion of target in the environment is inversely 

proportional to the magnitude of bias that occurs between within and across II label-fused 
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ROC curves under the OR rule when the correlation coefficient is negative. Positive 

correlation under the OR rule is not discussed here, but this can be investigated in 

appendix B. 

 

 

Figure 5-29 – Altering the target environment when quantifying the performance bias between across II and within 

label-fused ROC curves under the OR rule. 

5.3.3 – Altered Target Environments Across III versus Within 

 Given the similarities between across I and across III label fusion, the results of 

the simulation are predictable. The presence of the common target subset, t2, reduces the 

bias between across III and within label-fused systems regardless of which Boolean rule 

is being utilized. Once again, all figures not discussed (negative correlation under the 

AND rule, positive correlation under the OR rule, and altering prior target prevalence for 
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individual classification systems under the across III label fusion rule) here are included 

in appendix B.  

 

 

 

Figure 5-30 – The presence of a shared subset seems to reduce the bias between across III and within ROC curves 

under the AND rule. 
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In the case of the OR rule, the alteration of target environment produces similar results.  

 

 

Figure 5-31 – Altering target environment causes similar changes under the OR rule. 

In summary, all of the evidence points to a few clear things. Given the 

assumptions made in this simulation, the within combined classification system 

outperforms any across label-fused system in terms of pure performance. The across 

systems approaches the performance of the within system as the overlap in target 

classification grows. The performance bias can be tweaked as was demonstrated here. 

The most effective way to approximate these two ROC curves seems to be altering the 

probability of observing a target event either for across type targets or the proportion of 

targets in the population event set. Though clearly these cannot be changed in the field, 
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these are variable that the experimenter can use to alter the performance of legacy 

systems. Given that some trends were seen for the AND and OR rules, increasing or 

decreasing the correlation coefficient also gives the experimenter tools for adjusting the 

performance of legacy systems.  
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VI Discussion  
 

In this thesis, a method for determining the bias between different label-fused 

classification systems was developed. This notion of bias between label-fused 

classification systems carries its own set of pros and cons. First, the results of this thesis 

bring to light questions regarding the importance of pre-existing knowledge of those 

elements to be classified. Regardless of the type of Boolean rule, target environment, or 

prior target weighting, within label-fusion consistently outperforms any type of across 

label fusion. In the context of raw performance, it seems clear that one would choose to 

use within label-fusion. If the features of the elements of interest are not partitioned in 

such a way that the assumptions of within label fusion can be me, then there is the 

possibility that incorrectly applying this assumption overestimates system performance. 

As was demonstrated in the simulation, the difference in response between within and 

across label fusion could quite substantial and incorrectly applying the wrong type of 

fusion can lead to errors in reported performance.  

That being said, there are ways to minimize the bias between the two systems. In 

across I and across III fused systems, if the prior target weight associated with the 

superior individual classification system (either system A or B) is increased, then the bias 

between within and across systems is decreased. Likewise, it was seen under the AND 

rule that increasing the correlation coefficient, ρ, can also assist in decreasing bias 

between the systems. Analogously, under the OR rule, decreasing ρ reduced the bias 

between the two types of label-fused systems.  
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Recall that under most circumstances, target prevalence cannot be altered and pre-

existing knowledge of the partition of the event set may be unknown. However, 

knowledge of a new target environment and the systems that are being fused(what the 

systems are tuned to detect), may provide the end-user with the means to appropriately 

adjust the performance and optimal thresholds for performance by fusing legacy systems. 

Such ability reflects a direct application of flexible engineering.  

A limitation of using a set of empirical ROC curves is that a continuum of bias 

values will not always be available for computation (i.e. there may be values for the fused 

false positive “r” that are unique to each label-fused ROC curve, meaning not all bias 

values may be computed). Small departures from pure independence, that is, small values 

of correlation, may not alter the ROC curve of the fused system significantly. In this 

thesis, there were two cases where independence was crucial to theoretical and applicable 

development: 1) Individual classification systems Aθ and Bπ must be independent. 2) the 

classification systems must be conditionally independent with respect to the non-target 

partition of the event set.  Much work has been done with respect to the first assumption 

and many researchers have been able to create independent classification systems. 

Furthermore, the cost functions derived by (Schubert: 2005) make no assumption about 

the independence of classification systems Aθ and Bπ. Rather, the simplification of the 

cost function when the correlation constant ρ = 0 represents the formula when the two 

systems to be fused are independent. The second assumption is nested within the same 

equation; namely that the false positive for the label-fused system A and B under the 

AND rule is indeed pq  (or p+q-pq under the OR rule) At times, this may be a strong 

assumption to make about the the classification systems and the non-target partition of 



 

132 
 

the event set. As a result, this assumption has to be built into any classification system 

that would use this approach. Future work may examine this independence and determine 

how sensitive the label-fused ROC curves are to this assumption.  It is not out of the 

realm of possibility that this assumption can be made, but to do so without closely 

considering the situation can lead to erroneous results.  

 Arguably the most important part of this thesis was the development of the 

formulas that quantify the performance bias between the different types of label-fusion. 

Given that these equations are built from the cost functions themselves, they include all 

the variables necessary to make the transformation from one label-fused ROC curve to 

another other. Secondly, these equations are built from the individual classification 

systems Aθ and Bπ; meaning this is ample information to fuse the classification systems 

and determine the difference in performance between them. Hence, given knowledge 

about systems Aθ and Bπ, it is possible to pinpoint those variables that are causing the 

bias and alter them accordingly. It is assumed that if label-fusion is going to be used, one 

has to make an assumption regarding the partitioning of the event set. Regardless of what 

this original assumption may be, as more knowledge becomes available about the true 

partitions, these variables can be tuned to model the dynamic truth. In such a manner, 

determining the performance of the combined classification system is no longer a barrier 

when developing such flexibility in system design.  

In order to use these formulas, a hard value for the prior probability of target and 

non-target events is needed. Choosing only one of a continuum of values may introduce 

errors, but the use of training (such as with neural networks) may mitigate these potential 

issues. 
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Should values be available, one benefit of having the simple formulas presented 

herein is that it is very easy to apply computationally. The algorithm provided in 

appendix C requires only finding the set intersection of false positive values and 

subtracting the corresponding true positive values to compute the bias and adjust 

performance between within and across label-fused ROC curves. Another benefit 

associated with these formulas is that they can be easily applied to legacy data. Given the 

tenuous future of research funding, the ability to apply new ideas to pre-existing scientific 

data (some of which have already made assumptions regarding the distribution of target 

and non-target features), these functions will be easily adaptable. Further, these formulas 

also support system flexibility so that different combinations of individual classification 

systems may be combined together and performance appropriately determined from only 

the information of the performances (ROC curves) of the individual systems.  

6.1 Future Work     

 It is clear that there are plenty of questions regarding this approach to fusion that 

have yet to be answered. First, the development of a distribution for the prior probability 

of targets and non-targets appears pressing. In this way, the weighting associated with 

individual target types can be adjusted dynamically. Assuming values for the prior 

probability of targets and non-targets in an environment is perfectly suited to theory, but 

in practice, building a system this specific is highly inefficient. Second, developing a 

method that eases the need for conditional independence of classification systems with 

respect to the non-target event set could have interesting ramifications. It is common in 

research to suggest that theoretical classification systems are indeed “independent,” but 

little work has been done showing what effects this has in application. Finally, it is of 
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interest to extend the concepts developed here to any type of ROC curve. Remember that 

the bias formulas currently only work for the Boolean AND and Boolean OR rule. It 

would be interesting to extend this theory to different classification methods such as 

neural networks or at least different performance measures.  
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Appendix A 
 

In this appendix you will find all of the ROC curves that were created during the 

simulation. As a reference, in each figure, the ROC curves of the specified combined 

across and within classification system are plotted along with the ROC curves for 

individual systems Aθ and Bγ,ε. The material will be presented in the following order: 

1) Combined systems in the enhanced target prevalence environment 

a) Combined AND ROC curves 

b) Combined OR ROC curves 

c) Combined AND ROC curves with unequal prior target weighting 

d) Combined OR ROC curves with unequal prior target weighting 

 

2) Combined systems in the rich target prevalence environment 

a) Combined AND ROC curves 

b) Combined OR ROC curves 

c) Combined AND ROC curves with unequal prior target weighting 

d) Combined OR ROC curves with unequal prior target weighting 

 

3) Combined systems in the deficient target prevalence environment 

a) Combined AND ROC curves 

b) Combined OR ROC curves 

c) Combined AND ROC curves with unequal prior target weighting 

d) Combined OR ROC curves with unequal prior target weighting 
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A.1 Enhanced Target Prevalence Figures 

   

A=B=good AND A1 vs Within  A=B=fair AND A1 vs Within A=B=poor AND A1 vs Within 

   

A=good B=fair AND A1 vs Within A=good B=poor AND A1 vs Within A=fair B=good AND A1 vs Within 

   

A=fair B=poor AND A1 vs Within A=poor B=good AND A1 vs Within A=poor B=fair AND A1 vs Within 
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A=B=good AND A2 vs Within A=B=fair AND A2 vs Within A=B=poor AND A2 vs Within 

   

A=good B=fair AND A2 vs Within A=good B=poor AND A2 vs Within A=fair B=good AND A2 vs Within 

   

A=fair B=poor AND A2 vs Within A=poor B=good AND A2 vs Within A=poor B=fair AND A2 vs Within 
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A=B=good AND A3 vs Within A=B=fair AND A3 vs Within A=B=poor AND A3 vs Within 

   

A=good B=fair AND A3 vs Within A=good B=poor AND A3 vs Within A=fair B=good AND A3 vs Within 

   

A=fair B=poor AND A3 vs Within A=poor B=good AND A3 vs Within A=poor B=fair AND A3 vs Within 
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A=B=good AND unequal priors A1 vs 
Within  

A=B=fair AND unequal priors A1 vs 
Within 

A=B=poor AND unequal priors A1 vs 
Within 

   

A=good B=fair AND unequal priors A1 
vs Within 

A=good B=poor AND unequal priors 
A1 vs Within 

A=fair B=good AND unequal priors A1 
vs Within 

   

A=fair B=poor AND unequal priors A1 
vs Within 

A=poor B=good AND unequal priors 
A1 vs Within 

A=poor B=fair AND unequal priors A1 
vs Within 
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A=B=good AND unequal priors A2 vs 
Within 

A=B=fair AND unequal priors A2 vs 
Within 

A=B=poor AND unequal priors A2 vs 
Within 

   

A=good B=fair AND unequal priors A2 
vs Within 

A=good B=poor AND unequal priors 
A2 vs Within 

A=fair B=good AND unequal priors A2 
vs Within 

   

A=fair B=poor AND unequal priors A2 
vs Within 

A=poor B=good AND unequal priors 
A2 vs Within 

A=poor B=fair AND unequal priors A2 
vs Within 
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A=B=good AND unequal priors A3 vs 
Within 

A=B=fair AND unequal priors A3 vs 
Within 

A=B=poor AND unequal priors A3 vs 
Within 

   

A=good B=fair AND unequal priors A3 
vs Within 

A=good B=poor AND unequal priors 
A3 vs Within 

A=fair B=good AND unequal priors A3 
vs Within 

   

A=fair B=poor AND unequal priors A3 
vs Within 

A=poor B=good AND unequal priors 
A3 vs Within 

A=poor B=fair AND unequal priors A3 
vs Within 
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A=B=good OR A1 vs Within  A=B=fair OR A1 vs Within A=B=poor OR A1 vs Within 

   

A=good B=fair OR A1 vs Within A=good B=poor OR A1 vs Within A=fair B=good OR A1 vs Within 

   

A=fair B=poor OR A1 vs Within A=poor B=good OR A1 vs Within A=poor B=fair OR A1 vs Within 
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A=B=good OR A2 vs Within A=B=fair OR A2 vs Within A=B=poor OR A2 vs Within 

   

A=good B=fair OR A2 vs Within A=good B=poor OR A2 vs Within A=fair B=good OR A2 vs Within 

   

A=fair B=poor OR A2 vs Within A=poor B=good OR A2 vs Within A=poor B=fair OR A2 vs Within 
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A=B=good OR A3 vs Within A=B=fair OR A3 vs Within A=B=poor OR A3 vs Within 

   

A=good B=fair OR A3 vs Within A=good B=poor OR A3 vs Within A=fair B=good OR A3 vs Within 

   

A=fair B=poor OR A3 vs Within A=poor B=good OR A3 vs Within A=poor B=fair OR A3 vs Within 
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A=B=good OR unequal priors A1 vs 
Within  

A=B=fair OR unequal priors A1 vs 
Within 

A=B=poor OR unequal priors A1 vs 
Within 

   

A=good B=fair OR unequal priors A1 
vs Within 

A=good B=poor OR unequal priors A1 
vs Within 

A=fair B=good OR unequal priors A1 
vs Within 

   

A=fair B=poor OR unequal priors A1 vs 
Within 

A=poor B=good OR unequal priors A1 
vs Within 

A=poor B=fair OR unequal priors A1 vs 
Within 
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A=B=good OR unequal priors A2 vs 
Within 

A=B=fair OR unequal priors A2 vs 
Within 

A=B=poor OR unequal priors A2 vs 
Within 

   

A=good B=fair OR unequal priors A2 
vs Within 

A=good B=poor OR unequal priors A2 
vs Within 

A=fair B=good OR unequal priors A2 
vs Within 

   

A=fair B=poor OR unequal priors A2 vs 
Within 

A=poor B=good OR unequal priors A2 
vs Within 

A=poor B=fair OR unequal priors A2 vs 
Within 
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A=B=good OR unequal priors A3 vs 
Within 

A=B=fair OR unequal priors A3 vs 
Within 

A=B=poor OR unequal priors A3 vs 
Within 

   

A=good B=fair OR unequal priors A3 
vs Within 

A=good B=poor OR unequal priors A3 
vs Within 

A=fair B=good OR unequal priors A3 
vs Within 

   

A=fair B=poor OR unequal priors A3 vs 
Within 

A=poor B=good OR unequal priors A3 
vs Within 

A=poor B=fair OR unequal priors A3 vs 
Within 
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A.2 – Rich Target Prevalence Figures  

   

A=B=good AND A1 vs Within  A=B=fair AND A1 vs Within A=B=poor AND A1 vs Within 

   

A=good B=fair AND A1 vs Within A=good B=poor AND A1 vs Within A=fair B=good AND A1 vs Within 

   

A=fair B=poor AND A1 vs Within A=poor B=good AND A1 vs Within A=poor B=fair AND A1 vs Within 
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A=B=good AND A2 vs Within A=B=fair AND A2 vs Within A=B=poor AND A2 vs Within 

   

A=good B=fair AND A2 vs Within A=good B=poor AND A2 vs Within A=fair B=good AND A2 vs Within 

   

A=fair B=poor AND A2 vs Within A=poor B=good AND A2 vs Within A=poor B=fair AND A2 vs Within 
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A=B=good AND A3 vs Within A=B=fair AND A3 vs Within A=B=poor AND A3 vs Within 

   

A=good B=fair AND A3 vs Within A=good B=poor AND A3 vs Within A=fair B=good AND A3 vs Within 

   

A=fair B=poor AND A3 vs Within A=poor B=good AND A3 vs Within A=poor B=fair AND A3 vs Within 
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A=B=good AND unequal priors A1 vs 
Within  

A=B=fair AND unequal priors A1 vs 
Within 

A=B=poor AND unequal priors A1 vs 
Within 

   

A=good B=fair AND unequal priors A1 
vs Within 

A=good B=poor AND unequal priors 
A1 vs Within 

A=fair B=good AND unequal priors A1 
vs Within 

   

A=fair B=poor AND unequal priors A1 
vs Within 

A=poor B=good AND unequal priors 
A1 vs Within 

A=poor B=fair AND unequal priors A1 
vs Within 
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A=B=good AND unequal priors A2 vs 
Within 

A=B=fair AND unequal priors A2 vs 
Within 

A=B=poor AND unequal priors A2 vs 
Within 

   

