Detecting and Jamming Dynamic Communication Networks in
Ati-Access Environments
Project # FA9550-08-1-0190

PI: Prof. Stanislav Uryasev
CoPI: Prof. Panos Pardalos

March, 2011

20119194

20

Summary

Three chapters present methods for handling various optimization problems related to sensors networks. The first
chapter investigates mathematical programming techniques for solving a class of multi-sensor scheduling problems.
We conducted several case studies and investigated the performance of robust optimization solvers for considered 0-1
linear programming problems. The second chapter presents a survey describing recent developments in the area of
mathematical programming techniques for various types of sensor network applications. The corresponding mathe-
matical programming formulations and solving methods are discussed. The third chapter considers several classes of
problems that deal with optimizing the performance of dynamic sensor networks used for area surveillance under un-
certainty with robust radio connectivity constraints. Various formulations of optimization problems and computational
results are presented.

Introduction

The first chapter presents mathematical programming techniques for solving a class of multi-sensor scheduling prob-
lems. Robust optimization problems are formulated for both deterministic and stochastic cases using linear 0-1 pro-
gramming techniques. Equivalent formulations are developed in terms of cardinality constraints. We conducted nu-
merical case studies and analyzed the performance of optimization solvers for the considered problem instances.

The second chapter presents a survey describing recent developments in the area of mathematical programming
techniques for various types of sensor network applications. We discussed mathematical programming formulations
associated with these applications, as well as methods for solving the corresponding problems. We also addressed
some of the challenges arising in this area, including both conceptual and computational aspects.

The third chapter considers several classes of problems that deal with optimizing the performance of dynamic sen-
sor networks used for area surveillance, in particular, in the presence of uncertainty. The overall efficiency of a sensor
network is addressed by minimizing the overall information losses, as well as ensuring that all nodes in a network
form a robust connectivity pattern at every time moment (sensors communicate and exchange information in uncertain
and adverse environments). The considered problems are solved using mathematical programming techniques that in-
corporate quantitative risk measures, which allow one to minimize or bound the losses associated with potential risks.
The issue of robust connectivity is addressed by imposing explicit restrictions on the shortest path length between all
pairs of sensors and on the number of connections for each sensor (i.e., node degrees) in a network. Formulations of
linear 0-1 optimization problems and the corresponding computational results are presented.

[$5)

Chapter 1

Robust Multi-Sensor Scheduling for
Multi-Site Surveillance problem

1.1 Introduction

The task of area surveillance is important in a variety of applications in both military and civilian settings. One of the
main challenges that one needs to address in these problems is the fact that the number of locations (sites) that need
1o be visited to gather potentially valuable information is often much larger than the number of available surveillance
devices (sensors) that are used for collecting information. Under these conditions, one needs to develop efficient
schedules for all the available sensors (that can be installed, for instance, on Unmanned Air Vehicles) such that the
amount of valuable information collected by the sensors is maximized. One can formulate this problem in terms of
minimizing the information losses associated with the fact that some locations are not under surveillance at certain
time moments. In these settings, the information losses can be quantified as both fixed and variable losses, where
fixed losses would occur when a given site is simply not under surveillance at some time moment, while variable
losses would depend on how long a site has not been previously visited by a sensor. In particular, taking into account
variable losses of information is critical in the case of strategically important sites that need to be monitored as closely
as possible.

In addition, the parameters that quantify fixed and variable information losses are in many cases uncertain by
nature. In previous related works in this area, the uncertainties in these parameters were not explicitly taken into
account (sce, ¢.g., [46]): however, the development of efficient techniques to minimize or restrict the information losses
under uncertainty is the task of crucial importance. This paper proposes mathematical programming formulations that
allow quantifying and restricting the risks of worst-case losses associated with uncertain parameters.

The mathematical programming formulations are first developed for the deterministic case, and the natural exten-
sions of these formulations to the stochastic case (with uncertain information loss parameters) is made by utilizing
quantitative risk measures allowing to control the conservativeness of the optimal strategy. In particular, the statis-
tical concept referred to as Conditional Value-at-Risk (CVaR) is used in the proposed problem formulations under
uncertainty. Using these techniques allows one to efficiently incorporate uncertainties in the considered optimization
problems, as well as provides the means of balancing between the optimality and the robustness of the solutions.
Equivalent reformulations and extensions of the considered problems are also presented.

