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Summary 

Three chapters present methods for handling various optimization problems related to sensors networks. The first 
chapter investigates mathematical programming techniques for solving a class of multi-sensor scheduling problems. 
We conducted several case studies and investigated the performance of robust optimization solvers for considered 0-1 
linear programming problems. The second chapter presents a survey describing recent developments in the area of 
mathematical programming techniques for various types of sensor network applications. The corresponding mathe- 
matical programming formulations and solving methods are discussed. The third chapter considers several classes of 
problems that deal with optimizing the performance of dynamic sensor networks used for area surveillance under un- 
certainty with robust radio connectivity constraints. Various formulations of optimization problems and computational 
results are presented. 



Introduction 

The first chapter presents mathematical programming techniques for solving a class of multi-sensor scheduling prob- 
lems. Robust optimization problems are formulated for both deterministic and stochastic cases using linear 0-1 pro- 
gramming techniques. Equivalent formulations are developed in terms of cardinality constraints. We conducted nu- 
merical case studies and analyzed the performance of optimization solvers for the considered problem instances. 

The second chapter presents a survey describing recent developments in the area of mathematical programming 
techniques for various types of sensor network applications. We discussed mathematical programming formulations 
associated with these applications, as well as methods for solving the corresponding problems. We also addressed 
some of the challenges arising in this area, including both conceptual and computational aspects. 

The third chapter considers several classes of problems that deal with optimizing the performance of dynamic sen- 
sor networks used lor area surveillance, in particular, in the presence of uncertainly. The overall efficiency of a sensor 
network is addressed by minimizing the overall information losses, as well as ensuring that all nodes in a network 
form a robust connectivity pattern at every time moment (sensors communicate and exchange information in uncertain 
and adverse environments). The considered problems are solved using mathematical programming techniques that in- 
corporate quantitative risk measures, which allow one to minimize or bound the losses associated with potential risks 
The issue of robust connectivity is addressed by imposing explicit restrictions on the shortest path length between all 
pairs of sensors and on the number of connections for each sensor (i.e., node degrees) in a network. Formulations of 
linear 0-1 optimization problems and the corresponding computational results are presented. 



Chapter 1 

Robust Multi-Sensor Scheduling for 
Multi-Site Surveillance problem 

1.1    Introduction 

The task of area surveillance is important in a variety of applications in both military and civilian settings. One of the 
main challenges that one needs to address in these problems is the fact that the number of locations (sites) that need 
to be visited to gather potentially valuable information is often much larger than the number of available surveillance 
devices (sensors) that are used for collecting information. Under these conditions, one needs to develop efficient 
schedules for all the available sensors (that can be installed, for instance, on Unmanned Air Vehicles) such that the 
amount of valuable information collected by the sensors is maximized. One can formulate this problem in terms of 
minimizing the information losses associated with the fact that some locations are not under surveillance at certain 
time moments. In these settings, the information losses ean be quantified as ho\h fixed and variable losses, where 
fixed losses would occur when a given site is simply not under surveillance at some time moment, while variable 
losses would depend on how long a site has not been previously visited by a sensor. In particular, taking into account 
variable losses of information is critical in the case of strategically important sites that need to be monitored as closely 
as possible. 

In addition, the parameters that quantify fixed and variable information losses are in many cases uncertain by 
nature. In previous related works in this area, the uncertainties in these parameters were not explicitly taken into 
account (see, e.g., [46]); however, the development of efficient techniques to minimize or restrict the information losses 
under uncertainty is the task of crucial importance. This paper proposes mathematical programming formulations that 
allow quantifying and restricting the risks of worst-case losses associated with uncertain parameters. 

The mathematical programming formulations are first developed for the deterministic case, and the natural exten- 
sions of these formulations to the stochastic case (with uncertain information loss parameters) is made by utilizing 
quantitative risk measures allowing to control the conservativeness of the optimal strategy. In particular, the statis- 
tical concept referred to as Conditional Value-at-Risk (CVaR) is used in the proposed problem formulations under 
uncertainty. Using these techniques allows one to efficiently incorporate uncertainties in the considered optimization 
problems, as well as provides the means of balancing between the optimality and the robustness of the solutions. 
Equivalent reformulations and extensions of the considered problems are also presented. 

We have also conducted numerical case studies to test the performance of the suggested algorithms. Since the 
considered problems are NP-hard and involve uncertain parameters, near-optimal solutions were found for large prob- 
lem instances It turned out that solving cardinality-based reformulations of the considered problems provided good 
quality solutions in a reasonable time. 



1.2    Deterministic approach 

This section introduces a general mathematical framework for multi-sensor scheduling problems. Initially, we utilize 
the concepts introduced in (46] that was developed for a deterministic case of a single-sensor scheduling problem. 
We then generalize and extend these formulations to the more realistic cases of multi-sensor scheduling problems, 
including the setups in uncertain environments. Assume that there are m sensors and u sites that need to be observed 
at every discrete time moment t = 1, T. We assume that a sensor can observe only one site at one point of time 
and can immediately switch to another site at the next time moment. Since m is usually significantly smaller than 
n, we have breaches m surveillance that can cause losses of potentially valuable information. Our goal is to build a 
strategy that optimizes a potential loss that is associated with not observing certain sites at some time moments. 

We then introduce binary decision variables 

f  1.    if i-th site is observed at time t, 
Xlt~ \ 0,    otherwise, (L1) 

and integer variables //, . that denote the last time site i was visited as of the end of time f. i = 1,... .71, r = 
1.... , T, m<n. 

We associate a fixed penalty a, with each site z and a variable penalty 6, of information loss. If a sensor is away 
from site i at time point t. the fixed penalty at is incurred. Moreover, the variable penalty b, is proportional to the time 
interval when the site is not observed. We assume that the variable penalty rate can be dynamic; therefore, the values 
of bt may be different at each time interval. Thus the loss at time t associated with site i is 

ai{\-xl<t) + biAt-yi.t). (1.2) 

In the considered setup, we want to minimize the maximum penalty over all time points t and sites i 

max{a<(l - a?M) + bitt{t - yM)}. (1.3) 

Furthermore, x,t and y1tt are related via the following set of constraints. No more than m sensors are used at each 
time point: therefore 

n 

X^s..t <m, V* = 1.....T. (1.4) 
1=1 

Time yit is equal to the time when the site i was last visited by a sensor by time t. This condition is set by the 
following constraints: 

0 < yu - yM-i < teMl Vz = 1,... ,n, Vt = 1,... ,T, (1.5) 

txijt <yu <<; Vi = l,....n, Vf! = l,...,r, (1.6) 

Note that the above constraints automatically ensure thai the feasible values of ylt are integer. It is easy to verify by 
considering possible values of binary variables xtt- Therefore, in the following mathematical programming problems, 
we can set the variables yl%t 6 R, and the inclusion of these constraints will make these variables integer in any 
feasible solution. This enables us to decrease the number of integer (binary) variables in the considered problems. 