A=good B=fair AND unequal priors A2 
vs Within 

A=good B=poor AND unequal priors 
A2 vs Within 

A=fair B=good AND unequal priors A2 
vs Within 

   

A=fair B=poor AND unequal priors A2 
vs Within 

A=poor B=good AND unequal priors 
A2 vs Within 

A=poor B=fair AND unequal priors A2 
vs Within 
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A=B=good AND unequal priors A3 vs 
Within 

A=B=fair AND unequal priors A3 vs 
Within 

A=B=poor AND unequal priors A3 vs 
Within 

   

A=good B=fair AND unequal priors A3 
vs Within 

A=good B=poor AND unequal priors 
A3 vs Within 

A=fair B=good AND unequal priors A3 
vs Within 

   

A=fair B=poor AND unequal priors A3 
vs Within 

A=poor B=good AND unequal priors 
A3 vs Within 

A=poor B=fair AND unequal priors A3 
vs Within 
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A=B=good OR A1 vs Within  A=B=fair OR A1 vs Within A=B=poor OR A1 vs Within 

   

A=good B=fair OR A1 vs Within A=good B=poor OR A1 vs Within A=fair B=good OR A1 vs Within 

   

A=fair B=poor OR A1 vs Within A=poor B=good OR A1 vs Within A=poor B=fair OR A1 vs Within 
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A=B=good OR A2 vs Within A=B=fair OR A2 vs Within A=B=poor OR A2 vs Within 

   

A=good B=fair OR A2 vs Within A=good B=poor OR A2 vs Within A=fair B=good OR A2 vs Within 

   

A=fair B=poor OR A2 vs Within A=poor B=good OR A2 vs Within A=poor B=fair OR A2 vs Within 
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A=B=good OR A3 vs Within A=B=fair OR A3 vs Within A=B=poor OR A3 vs Within 

   

A=good B=fair OR A3 vs Within A=good B=poor OR A3 vs Within A=fair B=good OR A3 vs Within 

   

A=fair B=poor OR A3 vs Within A=poor B=good OR A3 vs Within A=poor B=fair OR A3 vs Within 
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A=B=good OR unequal priors A1 vs 
Within  

A=B=fair OR unequal priors A1 vs 
Within 

A=B=poor OR unequal priors A1 vs 
Within 

   

A=good B=fair OR unequal priors A1 
vs Within 

A=good B=poor OR unequal priors A1 
vs Within 

A=fair B=good OR unequal priors A1 
vs Within 

   

A=fair B=poor OR unequal priors A1 vs 
Within 

A=poor B=good OR unequal priors A1 
vs Within 

A=poor B=fair OR unequal priors A1 vs 
Within 
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A=B=good OR unequal priors A2 vs 
Within 

A=B=fair OR unequal priors A2 vs 
Within 

A=B=poor OR unequal priors A2 vs 
Within 

   

A=good B=fair OR unequal priors A2 
vs Within 

A=good B=poor OR unequal priors A2 
vs Within 

A=fair B=good OR unequal priors A2 
vs Within 

   

A=fair B=poor OR unequal priors A2 vs 
Within 

A=poor B=good OR unequal priors A2 
vs Within 

A=poor B=fair OR unequal priors A2 vs 
Within 
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A=B=good OR unequal priors A3 vs 
Within 

A=B=fair OR unequal priors A3 vs 
Within 

A=B=poor OR unequal priors A3 vs 
Within 

   

A=good B=fair OR unequal priors A3 
vs Within 

A=good B=poor OR unequal priors A3 
vs Within 

A=fair B=good OR unequal priors A3 
vs Within 

   

A=fair B=poor OR unequal priors A3 vs 
Within 

A=poor B=good OR unequal priors A3 
vs Within 

A=poor B=fair OR unequal priors A3 vs 
Within 
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A.3 – Deficient Target Environment Figures  

   

A=B=good AND A1 vs Within  A=B=fair AND A1 vs Within A=B=poor AND A1 vs Within 

   

A=good B=fair AND A1 vs Within A=good B=poor AND A1 vs Within A=fair B=good AND A1 vs Within 

   

A=fair B=poor AND A1 vs Within A=poor B=good AND A1 vs Within A=poor B=fair AND A1 vs Within 
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A=B=good AND A2 vs Within A=B=fair AND A2 vs Within A=B=poor AND A2 vs Within 

   

A=good B=fair AND A2 vs Within A=good B=poor AND A2 vs Within A=fair B=good AND A2 vs Within 

   

A=fair B=poor AND A2 vs Within A=poor B=good AND A2 vs Within A=poor B=fair AND A2 vs Within 
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A=B=good AND A3 vs Within A=B=fair AND A3 vs Within A=B=poor AND A3 vs Within 

   

A=good B=fair AND A3 vs Within A=good B=poor AND A3 vs Within A=fair B=good AND A3 vs Within 

   

A=fair B=poor AND A3 vs Within A=poor B=good AND A3 vs Within A=poor B=fair AND A3 vs Within 
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A=B=good AND unequal priors A1 vs 
Within  

A=B=fair AND unequal priors A1 vs 
Within 

A=B=poor AND unequal priors A1 vs 
Within 

   

A=good B=fair AND unequal priors A1 
vs Within 

A=good B=poor AND unequal priors 
A1 vs Within 

A=fair B=good AND unequal priors A1 
vs Within 

   

A=fair B=poor AND unequal priors A1 
vs Within 

A=poor B=good AND unequal priors 
A1 vs Within 

A=poor B=fair AND unequal priors A1 
vs Within 
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A=B=good AND unequal priors A2 vs 
Within 

A=B=fair AND unequal priors A2 vs 
Within 

A=B=poor AND unequal priors A2 vs 
Within 

   

A=good B=fair AND unequal priors A2 
vs Within 

A=good B=poor AND unequal priors 
A2 vs Within 

A=fair B=good AND unequal priors A2 
vs Within 

   

A=fair B=poor AND unequal priors A2 
vs Within 

A=poor B=good AND unequal priors 
A2 vs Within 

A=poor B=fair AND unequal priors A2 
vs Within 
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A=B=good AND unequal priors A3 vs 
Within 

A=B=fair AND unequal priors A3 vs 
Within 

A=B=poor AND unequal priors A3 vs 
Within 

   

A=good B=fair AND unequal priors A3 
vs Within 

A=good B=poor AND unequal priors 
A3 vs Within 

A=fair B=good AND unequal priors A3 
vs Within 

   

A=fair B=poor AND unequal priors A3 
vs Within 

A=poor B=good AND unequal priors 
A3 vs Within 

A=poor B=fair AND unequal priors A3 
vs Within 
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A=B=good OR A1 vs Within  A=B=fair OR A1 vs Within A=B=poor OR A1 vs Within 

   

A=good B=fair OR A1 vs Within A=good B=poor OR A1 vs Within A=fair B=good OR A1 vs Within 

   

A=fair B=poor OR A1 vs Within A=poor B=good OR A1 vs Within A=poor B=fair OR A1 vs Within 
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A=B=good OR A2 vs Within A=B=fair OR A2 vs Within A=B=poor OR A2 vs Within 

   

A=good B=fair OR A2 vs Within A=good B=poor OR A2 vs Within A=fair B=good OR A2 vs Within 

   

A=fair B=poor OR A2 vs Within A=poor B=good OR A2 vs Within A=poor B=fair OR A2 vs Within 
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A=B=good OR A3 vs Within A=B=fair OR A3 vs Within A=B=poor OR A3 vs Within 

   

A=good B=fair OR A3 vs Within A=good B=poor OR A3 vs Within A=fair B=good OR A3 vs Within 

   

A=fair B=poor OR A3 vs Within A=poor B=good OR A3 vs Within A=poor B=fair OR A3 vs Within 
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A=B=good OR unequal priors A1 vs 
Within  

A=B=fair OR unequal priors A1 vs 
Within 

A=B=poor OR unequal priors A1 vs 
Within 

   

A=good B=fair OR unequal priors A1 
vs Within 

A=good B=poor OR unequal priors A1 
vs Within 

A=fair B=good OR unequal priors A1 
vs Within 

   

A=fair B=poor OR unequal priors A1 vs 
Within 

A=poor B=good OR unequal priors A1 
vs Within 

A=poor B=fair OR unequal priors A1 vs 
Within 
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A=B=good OR unequal priors A2 vs 
Within 

A=B=fair OR unequal priors A2 vs 
Within 

A=B=poor OR unequal priors A2 vs 
Within 

   

A=good B=fair OR unequal priors A2 
vs Within 

A=good B=poor OR unequal priors A2 
vs Within 

A=fair B=good OR unequal priors A2 
vs Within 

   

A=fair B=poor OR unequal priors A2 vs 
Within 

A=poor B=good OR unequal priors A2 
vs Within 

A=poor B=fair OR unequal priors A2 vs 
Within 
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A=B=good OR unequal priors A3 vs 
Within 

A=B=fair OR unequal priors A3 vs 
Within 

A=B=poor OR unequal priors A3 vs 
Within 

   

A=good B=fair OR unequal priors A3 
vs Within 

A=good B=poor OR unequal priors A3 
vs Within 

A=fair B=good OR unequal priors A3 
vs Within 

   

A=fair B=poor OR unequal priors A3 vs 
Within 

A=poor B=good OR unequal priors A3 
vs Within 

A=poor B=fair OR unequal priors A3 vs 
Within 
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 Appendix B 
 

 Included in this appendix are all of the bias curves generated during the 

simulation. As a quick outline, in each figure four bias curves are plotted: the 

uncorrelated curve and the three positively or negatively correlated curves which are 

specified by the ρ ≥ 0 or ρ ≤ 0 in the caption below. The Boolean rule along with the 

distribution of prior target probability is also included in the captions. The figures will be 

presented in the following order:  

1) Enhanced Target Prevalence 

a) Across I versus Within  

b) Across II versus Within 

c) Across III versus Within   

2) Rich Target Prevalence 

a) Across I versus Within  

b) Across II versus Within 

c) Across III versus Within  

3) Deficient Target Prevalence 

a) Across I versus Within  

b) Across II versus Within 

c) Across III versus Within 

As each figure is composed of four different bias curves (one for each level of 

positive or negative correlation), consider the following table for reference purposes. 
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Correlation Coefficient Plot Symbol 

ρ = -0.8 x (bold curve) 

ρ = -0.5 : (double dot) 

ρ = -0.3 -- (double dash) 

ρ = 0 smooth line 

ρ = 0.3 -- (double dash) 

ρ = 0.5 : (double dot) 

ρ = 0.8 x (bold curve) 

 

B.1 – Enhanced Target Prevalence 
 B.1.1 – Across I versus Within  

   

A=B=good AND ρ ≥ 0 A=B=good AND unequal priors ρ ≥ 0 A=B=fair AND ρ ≥ 0  
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A=B=fair AND unequal priors ρ ≥ 0 A=B=poor AND ρ ≥ 0 A=B=poor unequal priors AND ρ ≥ 0 

   

A=good B=fair AND ρ ≥ 0  A=good B=fair AND unequal priors ρ ≥ 
0 A=good B=poor AND ρ ≥ 0 

   

A=good B=poor AND unequal priors ρ 
≥ 0 A=fair B=good AND ρ ≥ 0  A=fair B=good AND unequal priors ρ ≥ 

0 
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A=fair B=poor AND ρ ≥ 0 A=fair B=poor AND unequal priors ρ ≥ 
0 A=poor B=good AND ρ ≥ 0 

   

A=poor B=good AND unequal priors ρ 
≥ 0 A=poor B=fair AND ρ ≥ 0 A=poor B=fair AND unequal priors ρ ≥ 

0 

   

A=B=good AND ρ ≤ 0 A=B=good AND unequal priors ρ ≤ 0 A=B=fair AND ρ ≤ 0 
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A=B=fair AND unequal priors ρ ≤ 0 A=B=poor AND ρ ≤ 0 A=B=poor unequal priors AND ρ ≤ 0 

   

A=good B=fair AND ρ ≤ 0 A=good B=fair AND unequal priors ρ ≤ 
0 A=good B=poor AND ρ ≤ 0 

   

A=good B=poor AND unequal priors ρ 
≤ 0 A=fair B=good AND ρ ≤ 0 A=fair B=good AND unequal priors ρ ≤ 

0 
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A=fair B=poor AND ρ ≤ 0 A=fair B=poor AND unequal priors ρ ≤ 
0 A=poor B=good AND ρ ≤ 0 

   

A=poor B=good AND unequal priors ρ 
≤ 0 A=poor B=fair AND ρ ≤ 0 A=poor B=fair AND unequal priors ρ ≤ 

0 
 
 

   

A=B=good OR ρ ≥ 0 A=B=good OR unequal priors ρ ≥ 0 A=B=fair OR ρ ≥ 0  
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A=B=fair OR unequal priors ρ ≥ 0 A=B=poor OR ρ ≥ 0 A=B=poor unequal priors OR ρ ≥ 0 

   

A=good B=fair OR ρ ≥ 0  A=good B=fair OR unequal priors ρ ≥ 0 A=good B=poor OR ρ ≥ 0 

   

A=good B=poor OR unequal priors ρ ≥ 
0 A=fair B=good OR ρ ≥ 0  A=fair B=good OR unequal priors ρ ≥ 0 
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A=fair B=poor OR ρ ≥ 0 A=fair B=poor OR unequal priors ρ ≥ 0 A=poor B=good OR ρ ≥ 0 

   

A=poor B=good OR unequal priors ρ ≥ 
0 A=poor B=fair OR ρ ≥ 0 A=poor B=fair OR unequal priors ρ ≥ 0 

 
 

   

A=B=good OR ρ ≤ 0 A=B=good OR unequal priors ρ ≤ 0 A=B=fair OR ρ ≤ 0 
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A=B=fair OR unequal priors ρ ≤ 0 A=B=poor OR ρ ≤ 0 A=B=poor unequal priors OR ρ ≤ 0 

   

A=good B=fair OR ρ ≤ 0 A=good B=fair OR unequal priors ρ ≤ 0 A=good B=poor OR ρ ≤ 0 

   

A=good B=poor OR unequal priors ρ ≤ 
0 A=fair B=good OR ρ ≤ 0 A=fair B=good OR unequal priors ρ ≤ 0 
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A=fair B=poor OR ρ ≤ 0 A=fair B=poor OR unequal priors ρ ≤ 0 A=poor B=good OR ρ ≤ 0 

   

A=poor B=good OR unequal priors ρ ≤ 
0 A=poor B=fair OR ρ ≤ 0 A=poor B=fair OR unequal priors ρ ≤ 0 

 
  
 
 
 
B.1.2 – Across II versus Within  

   

A=B=good AND ρ ≥ 0 A=B=good AND unequal priors ρ ≥ 0 A=B=fair AND ρ ≥ 0  
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A=B=fair AND unequal priors ρ ≥ 0 A=B=poor AND ρ ≥ 0 A=B=poor unequal priors AND ρ ≥ 0 

   

A=good B=fair AND ρ ≥ 0  A=good B=fair AND unequal priors ρ ≥ 
0 A=good B=poor AND ρ ≥ 0 

   

A=good B=poor AND unequal priors ρ 
≥ 0 A=fair B=good AND ρ ≥ 0  A=fair B=good AND unequal priors ρ ≥ 

0 



 

184 
 

   

A=fair B=poor AND ρ ≥ 0 A=fair B=poor AND unequal priors ρ ≥ 
0 A=poor B=good AND ρ ≥ 0 

   

A=poor B=good AND unequal priors ρ 
≥ 0 A=poor B=fair AND ρ ≥ 0 A=poor B=fair AND unequal priors ρ ≥ 

0 

   

A=B=good AND ρ ≤ 0 A=B=good AND unequal priors ρ ≤ 0 A=B=fair AND ρ ≤ 0 
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A=B=fair AND unequal priors ρ ≤ 0 A=B=poor AND ρ ≤ 0 A=B=poor unequal priors AND ρ ≤ 0 

   