We have also conducted numerical case studies to test the performance of the suggested algorithms. Since the
considered problems are NP-hard and involve uncertain parameters, near-optimal solutions were found for large prob-
lem instances. It turned out that solving cardinality-based reformulations of the considered problems provided good
quality solutions in a reasonable time.

1.2 Deterministic approach

This section introduces a general mathematical framework for multi-sensor scheduling problems. Initially, we utilize
the concepts introduced in (46] that was developed for a deterministic case of a single-sensor scheduling problem.
We then generalize and extend these formulations to the more realistic cases of multi-sensor scheduling problems,
including the setups in uncertain environments. Assume that there are m sensors and n sites that need to be observed
at every discrete time moment ¢ = 1,...,7T. We assume that a sensor can observe only one site at one point of time
and can immediately switch to another site at the next time moment. Since m is usually significantly smaller than
n, we have breaches in surveillance that can cause losses of potentially valuable information. Our goal is to build a
strategy that optimizes a potential loss that is associated with not observing certain sites at some time moments.
We then introduce binary decision variables

1, ifi-th site is observed at time £,
it =91 0, otherwise el
¥ ’
and integer variables y; ; that denote the last time site i was visited as of the end of time ¢, + = 1,...,n, t =

,...,T,m<n.

We associate a fixed penalty a; with each site ¢ and a variable penalty &; of information loss. If a sensor is away
from site ¢ at time point ¢, the fixed penalty a; is incurred. Moreover, the variable penalty b; is proportional to the time
interval when the site is not observed. We assume that the variable penalty rate can be dynamic; therefore, the values
of b; may be different at cach time interval. Thus the loss at time ¢ associated with site 1 is

a;i(1 — zie) + bie(t — i), 1.2
In the considered setup, we want to minimize the maximum penalty over all time points ¢ and sites ¢

n},a‘x{ai(l —Tit) + bie(t — yie)}) (1.3)

Furthermore, z; ; and y; , are related via the following set of constraints. No more than m sensors are used at each
time point; therefore

n
Y zie<m,vt=1,..,T (1.4)
=1
Time y;,, is equal to the time when the site i was last visited by a sensor by time £. This condition is set by the
following constraints:

0 S y,'.g _yi.t-l S tIivg, Vl —_ l,...,n. Vt = 1,...,T, (15)
i <yYie StVi=1,...,n, Vi=1,...,T, (1.6)

Note that the above constraints automatically ensure that the feasible values of y; . are integer. It is easy to verify by
considering possible values of binary variables z; ;. Therefore, in the following mathematical programming problems,
we can set the variables y;, € IR, and the inclusion of these constraints will make these variables integer in any
feasible solution. This enables us to decrease the number of integer (binary) variables in the considered problems.

Further, using the notation C = max; ¢({a;(1 — ;) +b;¢(t — yi..)} and standard linearization techniques, we can
formulate the multi-sensor scheduling optimization problem in the deterministic setup as the following mixed integer

linear program:

minC (1.7)
8.L, C Z a.'(l - :L'.'.g) +b".z(t P y",,), Vi= 1,...,77., Vt = 1,...,T, (]8)
Zzi,lsma Vt:lv---»T: (19)
i=1
0<yit—Yip-1 Sy, Vi=1,...,n, V2t =1,...,T, (1.10)
bz oSSt V=1, . n, Mt =, ... T, (1.11)
yio=0,Vi=1,...,n, (1.12)
Tt €{0,1}, Mi=1,....0,Vt=1,..,T, (1.13)
vit€ERVi=1,...,n,Vt=0,...,T. (1.14)

1.3 Deterministic setup with percentile objective

For every site ¢ and every time moment t, we can calculate the penalty associated with the last time a sensor visited
this site (sce formula (3.2)). Let us pick (1 — a) % of worst cases among these = X T penalty values. Then instead
of minimizing the maximum loss, we can minimize the the average loss taken over these (1 — &) % percent of worst-
case penalty values. Despite the fact that this formulation is deterministic, we will demonstrate that it is equivalent
to computing (1 — a) Conditional Value-at Risk (CVaR) for a set of random outcomes having equal probabilities
Pit = L.