Further, using the notation C = maXt)t{Oi(l - Xitt) +bttt(t - y,.t)} and standard linearization techniques, we can 
formulate the multi-sensor scheduling optimization problem in the deterministic setup as the following mixed integer 



linear program: 

minC (1.7) 

s.t.       C£«(l-SM) + M'-*f)i Vi = 1 "■ Vf = 1 7. (1.8) 
n 

$>»,*< m, vt = i,...,r, (i.9) 

0 < |fe,, - y,.t-i < teM. Vi = 1:... ,n, Vt = 1,... ,T, (1.10) 

txx<t < yitt < t, Vi = 1,..., n, V< = 1,... ,T, (1.11) 

!fc.o = 0, Vt=l,...,n, (1.12) 

Xi.t€ {0,1}, Vi = 1,... ,n, Vf = 1 T, U.13) 

y,.t<EK,Vi = l,...,n, Vf = 0....,7\ (1.14) 

1.3    Deterministic setup with percentiie objective 

For every site i and every time moment t. we can calculate the penalty associated with the last time a sensor visited 
this site (see formula (3.2)). Let us pick (1 - a) % of worst cases among these n x T penalty values. Then instead 
of minimizing the maximum loss, we can minimize the the average loss taken over these (1 - ct) % percent of worst- 
case penalty values. Despite the fact that this formulation is deterministic, we will demonstrate that it is equivalent 
to computing (1 - a) Conditional Value-at Risk (CVaR) for a set of random outcomes having equal probabilities 

To facilitate the further discussion, let us give the definition of Conditional Value-at-Risk (CVaR) [43, 45]. CVaR 
is closely related to a well-known quantitative risk measure referred to as Valuc-at-Risk (VaR). By definition, with 
respect to a specified probability level (1 - a) (in many applications the value of (1 — a) is set rather high, e.g. 95%), 
the a-VaR is the lowest amount C such that with probability (1 - a), the loss will not exceed £, whereas for continuous 
distributions the a-CVaR is the conditional expectation of losses above that amount <. As it can be seen, CVaR is a 
more conservative risk measure than VaR, which means that minimizing or restricting CVaR in optimization problems 
provides more robust solutions with respect to the risk of high losses. 

Formally, Q-CVaR can be expressed as 

CVaRa(x) = (1-Q)-
1
 / L(x,y)p(y)<iy. (1.15) 

where L(x, y) is a random variable driven by decision vector x and having a distribution in R induced by that of the 
vector of uncertain parameters y. 

CVaR is defined in a similar way for discrete or mixed distributions. The reader can find the formal definition of 
CVaR for general case in [43, 45]. 

It has been shown by Rockafellar and Uryasev [42, 28] that minimizing <£a(x) is equivalent to minimizing the 
function 

FQ(x,0 = C + U-a)-1 /       [L(x,y)-C]+P(y)ciy, (1.16) 
Jy€FVn 

where [t]+ -t when t > 0 but [t]+ = 0 when t < 0, and the variable ( corresponds to the VaR value, as introduced 
above. 

Thus we can generalize our formulation and write the objective function for our problem as 

minCVaRo[L(z,y,M))], (1.17) 
i.y 

where 

L{x,y,i,t) = Oi(l - xift) + bi,t(t - yu) (1.18) 



The particular extreme case when Q-»1 corresponds to minimizing maximum penalty over all t-s and is. This 
case corresponds to the problem (3.32)-(3.35) formulated in section 3.2. The other extreme case a = 0 gives average 
taken over all time points and sites (if we assume uniform distribution). In the latter case we care about average loss 
and there is a high chance of not paying enough attention to particular bad outcomes. 

Generally, a indicates the level of conservatism the decision maker is willing to accept. The closer a approaches 
to 1, the narrower the range of worst cases becomes in the corresponding optimization problem. 

Using the general approach outlined in formulas (3.26)-(3.27), our problem is now formulated as follows: 

C + 7^-52*M Ml " **) + M< " IM) " C]+ (1-19) x.y.C 1—Ct*rf 

s.t. constraints (3.9)-(3.34), 

CG JR. (1.20) 

where the values of pi%t can all be set equal to 1/nT as indicated in the beginning of this section. 
Furthermore, this problem formulation can be easily transformed to a linear mixed integer problem by introducing 

a set of artificial variables *fy that will lead to the following problem with a set of 7i x T additional constraints. 

minC+ *      ,£>.* (1.21) 

s.t. a,(l - Xij) + bitt{t - yi<t) -17 < yM (1.22) 

WM>0 (1.23) 
constraints (3.9)-(3.34), 

(eR, (1.24) 

1.4   Problem setup under uncertainty 

To extend the proposed problem formulations to a more realistic setup, where the values of the penalty parameters are 
uncertain, we propose a new CVaR-based formulation of multi-sensor scheduling problems. 

In this setup, assume that the fixed and variable penally values a* and bs t are random variables with given joint 
distributions.  Further, we can consider a set of penalty values (of, 6;s J, 6- = 1 S corresponding to 5 discrete 
samples (or scenarios) as an approximation of the joint distribution. Then for each % = 1,.... S the loss function can 
be written as: 

L(x,y,iA,s) = of(1 - «M) + blt(t - yut). (1.25) 

It is appropriate to consider (1 - a) % of worst-case penalties over all indices t, t, s. We can then chose a measure 
of loss as an average over these (1 - a) % worst cases and minimize the average. Namely we minimize 

CVaRa[L(x,y,i,M)], (1.26) 

Using the approach described in the previous section, we obtain the following robust optimization problem that 
explicitly takes into account the uncertain penalty parameters: 

5)5C + nTSn-a) £ IWP " *«) + 1& - «M» " <]+ <»•"> 
' i,t.s 

S.t. 

constraints (3.9M3.34), (2.26). 

As mentioned above, this formulation can be linearized by introducing extra variables and constraints, and the 
linear mixed integer formulation is provided below. 