A=good B=fair AND ρ ≤ 0 A=good B=fair AND unequal priors ρ ≤ 
0 A=good B=poor AND ρ ≤ 0 

   

A=good B=poor AND unequal priors ρ 
≤ 0 A=fair B=good AND ρ ≤ 0 A=fair B=good AND unequal priors ρ ≤ 

0 



 

186 
 

   

A=fair B=poor AND ρ ≤ 0 A=fair B=poor AND unequal priors ρ ≤ 
0 A=poor B=good AND ρ ≤ 0 

   

A=poor B=good AND unequal priors ρ 
≤ 0 A=poor B=fair AND ρ ≤ 0 A=poor B=fair AND unequal priors ρ ≤ 

0 
 

   

A=B=good OR ρ ≥ 0 A=B=good OR unequal priors ρ ≥ 0 A=B=fair OR ρ ≥ 0  
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A=B=fair OR unequal priors ρ ≥ 0 A=B=poor OR ρ ≥ 0 A=B=poor unequal priors OR ρ ≥ 0 

   

A=good B=fair OR ρ ≥ 0  A=good B=fair OR unequal priors ρ ≥ 0 A=good B=poor OR ρ ≥ 0 

   

A=good B=poor OR unequal priors ρ ≥ 
0 A=fair B=good OR ρ ≥ 0  A=fair B=good OR unequal priors ρ ≥ 0 
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A=fair B=poor OR ρ ≥ 0 A=fair B=poor OR unequal priors ρ ≥ 0 A=poor B=good OR ρ ≥ 0 

   

A=poor B=good OR unequal priors ρ ≥ 
0 A=poor B=fair OR ρ ≥ 0 A=poor B=fair OR unequal priors ρ ≥ 0 

 

   

A=B=good OR ρ ≤ 0 A=B=good OR unequal priors ρ ≤ 0 A=B=fair OR ρ ≤ 0 
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A=B=fair OR unequal priors ρ ≤ 0 A=B=poor OR ρ ≤ 0 A=B=poor unequal priors OR ρ ≤ 0 

   

A=good B=fair OR ρ ≤ 0 A=good B=fair OR unequal priors ρ ≤ 0 A=good B=poor OR ρ ≤ 0 

   

A=good B=poor OR unequal priors ρ ≤ 
0 A=fair B=good OR ρ ≤ 0 A=fair B=good OR unequal priors ρ ≤ 0 
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A=fair B=poor OR ρ ≤ 0 A=fair B=poor OR unequal priors ρ ≤ 0 A=poor B=good OR ρ ≤ 0 

   

A=poor B=good OR unequal priors ρ ≤ 
0 A=poor B=fair OR ρ ≤ 0 A=poor B=fair OR unequal priors ρ ≤ 0 

 
 
 B.1.3 – Across III versus Within  

   

A=B=good AND ρ ≥ 0 A=B=good AND unequal priors ρ ≥ 0 A=B=fair AND ρ ≥ 0  
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A=B=fair AND unequal priors ρ ≥ 
0 A=B=poor AND ρ ≥ 0 A=B=poor unequal priors AND ρ 

≥ 0 

   

A=good B=fair AND ρ ≥ 0  A=good B=fair AND unequal priors ρ ≥ 0 A=good B=poor AND ρ ≥ 0 

   

A=good B=poor AND unequal 
priors ρ ≥ 0 A=fair B=good AND ρ ≥ 0  A=fair B=good AND unequal 

priors ρ ≥ 0 
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A=fair B=poor AND ρ ≥ 0 A=fair B=poor AND unequal priors ρ ≥ 0 A=poor B=good AND ρ ≥ 0 

   

A=poor B=good AND unequal 
priors ρ ≥ 0 A=poor B=fair AND ρ ≥ 0 A=poor B=fair AND unequal 

priors ρ ≥ 0 

   

A=B=good AND ρ ≤ 0 A=B=good AND unequal priors ρ 
≤ 0 A=B=fair AND ρ ≤ 0 
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A=B=fair AND unequal priors ρ 
≤ 0 A=B=poor AND ρ ≤ 0 A=B=poor unequal priors AND ρ 

≤ 0 

   

A=good B=fair AND ρ ≤ 0 A=good B=fair AND unequal 
priors ρ ≤ 0 A=good B=poor AND ρ ≤ 0 

   

A=good B=poor AND unequal 
priors ρ ≤ 0 A=fair B=good AND ρ ≤ 0 A=fair B=good AND unequal 

priors ρ ≤ 0 
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A=fair B=poor AND ρ ≤ 0 A=fair B=poor AND unequal 
priors ρ ≤ 0 A=poor B=good AND ρ ≤ 0 

   

A=poor B=good AND unequal 
priors ρ ≤ 0 A=poor B=fair AND ρ ≤ 0 A=poor B=fair AND unequal 

priors ρ ≤ 0 
 
 
 

   

A=B=good OR ρ ≥ 0 A=B=good OR unequal priors ρ ≥ 0 A=B=fair OR ρ ≥ 0  
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A=B=fair OR unequal priors ρ ≥ 0 A=B=poor OR ρ ≥ 0 A=B=poor unequal priors OR ρ ≥ 0 

   

A=good B=fair OR ρ ≥ 0  A=good B=fair OR unequal priors ρ ≥ 0 A=good B=poor OR ρ ≥ 0 

   

A=good B=poor OR unequal priors ρ ≥ 
0 A=fair B=good OR ρ ≥ 0  A=fair B=good OR unequal priors ρ ≥ 0 
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A=fair B=poor OR ρ ≥ 0 A=fair B=poor OR unequal priors ρ ≥ 0 A=poor B=good OR ρ ≥ 0 

   

A=poor B=good OR unequal priors ρ ≥ 
0 A=poor B=fair OR ρ ≥ 0 A=poor B=fair OR unequal priors ρ ≥ 0 

 

   

A=B=good OR ρ ≤ 0 A=B=good OR unequal priors ρ ≤ 0 A=B=fair OR ρ ≤ 0 
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A=B=fair OR unequal priors ρ ≤ 0 A=B=poor OR ρ ≤ 0 A=B=poor unequal priors OR ρ ≤ 0 

   

A=good B=fair OR ρ ≤ 0 A=good B=fair OR unequal priors ρ ≤ 0 A=good B=poor OR ρ ≤ 0 

   

A=good B=poor OR unequal priors ρ ≤ 
0 A=fair B=good OR ρ ≤ 0 A=fair B=good OR unequal priors ρ ≤ 0 
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A=fair B=poor OR ρ ≤ 0 A=fair B=poor OR unequal priors ρ ≤ 0 A=poor B=good OR ρ ≤ 0 

   

A=poor B=good OR unequal priors ρ ≤ 
0 A=poor B=fair OR ρ ≤ 0 A=poor B=fair OR unequal priors ρ ≤ 0 

 
 
B.2 – Rich Target Prevalence 
 B.2.1 – Across I versus Within  

   

A=B=good AND ρ ≥ 0 A=B=good AND unequal priors ρ ≥ 0 A=B=fair AND ρ ≥ 0  
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A=B=fair AND unequal priors ρ ≥ 0 A=B=poor AND ρ ≥ 0 A=B=poor unequal priors AND ρ ≥ 0 

   

A=good B=fair AND ρ ≥ 0  A=good B=fair AND unequal priors ρ ≥ 
0 A=good B=poor AND ρ ≥ 0 

   

A=good B=poor AND unequal priors ρ 
≥ 0 A=fair B=good AND ρ ≥ 0  A=fair B=good AND unequal priors ρ ≥ 

0 
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A=fair B=poor AND ρ ≥ 0 A=fair B=poor AND unequal priors ρ ≥ 
0 A=poor B=good AND ρ ≥ 0 

   

A=poor B=good AND unequal priors ρ 
≥ 0 A=poor B=fair AND ρ ≥ 0 A=poor B=fair AND unequal priors ρ ≥ 

0 

   

A=B=good AND ρ ≤ 0 A=B=good AND unequal priors ρ ≤ 0 A=B=fair AND ρ ≤ 0 
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A=B=fair AND unequal priors ρ ≤ 0 A=B=poor AND ρ ≤ 0 A=B=poor unequal priors AND ρ ≤ 0 

   

A=good B=fair AND ρ ≤ 0 A=good B=fair AND unequal priors ρ ≤ 
0 A=good B=poor AND ρ ≤ 0 

   

A=good B=poor AND unequal priors ρ 
≤ 0 A=fair B=good AND ρ ≤ 0 A=fair B=good AND unequal priors ρ ≤ 

0 



 

202 
 

   

A=fair B=poor AND ρ ≤ 0 A=fair B=poor AND unequal priors ρ ≤ 
0 A=poor B=good AND ρ ≤ 0 

   

A=poor B=good AND unequal priors ρ 
≤ 0 A=poor B=fair AND ρ ≤ 0 A=poor B=fair AND unequal priors ρ ≤ 

0 
 
 
 

   

A=B=good OR ρ ≥ 0 A=B=good OR unequal priors ρ ≥ 0 A=B=fair OR ρ ≥ 0  
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A=B=fair OR unequal priors ρ ≥ 0 A=B=poor OR ρ ≥ 0 A=B=poor unequal priors OR ρ ≥ 0 

   

A=good B=fair OR ρ ≥ 0  A=good B=fair OR unequal priors ρ ≥ 0 A=good B=poor OR ρ ≥ 0 

   

A=good B=poor OR unequal priors ρ ≥ 
0 A=fair B=good OR ρ ≥ 0  A=fair B=good OR unequal priors ρ ≥ 0 



 

204 
 

   

A=fair B=poor OR ρ ≥ 0 A=fair B=poor OR unequal priors ρ ≥ 0 A=poor B=good OR ρ ≥ 0 

   

A=poor B=good OR unequal priors ρ ≥ 
0 A=poor B=fair OR ρ ≥ 0 A=poor B=fair OR unequal priors ρ ≥ 0 

 
 
 

   

A=B=good OR ρ ≤ 0 A=B=good OR unequal priors ρ ≤ 0 A=B=fair OR ρ ≤ 0 
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A=B=fair OR unequal priors ρ ≤ 0 A=B=poor OR ρ ≤ 0 A=B=poor unequal priors OR ρ ≤ 0 

   

A=good B=fair OR ρ ≤ 0 A=good B=fair OR unequal priors ρ ≤ 0 A=good B=poor OR ρ ≤ 0 

   

A=good B=poor OR unequal priors ρ ≤ 
0 A=fair B=good OR ρ ≤ 0 A=fair B=good OR unequal priors ρ ≤ 0 



 

206 
 

   

A=fair B=poor OR ρ ≤ 0 A=fair B=poor OR unequal priors ρ ≤ 0 A=poor B=good OR ρ ≤ 0 

   

A=poor B=good OR unequal priors ρ ≤ 
0 A=poor B=fair OR ρ ≤ 0 A=poor B=fair OR unequal priors ρ ≤ 0 

 
 
 B.2.2 – Across II versus Within  

   

A=B=good AND ρ ≥ 0 A=B=good AND unequal priors ρ ≥ 0 A=B=fair AND ρ ≥ 0  
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A=B=fair AND unequal priors ρ ≥ 0 A=B=poor AND ρ ≥ 0 A=B=poor unequal priors AND ρ ≥ 0 

   

A=good B=fair AND ρ ≥ 0  A=good B=fair AND unequal priors ρ ≥ 
0 A=good B=poor AND ρ ≥ 0 

   

A=good B=poor AND unequal priors ρ 
≥ 0 A=fair B=good AND ρ ≥ 0  A=fair B=good AND unequal priors ρ ≥ 

0 



 

208 
 

   

A=fair B=poor AND ρ ≥ 0 A=fair B=poor AND unequal priors ρ ≥ 
0 A=poor B=good AND ρ ≥ 0 

   

A=poor B=good AND unequal priors ρ 
≥ 0 A=poor B=fair AND ρ ≥ 0 A=poor B=fair AND unequal priors ρ ≥ 

0 

   

A=B=good AND ρ ≤ 0 A=B=good AND unequal priors ρ ≤ 0 A=B=fair AND ρ ≤ 0 



 

209 
 

   

A=B=fair AND unequal priors ρ ≤ 0 A=B=poor AND ρ ≤ 0 A=B=poor unequal priors AND ρ ≤ 0 

   

A=good B=fair AND ρ ≤ 0 A=good B=fair AND unequal priors ρ ≤ 
0 A=good B=poor AND ρ ≤ 0 

   

A=good B=poor AND unequal priors ρ 
≤ 0 A=fair B=good AND ρ ≤ 0 A=fair B=good AND unequal priors ρ ≤ 

0 



 

210 
 

   

A=fair B=poor AND ρ ≤ 0 A=fair B=poor AND unequal priors ρ ≤ 
0 A=poor B=good AND ρ ≤ 0 

   

A=poor B=good AND unequal priors ρ 
≤ 0 A=poor B=fair AND ρ ≤ 0 A=poor B=fair AND unequal priors ρ ≤ 

0 
 

   

A=B=good OR ρ ≥ 0 A=B=good OR unequal priors ρ ≥ 0 A=B=fair OR ρ ≥ 0  
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A=B=fair OR unequal priors ρ ≥ 0 A=B=poor OR ρ ≥ 0 A=B=poor unequal priors OR ρ ≥ 0 

   

A=good B=fair OR ρ ≥ 0  A=good B=fair OR unequal priors ρ ≥ 0 A=good B=poor OR ρ ≥ 0 

   

A=good B=poor OR unequal priors ρ ≥ 
0 A=fair B=good OR ρ ≥ 0  A=fair B=good OR unequal priors ρ ≥ 0 
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A=fair B=poor OR ρ ≥ 0 A=fair B=poor OR unequal priors ρ ≥ 0 A=poor B=good OR ρ ≥ 0 

   

A=poor B=good OR unequal priors ρ ≥ 
0 A=poor B=fair OR ρ ≥ 0 A=poor B=fair OR unequal priors ρ ≥ 0 

 

   

A=B=good OR ρ ≤ 0 A=B=good OR unequal priors ρ ≤ 0 A=B=fair OR ρ ≤ 0 



 

213 
 

   

A=B=fair OR unequal priors ρ ≤ 0 A=B=poor OR ρ ≤ 0 A=B=poor unequal priors OR ρ ≤ 0 

   

A=good B=fair OR ρ ≤ 0 A=good B=fair OR unequal priors ρ ≤ 0 A=good B=poor OR ρ ≤ 0 

   

A=good B=poor OR unequal priors ρ ≤ 
0 A=fair B=good OR ρ ≤ 0 A=fair B=good OR unequal priors ρ ≤ 0 



 

214 
 

   

A=fair B=poor OR ρ ≤ 0 A=fair B=poor OR unequal priors ρ ≤ 0 A=poor B=good OR ρ ≤ 0 

   

A=poor B=good OR unequal priors ρ ≤ 
0 A=poor B=fair OR ρ ≤ 0 A=poor B=fair OR unequal priors ρ ≤ 0 

 
 
 B.2.3 – Across III versus Within 

   

A=B=good AND ρ ≥ 0 A=B=good AND unequal priors ρ ≥ 0 A=B=fair AND ρ ≥ 0  



 

215 
 

   

A=B=fair AND unequal priors ρ ≥ 
0 A=B=poor AND ρ ≥ 0 A=B=poor unequal priors AND ρ 

≥ 0 

   

A=good B=fair AND ρ ≥ 0  A=good B=fair AND unequal priors ρ ≥ 0 A=good B=poor AND ρ ≥ 0 

   

A=good B=poor AND unequal 
priors ρ ≥ 0 A=fair B=good AND ρ ≥ 0  A=fair B=good AND unequal 

priors ρ ≥ 0 



 

216 
 

   

A=fair B=poor AND ρ ≥ 0 A=fair B=poor AND unequal priors ρ ≥ 0 A=poor B=good AND ρ ≥ 0 

   

A=poor B=good AND unequal 
priors ρ ≥ 0 A=poor B=fair AND ρ ≥ 0 A=poor B=fair AND unequal 

priors ρ ≥ 0 

   