" To g?c:ililale the further discussion, let us give the definition of Conditional Value-at-Risk (CVaR) [43, 45]. CVaR
is closely related to a well-known quantitative risk measure referred to as Value-at-Risk (VaR). By definition, with
respect to a specified probability level (1 — &) (in many applications the value of (1 — «) is set rather high, e.g. 95%),
the a-VaR is the lowest amount ¢ such that with probability (1 — a), the loss will not exceed ¢, whereas for continuous
distributions the a-CVaR is the conditional expectation of losses above that amount (. As it can be seen, CVaR is a
more conservative risk measure than VaR, which means that minimizing or restricting CVaR in optimization problems
provides more robust solutions with respect to the risk of high losses.

Formally, a-CVaR can be expressed as

CVaRa(x) = (1-)”" [L(x,y)pl(y) dy, (115)
L(x,y)2Ca(x)

where L(x,y) is a random variable driven by decision vector z and having a distribution in JR induced by that of the
vector of uncertain parameters y.

CVaR 1s defined in a similar way for discrete or mixed distributions. The reader can find the formal definition of
CVaR for general case in [43, 45].

It has been shown by Rockafellar and Uryasev [42, 28] that minimizing ¢, (x) is equivalent to minimizing the
function

Fa(x,¢) = C+(1—a)‘1/ m[L(x,Y)—Cl*p(y)dy, (1.16)

VvER

where [t]* =t when t > 0 but [t]* = 0 when ¢ < 0, and the variable ¢ corresponds to the VaR value, as introduced
above.
Thus we can generalize our formulation and write the objective function for our problem as

min CVaRa [L(z,y,4,1))], (1.17)

where
L(I: y)ia t) - ai(l . xi,t) 7= bi.t(t — yi,l) (1]8)

The particular extreme case when a — 1 corresponds to minimizing maximum penalty over all ¢-s and i-s. This
case corresponds to the problem (3.32)-(3.35) formulated in section 3.2. The other extreme case a = 0 gives average
taken over all time points and sites (if we assume uniform distribution). In the latter case we care about average loss
and there is a high chance of not paying enough attention to particular bad outcomes.

Generally, « indicates the level of conservatism the decision maker is willing to accept. The closer « approathes
to 1, the narrower the range of worst cases becomes in the corresponding optimization problem.

Using the general approach outlined in formulas (3.26)-(3.27), our problem is now formulated as follows:

. ,

m;%(2= - D pielai(l = i) + bie(t —yie) — ¢)F (1.19)
© it

s.t. constraints (3.9)-(3.34),

(€ R, (1.20)

where the values of p; ; can all be set equal to 1/nT as indicated in the beginning of this section.
Furthermore, this problem formulation can be easily transformed to a linear mixed integer problem by introducing
a set of artificial variables z; ; that will lead to the following problem with a set of » x T' additional constraints.

i
i i 1.21
min ¢ nT(l_a);y.: (1.21)
s.t.ai(1 —ie) + bie(t — ¥ie) — 1 < Yie (1.22)
Yie 20 (1.23)
constraints (3.9)-(3.34),
(e R, (1.24)

1.4 Problem setup under uncertainty

To extend the proposed problem formulations to a more realistic setup, where the values of the penalty parameters are
uncertain, we propose a new CVaR-based formulation of multi-sensor scheduling problems.

In this setup, assume that the fixed and variable penalty values a; and b; » are random variables with given joint
distributions. Further, we can consider a set of penalty values (af,bf,), s = 1,..., S corresponding to S discrete
samples (or scenarios) as an approximation of the joint distribution. Then for each s = 1, ..., S the loss function can

be written as:
L(Iv y)i’t) 3) = a?(l - I“'g) * b:.t (t I yi.t)' (125)

It is appropriate to consider (1 — a) % of worst-case penalties over all indices i, ¢, s. We can then chose a measure
of loss as an average over these (1 — «) % worst cases and minimize the average. Namely we minimize

CVaR, [L(z,y, 1, ¢, 5)]. (1.26)

Using the approach described in the previous section, we obtain the following robust optimization problem that
explicitly takes into account the uncertain penalty parameters:

L el nTS(l)Z["U‘zatH e(t—y-c)) " (1.27)

st
constraints (3.9)-(3.34), (2.26).

As mentioned above, this formulation can be linearized by introducing extra variables and constraints, and the
linear mixed integer formulation is provided below.

min ¢ + nTS(l 2 ZJ: s (1.28)
s.t.

ai(1 = zie) + 07, (t —9ie) —(S yiee (1.29)
Yite 20 (1.30)

constraints (3.9)-(3.34), (2.26).