P^+wr<g/1    „A]C*>M (1-28) 

s.t. 

of(l - Xtjt) + blt(t - yi.t) - C < y,t.s (1.29) 

S/u,* > 0 (1.30) 
constraints (3.9)-(3.34), (2.26). 

1.5    Equivalent formulations of the considered problems using cardinality 
constraints 

In this section, we show that the developed linear mixed integer programming problems can be equivalently reformu- 
lated as problems with cardinality constraints. As it will be discussed later, solving these equivalent reformulations 
can provide better computational speed and performance in rinding near-optimal solutions of the considered problems. 
It should be noted that due to the high dimensionality and complexity of these problems, it is often impossible to find 
exact optimal solutions in a reasonable time; however, it is often useful in practice to utilize heuristic techniques that 
can find near-optimal solutions fast. 

There exist heuristics [18] as well as software packages [1] which can solve optimization problems formulated 
in terms of cardinality constraints. Cardinality function simply equals to the number of non-zero components of its 
vector argument. More formally, for x = (xj, ...,xn)T e Rn 

n 
card(x) = ^/(x,), 

i=\ 

where / is an indicator function defined as: 

This section presents a problem formulated in terms of cardinality function. This new problem is equivalent to the 
initial formulation (3.32)-(3.35) that can be written as 

Problem (I) 

minmax{ai(l - xi%t) + but{t - y^)} 

n 

s.1       £iy<-m, Vt«l,...,T, (1.32) 
t=i 

0 < ViA - JM-i < **M> Vz = 1,..., n, Vt = 1,..., T, (1.33) 
txiit<yu <t, Vi = l,...,n, Vt = l,...,T,     . (1.34) 

^,0-0, Vl=l,...,n, (1.35) 
xi4 € {0,1}, Vt = 1,..., n, Vt = 1,..., T. (1.36) 

yM e R, Vi = 1,... ,n? Vt = 0,..., T. (1.37) 

The new problem can be formulated as: 



Problem (II): 

minmax{a,(l - xt,t) 4- bt,t(t - yiit)} 

s.t.       caxd(xt) <m, Vt = 1,...,T, 

0< Vi.t -yt.t-i < tXijt Vt = l,...?n, Vt = 1,....7\ 

V.\t<i, Vi=l,...,n, Vt = l,...,7\ 

|ft,C = 0, Vz = l,...,n, 

0<XM < 1, Vi= l,...,n, Vt = 1. 

yü<EZR,Vi = l,....n, V« = 0,..J. 

where xt ■ (xI-f, ...,x;v,t)T- 
The following theorem provides the relation between the two problems 

(1.38) 

(1.39) 

(1.40) 

(1.41) 

(1.42) 

(1.43) 

Theorem 1. The set of optimal solutions of problem (I) belongs to the set of optimal solutions of problem (II). More- 
over, if a point (x/;,y7/) is an optimal solution for (II) then the optimal solution of (I) (x7,y;) can be constructed 
as 

ylt =max{rx1
/
T}. 

In order to prove the theorem we will use an auxiliary formulation. 
Problem (III): 

mmmax{oi(l - xi%t) 4- 6itf (t - yitt)} 
M 

s.t.        card(xt) < m, Vt= lt...,T, 

0 < yM - yu-i <txu, Vi = 1, rt, V*= 1,....7. 

V*,t < t, Vt= l,...,n, Vt= l....,T, 

j/,.0 = 0, Vt = l,...,n, 

0<xiit<l, Vi = l,...,n, Vr = l,...,T. 

yiit€ ft,Vt=l,...,n, Vt = 0,...,T. 

Denote by fW,*f) and z(/7/) the optimal objective values of problems (I)-(m) consequently. 

Lemma 1. For ^v^ry optimal solution of (III) there exists a solution that will be both feasible and optimal in (I) and 
(III) (i.e. formulations (I) and (III) are equivalent in this sense). 

Proof. Equations (1 33)-( 1.34) enforce that 
j/i.t = max{TxVT}. 

T<t 

If there- exists an optimal solution for (III) such that xlt = 1 but y%tt < t for some i,t (i.e. it is not feasible in 
(I)) then you can build a new solution that has the same values of x*t = xiit Vi,£ and y*t = maxr^jlri,^}. This 
solution will be feasible for both formulations (T) and (III). 

Moreover. Vi. t yit <= y't, i.e. the objective value will not increase and, therefore, this solution will be also 

optimal for (III). Obviously this solution will be feasible and optimal for formulation (I) (since z(///) < 2(/>). 
Thus, for every optimal solution of (III) there exists a solution that will be both feasible and optimal in (I) and (III) 

that means that these two formulations are equivalent. D D 



Proof of Theorem 1. Let us consider some optimal solution of (II) x°t, y°t and build a new solution x*t = 
I{x*-t > 0}; yjt = y°t. This solution will still be feasible and optimal for (II) since it will not increase the objective 
value. 

Obviously, this solution will be feasible and optimal for (IH) (2(//) < 2(///)). 
According to Lemma 1 for every optimal solution of (III) there exists a solution x**t = x* t, y** = maxT<t{ri'T} 

that will be both feasible and optimal for (I) and (ITT). 
This solution will be integer and feasible for (II). Since V i, t y*t < y*J then the objective value will not increase 

and. therefore, this solution will also be optimal for (H). 
Thus, there always exists the optimal integer solution for (II) that will be also optimal for (I) D 
In order to prevent the solution of (II) from being non-integral, we add a penalty to the objective of (II): 
Problem (IV): 

s.t. 

nnnmaxfa^l - xitt) + bitt(t - yu)} + A • (m-T-^:rM) 

constraints (1.38)-( 1.43), 

i.t 

where A > 0. 

Corollary 1. Problems (I) and (IV) have the same set of optimal values of{xlt}. 

Similar theorems can be proven for the other formulations, namely percentile deterministic and stochastic setups. 
For deterministic case problem (la), which is equivalent to (2.25) is related to reformulated in terms of cardinality 
problem (Ha): 

Problem (la): 

Problem (Ila): 

minCVaRafa^l - xM) + bi%t{t - yM)} 

s.t.        constraints (1.32)-( 1.37). 

ininCVaRQ{ai(l - Xi,t) + &»,*(* - yi.t)} 

s.t. constraints (1.38)-( 1.43). 