A=B=good AND ρ ≤ 0 A=B=good AND unequal priors ρ 
≤ 0 A=B=fair AND ρ ≤ 0 



 

217 
 

   

A=B=fair AND unequal priors ρ 
≤ 0 A=B=poor AND ρ ≤ 0 A=B=poor unequal priors AND ρ 

≤ 0 

   

A=good B=fair AND ρ ≤ 0 A=good B=fair AND unequal 
priors ρ ≤ 0 A=good B=poor AND ρ ≤ 0 

   

A=good B=poor AND unequal 
priors ρ ≤ 0 A=fair B=good AND ρ ≤ 0 A=fair B=good AND unequal 

priors ρ ≤ 0 



 

218 
 

   

A=fair B=poor AND ρ ≤ 0 A=fair B=poor AND unequal 
priors ρ ≤ 0 A=poor B=good AND ρ ≤ 0 

   

A=poor B=good AND unequal 
priors ρ ≤ 0 A=poor B=fair AND ρ ≤ 0 A=poor B=fair AND unequal 

priors ρ ≤ 0 
 
 
 

   

A=B=good OR ρ ≥ 0 A=B=good OR unequal priors ρ ≥ 0 A=B=fair OR ρ ≥ 0  



 

219 
 

   

A=B=fair OR unequal priors ρ ≥ 0 A=B=poor OR ρ ≥ 0 A=B=poor unequal priors OR ρ ≥ 0 

   

A=good B=fair OR ρ ≥ 0  A=good B=fair OR unequal priors ρ ≥ 0 A=good B=poor OR ρ ≥ 0 

   

A=good B=poor OR unequal priors ρ ≥ 
0 A=fair B=good OR ρ ≥ 0  A=fair B=good OR unequal priors ρ ≥ 0 



 

220 
 

   

A=fair B=poor OR ρ ≥ 0 A=fair B=poor OR unequal priors ρ ≥ 0 A=poor B=good OR ρ ≥ 0 

   

A=poor B=good OR unequal priors ρ ≥ 
0 A=poor B=fair OR ρ ≥ 0 A=poor B=fair OR unequal priors ρ ≥ 0 

 

   

A=B=good OR ρ ≤ 0 A=B=good OR unequal priors ρ ≤ 0 A=B=fair OR ρ ≤ 0 



 

221 
 

   

A=B=fair OR unequal priors ρ ≤ 0 A=B=poor OR ρ ≤ 0 A=B=poor unequal priors OR ρ ≤ 0 

   

A=good B=fair OR ρ ≤ 0 A=good B=fair OR unequal priors ρ ≤ 0 A=good B=poor OR ρ ≤ 0 

   

A=good B=poor OR unequal priors ρ ≤ 
0 A=fair B=good OR ρ ≤ 0 A=fair B=good OR unequal priors ρ ≤ 0 



 

222 
 

   

A=fair B=poor OR ρ ≤ 0 A=fair B=poor OR unequal priors ρ ≤ 0 A=poor B=good OR ρ ≤ 0 

   

A=poor B=good OR unequal priors ρ ≤ 
0 A=poor B=fair OR ρ ≤ 0 A=poor B=fair OR unequal priors ρ ≤ 0 

 
 
B.3 – Deficient Target Prevalence 
 B.3.1 – Across I versus Within  

   

A=B=good AND ρ ≥ 0 A=B=good AND unequal priors ρ ≥ 0 A=B=fair AND ρ ≥ 0  



 

223 
 

   

A=B=fair AND unequal priors ρ ≥ 0 A=B=poor AND ρ ≥ 0 A=B=poor unequal priors AND ρ ≥ 0 

   

A=good B=fair AND ρ ≥ 0  A=good B=fair AND unequal priors ρ ≥ 
0 A=good B=poor AND ρ ≥ 0 

   

A=good B=poor AND unequal priors ρ 
≥ 0 A=fair B=good AND ρ ≥ 0  A=fair B=good AND unequal priors ρ ≥ 

0 



 

224 
 

   

A=fair B=poor AND ρ ≥ 0 A=fair B=poor AND unequal priors ρ ≥ 
0 A=poor B=good AND ρ ≥ 0 

   

A=poor B=good AND unequal priors ρ 
≥ 0 A=poor B=fair AND ρ ≥ 0 A=poor B=fair AND unequal priors ρ ≥ 

0 

   

A=B=good AND ρ ≤ 0 A=B=good AND unequal priors ρ ≤ 0 A=B=fair AND ρ ≤ 0 



 

225 
 

   

A=B=fair AND unequal priors ρ ≤ 0 A=B=poor AND ρ ≤ 0 A=B=poor unequal priors AND ρ ≤ 0 

   

A=good B=fair AND ρ ≤ 0 A=good B=fair AND unequal priors ρ ≤ 
0 A=good B=poor AND ρ ≤ 0 

   

A=good B=poor AND unequal priors ρ 
≤ 0 A=fair B=good AND ρ ≤ 0 A=fair B=good AND unequal priors ρ ≤ 

0 



 

226 
 

   

A=fair B=poor AND ρ ≤ 0 A=fair B=poor AND unequal priors ρ ≤ 
0 A=poor B=good AND ρ ≤ 0 

   

A=poor B=good AND unequal priors ρ 
≤ 0 A=poor B=fair AND ρ ≤ 0 A=poor B=fair AND unequal priors ρ ≤ 

0 
 
 

   

A=B=good OR ρ ≥ 0 A=B=good OR unequal priors ρ ≥ 0 A=B=fair OR ρ ≥ 0  



 

227 
 

   

A=B=fair OR unequal priors ρ ≥ 0 A=B=poor OR ρ ≥ 0 A=B=poor unequal priors OR ρ ≥ 0 

   

A=good B=fair OR ρ ≥ 0  A=good B=fair OR unequal priors ρ ≥ 0 A=good B=poor OR ρ ≥ 0 

   

A=good B=poor OR unequal priors ρ ≥ 
0 A=fair B=good OR ρ ≥ 0  A=fair B=good OR unequal priors ρ ≥ 0 



 

228 
 

   

A=fair B=poor OR ρ ≥ 0 A=fair B=poor OR unequal priors ρ ≥ 0 A=poor B=good OR ρ ≥ 0 

   

A=poor B=good OR unequal priors ρ ≥ 
0 A=poor B=fair OR ρ ≥ 0 A=poor B=fair OR unequal priors ρ ≥ 0 

 
 

   

A=B=good OR ρ ≤ 0 A=B=good OR unequal priors ρ ≤ 0 A=B=fair OR ρ ≤ 0 
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A=B=fair OR unequal priors ρ ≤ 0 A=B=poor OR ρ ≤ 0 A=B=poor unequal priors OR ρ ≤ 0 

   

A=good B=fair OR ρ ≤ 0 A=good B=fair OR unequal priors ρ ≤ 0 A=good B=poor OR ρ ≤ 0 

   

A=good B=poor OR unequal priors ρ ≤ 
0 A=fair B=good OR ρ ≤ 0 A=fair B=good OR unequal priors ρ ≤ 0 
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A=fair B=poor OR ρ ≤ 0 A=fair B=poor OR unequal priors ρ ≤ 0 A=poor B=good OR ρ ≤ 0 

   

A=poor B=good OR unequal priors ρ ≤ 
0 A=poor B=fair OR ρ ≤ 0 A=poor B=fair OR unequal priors ρ ≤ 0 

 
 B.3.2 – Across II versus Within  

   

A=B=good AND ρ ≥ 0 A=B=good AND unequal priors ρ ≥ 0 A=B=fair AND ρ ≥ 0  
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A=B=fair AND unequal priors ρ ≥ 0 A=B=poor AND ρ ≥ 0 A=B=poor unequal priors AND ρ ≥ 0 

   

A=good B=fair AND ρ ≥ 0  A=good B=fair AND unequal priors ρ ≥ 
0 A=good B=poor AND ρ ≥ 0 

   

A=good B=poor AND unequal priors ρ 
≥ 0 A=fair B=good AND ρ ≥ 0  A=fair B=good AND unequal priors ρ ≥ 

0 
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A=fair B=poor AND ρ ≥ 0 A=fair B=poor AND unequal priors ρ ≥ 
0 A=poor B=good AND ρ ≥ 0 

   

A=poor B=good AND unequal priors ρ 
≥ 0 A=poor B=fair AND ρ ≥ 0 A=poor B=fair AND unequal priors ρ ≥ 

0 

   

A=B=good AND ρ ≤ 0 A=B=good AND unequal priors ρ ≤ 0 A=B=fair AND ρ ≤ 0 
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A=B=fair AND unequal priors ρ ≤ 0 A=B=poor AND ρ ≤ 0 A=B=poor unequal priors AND ρ ≤ 0 

   

A=good B=fair AND ρ ≤ 0 A=good B=fair AND unequal priors ρ ≤ 
0 A=good B=poor AND ρ ≤ 0 

   

A=good B=poor AND unequal priors ρ 
≤ 0 A=fair B=good AND ρ ≤ 0 A=fair B=good AND unequal priors ρ ≤ 

0 
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A=fair B=poor AND ρ ≤ 0 A=fair B=poor AND unequal priors ρ ≤ 
0 A=poor B=good AND ρ ≤ 0 

   

A=poor B=good AND unequal priors ρ 
≤ 0 A=poor B=fair AND ρ ≤ 0 A=poor B=fair AND unequal priors ρ ≤ 

0 
 

   

(All values > 0) A=B=good OR ρ ≥ 0 (All values > 0) A=B=good OR unequal 
priors ρ ≥ 0 A=B=fair OR ρ ≥ 0  
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A=B=fair OR unequal priors ρ ≥ 0 A=B=poor OR ρ ≥ 0 A=B=poor unequal priors OR ρ ≥ 0 

   

A=good B=fair OR ρ ≥ 0  A=good B=fair OR unequal priors ρ ≥ 0 A=good B=poor OR ρ ≥ 0 

   

A=good B=poor OR unequal priors ρ ≥ 
0 A=fair B=good OR ρ ≥ 0  A=fair B=good OR unequal priors ρ ≥ 0 
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A=fair B=poor OR ρ ≥ 0 A=fair B=poor OR unequal priors ρ ≥ 0 A=poor B=good OR ρ ≥ 0 

   

A=poor B=good OR unequal priors ρ ≥ 
0 A=poor B=fair OR ρ ≥ 0 A=poor B=fair OR unequal priors ρ ≥ 0 

 

   

A=B=good OR ρ ≤ 0 A=B=good OR unequal priors ρ ≤ 0 A=B=fair OR ρ ≤ 0 



 

237 
 

   

A=B=fair OR unequal priors ρ ≤ 0 A=B=poor OR ρ ≤ 0 A=B=poor unequal priors OR ρ ≤ 0 

   

A=good B=fair OR ρ ≤ 0 A=good B=fair OR unequal priors ρ ≤ 0 A=good B=poor OR ρ ≤ 0 

   

A=good B=poor OR unequal priors ρ ≤ 
0 A=fair B=good OR ρ ≤ 0 A=fair B=good OR unequal priors ρ ≤ 0 



 

238 
 

   

A=fair B=poor OR ρ ≤ 0 A=fair B=poor OR unequal priors ρ ≤ 0 A=poor B=good OR ρ ≤ 0 

   

A=poor B=good OR unequal priors ρ ≤ 
0 A=poor B=fair OR ρ ≤ 0 A=poor B=fair OR unequal priors ρ ≤ 0 

 
 
 B.3.3 – Across III versus Within  

   

A=B=good AND ρ ≥ 0 A=B=good AND unequal priors ρ ≥ 0 A=B=fair AND ρ ≥ 0  
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A=B=fair AND unequal priors ρ ≥ 
0 A=B=poor AND ρ ≥ 0 A=B=poor unequal priors AND ρ 

≥ 0 

   

A=good B=fair AND ρ ≥ 0  A=good B=fair AND unequal priors ρ ≥ 0 A=good B=poor AND ρ ≥ 0 

   

A=good B=poor AND unequal 
priors ρ ≥ 0 A=fair B=good AND ρ ≥ 0  A=fair B=good AND unequal 

priors ρ ≥ 0 
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A=fair B=poor AND ρ ≥ 0 A=fair B=poor AND unequal priors ρ ≥ 0 A=poor B=good AND ρ ≥ 0 

   

A=poor B=good AND unequal 
priors ρ ≥ 0 A=poor B=fair AND ρ ≥ 0 A=poor B=fair AND unequal 

priors ρ ≥ 0 

   

A=B=good AND ρ ≤ 0 A=B=good AND unequal priors ρ 
≤ 0 A=B=fair AND ρ ≤ 0 
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A=B=fair AND unequal priors ρ 
≤ 0 A=B=poor AND ρ ≤ 0 A=B=poor unequal priors AND ρ 

≤ 0 

   

A=good B=fair AND ρ ≤ 0 A=good B=fair AND unequal 
priors ρ ≤ 0 A=good B=poor AND ρ ≤ 0 

   

A=good B=poor AND unequal 
priors ρ ≤ 0 A=fair B=good AND ρ ≤ 0 A=fair B=good AND unequal 

priors ρ ≤ 0 
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A=fair B=poor AND ρ ≤ 0 A=fair B=poor AND unequal 
priors ρ ≤ 0 A=poor B=good AND ρ ≤ 0 

   

A=poor B=good AND unequal 
priors ρ ≤ 0 A=poor B=fair AND ρ ≤ 0 A=poor B=fair AND unequal 

priors ρ ≤ 0 
 
 
 

   

A=B=good OR ρ ≥ 0 A=B=good OR unequal priors ρ ≥ 0 A=B=fair OR ρ ≥ 0  
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A=B=fair OR unequal priors ρ ≥ 0 A=B=poor OR ρ ≥ 0 A=B=poor unequal priors OR ρ ≥ 0 

   

A=good B=fair OR ρ ≥ 0  A=good B=fair OR unequal priors ρ ≥ 0 A=good B=poor OR ρ ≥ 0 

   

A=good B=poor OR unequal priors ρ ≥ 
0 A=fair B=good OR ρ ≥ 0  A=fair B=good OR unequal priors ρ ≥ 0 



 

244 
 

   

A=fair B=poor OR ρ ≥ 0 A=fair B=poor OR unequal priors ρ ≥ 0 A=poor B=good OR ρ ≥ 0 

   

A=poor B=good OR unequal priors ρ ≥ 
0 A=poor B=fair OR ρ ≥ 0 A=poor B=fair OR unequal priors ρ ≥ 0 

 

   

A=B=good OR ρ ≤ 0 A=B=good OR unequal priors ρ ≤ 0 A=B=fair OR ρ ≤ 0 
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A=B=fair OR unequal priors ρ ≤ 0 A=B=poor OR ρ ≤ 0 A=B=poor unequal priors OR ρ ≤ 0 

   

A=good B=fair OR ρ ≤ 0 A=good B=fair OR unequal priors ρ ≤ 0 A=good B=poor OR ρ ≤ 0 

   

A=good B=poor OR unequal priors ρ ≤ 
0 A=fair B=good OR ρ ≤ 0 A=fair B=good OR unequal priors ρ ≤ 0 
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A=fair B=poor OR ρ ≤ 0 A=fair B=poor OR unequal priors ρ ≤ 0 A=poor B=good OR ρ ≤ 0 

   

A=poor B=good OR unequal priors ρ ≤ 
0 A=poor B=fair OR ρ ≤ 0 A=poor B=fair OR unequal priors ρ ≤ 0 
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Appendix C Code 

 
 Included in this appendix is all of the code used to run the simulation. First, a 

brief discussion of the algorithms used to create the simulation data is given. Following 

this section is the actual source code itself.  

C.1 Outline of Program 
 
 C.1.1 Across I simulation 
 
 The following contains a brief outline of the algorithm that has been developed to 

generate the ROC curves of interest for across I combined classification systems. In the 

text below, those items written in courier new refer to either variables or functions 

within the code itself.  