1.5 Equivalent formulations of the considered problems using cardinality
constraints

In this section, we show that the developed linear mixed integer programming problems can be equivalently reformu-
lated as problems with cardinality constraints. As it will be discussed later, solving these equivalent reformulations
can provide better computational speed and performance in finding near-optimal solutions of the considered problems.
It should be noted that due to the high dimensionality and complexity of these problems, it is often impossible to find
exact optimal solutions in a reasonable time; however, it is often useful in practice to utilize heuristic techniques that
can find near-optimal solutions fast.

There exist heuristics [18] as well as software packages [1] which can solve optimization problems formulated
in terms of cardinality constraints. Cardinality function simply equals to the number of non-zero components of its
vector argument. More formally, for z = (z1, ..., z,)T € R™

card(z) = z I(z;),
3=

where [is an indicator function defined as:

otherwise.

1(;):{ (1) - (1.31)

This section presents a problem formulated in terms of cardinality function. This new problem is equivalent to the
initial formulation (3.32)-(3.35) that can be written as
Problem (I):

min rx}atx{a.'(l = Zie) + bio(t — vie)}

n

st Yz <mvt=1,...,T, (1.32)
=1
0 S Yie — Yie-1 < tIiy;, Vil= 1,. oy Vit = 1,.. .,T, (133)
t:c,-‘,Sy,-,,St, V‘i=l,...,7l, Vt=1,‘..,T, . (]34)
yio=0,Vi=1,...,n, (1.35)
zis €{0,1}, Vi=1,...,n, ¥Vt =1,...,T, (1.36)
vt €RVi=1,...,n,Vt=0,...T (1.37)

The new problem can be formulated as:

Problem (II):

min xr:;z:.x{a{(l = Zip) + bie(t = yie)}

.t card(Z;) <m, Vt=1,...,T, (1.38)
0<yit—¥it-1<txie, Vi=1,...,n, VE=1,...,T, (1.39)
yie <L Vi=1,...,n, Vi=1,...,T, (1.40)
Yio=0,Vi=1,...,n, (141)
O<ae <], Vi=l, ..oy W= 1,,,,,T, (1.42)
wreRVi=1,...,n VB=0,...,T (1.43)

where ¢ = (Z1,¢, ..., Zn,e) -
The following theorem provides the relation between the two problems

Theorem 1. The set of optimal solutions of problem (1) belongs 1o the set of optimal solutions of problem (II). More-
over, if a point (x'!,y'!) is an optimal solution for (II) then the optimal solution of (I) (z',y") can be constructed
as

II
Tie = rl'i.z -

I
Yie = max{rai, }.

In order to prove the theorem we will use an auxiliary formulation.
Problem (IIT):

min m_:a!.x{a,'(l —Zig) + bt — yu)}
L]

s.t. card(z;) <m, Vt=1,...,T,
O0< ¢ie—VYit—1 Sz, Vi=1,...,n, Vt=1,...,T,
me<t, Vi=1l,...,n, ¥t=1,...,T,
Y50 =0, Vi=1,...,m,
0<zie<l,Vi=1,...nVt=1,..,T,
Yio € RN =1,....n Y=0,...,T.

Denote by 2(7), 2U7) and z(/77) the optimal objective values of problems (I)-(II) consequently.

Lemma 1. For every optimal solution of (lll) there exists a solution that will be both feasible and optimal in (1) and
(1Il) (Le. formulations (1) and (11l) are equivalent in this sense).

Proof. Equations (1.33)-(1.34) enforce that
Yirx = ’Eg{rrl,f}'

If there exists an optimal solution for (IIT) such that z; ; = 1 but y,; < t for some ¢,¢ (i.e. it is not feasible in
(D)) then you can build a new solution that has the same values of z}, = z;, Vi,t and y}, = max,<,{7z;}. This
solution will be feasible for both formulations (T) and (III).

Moreover, Vi, t y;: <= Yo i.e. the objective value will not increase and, therefore, this solution will be also
optimal for (ITT). Obviously this solution will be feasible and optimal for formulation () (since z{/71) < z(D),

Thus, for every optimal solution of (IIT) there exists a solution that will be both feasible and optimal in (I) and (III)
that means that these two formulations are equivalent. O O

Proof of Theorem 1. Let us consider some optimal solution of (I) z¥,, ?, and build a new solution iy =
I{z}, > 0}; y;, = ¥{,. This solution will still be feasible and optimal for (II) since it will not increase the objective
value.