Theorem 2. The set of optimal solutions of problem (la) belongs to the set of optimal solutions of problem (Ha). More- 
over if a point (x11, yu) is an optimal solution for (Ha) then the optimal solution of (la) (x1, y1) can be constructed 
as 

Xx.t —   \Xi,t I) 

yu = max{Ti[T}. 

For the stochastic case problem (lb), which is equivalent to (2.27) is related to the reformulated in terms of cardi- 
nality problem (ITb): 

Problem (lb): 

Problem (üb): 

minCVaR«{af (1 - xu) + b*itt{t - yM)} 

s.t. constraints (1.32)-( 1.37). 

s.t. constraints (1.38)-( 1.43). 



Theorem 3. The set of optimal solutions of problem (lb) belongs to the set of optimal solutions of problem (lib). More- 
over if a point (x11, y11) is an optimal solution for (lib) then the optimal solution of (lb) (xJ, y1) can be constructed 
us 

Xi,t * \Xi,t li 

y't = max{rxl
/
>T}. 

T<t 

1.6    Sensor Scheduling in Network-based Settings 

Figure 1.1: Example of a possible network. Two nodes are connected by an arc if a sensor can move from one node to 
another in consequent time periods. 

First, let us discuss a special case of one sensor (m = 1) to give an idea of this modeling approach. In case when 
surveillance requires sensors to physically move from one site to another their transition abilities are limited with 
distance or other constraint (for example a mountain can be a natural obstacle for UAV to move between sites). In this 
case each site can be modeled as a node of a network G = (V, E). Whenever there is no arc between two nodes i and 
j we add the inequality 

xitt + Xj.t+i < 1, (1.44) 

that prohibits the infeasible move i —» j in consequent time periods t and t + 1. Formulations (3.32)-(3.35), (2.25) 
and (2.27) can be slightly modified to obtain corresponding formulations for one sensor (m = 1). If we demand the 
sensor to start and come back to a depot located at the certain site we can optionally set the initial (i0 G {1 n}) and 
final (iy e {1, ...,n}) locations of the sensor. 

Thus for the special case when m = 1 problem (3.32)-(3.35) can be formulated on the network: 

mmmax{a,(l - Zi%t) + bijt{t - yiit)} 
i.t 

s.t. constraints (3.9)-(3.34), (m = 1), 

*«,i + Xj,t+i < 1 whenever (i,j) g E, V< = 1,... T, i, j = 1. 

£i0,i = J-i where IQ E {1,..., n} is the initial location of the sensor 

Xifj = 1, where ir G {1,... ,n} is the final location of the sensor 

(1.45) 

(1-46) 

(1.47) 

(1.48) 

10 



In this formulation constraints (1.46) prohibit infcasible moves between not connected nodes. (1.47) and (1.48) set 
initial and final destination for the sensor. The other formulations, namely deterministic (2.25) and stochastic (2.27), 
can be easily adapted for network case (m = 1) in the same way by adding network constraints (1.46)-( 1.48) to the 
ousting sets of constraints. 

V- 

Figure 1.2: Counterexample (rn = 2): two sensors cannot perform simultaneous feasible move due to the constraint 
»1,1 +*4.2 < 1 

This approach, however, may not be easily extended on cases of two or more sensors. If we simply add (1.46)- 
(1.48) to existing non-network formulations we can arrive at the situation which prevents feasible moves when two or 
more sensors are involved. Figure 1.2 provides a counterexample. Let two sensors at time moment t: = 1 are located 
at nodes 1 and 3. Though they could move to nodes 2 and 4 respectively at the next time point t = 2 the constraint 
*ltl + £2,4 < 1 would prohibit this move. To avoid such a situation we need to add one more index for decision 
variable x: 

f  1,    sensor k is surveiling site i at time t\ ,, ,rt. 
**»-\ 0.   othenvise. <149) 

We can ensure that every sensor is assigned to a site at every time period T with the constraint: 

n 

£ xuUk = 1, VAr = 1,... ,m, Vt = 1 T. (1.50) 
1=1 

Let us introduce zKt indicating whether site i is observed at lime t, namely 

.. any sensor is surveiling site i at lime /: 
*l' = i   *    otherwise. (L51) 

_ f  1,    if 
M " \ 0,    ot 

Variables zx,t and xl<t,k can be related with the constraint 

n 

ZiA <]Txt,tjt <m (1.52) 
t=i 

which states that site i is being observed at time t (zit = 1) if and only if at least one sensor is present al site i 
(2X1 **.t.* > 0). 

The loss function is written as 

L(x,y,i,t) = at(\-ztA)+ba
iA(t-yi,t). (1.53) 

11 



If we want to minimize maximum loss then using the formulated above constraints and based on the problem formu- 
lated for non-network setup we can reformulate the deterministic maximum loss minimization problem (3.32)-(3.35) 
on network as follows: 

minmax{tti(l - zi<t) + bl<t{t - ylit)} (1.54) 
M 

n 

s.t.       ]T Xi,Uk = 1, Vfc = 1,..., m, W = 1,..., T, (1.55) 
•=i 

m 

Zi,t < £**** ^ m • 2'-" Vi = 1,... ,n, V* = 1,... ,7\ (1.56) 

0 < ft« - Vi,t-i < tzitU Vi = 1,..., n, V« = 1,..    T (1.57) 

***.< <yu <i, Vi= l,...,n, V* = 1,...,T, (1.58) 

y.,o = 0, Vi = l,...,n, (1.59) 

• H.fc < 1, 

whenever (t.j) <£EM= 1... .7. *.;' = 1 ft, k = l,...,m (1.60) 

where i0,/c € {1,... ,n} is the initial location of sensor/: (161) 

. T.k = 1, 

where ir,k € {1,. •., n} is the final location of sens* (1.62) 

*..U G {0,1}, Vi = 1,..., n, Vf = L ... ,T, Vfc = 1,.... m, (1.63) 

yu€Ä,Vi=lJ...,nl Vr = 0,...,r, (1.64) 

*,., € {0,1}, Vi = 1,... ,n, V* = 1,.... T. (1.65) 

Formulations for CVaR stochastic and deterministic cases as well as the linearized formulation can be obtained 
the same way as in non network case. 

1.7    Computational Experiments 

The computational experiments were performed on the test problems using two commercial optimization software 
solvers: ILOG CPLEX [2] and AOrDA PSG [1]. The performance of the solvers is compared in tables 1.1-1.3 (each 
table corresponds to one of the three problem formulations). It can be observed that CPLEX finds exact solutions, how- 
ever, it lakes loo much lime for large instances, especially lor ihe problems under uncertainty. PSG allows sacrificing 
quality for time, i.e. the obtained solutions for cardinality formulations are not globally optimal, but the computational 
time is negligibly small. The numerical experiments shows that the local solutions differ from global in 10-20 % for 
most cases. 