1) Create the parameters for systems Aθ and Bγ,ε. Using Matlab, theta, gamma, and 

epsilon are created as linearly spaced row vectors. Each entry in the vector 

corresponds to a different threshold value for the parameter. At the max threshold, 

the accumulated probability is approximately one and for the minimum threshold, 

the accumulated probability is approximately zero.  

2) Using the cumulative density function (CDF) for the normal distribution, the true 

positive and false positive rates are calculated for individual systems Aθ and Bγ,ε. 

For each threshold, a different probability measurement is assigned. System Bγ,ε is 

created in such a way that the convex hull of the ROC curve must be found 

whereas classifier Aθ naturally produces a proper ROC curve. Refer to the 

function rocB for an explanation as to how the frontier of the ROC curve for 

system Bγ,ε is created. 
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3) Feeding these values into the function roc computes and returns the combined 

Boolean AND ROC curve for systems Aθ and Bγ,ε.  

4) Using the same information as generated in steps 1) and 2), inputting this data 

into the function  rocor  returns the combined Boolean OR ROC curve. 

 
C.1.2 Across II Simulation  

One interesting thing to note at this time is the following: regardless of the 

constitution of the targets that systems Aθ and Bγ,ε are designed to classify, the 

performance of the system is only based on two variables: target/non-target mean and 

target/non-target prevalence. Hence, the function for the true positive rate for system Aθ 

under across I label fusion is identical to the true positive rate for system Aθ under across 

II label fusion assuming the target prevalence and target means are the same. This same 

arguments holds for classifier system Bγ,ε as well as across III and within label fusion 

rules. A brief outline of the across II simulation is now provided. 

1) Load the same parameters (theta, gamma, epsilon) and ROC curves for 

classification systems Aθ and Bγ,ε that were used for the combined across I 

simulation. The same data must be used in order to compare the performance of 

systems under different label-fusion assumptions. 

2) Use the true positive and false positive rates from the ROC curves of classifier 

systems Aθ and Bγ,ε as input for the functions a2roc/a2rocor that returns the 

combined across II AND and across II OR ROC curves for specified levels of 

performance for systems Aθ and Bγ,ε. 
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The algorithm remains approximately the same, but the weighting on the cost 

functions for classifier Aθ and Bγ,ε are different as is outlined in section III.  

C.1.3 – Across III Simulation 

 As discussed in section 3, in an across III label fusion environment, classifier 

system Aθ is tuned to classify the set union of t1 and t2 and classifier system Bγ,ε is tuned 

to classify the set union of t2 and t3. As the targets for systems Aθ and Bγ,ε are set unions, 

the calculation of true positive and false positive rates remain the same as the function 

depends only on parameter setting and target population mean. Recalling the cost 

functions outlined in section 3, the cost function for classifier Aθ is weighted by the prior 

probability of observing an inclusive t1 or t2 event and the prior probability of observing a 

non-target or t3 event. The cost function for classifier Bγ,ε is weighted by the prior 

probability of observing either a t2 or t3 event and the prior probability of observing a 

non-target or t1 event.  

 The following encompasses a brief outline of the across III algorithm.  

1) Load the same parameters (theta, gamma, epsilon) and ROC curves for classifiers 

Aθ and Bγ,ε that were used for the combined across I simulation. The same data 

must be used in order to compare the performance of systems under different 

assumptions. 

2) Load this information into the roc function to produce the ROC curves for the 

combined AND system and the rocor function for the combined OR ROC 

curve. The same function is used for across III as the input structure is identical to 

that of across I except that the prior probability weightings on the true positive 

and false positive rates for classifiers Aθ and Bγ,ε is different. 
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The only difference in algorithm between across I and across III lies in the weighting of 

target/non-targets events as determined by the cost functions. 

C.1.4 Within Simulation 

 Recall from section 3 that under the within label fusion environment, systems Aθ 

and BΠ are tuned to the same target features. In this case, there is no distinction between 

target types. Interestingly, the calculations for the true positive and false positive rates of 

the individual systems is still the same due to the function relying only on parameter 

setting and target/non-target mean. The cost functions for the within AND/OR ROC 

curves is different from any of the across cost functions in that the cost function for each 

classifier is weighted only by total prior target prevalence and total prior non-target 

prevalence. Because of this, the performance of the combined within combined 

classification system is considerably better than the performance of any combined across 

classification system. Most, if not all, classification schemes popular in literature assume 

that all targets and non-targets share the same features and can be grouped into the within 

hierarchy of classifiers (N.J. Leap et al: 2008). 

 Below is a short description of the within algorithm. 

1) Load the same parameters (theta, gamma, epsilon) and ROC curves for 

classification systems Aθ and BΠ that were used in previous simulations. The 

same data must be used in order to compare the performance of systems under 

different assumptions. 

2) Load this information into the wroc/wrocor functions to produce the ROC 

curves for the combined AND/OR systems. 



 

251 
 

C.2 Source Code 

 The code is presented here and any functions created by the author are explained 

following the main body of the code. Those items written in green are comments issued 

by the author that will assist in understanding the purpose of the code. 

%% Classification systems Aθ and Bγ,ε are created here. Note that the 
round function is called to halt the level of computational precision.  
  
theta=linspace(-4,6,301); 
gamma=theta; 
epsilon=linspace(0,10,301); 
n=length(theta); 
save('parameters','theta','gamma','epsilon','n'); 
  
for i=1:n 
    tpag(i)=round(probA(theta(i),0.95)*10000)/10000; 
    tpaf(i)=round(probA(theta(i),0.85)*10000)/10000; 
    tpap(i)=round(probA(theta(i),0.75)*10000)/10000; 
    fpa(i)=round(1/2*erfc(theta(i)/sqrt(2))*10000)/10000; 
end 
save('Afront','tpag','tpaf','tpap','fpA'); 
  
for i=1:n 
    for j=1:n 
        tpBg(i,j)=round(probB(gamma(i),epsilon(j),0.95)*10000)/10000; 
        tpBf(i,j)=round(probB(gamma(i),epsilon(j),0.85)*10000)/10000; 
        tpBp(i,j)=round(probB(gamma(i),epsilon(j),0.75)*10000)/10000; 
        fpB(i,j)=round(1/2*(erf((gamma(i)+epsilon(j))/sqrt(2))-
erf(gamma(i)/sqrt(2)))*10000)/10000; 
    end 
end 
  
% B frontier 
ubg=rocB(tpBg,fpB);  
ubf=rocB(tpBf,fpB); 
ubp=rocB(tpBp,fpB); 
save('Bfront','ubg','ubf','ubp') 
 
%% Within AND/OR all prevalence 
%% A few things to note. First, you may read the variable “wgc1” as 
“Within combined AND ROC curve A=good performance, B=good performance, 
correlation Ρ1 = -0.8 (as outlined in section V). Likewise, “wfgc1” is 
read “Within combined AND ROC curve A=fair performance, B=poor 
performance, and correlation Ρ1 = -0.8.  If a c is not specified with a 
variable, this implies that Ρ = 0 (such as in the case where i>3 & 
i<=4).  
 
tic % begins computation timer. 
load('Afront') 
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load('Bfront') 
  
fpbg=ubg(:,1); 
tpbg=ubg(:,2); 
fpbf=ubf(:,1); 
tpbf=ubf(:,2); 
fpbp=ubp(:,1); 
tpbp=ubp(:,2); 
  
i=1; 
while i<=7 
if i<=1 
load('tenhancedeq') % Loads the prior probabilities for the target 
enhanced environment 
wgc1=wroc(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wfc1=wroc(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wpc1=wroc(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgfc1=wroc(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgpc1=wroc(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgc1=wroc(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfpc1=wroc(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgc1=wroc(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpfc1=wroc(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wenc1','wgc1','wfc1','wpc1','wgfc1','wgpc1','wfgc1','wfpc1'
,'wpgc1','wpfc1') % The save destination is arbitrary.  
  
wgorc1=wrocor(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wforc1=wrocor(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wporc1=wrocor(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgforc1=wrocor(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgporc1=wrocor(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgorc1=wrocor(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfporc1=wrocor(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgorc1=wrocor(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpforc1=wrocor(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wenc1or','wgorc1','wforc1','wporc1','wgforc1','wgporc1','wf
gorc1','wfporc1','wpgorc1','wpforc1') 
  
% Target rich environment 
load('tricheq') % Loads the prior probabilities for the target rich 
environment 
wgrc1=wroc(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wfrc1=wroc(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wprc1=wroc(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgfrc1=wroc(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgprc1=wroc(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgrc1=wroc(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfprc1=wroc(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgrc1=wroc(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpfrc1=wroc(pet,pen,i,fpa,tpap,fpbf,tpbf); 
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save('C:\users\owner\desktop\within 
files\wdata\wrichc1','wgrc1','wfrc1','wprc1','wgfrc1','wgprc1','wfgrc1'
,'wfprc1','wpgrc1','wpfrc1') 
  
wgorrc1=wrocor(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wforrc1=wrocor(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wporrc1=wrocor(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgforrc1=wrocor(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgporrc1=wrocor(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgorrc1=wrocor(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfporrc1=wrocor(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgorrc1=wrocor(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpforrc1=wrocor(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wrichc1or','wgorrc1','wforrc1','wporrc1','wgforrc1','wgporr
c1','wfgorrc1','wfporrc1','wpgorrc1','wpforrc1') 
  
% Target deficient environment 
load('tdefeq') %Loads the prior probabilities for the target deficient 
environment 
wgdc1=wroc(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wfdc1=wroc(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wpdc1=wroc(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgfdc1=wroc(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgpdc1=wroc(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgdc1=wroc(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfpdc1=wroc(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgdc1=wroc(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpfdc1=wroc(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wdefc1','wgdc1','wfdc1','wpdc1','wgfdc1','wgpdc1','wfgdc1',
'wfpdc1','wpgdc1','wpfdc1') 
  
wgordc1=wrocor(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wfordc1=wrocor(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wpordc1=wrocor(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgfordc1=wrocor(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgpordc1=wrocor(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgordc1=wrocor(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfpordc1=wrocor(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgordc1=wrocor(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpfordc1=wrocor(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wdefc1or','wgordc1','wfordc1','wpordc1','wgfordc1','wgpordc
1','wfgordc1','wfpordc1','wpgordc1','wpfordc1') 
end 
  
if i>1 && i<=2 
load('tenhancedeq') 
wgc2=wroc(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wfc2=wroc(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wpc2=wroc(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgfc2=wroc(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgpc2=wroc(pet,pen,i,fpa,tpag,fpbp,tpbp); 
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wfgc2=wroc(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfpc2=wroc(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgc2=wroc(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpfc2=wroc(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wenc2','wgc2','wfc2','wpc2','wgfc2','wgpc2','wfgc2','wfpc2'
,'wpgc2','wpfc2') 
  
wgorc2=wrocor(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wforc2=wrocor(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wporc2=wrocor(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgforc2=wrocor(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgporc2=wrocor(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgorc2=wrocor(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfporc2=wrocor(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgorc2=wrocor(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpforc2=wrocor(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wenc2or','wgorc2','wforc2','wporc2','wgforc2','wgporc2','wf
gorc2','wfporc2','wpgorc2','wpforc2') 
  
% Target rich environment 
load('tricheq') 
wgrc2=wroc(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wfrc2=wroc(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wprc2=wroc(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgfrc2=wroc(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgprc2=wroc(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgrc2=wroc(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfprc2=wroc(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgrc2=wroc(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpfrc2=wroc(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wrichc2','wgrc2','wfrc2','wprc2','wgfrc2','wgprc2','wfgrc2'
,'wfprc2','wpgrc2','wpfrc2') 
  
wgorrc2=wrocor(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wforrc2=wrocor(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wporrc2=wrocor(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgforrc2=wrocor(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgporrc2=wrocor(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgorrc2=wrocor(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfporrc2=wrocor(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgorrc2=wrocor(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpforrc2=wrocor(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wrichc2or','wgorrc2','wforrc2','wporrc2','wgforrc2','wgporr
c2','wfgorrc2','wfporrc2','wpgorrc2','wpforrc2') 
  
% Target deficient environment 
load('tdefeq') 
wgdc2=wroc(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wfdc2=wroc(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wpdc2=wroc(pet,pen,i,fpa,tpap,fpbp,tpbp); 
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wgfdc2=wroc(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgpdc2=wroc(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgdc2=wroc(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfpdc2=wroc(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgdc2=wroc(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpfdc2=wroc(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wdefc2','wgdc2','wfdc2','wpdc2','wgfdc2','wgpdc2','wfgdc2',
'wfpdc2','wpgdc2','wpfdc2') 
  
wgordc2=wrocor(pet,pen,i,fpa,tpag,fpbg,tpbg); 
wfordc2=wrocor(pet,pen,i,fpa,tpaf,fpbf,tpbf); 
wpordc2=wrocor(pet,pen,i,fpa,tpap,fpbp,tpbp); 
wgfordc2=wrocor(pet,pen,i,fpa,tpag,fpbf,tpbf); 
wgpordc2=wrocor(pet,pen,i,fpa,tpag,fpbp,tpbp); 
wfgordc2=wrocor(pet,pen,i,fpa,tpaf,fpbg,tpbg); 
wfpordc2=wrocor(pet,pen,i,fpa,tpaf,fpbp,tpbp); 
wpgordc2=wrocor(pet,pen,i,fpa,tpap,fpbg,tpbg); 
wpfordc2=wrocor(pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\within 
files\wdata\wdefc2or','wgordc2','wfordc2','wpordc2','wgfordc2','wgpordc
2','wfgordc2','wfpordc2','wpgordc2','wpfordc2') 
end  
%% And so on and so forth up through i = 7.  
 
function [Asys] = probA(x,y) 
%Probability for classifier A 
%Ni calculates the target/non-target mean of the system by the taking 
the norm inverse of the AUC = y and multiplying the by the square root 
of 2. 
%Asys returns the probability of a true positive at a given x = theta 
%parameter minus the mean. 
%"erfc" stands for "error function complement" 
Ni=norminv(y)*sqrt(2); 
Asys=1/2*erfc((x-Ni)/sqrt(2)); 
end 
 
function [Bsys] = probB(x,y,z) 
%Finding TP/FP value for classifier B 
%Ni is short for norm inverse of a given AUC value 
%Bsys approximates the solution to the Gaussian integral for bounds 
gamma 
%to gamma plus epsilon 
%"erf" stands for "error function" 
Ni=norminv(z)*sqrt(2); 
Bsys=1/2*(erf(((x+y)-Ni)/sqrt(2))-erf((x-Ni)/sqrt(2))); 
end 
 
function [rocB] = rocB(fp,tp) 
% This function is used to find the ROC curve for classification system 
%B.First, input variable "fp" = false positive rates and input variable 
%"tp" = true positive rates. Take these NxN matrices and reshape them 
%into (N^2)x1 column vectors and then sort by the false positive 
%values. Take the difference of each (i,j) - ((i-1),(j-1)) entry in the 
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%true postive col Instead of looping over all values, this can be 
%represented as a matrix operation by setting the first entry of the 
%"difference matrix" to zero (therefore keeping the (1,1) entry) and 
%shifting all of the remaining entries down by 1. Take the difference 
%of the original TP col with this column. Now, find the indices where 
%the difference (i,j) - ((i-1),(j-1)) < 0. These values are replaced by 
%the preceding entry so that the true positive rate is always 
%increasing. Take the unique rows. The function "rocheck" determines 
%whether or not there are any remaining (i,j) - ((i-1),(j-1)) < 0, if 
%so, run lines 17-33 again until rocheck returns the logical "1" = 
%proper ROC curve. Starting at vfp, this part of function chooses the 
%max tpr for each fpr (useful if length(rocB)is computationally 
%unfeasible).  
  