Obviously, this solution will be feasible and optimal for (IIT) U < U1,

According to Lemma 1 for every optimal solution of (III) there exists a solution z}} = z7,,y!} = max,<. {77}, }
that will be both feasible and optimal for (I) and (III).

This solution will be integer and feasible for (II). Since V ¢, ¢ y;, < y;} then the objective value will not increase
and, therefore, this solution will also be optimal for (II).

Thus, there always exists the optimal integer solution for (IT) that will be also optimal for (I) =

In order to prevent the solution of (IT) from being non-integral, we add a penalty to the objective of (II):

Problem (IV):

minmﬁ}x{ai(l —Zie) +bie(t ~yi)}+ A (m-T - Zzi.t)
it it
s.t. constraints (1.38)-(1.43),
where A > 0.
Corollary 1. Problems (1) and (IV) have the same set of optimal values of {z:.}.

Similar theorems can be proven for the other formulations, namely percentile deterministic and stochastic setups.
For deterministic case problem (Ia), which is equivalent to (2.25) is related to reformulated in terms of cardinality

problem (Ila):
Problem (Ia):
min CVaRq{a;(1 — zi) + b; ¢ (t — yie)}
s.t. constraints (1.32)-(1.37).
Problem (1Ia):

min CVaR,{ai(1 — i) + bie(t — vie)}
s.t. constraints (1.38)-(1.43).

Theorem 2. The set of optimal solutions of problem (la) belongs to the set of optimal solutions of problem (Ila). More-

over if a point (z',y!) is an optimal solution for (Ila) then the optimal solution of (la) (z',y") can be constructed
as
xl{l = rzr!,{)
I _ I
Vi = max{rai}.
For the stochastic case problem (Ib), which is equivalent to (2.27) is related to the reformulated in terms of cardi-
nality problem (ITb):
Problem (Ib):
min CVaRa{a](1 — zi¢) + b, (t — vi,e)}
s.t. constraints (1.32)-(1.37).
Problem (IIb):

min CV&RQ{G:(I C Zilg) + b:t(t - yl.t)}
s.t. constraints (1.38)-(1.43).

Theorem 3. The set of optimal solutions of problem (Ib) belongs to the set of optimal solutions of problem (IIb). More-
over if a point (z'!,y'?) is an optimal solution for (IIb) then the optimal solution of (Ib) (z’,y") can be constructed
as

2 o Fud?
Lie = [-’Ei,:)

yil,t - Tg‘f{"'z{.r}-

1.6 Sensor Scheduling in Network-based Settings

Figure 1.1: Example of a possible network. Two nodes are connected by an arc if a sensor can move from one node to
another in consequent time periods.

First, let us discuss a special case of one sensor (m = 1) to give an idea of this modeling approach. In case when
surveillance requires sensors to physically move from one site to another their transition abilities are limited with
distance or other constraint (for example a mountain can be a natural obstacle for UAV to move between sites). In this
case each site can be modeled as a node of a network G = (V, E). Whenever there is no arc between two nodes 7 and
7 we add the inequality

Zit + Zje+1 S 1, (1.44)

that prohibits the infeasible move ¢ — j in consequent time periods ¢ and ¢ + 1. Formulations (3.32)-(3.35), (2.25)
and (2.27) can be slightly modified to obtain corresponding formulations for one sensor (m = 1). If we demand the
sensor to start and come back to a depot located at the certain site we can optionally set the initial (2 € {1,...,n}) and
final (ir € {1, ...,n}) locations of the sensor.

Thus for the special case when m = 1 problem (3.32)-(3.35) can be formulated on the network:

min m%x{ai(l — zie) + bie(t —yie)} (1.45)

s.t. constraints (3.9)-(3.34), (m = 1),

Zi¢ + Tjee1 < 1 whenever (i,5) € E,Vt=1,...T,4,j=1,...,n (1.46)

Zip,1 = 1, where ig € {1,...,n} is the initial location of the sensor (1.47)

Zip = 1, where iz € {1,...,n} is the final location of the sensor (1.48)
10

In this formulation constraints (1.46) prohibit infeasible moves between not connected nodes. (1.47) and (1.48) set
initial and final destination for the sensor. The other formulations, namely deterministic (2.25) and stochastic (2.27),
can be easily adapted for network case (m = 1) in the same way by adding network constraints (1.46)-(1.48) to the
existing sets of constraints.