Table 1.4 compares performance of CPLEX and PSG in finding approximate solutions for stochastic case (n = 12 
sites and T = 10 time periods). We stopped CPLEX when it found the objective as small as the PSG objective 
value (and recorded the computation time). It appears that PSG outperforms CPLEX for problems with large number 
of stochastic scenarios while they have similar performance for small size problems. Therefore, based on the size 
of the problem and user requirements, one can determine the appropriate equivalent problem formulation and the 
optimization solver lhai can be used lo find an optimal or a near-oplimal solution. 

We performed experiments on network formulation using the network provided on figure 1.1. Table 1.5 provides 
CPU limes in seconds for obtaining exact solution for the deterministic network case (1.54)-(1.65) in ILOG CPLEX. 
Computation was performed for number of sites from 6 to 12 and 10 discrete time steps. 

12 



n=8 n=9 n=10 n=ll n=12 
m=l cplex value 320 330 330 332 332 

psg value 375 376 376 370 375 
% 14.7% 12.2% 12.2% 10.3% 11.5% 

time: cplex/psg 31.2/2.2 79.1/2.4 134.9/2.5 167.7/2.7 198.9/2.7 
m=2 cplex value 240 245 250 260 265 

psg value 305 310 304 310 310 
% 21.3% 21% 17.8% 16.1% 14.5% 

time: cplex/psg 38.4/2.2 142.7/2.3 928/2.5 2042.7/2.6 5898.9/2.8 
m=3 cplex value 206 210 215 217 224 

psg value 233 250 265 256 275 
% 11.6% 16% 18.9% 15.2% 18.5% 

time: cplex/psg 30.7/2.3 39.3/2.4 81.1/2.5 1003.6/2.7 9317.9/2.9 
m=4 cplex value 190 194 196 200 200 

psg value 215 217 242 237 242 
% 11.6% 10.6% 19% 15.6% 17.4% 

time: cplex/psg 6/2.3 76.5/2.5 64.6/2.6 231.4/2.7 589.3/2.8 
m=5 cplex value 183 185 188 190 190 

psg value 196 202 215 217 220 
% 6.6% 8.4% 12.6% 12.4% 13.6% 

time: cplex/psg 1.4/2.3 2.2/2.5 38/2.6 51.9/2.7 68/3 
m=6 cplex value 165 170 170 183 185 

psg value 185 185 197 195 200 
% 10.8% 8.1% 13.7% 6.2% 7.5% 

time: cplex/psg 1.1/2.4 1.5/2.5 2.9/2.7 29.1/2.8 123/3 
m=7 cplex value 155 160 163 168 170 

psg value 160 171 185 190 188 
% 3.1% 6.4« 11.9% 11.6% 9.6% 

time: cplex/psg 0.3/2.3 0.9/2.5 1.8/2.8 113.2/2.9 25.2/3 

Table 1.1: Performance results for deterministic model (3.32)-(3.35). n - number of sites; m - number of sensors. The 
number of discrete time steps is fixed: T = 10. 

13 



n=8 n=9 n=10 n=ll n=12 
m=l cplex value 307.1 318.4 317 318.7 318 

psg Value 360.1 357.9 356.8 357.6 353.7 
% 14.7% 11% 11.2% 10.9% 10.1% 

time: cplex/psg 45.5/2.8 99.3/3 74/2.9 62.8/3.1 130.9/3 
m=2 cplex value 231.9 241.1 245.2 - - 

psg value 297 299 297.5 293.5 291.6 
% 21.9% 19.4% 17.6% - - 

time: cplex/psg 1072.8/3 10924.6/3.1 16212.1/3.1 -/3.2 -/3.2 
m=3 cplex value 198.6 205.3 - - - 

psg value 223.6 237.3 245 255.4 260.9 
% 11.2% 13.5% - - - 

time: cplex/psg 1910.7/2.8 45540.4/2.8 -/2.9 -/3 -/3.4 
m=4 cplex value 187.9 190.4 - - - 

psg value 211.4 207.2 230 218.2 221.8 
% 11.1% 8.1% - - - 

time: cplex/psg 7989.2/3.2 23852.7/3 -/3.3 -/3.4 -/3.2 
m=5 cplex value 173.3 179.3 - - - 

psg value 193.4 192.6 197.8 207.7 210 
% 10.4% 6.9% - - - 

time: cplex/psg 7672.6/2.9 25593/2.8 -/3.3 -/3.3 -/3.7 
m=6 cplex value 161.1 165.3 - - - 

psg value 179.5 182.8 185.2 195.2 190.9 
% 10.2% 9.5% - - - 

time: cplex/psg 2250.3/2.8 36618.1/3.3 -/3.4 -/2.9 73.4 
m=7 cplex value 142.4 - - - - 

psg value 150.9 166.6 173.4 179 183.8 
% 5.6% - - - - 

time: cplex/psg 6640.9/2.9 65122.8/3.3 -/3 -/3 -/3.7 

Table 1.2: Performance results for CVaR type deterministic model (2.25). n - number of sites; m - number of sensors. 
The number of discrete time steps is fixed: T = 10. CVaR confidence level a = 0.9. 
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n=8 n=9 n=10 n=ll n=12 
m=l cplex value 

psg value 
% 

lime: cplex/psg 

394 

-/25.9 

398.7 

-/28 

390.1 

-/35.8 

395.6 

-/40.2 

394.9 

747.7 
m=2 cplex value 

psg value 
% 

lime: cplex/psg 

297.9 

-/32.7 

304 

-/38.6 

321.7 

■751.4 

324.4 

-/67.8 

318.6 

-/76 
m=3 cplex value 

psg value 
% 

time: cplex/psg 

260.4 

-/38.4 

260.1 

-/45.4 

262.4 

-/56.3 

264.4 

-/71.4 

269 

-/84.6 
m=4 cplex value 

psg value 
% 

lime: cplex/psg 

229.4 

-/47.2 

231.6 

-/60.2 

242.9 

-112.5 

236.3 

-/84.6 

250.8 

-/98.4 
m=5 cplex value 

psg value 
% 

lime: cplex/psg 

209.1 

-/56.1 

212.4 

-/72.3 

220.8 

-/83.7 

224.6 

-/96.6 

230.1 

-/119.5 
m=6 cplex value 

psg value 
91 

time: cplex/psg 

193.2 

-/51.8 

199.9 

-1613 

209.2 

-/86.1 

210.3 

-/112.9 

218.7 

-/121.4 
m=7 cplex value 

psg value 
% 

time: cplex/psg 

164.4 

-/45 

186.3 

-/66.5 

187.6 

-/89.8 

198.6 

-/111.3 

204.4 

-/133.5 | 

Table 1.3: Performance results for CVaR type stochastic model (2.27). n 
The number of discrete time steps is fixed: T = 10, number of scenarios S 

- number of sites; m - number of sensors. 
= 100. CVaR confidence level a = 0.9. 