roc=sortrows(cat(2,fp(:),tp(:)),1); 
c2=roc(:,2); 
q=length(c2); 
dmat=[0;c2(1:(q-1))]; 
diff=c2-dmat; 
  
c1=roc(:,1); 
nf=find(diff<0); 
n=length(nf); 
  
i=1; 
while i<=n 
roc(nf(i),:)=cat(2,c1(nf(i)),c2(nf(i)-1)); 
    i=i+1; 
end 
  
rocB=unique(roc,'rows'); 
  
i=1; 
while i<=length(rocB); 
if rocheck(rocB)~=1; 
    rocB=cloop(rocB); 
else if rocheck(rocB)==1; 
        break  
    end 
end 
i=i+1; 
end 
  
vfp=rocB(:,1); 
vtp=rocB(:,2); 
  
for i=1:length(vfp) 
    ind=find(vfp==vfp(i)); 
    tpmax(i)=max(vtp(ind)); 
    fpmin(i)=min(vfp(ind)); 
end 
rocB=unique(cat(2,fpmin',tpmax'),'rows'); 
end 
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function [wroc] = wroc(a,b,g,w,x,y,z) 
if g==1 
    rho=-0.8; 
else if g==2 
        rho=-0.5; 
    else if g==3 
            rho=-0.3; 
        else if g==4 
                rho=0; 
            else if g==5 
                    rho=0.3; 
                else if g==6 
                        rho=0.5; 
                    else if g==7 
                            rho=0.8; 
                        end 
                    end 
                end 
              end 
          end 
      end 
end 
n=length(w); 
m=length(y); 
% Cost functions for within along with correlation term. 
for i=1:n 
    for j=1:m 
        fpand(i,j)=w(i)*y(j); 
        costA(i)=a*x(i)+b*w(i); 
        costB(j)=a*z(j)+b*y(j); 
        corr(i,j)=sqrt(costA(i)*(1-costA(i)))*sqrt(costB(j)*(1-
costB(j))); 
        tpand(i,j)=(1/a)*(rho*corr(i,j)+costA(i)*costB(j)-
b*fpand(i,j)); 
    end 
end 
% Under certain correlations, the max(tpr) > 1, this set the upper  
% bound at 1.  
improc=sortrows(cat(2,fpand(:),tpand(:)),1); 
c2=improc(:,2); 
btp=find(c2<0); 
if isempty(btp)~=1; 
    c2(btp)=0; 
end 
  
ind=find(c2>1);      
if isempty(ind)~=1; 
c2(ind)=1; 
end 
improc=cat(2,improc(:,1),c2); 
  
c2=improc(:,2); 
q=length(c2); 
dmat=[0;c2(1:(q-1))]; 
diff=c2-dmat; 
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c1=improc(:,1); 
nf=find(diff<0); 
n=length(nf); 
  
i=1; 
while i<=n 
improc(nf(i),:)=cat(2,c1(nf(i)),c2(nf(i)-1)); 
    i=i+1; 
end 
  
wroc=unique(round(improc*10000)/10000,'rows'); 
  
i=1; 
while i<=length(wroc) %usually takes about 3000 iterations before 
following step can assure a proper ROC curve for the size of this data 
set. 
if rocheck(wroc)~=1; 
    wroc=cloop(wroc); 
else if rocheck(wroc)==1; 
        break  
    end 
end 
i=i+1; 
end 
  
vfp=wroc(:,1); 
vtp=wroc(:,2); 
  
for i=1:length(vfp) 
    ind=find(vfp==vfp(i)); 
    tpmax(i)=max(vtp(ind)); 
    fpmin(i)=min(vfp(ind)); 
end 
wroc=unique(cat(2,fpmin',tpmax'),'rows'); 
end 
  
 
 
function [wrocor] = wrocor(a,b,g,w,x,y,z) 
% Almost exactly the same as wroc, but cost functions are different. 
if g==1 
    rho=-0.8; 
else if g==2 
        rho=-0.5; 
    else if g==3 
            rho=-0.3; 
        else if g==4 
                rho=0; 
            else if g==5 
                    rho=0.3; 
                else if g==6 
                        rho=0.5; 
                    else if g==7 
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                            rho=0.8; 
                        end 
                    end 
                end 
              end 
          end 
    end 
end 
n=length(w); 
m=length(y); 
for i=1:n 
    for j=1:m 
        fpor(i,j)=w(i)+y(j)-w(i)*y(j); 
        costA(i)=a*x(i)+b*w(i); 
        costB(j)=a*z(j)+b*y(j); 
        corr(i,j)=sqrt(costA(i)*(1-costA(i)))*sqrt(costB(j)*(1-
costB(j))); 
        tpor(i,j)=(1/a)*(costA(i)+costB(j)-rho*corr(i,j)-
(costA(i)*costB(j))-b*fpor(i,j)); 
    end 
end 
  
improc=sortrows(cat(2,fpor(:),tpor(:)),1); 
c2=improc(:,2); 
btp=find(c2<0); 
if isempty(btp)~=1; 
    c2(btp)=0; 
end 
  
ind=find(c2>1);      
if isempty(ind)~=1; 
c2(ind)=1; 
end 
improc=cat(2,improc(:,1),c2); 
  
c2=improc(:,2); 
q=length(c2); 
dmat=[0;c2(1:(q-1))]; 
diff=c2-dmat; 
  
c1=improc(:,1); 
nf=find(diff<0); 
n=length(nf); 
  
i=1; 
while i<=n 
improc(nf(i),:)=cat(2,c1(nf(i)),c2(nf(i)-1)); 
    i=i+1; 
end 
  
wrocor=unique(round(improc*10000)/10000,'rows'); 
  
i=1; 
while i<=2000 
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if rocheck(wrocor)~=1; 
    wrocor=cloop(wrocor); 
else if rocheck(wrocor)==1; 
        break  
    end 
end 
i=i+1; 
end 
  
vfp=wrocor(:,1); 
vtp=wrocor(:,2); 
  
for i=1:length(vfp) 
    ind=find(vfp==vfp(i)); 
    tpmax(i)=max(vtp(ind)); 
    fpmin(i)=min(vfp(ind)); 
end 
wrocor=unique(cat(2,fpmin',tpmax'),'rows'); 
end 
  
function [cloop] = cloop(x) 
%cloop performs the same "difference" function as outlined in all roc 
%functions 
cloop=cat(2,x(:,1),x(:,2)); 
c1=cloop(:,1); 
c2=cloop(:,2); 
q=length(cloop); 
dmat=[0;c2(1:(q-1))]; 
diff=c2-dmat; 
  
nf=find(diff<0); 
n=length(nf); 
  
i=1; 
while i<=n 
cloop(nf(i),:)=cat(2,c1(nf(i)),c2(nf(i)-1)); 
    i=i+1; 
end 
cloop=unique(round(cloop*10000)/10000,'rows'); 
end  
 
function [rocheck] = rocheck(x) 
%Checks to make sure that all true positive rates are strictly 
increasing. 
%It returns a "1" if this condition is true and a "0" if this condition 
is 
%false. 
q=length(x); 
c2=x(:,2); 
dmat=[0;c2(1:(q-1))]; 
diff=c2-dmat; 
  
if diff>=0; 
    rocheck=1; 
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else 
    rocheck=0; 
end 
end 
 
% Across II all prev 
tic  
load('Afront') 
load('Bfront') 
% Target enhanced environment 
fpbg=ubg(:,1); 
tpbg=ubg(:,2); 
fpbf=ubf(:,1); 
tpbf=ubf(:,2); 
fpbp=ubp(:,1); 
tpbp=ubp(:,2); 
  
i=1; 
while i<=7 
if i<=1 
load('tena2') 
a2gc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a2fc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a2pc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a2gfc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a2gpc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a2fgc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a2fpc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a2pgc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a2pfc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\a2enc1','a2gc1','a2fc1','a2pc1','a2gfc1','a2gpc1','a2fgc1'
,'a2fpc1','a2pgc1','a2pfc1') 
  
a2gorc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a2forc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a2porc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a2gforc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a2gporc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a2fgorc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a2fporc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a2pgorc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a2pforc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\a2enc1or','a2gorc1','a2forc1','a2porc1','a2gforc1','a2gpor
c1','a2fgorc1','a2fporc1','a2pgorc1','a2pforc1') 
  
% Target rich environment 
load('tricha2') 
a2grc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a2frc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a2prc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a2gfrc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a2gprc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
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a2fgrc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a2fprc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a2pgrc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a2pfrc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\a2richc1','a2grc1','a2frc1','a2prc1','a2gfrc1','a2gprc1','
a2fgrc1','a2fprc1','a2pgrc1','a2pfrc1') 
  
a2gorrc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a2forrc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a2porrc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a2gforrc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a2gporrc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a2fgorrc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a2fporrc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a2pgorrc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a2pforrc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\a2richc1or','a2gorrc1','a2forrc1','a2porrc1','a2gforrc1','
a2gporrc1','a2fgorrc1','a2fporrc1','a2pgorrc1','a2pforrc1') 
  
% Target deficient environment 
load('tdefa2') 
a2gdc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a2fdc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a2pdc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a2gfdc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a2gpdc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a2fgdc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a2fpdc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a2pgdc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a2pfdc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\a2defc1','a2gdc1','a2fdc1','a2pdc1','a2gfdc1','a2gpdc1','a
2fgdc1','a2fpdc1','a2pgdc1','a2pfdc1') 
  
a2gordc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a2fordc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a2pordc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a2gfordc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a2gpordc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a2fgordc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a2fpordc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a2pgordc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a2pfordc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\a2defc1or','a2gordc1','a2fordc1','a2pordc1','a2gfordc1','a
2gpordc1','a2fgordc1','a2fpordc1','a2pgordc1','a2pfordc1') 
end 
% We will abbreviate this here as it just continues on through the 
remainder of the possible values of the correlation coefficient. 
 
% Across II all prev unequal target priors. In much the same spirit as 
above, this is an example of the code where we are solving for the ROC 
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curves after altering the prevalence of targets in the Across II 
environment.  
 
tic  
load('Afront') 
load('Bfront') 
% Target enhanced environment 
fpbg=ubg(:,1); 
tpbg=ubg(:,2); 
fpbf=ubf(:,1); 
tpbf=ubf(:,2); 
fpbp=ubp(:,1); 
tpbp=ubp(:,2); 
  
i=1; 
while i<=7 
if i<=1 
load('altpreva2') 
aa2gc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa2fc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa2pc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa2gfc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa2gpc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa2fgc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa2fpc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa2pgc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa2pfc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\aa2enc1','aa2gc1','aa2fc1','aa2pc1','aa2gfc1','aa2gpc1','a
a2fgc1','aa2fpc1','aa2pgc1','aa2pfc1') 
  
aa2gorc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa2forc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa2porc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa2gforc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa2gporc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa2fgorc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa2fporc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa2pgorc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa2pforc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\aa2enc1or','aa2gorc1','aa2forc1','aa2porc1','aa2gforc1','a
a2gporc1','aa2fgorc1','aa2fporc1','aa2pgorc1','aa2pforc1') 
  
% Target rich environment 
load('apricha2') 
aa2grc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa2frc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa2prc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa2gfrc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa2gprc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa2fgrc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa2fprc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa2pgrc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
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aa2pfrc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\aa2richc1','aa2grc1','aa2frc1','aa2prc1','aa2gfrc1','aa2gp
rc1','aa2fgrc1','aa2fprc1','aa2pgrc1','aa2pfrc1') 
  
aa2gorrc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa2forrc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa2porrc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa2gforrc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa2gporrc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa2fgorrc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa2fporrc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa2pgorrc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa2pforrc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\aa2richc1or','aa2gorrc1','aa2forrc1','aa2porrc1','aa2gforr
c1','aa2gporrc1','aa2fgorrc1','aa2fporrc1','aa2pgorrc1','aa2pforrc1') 
  
% Target deficient environment 
load('apdefa2') 
aa2gdc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa2fdc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa2pdc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa2gfdc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa2gpdc1=roc2(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa2fgdc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa2fpdc1=roc2(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa2pgdc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa2pfdc1=roc2(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\aa2defc1','aa2gdc1','aa2fdc1','aa2pdc1','aa2gfdc1','aa2gpd
c1','aa2fgdc1','aa2fpdc1','aa2pgdc1','aa2pfdc1') 
  
aa2gordc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa2fordc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa2pordc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa2gfordc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa2gpordc1=roc2or(petA,penA,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa2fgordc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa2fpordc1=roc2or(petA,penA,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa2pgordc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa2pfordc1=roc2or(petA,penA,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('c:\users\owner\desktop\a2 
files\a2data\aa2defc1or','aa2gordc1','aa2fordc1','aa2pordc1','aa2gfordc
1','aa2gpordc1','aa2fgordc1','aa2fpordc1','aa2pgordc1','aa2pfordc1') 
end 
% And so on… 
  
function [roc2] = roc2(a,b,c,d,g,w,x,y,z) 
% roc function for across II AND 
if g==1 
    rho=-0.8; 
else if g==2 
        rho=-0.5; 
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    else if g==3 
            rho=-0.3; 
        else if g==4 
                rho=0; 
            else if g==5 
                    rho=0.3; 
                else if g==6 
                        rho=0.5; 
                    else if g==7 
                            rho=0.8; 
                        end 
                    end 
                end 
              end 
          end 
      end 
end 
n=length(w); 
m=length(y); 
for i=1:n 
    for j=1:m 
        fpand(i,j)=w(i)*y(j); 
        costA(i)=a*x(i)+b*w(i); 
        costB(j)=c*z(j)+d*y(j); 
        corr(i,j)=sqrt(costA(i)*(1-costA(i)))*sqrt(costB(j)*(1-
costB(j))); 
        tpand(i,j)=(1/c)*(rho*corr(i,j)+costA(i)*costB(j)-
d*fpand(i,j)); 
    end 
end 
  
improc=sortrows(cat(2,fpand(:),tpand(:)),1); 
c2=improc(:,2); 
btp=find(c2<0); 
if isempty(btp)~=1; 
    c2(btp)=0; 
end 
  
ind=find(c2>1);      
if isempty(ind)~=1; 
c2(ind)=1; 
end 
improc=cat(2,improc(:,1),c2); 
  
c2=improc(:,2); 
q=length(c2); 
dmat=[0;c2(1:(q-1))]; 
diff=c2-dmat; 
  
c1=improc(:,1); 
nf=find(diff<0); 
n=length(nf); 
  
i=1; 
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while i<=n 
improc(nf(i),:)=cat(2,c1(nf(i)),c2(nf(i)-1)); 
    i=i+1; 
end 
  
roc2=unique(round(improc*10000)/10000,'rows'); 
  
i=1; 
while i<=length(roc2) 
if rocheck(roc2)~=1; 
    roc2=cloop(roc2); 
else if rocheck(roc2)==1; 
        break  
    end 
end 
i=i+1; 
end 
  
vfp=roc2(:,1); 
vtp=roc2(:,2); 
  
for i=1:length(vfp) 
    ind=find(vfp==vfp(i)); 
    tpmax(i)=max(vtp(ind)); 
    fpmin(i)=min(vfp(ind)); 
end 
roc2=unique(cat(2,fpmin',tpmax'),'rows'); 
end 
 
function [roc2or] = roc2or(a,b,c,d,g,w,x,y,z) 
% function for across II OR ROC  
if g==1 
    rho=-0.8; 
else if g==2 
        rho=-0.5; 
    else if g==3 
            rho=-0.3; 
        else if g==4 
                rho=0; 
            else if g==5 
                    rho=0.3; 
                else if g==6 
                        rho=0.5; 
                    else if g==7 
                            rho=0.8; 
                        end 
                    end 
                end 
              end 
          end 
    end 
end 
n=length(w); 
m=length(y); 
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for i=1:n 
    for j=1:m 
        fpor(i,j)=w(i)+y(j)-w(i)*y(j); 
        costA(i)=a*x(i)+b*w(i); 
        costB(j)=c*z(j)+d*y(j); 
        corr(i,j)=sqrt(costA(i)*(1-costA(i)))*sqrt(costB(j)*(1-
costB(j))); 
        tpor(i,j)=(1/c)*(costA(i)+costB(j)-rho*corr(i,j)-
(costA(i)*costB(j))-d*fpor(i,j)); 
    end 
end 
  
improc=sortrows(cat(2,fpor(:),tpor(:)),1); 
c2=improc(:,2); 
btp=find(c2<0); 
if isempty(btp)~=1; 
    c2(btp)=0; 
end 
  
ind=find(c2>1);      
if isempty(ind)~=1; 
c2(ind)=1; 
end 
improc=cat(2,improc(:,1),c2); 
  
c2=improc(:,2); 
q=length(c2); 
dmat=[0;c2(1:(q-1))]; 
diff=c2-dmat; 
  
c1=improc(:,1); 
nf=find(diff<0); 
n=length(nf); 
  
i=1; 
while i<=n 
improc(nf(i),:)=cat(2,c1(nf(i)),c2(nf(i)-1)); 
    i=i+1; 
end 
  
roc2or=unique(round(improc*10000)/10000,'rows'); 
  
i=1; 
while i<=length(roc2or); 
if rocheck(roc2or)~=1; 
    roc2or=cloop(roc2or); 
else if rocheck(roc2or)==1; 
        break  
    end 
end 
i=i+1; 
end 
  
vfp=roc2or(:,1); 
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vtp=roc2or(:,2); 
  
for i=1:length(vfp) 
    ind=find(vfp==vfp(i)); 
    tpmax(i)=max(vtp(ind)); 
    fpmin(i)=min(vfp(ind)); 
end 
roc2or=unique(cat(2,fpmin',tpmax'),'rows'); 
end 
  
Note: The following section of code works for both across I and across III, only the input 

is different. This general algorithm follows the same outline as before.  