1_?.-3 ” "

1@ @:

Figure 1.2: Counterexample (m = 2): two sensors cannot perform simultaneous feasible move due to the constraint
Ty1+za2 <1

This approach, however, may not be easily extended on cases of two or more sensors. If we simply add (1.46)-
(1.48) to existing non-network formulations we can arrive at the situation which prevents feasible moves when two or
more sensors are involved. Figure 1.2 provides a counterexample. Let two sensors at time moment ¢ = 1 are located
at nodes 1 and 3. Though they could move to nodes 2 and 4 respectively at the next time point ¢ = 2 the constraint
Zy,; + z2,4 < 1 would prohibit this move. To avoid such a situation we need to add one more index for decision
variable z:

1, sensor k is surveiling site 7 at time ¢;
Tipk = { o CE ¢ (1.49)
] erwise.
We can ensure that every sensor is assigned to a site at every time period T with the constraint:
n
Y zik=1,Vk=1,..,mvt=1,.,T (1.50)
i=1
Let us introduce z; ¢ indicating whether site 7 is observed at time ¢, namely
s 1, if any sensor is surveiling site ¢ at time ¢; (1.51)
“t 71 0, otherwise. :
Variables z; ; and z;,¢ & can be related with the constraint
n
2 < zl'i.t,k Smeziy, (1.52)

i=1

which states that site ¢ is being observed at time ¢t (z;, = 1) if and only if at least one sensor is present at site 1

n
iy Titk > 0).
The loss function is written as

L(z,y,i,t) = af(1 — 2i,e) + b o (t — pu,e). (1.53)

11

If we want to minimize maximum loss then using the formulated above constraints and based on the problem formu-
lated for non-network setup we can reformulate the deterministic maximum loss minimization problem (3.32)-(3.35)
on network as follows:

min n}fa‘x{a,-(l —2zie) +big(t —yie)} (1.549)
n

st Y k=1L Vk=1,...mVvt=1,..T, (1.55)
i=1
Ze <Y Tigk<mozy, Vi=1,...,nVt=1,.T (1.56)

k=1

0<yit —Vie—1 Stzip, Vi=1,...,n,¥Vt=1,...,T, (1.57)
tzie Sy <t Vi=1,...,n, Vt=1,...,T, (1.58)
wo=0,VE=1,...,m, (1.59
ZTiek + Tje41 .k <1,
whenever (i,7) € E\Vt=1,...T,4,5=1,...,n, k=1,...,m (1.60)
Tig 1k = 1,
where ig x € {1,...,n} is the initial location of sensor k (1.61)
Lipn, Tk = 1,
where it € {1,...,n} is the final location of sensor k, (1.62)
ZTiek € {0,1}, Vi=1,...,n, ¥t =1,...,T,Vk=1,...,m, (1.63)
ye€ERVIi=1,...,n,Vt=0,...,T, (1.64)
%€ {0,1},Vi=1,...,n, Vt=1,... T (1.65)

Formulations for CVaR stochastic and deterministic cases as well as the lincarized formulation can be obtained
the same way as in non network case.

1.7 Computational Experiments

The computational experiments were performed on the test problems using two commercial optimization software
solvers: ILOG CPLEX [2] and AOrDA PSG [1]. The performance of the solvers is compared in tables 1.1-1.3 (each
table corresponds to one of the three problem formulations). It can be observed that CPLEX finds exact solutions, how-
ever, it takes too much time for large instances, especially for the problems under uncertainty. PSG allows sacrificing
quality for time, i.e. the obtained solutions for cardinality formulations are not globally optimal, but the computational
time is negligibly small. The numerical experiments shows that the local solutions differ from global in 10-20 % for
most cases.

Table 1.4 compares performance of CPLEX and PSG in finding approximate solutions for stochastic case (n = 12
sites and T = 10 time periods). We stopped CPLEX when it found the objective as small as the PSG objective
value (and recorded the computation time). It appears that PSG outperforms CPLEX for problems with large number
of stochastic scenarios while they have similar performance for small size problems. Therefore, based on the size
of the problem and user requirements, one can determine the appropriate equivalent problem formulation and the
optimization solver that can be used to find an optimal or a near-optimal solution.