PSG Value PSG Time (sec) CPLEX Time (sec) 1 
m=l 389.2 103 32 
m=2 318.532 110 185 
m=3 276.332 133 230 
m=4 246.648 136 247 
m=5 229.234 208 210 
m=6 218.166 158 330 
m=7 204.1 201 260 
m=8 193.199 191 220 
m=9 180.976 155 250 
m=10 164.746 191 280 
m=ll 146.607 180 200 

Table 1.4: Comparing PSG and CPLEX performance for obtaining approximate solution of CVaR type stochastic 
problem (2.27)(n = 12 sites and T = 10 time periods). 
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n=6 n=7 n=8 n=9 n=10 n=ll n=12 
m=l 0.31 0.77 0.76 2.16 0.90 0.50 1.21 
m=2 3.96 3.96 8.00 15.85 238.42 174.93 315.76 
m=3 0.93 21.48 22.20 9.17 340.86 350.85 2037.73 
m=4 0.20 0.31 0.74 34.26 14.45 926.64 436.80 
m=5 0.32 1.79 2.62 31.40 91.38 62.20 3359.69 
m=6 0.58 1.79 4.36 69.76 19.05 238.59 
m=7 2.12 4.08 22.87 19.57 47.20 
m=8 0.79 6.29 7.14 38.69 
m=9 1.17 3.19 6.81 

m=10 0.79 2.15 
| m=ll 1.94 

Table 1.5:   ILOG CPLEX CPU time (sec) for network deterministic model (1.54)-(1.65). n - number of sites; m 
number of sensors. The number of discrete time steps is T = 10. 

1.8    Conclusion 

The paper develops a mathematical programming techniques for solving a class of multi-sensor scheduling problems. 
Three robust optimization problems have been formulated: two for deterministic and one for stochastic case. The 
obtained 0-1 problems have also been reformulated in terms of cardinality functions. 

Numerical experiments are conducted using two commercial solvers ILOG CPLEX and AOrDa PSG. CPLEX 
gives exact solutions for small problems. Both solvers give an approximate solution in reasonable time for large prob- 
lems. However, for large stochastic problems with many scenarios, solving the reformulated problems with cardinality 
constraints using PSG provided good quality approximate solutions faster than CPLEX. Therefore, this approach can 
be beneficial in the settings of time-critical systems where computational speed of finding good approximate solutions 
is the crucial factor. 
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Chapter 2 

Mathematical Programming Techniques for 
Sensor Networks 

This chapter presents the results published in Alexey Sorokin, Nikita Boyko, Nikita Boyko , Stan Uryasev and Panos 
M Pardalos. Panos M Pardalos. Algorithms, pp. 565-581, 2009. 

2.1    Introduction 

The area of sensor networks research has recently gained a great deal of attention [12, 37. 16,3,4,36, 17,20,33. 11]. 
Various sensors are used in both civilian and military tasks. Sensing devices can be deployed in either static or dynamic 
settings, where the positions of each sensor can be permanent or dynamically changing (such as in the case of sensors 
installed on air vehicles). Multiple sensor systems are commonly represented as networks, since besides collecting 
important information, sensing devices can transmit and exchange information via wireless communication between 
sensor nodes. Therefore, network (graph) structures are convenient and informative in terms of efficient representation 
of the structure and properties thereof. To analyze and optimize the performance of sensor networks, mathematical 
programming techniques are extensively used. 

The purpose of this paper is to give a brief review of some of the recent developments in mathematical program- 
ming as applied to sensor network research. Various types of optimization problems can be formulated and solved in 
this context [7, 29, 33]. Moreover, the pursued tasks can vary from optimizing the network performance to network 
interdiction, where the goal is to disrupt enemy networks by interfering with communication network integrity. We 
will outline the formulations and briefly describe the solution methods used to tackle these problems. 

In many cases, the identified optimization problems arc challenging from the computational viewpoint. In par- 
ticular, the theoretical computational complexity of many of these problems was proven to be NP-hard. Therefore, 
efficient algorithms need to be developed to ensure that the near-optimal solutions are found quickly. This is essential 
to ensure that the decisions regarding efficient operations of sensor networks could be made in a real-time mode, which 
can be crucial in many applications. Moreover, the uncertain factors that commonly arise in real-world situations also 
need to be incorporated in the mathematical programming problems, which makes them even more challenging to 
formulate and solve. In this chapter, we will address some of the challenges arising in this area. 

In particular, we will describe several important classes of problems that have recently been addressed in the liter- 
ature. We will start the discussion with the description of recent promising developments in the area of sensor network 
localization, which allow identifying global positions of all the nodes in a network using limited and sometimes noisy 
information. It turns out that semidefinite programming techniques can be efficiently used to tackle these problems. 
Next, we will discuss the problems of single and multiple sensor scheduling for area surveillance, including the setups 
under uncertainty. We will also address the issues of wireless communication network connectivity and integrity, as 
well as network interdiction problems. 
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2.2   Sensor Network Localization 

The wide range of sensors applications reveal different requirements to the network topology identification [32, 30, 
15, 24). For example network parameters can be influenced by land surface, transmission characteristics, energy 
consumption policy, etc. Ad hoc and dynamic networks also require identification of node coordinates. Such problems 
are intensively studied in the literature. Utilizing mathematical programming techniques often allows to find efficient 
solutions. 