% Across III all prev 
tic  
load('Afront') 
load('Bfront') 
  
fpbg=ubg(:,1); 
tpbg=ubg(:,2); 
fpbf=ubf(:,1); 
tpbf=ubf(:,2); 
fpbp=ubp(:,1); 
tpbp=ubp(:,2); 
  
i=1; 
while i<=7 
if i<=1 
load('tena3') 
a3gc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a3fc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a3pc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a3gfc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a3gpc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a3fgc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a3fpc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a3pgc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a3pfc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\a3enc1','a3gc1','a3fc1','a3pc1','a3gfc1','a3gpc1','a3fgc1'
,'a3fpc1','a3pgc1','a3pfc1') 
  
a3gorc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a3forc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a3porc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a3gforc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a3gporc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a3fgorc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a3fporc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a3pgorc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a3pforc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
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save('C:\users\owner\desktop\A3 
files\a3data\a3enc1or','a3gorc1','a3forc1','a3porc1','a3gforc1','a3gpor
c1','a3fgorc1','a3fporc1','a3pgorc1','a3pforc1') 
  
% Target rich environment 
load('tricha3') 
a3grc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a3frc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a3prc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a3gfrc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a3gprc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a3fgrc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a3fprc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a3pgrc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a3pfrc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\a3richc1','a3grc1','a3frc1','a3prc1','a3gfrc1','a3gprc1','
a3fgrc1','a3fprc1','a3pgrc1','a3pfrc1') 
  
a3gorrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a3forrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a3porrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a3gforrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a3gporrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a3fgorrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a3fporrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a3pgorrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a3pforrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\a3richc1or','a3gorrc1','a3forrc1','a3porrc1','a3gforrc1','
a3gporrc1','a3fgorrc1','a3fporrc1','a3pgorrc1','a3pforrc1') 
  
% Target deficient environment 
load('tdefa3') 
a3gdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a3fdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a3pdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a3gfdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a3gpdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a3fgdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a3fpdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
a3pgdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a3pfdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\a3defc1','a3gdc1','a3fdc1','a3pdc1','a3gfdc1','a3gpdc1','a
3fgdc1','a3fpdc1','a3pgdc1','a3pfdc1') 
  
a3gordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
a3fordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
a3pordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
a3gfordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
a3gpordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
a3fgordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
a3fpordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
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a3pgordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
a3pfordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\a3defc1or','a3gordc1','a3fordc1','a3pordc1','a3gfordc1','a
3gpordc1','a3fgordc1','a3fpordc1','a3pgordc1','a3pfordc1') 
end 
% Up to i=7 and just for kicks we’ll look at one iteration of the loop 
that solves for those ROC curves where the prevalence of t12 and t23 are 
altered under the across III label fusion rule.  
 
% Across III all prev 
tic  
load('Afront') 
load('Bfront') 
  
fpbg=ubg(:,1); 
tpbg=ubg(:,2); 
fpbf=ubf(:,1); 
tpbf=ubf(:,2); 
fpbp=ubp(:,1); 
tpbp=ubp(:,2); 
  
i=1; 
while i<=7 
if i<=1 
load('altpreva3') 
aa3gc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa3fc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa3pc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa3gfc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa3gpc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa3fgc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa3fpc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa3pgc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa3pfc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\aa3enc1','aa3gc1','aa3fc1','aa3pc1','aa3gfc1','aa3gpc1','a
a3fgc1','aa3fpc1','aa3pgc1','aa3pfc1') 
  
aa3gorc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa3forc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa3porc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa3gforc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa3gporc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa3fgorc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa3fporc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa3pgorc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa3pforc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\aa3enc1or','aa3gorc1','aa3forc1','aa3porc1','aa3gforc1','a
a3gporc1','aa3fgorc1','aa3fporc1','aa3pgorc1','aa3pforc1') 
  
% Target rich environment 
load('apricha3') 
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aa3grc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa3frc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa3prc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa3gfrc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa3gprc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa3fgrc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa3fprc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa3pgrc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa3pfrc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\aa3richc1','aa3grc1','aa3frc1','aa3prc1','aa3gfrc1','aa3gp
rc1','aa3fgrc1','aa3fprc1','aa3pgrc1','aa3pfrc1') 
  
aa3gorrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa3forrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa3porrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa3gforrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa3gporrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa3fgorrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa3fporrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa3pgorrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa3pforrc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\aa3richc1or','aa3gorrc1','aa3forrc1','aa3porrc1','aa3gforr
c1','aa3gporrc1','aa3fgorrc1','aa3fporrc1','aa3pgorrc1','aa3pforrc1') 
  
% Target deficient environment 
load('apdefa3') 
aa3gdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa3fdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa3pdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa3gfdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa3gpdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa3fgdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa3fpdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa3pgdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa3pfdc1=roc(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\aa3defc1','aa3gdc1','aa3fdc1','aa3pdc1','aa3gfdc1','aa3gpd
c1','aa3fgdc1','aa3fpdc1','aa3pgdc1','aa3pfdc1') 
  
aa3gordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbg,tpbg); 
aa3fordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbf,tpbf); 
aa3pordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbp,tpbp); 
aa3gfordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbf,tpbf); 
aa3gpordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpag,fpbp,tpbp); 
aa3fgordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbg,tpbg); 
aa3fpordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpaf,fpbp,tpbp); 
aa3pgordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbg,tpbg); 
aa3pfordc1=rocor(pet12,pen12,pet23,pen23,pet,pen,i,fpa,tpap,fpbf,tpbf); 
save('C:\users\owner\desktop\A3 
files\a3data\aa3defc1or','aa3gordc1','aa3fordc1','aa3pordc1','aa3gfordc
1','aa3gpordc1','aa3fgordc1','aa3fpordc1','aa3pgordc1','aa3pfordc1') 
end 
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function [roc] = roc(a,b,c,d,e,f,g,w,x,y,z) 
% roc function for across I/ across III AND. Note the only difference 
is 
% the prior target weightings.  
if g==1 
    rho=-0.8; 
else if g==2 
        rho=-0.5; 
    else if g==3 
            rho=-0.3; 
        else if g==4 
                rho=0; 
            else if g==5 
                    rho=0.3; 
                else if g==6 
                        rho=0.5; 
                    else if g==7 
                            rho=0.8; 
                        end 
                    end 
                end 
              end 
          end 
      end 
end 
n=length(w); 
m=length(y); 
for i=1:n 
    for j=1:m 
        fpand(i,j)=w(i)*y(j); 
        costA(i)=a*x(i)+b*w(i); 
        costB(j)=c*z(j)+d*y(j); 
        corr(i,j)=sqrt(costA(i)*(1-costA(i)))*sqrt(costB(j)*(1-
costB(j))); 
        tpand(i,j)=(1/e)*(rho*corr(i,j)+costA(i)*costB(j)-
f*fpand(i,j)); 
    end 
end 
  
improc=sortrows(cat(2,fpand(:),tpand(:)),1); 
c2=improc(:,2); 
btp=find(c2<0); 
if isempty(btp)~=1; 
    c2(btp)=0; 
end 
  
ind=find(c2>1);      
if isempty(ind)~=1; 
c2(ind)=1; 
end 
improc=cat(2,improc(:,1),c2); 
  
c2=improc(:,2); 
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q=length(c2); 
dmat=[0;c2(1:(q-1))]; 
diff=c2-dmat; 
  
c1=improc(:,1); 
nf=find(diff<0); 
n=length(nf); 
  
i=1; 
while i<=n 
improc(nf(i),:)=cat(2,c1(nf(i)),c2(nf(i)-1)); 
    i=i+1; 
end 
  
roc=unique(round(improc*10000)/10000,'rows'); 
  
i=1; 
while i<=length(roc) 
if rocheck(roc)~=1; 
    roc=cloop(roc); 
else if rocheck(roc)==1; 
        break  
    end 
end 
i=i+1; 
end 
  
vfp=roc(:,1); 
vtp=roc(:,2); 
  
for i=1:length(vfp) 
    ind=find(vfp==vfp(i)); 
    tpmax(i)=max(vtp(ind)); 
    fpmin(i)=min(vfp(ind)); 
end 
roc=unique(cat(2,fpmin',tpmax'),'rows'); 
end 
  
function [rocor] = rocor(a,b,c,d,e,f,g,w,x,y,z) 
% function that produces across I/ across III OR ROC curves 
if g==1 
    rho=-0.8; 
else if g==2 
        rho=-0.5; 
    else if g==3 
            rho=-0.3; 
        else if g==4 
                rho=0; 
            else if g==5 
                    rho=0.3; 
                else if g==6 
                        rho=0.5; 
                    else if g==7 
                            rho=0.8; 
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                        end 
                    end 
                end 
              end 
          end 
    end 
end 
n=length(w); 
m=length(y); 
for i=1:n 
    for j=1:m 
        fpor(i,j)=w(i)+y(j)-w(i)*y(j); 
        costA(i)=a*x(i)+b*w(i); 
        costB(j)=c*z(j)+d*y(j); 
        corr(i,j)=sqrt(costA(i)*(1-costA(i)))*sqrt(costB(j)*(1-
costB(j))); 
        tpor(i,j)=(1/e)*(costA(i)+costB(j)-rho*corr(i,j)-
(costA(i)*costB(j))-f*fpor(i,j)); 
    end 
end 
  
improc=sortrows(cat(2,fpor(:),tpor(:)),1); 
c2=improc(:,2); 
btp=find(c2<0); 
if isempty(btp)~=1; 
    c2(btp)=0; 
end 
  
ind=find(c2>1);      
if isempty(ind)~=1; 
c2(ind)=1; 
end 
improc=cat(2,improc(:,1),c2); 
  
c2=improc(:,2); 
q=length(c2); 
dmat=[0;c2(1:(q-1))]; 
diff=c2-dmat; 
  
c1=improc(:,1); 
nf=find(diff<0); 
n=length(nf); 
  
i=1; 
while i<=n 
improc(nf(i),:)=cat(2,c1(nf(i)),c2(nf(i)-1)); 
    i=i+1; 
end 
  
rocor=unique(round(improc*10000)/10000,'rows'); 
  
i=1; 
while i<=length(rocor) 
if rocheck(rocor)~=1; 
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    rocor=cloop(rocor); 
else if rocheck(rocor)==1; 
        break  
    end 
end 
i=i+1; 
end 
  
vfp=rocor(:,1); 
vtp=rocor(:,2); 
  
for i=1:length(vfp) 
    ind=find(vfp==vfp(i)); 
    tpmax(i)=max(vtp(ind)); 
    fpmin(i)=min(vfp(ind)); 
end 
rocor=unique(cat(2,fpmin',tpmax'),'rows'); 
end 
  
function [bias] = bias(x,y) 
%Bias between within and across classifiers. 
%c1 and c2 are the false positive and true positive rates for the ROC 
curve 
%of the across classifier 
%c3 and c4 are the fpr and tpr for the ROC curve of the within 
classifier 
c1=x(:,1); 
c2=x(:,2); 
c3=y(:,1); 
c4=y(:,2); 
% Returns the indices of those fpr values that lie in the intersection 
of 
% the fpr for the across classifier and the fpr for the within 
classifier 
[r,a,w]=intersect(c1,c3); 
adata=cat(2,r,c2(a)); % fpr and tpr for across classifier 
wdata=cat(2,r,c4(w)); % fpr and tpr for within classifier 
bias=cat(2,r,wdata(:,2)-adata(:,2)); % bias = difference in tpr at 
given fpr 
end 
 
function [negbias] = negbias(a,b,c,d,e,f,s,h,q,r) 
% Returns graphs for non-correlated and all negitively correlated ROC 
% curves. 
  
g=bias(a,b); %non-correlated 
g2=bias(c,d); %c1 
g3=bias(e,f); %c2 
g4=bias(s,h); %c3 
  
negbias=figure('visible','off'); 
hold on 
plot(g(:,1),g(:,2)) 
plot(g2(:,1),g2(:,2),'--') 
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plot(g3(:,1),g3(:,2),':') 
plot(g4(:,1),g4(:,2),'x') 
xlabel('max pq=r') 
ylabel('bias (difference in tpr)') 
title(q) 
saveas(negbias,r) 
end 
 
function [negbiasor] = negbiasor(a,b,c,d,e,f,s,h,q,r) 
% Returns graphs for non-correlated and all negitively correlated ROC 
% curves. 
  
g=bias(a,b); %non-correlated 
g2=bias(c,d); %c1 
g3=bias(e,f); %c2 
g4=bias(s,h); %c3 
  
negbiasor=figure('visible','off'); 
hold on 
plot(g(:,1),g(:,2)) 
plot(g2(:,1),g2(:,2),'--') 
plot(g3(:,1),g3(:,2),':') 
plot(g4(:,1),g4(:,2),'x') 
xlabel('max p+q-pq=r') 
ylabel('bias (difference in tpr)') 
title(q) 
saveas(negbiasor,r) 
end 
 
function [posbias] = posbias(a,b,c,d,e,f,s,h,q,r) 
% Returns graphs for non-correlated and all positively correlated ROC 
% curves. 
  
g=bias(a,b); %non-correlated 
g2=bias(c,d); %c1 
g3=bias(e,f); %c2 
g4=bias(s,h); %c3 
posbias=figure('visible','off'); 
hold on 
plot(g(:,1),g(:,2)) 
plot(g2(:,1),g2(:,2),'--') 
plot(g3(:,1),g3(:,2),':') 
plot(g4(:,1),g4(:,2),'x') 
xlabel('max pq=r') 
ylabel('bias (difference in tpr)') 
title(q) 
saveas(posbias,r) 
end 
 
function [posbiasor] = posbiasor(a,b,c,d,e,f,s,h,q,r) 
% Returns graphs for non-correlated and all positively correlated ROC 
% curves. 
  
g=bias(a,b); %non-correlated 
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g2=bias(c,d); %c1 
g3=bias(e,f); %c2 
g4=bias(s,h); %c3 
posbiasor=figure('visible','off'); 
hold on 
plot(g(:,1),g(:,2)) 
plot(g2(:,1),g2(:,2),'--') 
plot(g3(:,1),g3(:,2),':') 
plot(g4(:,1),g4(:,2),'x') 
xlabel('max p+q-pq=r') 
ylabel('bias (difference in tpr)') 
title(q) 
saveas(posbiasor,r) 
end 
 
For brevity, only one section of the figures code is included here. All other codes are 

approximately the same except for changes in variables and strings.  