We performed experiments on network formulation using the network provided on figure 1.1, Table 1.5 provides
CPU times in seconds for obtaining exact solution for the deterministic network case (1.54)-(1.65) in ILOG CPLEX.
Computation was performed for number of sites from 6 to 12 and 10 discrete time steps.

n=8 n=9 n=10 n=11 n=12
m=1 cplex value 320 330 330 332 332
psg value 375 376 376 370 375
% 14.7% 12.2% 122% 10.3% 11.5%
time: cplex/psg | 31.22.2 | 79.1724 | 1349725 | 167.7/2.7 | 198.9/2.7
m=2 cplex value 240 245 250 260 265
psg value 305 310 304 310 310
% 21.3% 21% 17.8% 16.1% 14.5%
time: cplex/psg | 38.42.2 | 142.7/2.3 | 928/2.5 | 2042.7/2.6 | 5898.9/2.8
m=3 cplex value 206 210 215 217 224
psg value 233 250 265 256 275
% 11.6% 16% 18.9% 15.2% 18.5%
time: cplex/psg | 30.7/2.3 | 39.3/24 | 81.1/2.5 | 1003.6/2.7 | 9317.9/2.9
m=4 cplex value 190 194 196 200 200
psg value 215 217 242 237 242
%0 11.6% 10.6% 19% 15.6% 17.4%
time: cplex/psg | 6/2.3 76.512.5 | 64.6/2.6 | 231.4/2.7 | 589.3/2.8
m= cplex value 183 185 188 190 190
psg value 196 202 215 217 220
% 6.6% 8.4% 12.6% 12.4% 13.6%
time: cplex/psg | 1.4/2.3 2 2725 38/2.6 519127 68/3
m=6 cplex value 165 170 170 183 185
psg value 185 185 197 195 200
% 10.8% 8.1% 13.7% 6.2% 7.5%
time: cplex/psg | 1.1/2.4 J5S/285 2.9/2.7 29.12.8 123/3
m= cplex value 155 160 163 168 170
psg value 160 171 185 190 188
%o 3.1% 6.4% 11.9% 11.6% 9.6%
time: cplex/psg | 0.3/2.3 0.972.5 1.8/2.8 113.229 25.273

Table 1.1: Performance results for deterministic model (3.32)-(3.35). n - number of sites; m - number of sensors. The

number of discrete time steps is fixed: T = 10.

13

n=8 n=9 n=10 n=11 =12
m=] cplex value 307.1 3184 317 318.7 318
psg Value 360.1 357.9 356.8 357.6 353.7
% 14.7% 11% 11.2% 109% | 10.1%
time: cplex/psg | 45.5/2.8 99.3/3 74/2.9 62.8/3.1 | 130.9/3
m=2 cplex value 231.9 241.1 245.2 - -
psg value 297 299 297.5 293.5 291.6
% 21.9% 19.4% 17.6% - -
time: cplex/psg | 1072.8/3 | 10924.6/3.1 | 16212.1/3.1 -/3.2 -/3.2
m=3 cplex value 198.6 205.3 - - -
psg value 223.6 237.3 245 255.4 260.9
% 11.2% 13.5% - - -
time: cplex/psg | 1910.7/2.8 | 45540.4/2.8 -12.9 -/3 -/3.4
m=4 cplex value 187.9 190.4 - - -
psg value 2114 207.2 230 2182 221.8
% 11.1% 8.1% - - -
time: cplex/psg | 7989.2/3.2 | 23852.7/3 -/3.3 -13.4 -/3.2
m=5 cplex value 1733 179.3 - - -
psg value 193.4 192.6 197.8 207.7 210
%o 10.4% 6.9% - - -
time: cplex/psg | 7672.6/2.9 | 25593/2.8 -/3.3 -/3.3 -/3.7
m=l cplex value 161.1 165.3 - - -
psg value 179.5 182.8 185.2 195.2 190.9
% 10.2% 9.5% - - -
time: cplex/psg | 2250.3/2.8 | 36618.1/3.3 -/3.4 -12.9 -/34
m= cplex value 1424 - - - -
psg value 150.9 166.6 173.4 179 183.8
% 5.6% - - - -
time: cplex/psg | 6640.9/2.9 | 65122.8/3.3 -3 -/3 -/3.7

Table 1.2: Performance results for CVaR type deterministic model (2.25). » - number of sites; mn - number of sensors.