2.2.1    Positioning Using Angle of Arrival 

In many cases, practical situations require one to be aware of a sensor's physical coordinates. Installing GPS receivers 
in every sensor is not always optimal from the cost-related and other perspectives. Typically, only a few nodes (seed 
nodes, landmarks, etc) of the network are equipped with GPS arid know their physical location. The rest of the nodes 
can only communicate with other nodes and determine relative location characteristics such as distance, angles, etc. 
Various localization techniques are used to obtain location of all the sensors in the network. The following method 
assumes that the network consists of two types of nodes: usual and more capable nodes - which knows its position. 
Niculcscu and Nath propose a method by which nodes in an ad hoc network collaborate in finding their position and 
orientation, assuming that a small pan of the network has a position capability. Also, every node in the network has a 
capability to determine the angle of the arriving signal (AOA). 

Each node in the network has one fixed main axis (which may not be the same for different nodes) and the node is 
able to measure all angles against this axis (Figure 2.1). 

Figure 2.1: Nodes with AOA capability. 

Every node in an ad hoc network can only communicate with its immediate neighbors within the radio range, 
and its neighbors may not always be landmarks, i.e., the nodes that know their position. Niculescu Nath propose in 
[191 a method to forward orientation in such way, that the nodes which are not in direct contact with landmarks can 
determine its orientation with respect to the landmarks. Orientation means bearing, radial, or both. Bearing is an 
angle measurement with respect to another object. A radial is the angle under which the object is seen from another 
point. The authors examine two algorithms: Distance Vector Bearing (DV-Bearing), which allows each node to get a 
bearing to landmark, and DV-Radial, which allows a node to get a bearing and radial to a landmark. The propagation 
in both algorithms works the following way: nodes adjacent to landmarks determine their bearing/radial directly from 
landmark and send to the network the information about their position. The method of computing node's bearing and 
radial at each step is shown in Figure 2.2. 
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Figure 2.2: Node A computes its bearing to L using information from B and C 

DV-Bearing algorithm works the following way. Nodes A, B, and C are neighbors and they can communicate 
with each other. Suppose that the node A needs to find its bearing to node L, which is not within radio range of node 
A but within radio range of nodes B and C. Since A, B, and C can locate each other than the node A can determine 
all the angles in triangles ABC and BCL. But that would allow to calculate the angle LAC and consequently the 
bearing of A to L, which is equal to c -f LAC. Once node A knows three bearings to landmarks, which are not at the 
same line, then it can calculate its own location by triangulation. 

The DV-Radial algorithm works the same way but with only one difference that node A needs to know not only 
bearings of nodes B and C to node L, but also the radials of B and C from L. The knowledge of radials improves 
accuracy of the algorithm. When all angles are measured against the same direction (for example, when compass is 
available) then these two methods become identical. 

2.2.2    Semidefinite Programming (SDP) for Sensor Network Localization 

The section considers localization problem when information on distances for anchor nodes and unknown sensors 
nodes are given. Suppose we consider localization problem on the plane. We have m known points a* G R2, 
k = 1,..., m and n unknown nodes xy € R2, j = 1..... n. Let us consider three sets of node pairs Ne. TV/, Nu. For 

pairs in Nc we know exact distances dkj between a^ and Xj and dxl between x1 and x3. Ni is a set of pairs with 
known lower bounds r^ and riy Finally, iVu is a set of upper bounds rkj and rXJ. Naturally our goal is to minimize 
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estimation error which immediately lead us to the following non-convex optimization problem 

min       £       llls.-xj2-^.! 
('■j)€N„..<j 

+ E w«*-**f-4*i 

+       £       (llx.-x.f-r^), 
(U)CJVI,.KJ 

+  E 0K-*if-i&J- 
(fcj)€Ni 

4-       E       (IN-xJ||
2-r?J.)+ 

(».j)€Nu, i<j 

+    E    (K-x,||2-r^)+, 

(2-1) 

(kJ)6N. 

where (u)_ and (u)+ are defined as 

(u)_ = max{0, —u} 
(u) + = max{0, u}. 

The norm of vector x is defined as ||x|| = \/xTx. In [5, 271 the authors study scmidchnitc relaxations of the problem. 
The formulated problem can be rewritten by introducing matrix notation and slack variables as 

min        E       (aS+%)+     E     Ki+afcj) 

+   E   ^+ E «i 

+   E   #+ E « 
(t.j)€Nu.t<j (fc.j)€Nu 

S.t. 

sJ3Yei:, - dij2 = aj - a", Vi, j € Ne, i < j, 

(*k\ej)T (  XT    Y J (a*;ej) " &*)* = afcj ~ Qfc>' 

c§rey - (d,,)2 > -/?-, vi\ j eNl%i< j 

(a^f ( /T    y) (afc;e'} " M3 * -<&. 

e^Ye^j - (ckj)2 < 0-, Vt, j €Nt)i<j 

(o*;«i)T ( XT    Y J ^ajt;e^ " few)3 - flu' 

Here X = [xi, X2,..., xn] is a 2 x n matrix. In order to cope with nonconvexity equality, Y — XTX is replaced with 
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Y y XTX or equivalently 

z:=(;r *)t0. 

The last relation leads to a standard SDP formulation: 

min     Yl     («S+«5> +   E   Wy + *iw) 

+   E   «5+ E 0* 
(ij)€Ni.i<j (*J)€N, 

+   E   05+ E % 
St. 

(1;0;0)TZ(1;0;0) = 1. 
0)TZ(0;1;0) = 1, 

(l:l:0)rZ(l;l;0) = 2, 

Hk*t)T*Vk9lt) - «J + a". = (4)2,Vi, j € ATc,i < j, 

(afc;ej)
TZ(afc;eJ) -a^ +a^ = (dkj)

2,Vk,j 6 Nc, 

(0:^)^(0;^) + 0-y > (Bv^.W.i € JV,,i < j. 

(afc;ej)
TZ(afc 4) + fa > (&y)* V*,j € #,, 

fre^fZfreij) - 0+ij < (r0)2,Vi, j eNu,i< j, 
(afc;ej)

TZ(afc ej) - fa < (fkj)
2^k,j € Nu, 

ZXO. 

Papers (5, 27] provide a criterion of solution existence and uniqueness, as well as statistical interpretation of the 
formulation in case when distance values are random values with normally distributed measurement errors. The SDP 
problems are solved using interior point algorithms. The numerical experiments results demonstrate the efficiency of 
the proposed approach. 