 
clear;clc 
%% Enhanced figures alt prev 
load('a1en'); 
load('Bfront'); 
load('Afront'); 
load('a1enor'); 
load('wen'); 
load('wenor'); 
load('a2en'); 
load('a2enor'); 
load('a3en'); 
load('a3enor'); 
%% A vs B I & III 
AvBg=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubg(:,1),ubg(:,2),'--') 
xlabel('Classifier A Good performance = line') 
ylabel('Classifier B Good performance = dash') 
title('A vs B  "good"') 
saveas(AvBg,'c:\users\owner\desktop\graphs\ETP\A vs B G.jpg') 
  
AvBf=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubf(:,1),ubf(:,2),'--') 
xlabel('Classifier A Good performance = line') 
ylabel('Classifier B Good performance = dash') 
title('A vs B  "fair"') 
saveas(AvBf,'c:\users\owner\desktop\graphs\ETP\A vs B F.jpg') 
  
AvBp=figure('visible','off'); 
hold on 
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plot(fpa,ap) 
plot(ubp(:,1),ubp(:,2),'--') 
xlabel('Classifier A Good performance = line') 
ylabel('Classifier B Good performance = dash') 
title('A vs B  "poor"') 
saveas(AvBp,'c:\users\owner\desktop\graphs\ETP\A vs B P.jpg') 
  
%% Across I vs within ROC 
G1=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a1g(:,1),a1g(:,2),':') 
plot(wg(:,1),wg(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I "good" vs within "good"') 
saveas(G1, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I G vs 
within G.jpg') 
  
F1=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a1f(:,1),a1f(:,2),':') 
plot(wf(:,1),wf(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I "fair" vs within "fair"') 
saveas(F1, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I F vs 
within F.jpg') 
  
P1=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a1p(:,1),a1p(:,2),':') 
plot(wp(:,1),wp(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I "poor" vs within "poor"') 
saveas(P1, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I P vs 
within P.jpg') 
  
gf1=figure('visible','off'); 
hold on  
plot(fpa,ag) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a1gf(:,1),a1gf(:,2),':') 
plot(wgf(:,1),wgf(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=G B=F vs within A=G B=F') 



 

279 
 

saveas(gf1, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=G 
B=F vs within A=G B=F.jpg') 
  
gp1=figure('visible','off'); 
hold on  
plot(fpa,ag) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a1gp(:,1),a1gp(:,2),':') 
plot(wgp(:,1),wgp(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=G B=P vs within A=G B=P') 
saveas(gp1, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=G 
B=P vs within A=G B=P.jpg') 
  
fg1=figure('visible','off'); 
hold on  
plot(fpa,af) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a1fg(:,1),a1fg(:,2),':') 
plot(wfg(:,1),wfg(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=F B=G vs within A=F B=G') 
saveas(fg1, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=F 
B=G vs within A=F B=G.jpg') 
  
fp1=figure('visible','off'); 
hold on  
plot(fpa,af) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a1fp(:,1),a1fp(:,2),':') 
plot(wfp(:,1),wfp(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=F B=P vs within A=F B=P') 
saveas(fp1, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=F 
B=P vs within A=F B=P.jpg') 
  
pg1=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a1pg(:,1),a1pg(:,2),':') 
plot(wpg(:,1),wpg(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=P B=G vs within A=P B=G') 
saveas(pg1, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=P 
B=G vs within A=P B=G.jpg') 
  
pf1=figure('visible','off'); 
hold on 
plot(fpa,ap) 
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plot(ubf(:,1),ubf(:,2),'--') 
plot(a1pf(:,1),a1pf(:,2),':') 
plot(wpf(:,1),wpf(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=P B=F vs within A=P B=F') 
saveas(pf1, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=P 
B=F vs within A=P B=F.jpg') 
  
%% ROC Across II vs within AND 
G2=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a2g(:,1),a2g(:,2),':') 
plot(wg(:,1),wg(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II "good" vs within "good"') 
saveas(G2, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II G vs 
within G.jpg') 
  
F2=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a2f(:,1),a2f(:,2),':') 
plot(wf(:,1),wf(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II "fair" vs within "fair"') 
saveas(F2, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II F vs 
within F.jpg') 
  
P2=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a2p(:,1),a2p(:,2),':') 
plot(wp(:,1),wp(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II "poor" vs within "poor"') 
saveas(P2, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II P vs 
within P.jpg') 
  
GF2=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a2gf(:,1),a2gf(:,2),':') 
plot(wgf(:,1),wgf(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
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title('A vs B vs Across II A=G B=F vs within A=G B=F') 
saveas(GF2, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II A=G 
B=F vs within A=G B=F.jpg') 
  
GP2=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a2gp(:,1),a2gp(:,2),':') 
plot(wgp(:,1),wgp(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=G B=P vs within A=G B=P') 
saveas(GP2, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II A=G 
B=P vs within A=G B=P.jpg') 
  
FG2=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a2fg(:,1),a2fg(:,2),':') 
plot(wfg(:,1),wfg(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=F B=G vs within A=F B=G') 
saveas(FG2, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II A=F 
B=G vs within A=F B=G.jpg') 
  
FP2=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a2fp(:,1),a2fp(:,2),':') 
plot(wfp(:,1),wfp(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=F B=P vs within A=F B=P') 
saveas(FP2, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II A=F 
B=P vs within A=F B=P.jpg') 
  
PG2=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a2pg(:,1),a2pg(:,2),':') 
plot(wpg(:,1),wpg(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=P B=G vs within A=P B=G') 
saveas(PG2, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II A=P 
B=G vs within A=P B=G.jpg') 
  
PF2=figure('visible','off'); 
hold on 
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plot(fpa,ap) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a2pf(:,1),a2pf(:,2),':') 
plot(wpf(:,1),wpf(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=P B=F vs within A=P B=F') 
saveas(PF2, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II A=P 
B=F vs within A=P B=F.jpg') 
  
%% Across 3 vs within ROC 
G3=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a3g(:,1),a3g(:,2),':') 
plot(wg(:,1),wg(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III "good" vs within "good"') 
saveas(G3, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III G vs 
within G.jpg') 
  
F3=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a3f(:,1),a3f(:,2),':') 
plot(wf(:,1),wf(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III "fair" vs within "fair"') 
saveas(F3, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III F vs 
within F.jpg') 
  
P3=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a3p(:,1),a3p(:,2),':') 
plot(wp(:,1),wp(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III "poor" vs within "poor"') 
saveas(P3, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III P vs 
within P.jpg') 
  
gf3=figure('visible','off'); 
hold on  
plot(fpa,ag) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a3gf(:,1),a3gf(:,2),':') 
plot(wgf(:,1),wgf(:,2),'*') 
xlabel('A = solid, B = dash') 
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ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=G B=F vs within A=G B=F') 
saveas(gf3, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III A=G 
B=F vs within A=G B=F.jpg') 
  
gp3=figure('visible','off'); 
hold on  
plot(fpa,ag) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a3gp(:,1),a3gp(:,2),':') 
plot(wgp(:,1),wgp(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=G B=P vs within A=G B=P') 
saveas(gp3, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III A=G 
B=P vs within A=G B=P.jpg') 
  
fg3=figure('visible','off'); 
hold on  
plot(fpa,af) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a3fg(:,1),a3fg(:,2),':') 
plot(wfg(:,1),wfg(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=F B=G vs within A=F B=G') 
saveas(fg3, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III A=F 
B=G vs within A=F B=G.jpg') 
  
fp3=figure('visible','off'); 
hold on  
plot(fpa,af) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a3fp(:,1),a3fp(:,2),':') 
plot(wfp(:,1),wfp(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=F B=P vs within A=F B=P') 
saveas(fp3, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III A=F 
B=P vs within A=F B=P.jpg') 
  
pg3=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a3pg(:,1),a3pg(:,2),':') 
plot(wpg(:,1),wpg(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=P B=G vs within A=P B=G') 
saveas(pg3, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III A=P 
B=G vs within A=P B=G.jpg') 
  
pf3=figure('visible','off'); 
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hold on 
plot(fpa,ap) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a3pf(:,1),a3pf(:,2),':') 
plot(wpf(:,1),wpf(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=P B=F vs within A=P B=F') 
saveas(pf3, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III A=P 
B=F vs within A=P B=F.jpg') 
  
%% ROC Across I vs within OR 
G1or=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a1gor(:,1),a1gor(:,2),':') 
plot(wgor(:,1),wgor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I "good" vs within "good" OR') 
saveas(G1or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I G vs 
within G OR.jpg') 
  
F1or=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a1for(:,1),a1for(:,2),':') 
plot(wfor(:,1),wfor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I "fair" vs within "fair" OR') 
saveas(F1or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I F vs 
within F OR.jpg') 
  
P1or=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a1por(:,1),a1por(:,2),':') 
plot(wpor(:,1),wpor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I "poor" vs within "poor" OR') 
saveas(P1or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I P vs 
within P OR.jpg') 
  
gf1or=figure('visible','off'); 
hold on  
plot(fpa,ag) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a1gfor(:,1),a1gfor(:,2),':') 
plot(wgfor(:,1),wgfor(:,2),'*') 
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xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=G B=F vs within A=G B=F OR') 
saveas(gf1or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=G 
B=F vs within A=G B=F OR.jpg') 
  
gp1or=figure('visible','off'); 
hold on  
plot(fpa,ag) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a1gpor(:,1),a1gpor(:,2),':') 
plot(wgpor(:,1),wgpor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=G B=P vs within A=G B=P OR') 
saveas(gp1or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=G 
B=P vs within A=G B=P OR.jpg') 
  
fg1or=figure('visible','off'); 
hold on  
plot(fpa,af) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a1fgor(:,1),a1fgor(:,2),':') 
plot(wfgor(:,1),wfgor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=F B=G vs within A=F B=G OR') 
saveas(fg1or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=F 
B=G vs within A=F B=G OR.jpg') 
  
fp1or=figure('visible','off'); 
hold on  
plot(fpa,af) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a1fpor(:,1),a1fpor(:,2),':') 
plot(wfpor(:,1),wfpor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=F B=P vs within A=F B=P OR') 
saveas(fp1or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=F 
B=P vs within A=F B=P OR.jpg') 
  
pg1or=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a1pgor(:,1),a1pgor(:,2),':') 
plot(wpgor(:,1),wpgor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=P B=G vs within A=P B=G OR') 
saveas(pg1or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=P 
B=G vs within A=P B=G OR.jpg') 
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pf1or=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a1pfor(:,1),a1pfor(:,2),':') 
plot(wpfor(:,1),wpfor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A1 =  double dot, w = star') 
title('A vs B vs Across I A=P B=F vs within A=P B=F OR') 
saveas(pf1or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across I A=P 
B=F vs within A=P B=F OR.jpg') 
  
%% ROC II OR 
G2or=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a2gor(:,1),a2gor(:,2),':') 
plot(wgor(:,1),wgor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II "good" vs within "good" OR') 
saveas(G2or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II G 
vs within G OR.jpg') 
  
F2or=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a2for(:,1),a2for(:,2),':') 
plot(wfor(:,1),wfor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II "fair" vs within "fair" OR') 
saveas(F2or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II F 
vs within F OR.jpg') 
  
P2or=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a2por(:,1),a2por(:,2),':') 
plot(wpor(:,1),wpor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II "poor" vs within "poor" OR') 
saveas(P2or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II P 
vs within P OR.jpg') 
  
gf2or=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a2gfor(:,1),a2gfor(:,2),':') 
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plot(wgfor(:,1),wgfor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=G B=F vs within A=G B=F OR') 
saveas(gf2or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II 
A=G B=F vs within A=G B=F OR.jpg') 
  
gp2or=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a2gpor(:,1),a2gpor(:,2),':') 
plot(wgpor(:,1),wgpor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=G B=P vs within A=G B=P OR') 
saveas(gp2or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II 
A=G B=P vs within A=G B=P OR.jpg') 
  
fg2or=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a2fgor(:,1),a2fgor(:,2),':') 
plot(wfgor(:,1),wfgor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=F B=G vs within A=F B=G OR') 
saveas(fg2or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II 
A=F B=G vs within A=F B=G OR.jpg') 
  
fp2or=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a2fpor(:,1),a2fpor(:,2),':') 
plot(wfpor(:,1),wfpor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=F B=P vs within A=F B=P OR') 
saveas(fp2or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II 
A=F B=P vs within A=F B=P OR.jpg') 
  
pg2or=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a2pgor(:,1),a2pgor(:,2),':') 
plot(wpgor(:,1),wpgor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=P B=G vs within A=P B=G OR') 
saveas(pg2or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II 
A=P B=G vs within A=P B=G OR.jpg') 
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pf2or=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a2pfor(:,1),a2pfor(:,2),':') 
plot(wpfor(:,1),wpfor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A2 = double dot, w = star') 
title('A vs B vs Across II A=P B=F vs within A=P B=F OR') 
saveas(pf2or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across II 
A=P B=F vs within A=P B=F OR.jpg') 
  
%% Roc Across III vs within OR 
G3or=figure('visible','off'); 
hold on 
plot(fpa,ag) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a3gor(:,1),a3gor(:,2),':') 
plot(wgor(:,1),wgor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III "good" vs within "good" OR') 
saveas(G3or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III G 
vs within G OR.jpg') 
  
F3or=figure('visible','off'); 
hold on 
plot(fpa,af) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a3for(:,1),a3for(:,2),':') 
plot(wfor(:,1),wfor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III "fair" vs within "fair" OR') 
saveas(F3or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III F 
vs within F OR.jpg') 
  
P3or=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a3por(:,1),a3por(:,2),':') 
plot(wpor(:,1),wpor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III "poor" vs within "poor" OR') 
saveas(P3or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III P 
vs within P OR.jpg') 
  
gf3or=figure('visible','off'); 
hold on  
plot(fpa,ag) 
plot(ubf(:,1),ubf(:,2),'--') 
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plot(a3gfor(:,1),a3gfor(:,2),':') 
plot(wgfor(:,1),wgfor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=G B=F vs within A=G B=F OR') 
saveas(gf3or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III 
A=G B=F vs within A=G B=F OR.jpg') 
  
gp3or=figure('visible','off'); 
hold on  
plot(fpa,ag) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a3gpor(:,1),a3gpor(:,2),':') 
plot(wgpor(:,1),wgpor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=G B=P vs within A=G B=P OR') 
saveas(gp3or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III 
A=G B=P vs within A=G B=P OR.jpg') 
  
fg3or=figure('visible','off'); 
hold on  
plot(fpa,af) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a3fgor(:,1),a3fgor(:,2),':') 
plot(wfgor(:,1),wfgor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=F B=G vs within A=F B=G OR') 
saveas(fg3or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III 
A=F B=G vs within A=F B=G OR.jpg') 
  
fp3or=figure('visible','off'); 
hold on  
plot(fpa,af) 
plot(ubp(:,1),ubp(:,2),'--') 
plot(a3fpor(:,1),a3fpor(:,2),':') 
plot(wfpor(:,1),wfpor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=F B=P vs within A=F B=P OR') 
saveas(fp3or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III 
A=F B=P vs within A=F B=P OR.jpg') 
  
pg3or=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubg(:,1),ubg(:,2),'--') 
plot(a3pgor(:,1),a3pgor(:,2),':') 
plot(wpgor(:,1),wpgor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=P B=G vs within A=P B=G OR') 
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saveas(pg3or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III 
A=P B=G vs within A=P B=G OR.jpg') 
  
pf3or=figure('visible','off'); 
hold on 
plot(fpa,ap) 
plot(ubf(:,1),ubf(:,2),'--') 
plot(a3pfor(:,1),a3pfor(:,2),':') 
plot(wpfor(:,1),wpfor(:,2),'*') 
xlabel('A = solid, B = dash') 
ylabel('A3 =  double dot, w = star') 
title('A vs B vs Across III A=P B=G vs within A=P B=G OR') 
title('A vs B vs Across III A=P B=F vs within A=P B=F OR') 
saveas(pf3or, 'c:\users\owner\desktop\graphs\ETP\A vs B vs Across III 
A=P B=F vs within A=P B=F OR.jpg') 
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