The number of discrete time steps is fixed: T = 10. CVaR confidence level a = 0.9.

n=8 n=9 n=10 | n=11 n=12

m=1 cplex value - - - - -
psg value 394 | 398.7 | 390.1 | 395.6 | 394.9
% - = “ 3 .
time: cplex/psg | -/25.9 | -/28 | -/358 | -/402 | -/47.7
m=! cplex value - - = = A
psg value 2979 | 304 | 321.7 | 3244 | 318.6
% - = = =]
time: cplex/psg | -/32.7 | -/38.6 | -/51.4 | -/67.8 -176
m= cplex value - - - g 5
psg value 260.4 | 260.1 | 262.4 | 264.4 269
%

time: cplex/psg | -/38.4 | -/45.4 | -/563 | -11.4 | -/84.6
m=4 cplex value - - - - -
psg value 2294 { 231.6 | 2429 | 2363 | 250.8

% . R - - -

time: cplex/psg | -/47.2 | -/60.2 | -/72.5 | -/84.6 | -/98.4
m= cplex value - - - | R
psg value 209.1 | 2124 | 220.8 | 224.6 | 230.1

% - - R - -

time: cplex/psg | -/56.1 | -/72.3 | -/83.7 | -/96.6 | -/119.5
m= cplex value - - - - -
psg value 193.2 | 199.9 | 209.2 | 2103 218.7

% o = = - .

time: cplex/psg | -/51.8 | -/67.3 | -/86.1 | -/112.9 | -/121.4
m=7 cplex value - - - - -
psg value 1644 | 1863 | 187.6 | 198.6 | 2044

% - - - : =

time: cplex/psg | -/45 | -/66.5 | -/89.8 | -/111.3 | -/133.5

Table 1.3: Performance results for CVaR type stochastic model (2.27). n - number of sites; T - number of sensors.
The number of discrete time steps is fixed: T = 10, number of scenarios S = 100. CVaR confidence level & = 0.9.

PSG Value | PSG Time (sec) | CPLEX Time (sec)
m=] 389.2 103 82
m=2 318.532 110 185
m=3 276382 133 230
m=4 246.648 136 247
m=5 229.234 208 210
m=6 218.166 158 330
m=7 204.1 201 260
m=8 193.199 191 220
m=9 180.976 155 250
m=10 164.746 191 280
m=11 146.607 180 200

Table 1.4: Comparing PSG and CPLEX performance for obtaining approximate solution of CVaR type stochastic
problem (2.27)(n = 12 sites and T = 10 time periods).

n=6 | n=7 ne= n=9 n=10 n=11 n=12
m=1 [031]| 0.77 | 0.76 | 2.16 0.90 0.50 1.21
m=2 | 396 | 3.96 | 8.00 | 15.85 | 238.42 | 17493 | 315.76
m=3 | 0.93 | 21.48 | 22.20 | 9.17 | 340.86 | 350.85 | 2037.73
m=4 | 0.20 | 0.31 0.74 | 3426 | 14.45 | 926.64 | 436.80
m=5 [032]| 1.79 | 2.62 | 31.40 | 91.38 | 62.20 | 3359.69

m=6 058 | 1.79 | 436 | 69.76 | 19.05 | 238.59
m=7 212 | 408 | 22.87 | 19.57 47.20
m=8 0.79 6.29 7.14 38.69
m=9 1.17 319 6.81
m=10 0.79 2,15
m=11 1.94

Table 1.5: ILOG CPLEX CPU time (sec) for network deterministic model (1.54)-(1.65). n - number of sites; m -
number of sensors. The number of discrete time steps is T = 10.

1.8 Conclusion

The paper develops a mathematical programming techniques for solving a class of multi-sensor scheduling problems.
Three robust optimization problems have been formulated: two for deterministic and one for stochastic case. The
obtained 0-1 problems have also been reformulated in terms of cardinality functions.

Numerical experiments are conducted using two commercial solvers ILOG CPLEX and AOrDa PSG. CPLEX
gives exact solutions for small problems. Both solvers give an approximate solution in reasonable time for large prob-
lems. However, for large stochastic problems with many scenarios, solving the reformulated problems with cardinality
constraints using PSG provided good quality approximate solutions faster than CPLEX. Therefore, this approach can
be beneficial in the settings of time-critical systems where computational speed of finding good approximate solutions
is the crucial factor.

16

Chapte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>