2.3    Sensor Scheduling 

Surveillance is an important task that can be effectively performed by an intelligent network of sensors. For exam- 
ple, satellites can be equipped with cameras to monitor Earth surface for different events, such as forest fire, border 
crossing or enemy hostile activity. Another example is traffic monitoring at the roads and intersections. Many scien- 
tific publications have recently appeared in the literature due to increasing interest to the problem of finding optimal 
schedule for sensors [21,8, 13, 31, 26, 14]. Most common technological and budget constraint is a low number of 
sensors to monitor all the objects of interest simultaneously. Thus, finding the schedule that reduces potential loss of 
limited observations is a task of high importance. This section provides a review of recently developed optimization 
based methods for building optimal schedule of sensor surveillance. 

23.1    Single Sensor Scheduling 

The simplest case is to model one sensor that observes a group of sites at discrete time points. Some physical systems 
require virtually zero time for changing a site being observed. For example, the time of a camera refocusing, which 
is installed on a satellite, is negligibly small. This assumption leads to the model proposed by Yavuz and Jeffcoat in 
146]. 
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Assume that we need to observe n sites during T time periods. During every period a sensor is allowed to watch 
only at one of n sites. The scheduling decision can be modeled using binary variables Xi.t 

f   1,    if i-th site is observed at time t. 0 . 
r>t = \ 0,    otherwise, (2'2) 

t is a discrete variable and t = 1,2, ...,T. If a site i is not observed for some period of time, it leads to the 
penalty that is proportional to the time of not observing this site. This penalty can be modeled using another group 
of decision variables. Let ytt denotes the time of last visiting site i before time moment t. Let us note that variables 
Xisi completely determine values of ytt. Fixed penalty a, and variable penalty bu are associated with site i at time 
moment t. Thus, the penalty at time t associated with site i is 

a<(l-xM) + 6t.t(t.-yM). (2.3) 

[46] suggests minimizing maximum loss over all sites and time intervals. Thus the objective function is defined as 
maxj.tja, + 6tt(t - yi,t)}- This objective function can be linearized and consequently the problem looks as following 

minC 

s.t.        C > a,(l - Xi,t) + 6M(* - yiit), Vi = 1,... ,n, Vt = 1,... ,T, 
n 

£«M<l,Vt«l T, 
»=i 

0 < yi,t - y,,t-i < fcBM, Vi = 1,..., n, Vt = 1,..., 7\ 

txi,t < Vi,t < tf Vi = 1 n, Vt=l,....7\ 

y»,o = 0, Vi = l,...,n, 

xM6{0,l}, Vi = l,...,n,Vt = l,...,r. 

yXtt e JR,Vi = l,...,n, Vt = 0,....T. 

Constraints (3.9) ensure that the sensor visits only one site at a lime. Constraints (3.10) -(3. U ) set the dependence 
y, t on xlt. That is yltt is set to t if and only if the sensor is observing site i at time t otherwise yu = Vi.t-i- 

Single Sensor Scheduling problem is NP-hard [34] therefore various greedy heuristics have been proposed. The 
idea behind greedy algorithm is simple. At time t = 1 we find the site with the smallest penalty then at next time 
period we find another site with the smallest penalty. This sequence is repeated for all T time intervals. Thus the 
complexity of suggested approach is 0(nT). Yavuz and Jcffcoat has also suggested the "look ahead" modification of 
greedy heuristic which takes more computational time but computational experiment demonstrate that the solution is 
improved compared to the initial simple greedy optimization. 

2.3.2    Stochastic approach 

The stochastic nature of scheduling surveillance reduces the predictability of sensors behavior and therefore plays 
an important role for military tasks. Here we assume that sites are chosen randomly based on probability ptJ of 
transition from i-th to jr-th site . Then sensor scheduling can be considered as a Markov chain stochastic process and 
characterized by steady state probabilities 7^. 

The goal of stochastic approach is finding such steady state probabilities that minimize maximum loss. Let r, be 
the visit period of site i. Then the penalty of information loss at site i is a* + (r, - l)6tt at time t. Let us consider 
a sufficiently small planning horizon with time-invariant site dynamics, this allows us to reduce 6,,t to 6, and denote 
this approach as static. Visiting site i for every r* > 0 periods is equal to spending 7r, = 1/r* of the sensor's lime at 
the site i. The optimal schedule is achieved when ]TV TT, = 1; i.e., all the available lime is utilized. Also, sensor never 
stays at any site for two consecutive periods of time. Thus r, > 2 (or 7T» < 0.5) should be satisfied for each site. Then 
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(2.9) 
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the non-linear model for obtaining optimal stationary probabilities is formulated as 

minmax{at + ( 1 ] 6t} (2.12) 

n 
s.t.       £*«-!, (2.13) 

»=i 

7Tt <0.5,Vi = l,...,n (2.14) 

7r,€ß,Vi = L...,n (2.15) 

(2.16) 

A heuristic is proposed to solve this nonlinear continuous problem. Utilizing constraints (2.14). the authors define 
a lower bound on the objective function value with 

CL =max{a* + 6*}. 

Then, we set 

C = max{oi + fi - l\ 6,} = CL 

and calculate 
rx = {C- Oi)/bi + 1 

and 
*i = 1/r, 

for all i. Note that 7r, = 0.5 for the sites with a, + 6» = C and TT, < 0.5 for the remaining constraints. If the determined 
probabilities add up to one then the optimal solution is found, and the procedure terminates. If the sum of probabilities 
is less than one, then one can shift some 7r-s up to make £V 7r, = 1. In the case when ]£, irt > 1 the found C is 
infeasible and we can apply iterative procedures (such as bisection) to find C such that £V TT, = 1. 

The static approach minimizes average penalty that is determined by steady probabilities and, thus, does not 
address the cases of long lasting absence at a site. Taking into account the fact that some random outcomes may result 
in extremely long penalties it is reasonable to increase the probabilities of visiting the sites that were visited long time 
ago. On the other hand, the probability of observing the sites, which were recently visited, should be decreased. Recall 
that y,e represents the last time when the site i was visited by the time t. The probability of visiting a site must depend 
on the difference t - yirt, thus it will increase probability of visiting overdue sites. 

To create a preference for visiting site i at time t the following adjustment factors are proposed 

It is bigger than one for overdue sites and less than one for the sites that have been visited within their expected 
visiting periods. The parameter k is a user-defined parameter, which determines the weight of the adjustment factor. 
The probabilities of visiting each site at specific time point t are based on previous history and can be computed as 
P, = 9,/Q. where Q = £"=1 qx. 

Finally, a hybrid method was proposed based on a combination of greedy algorithm and the stochastic method, 
discussed above. The first step calculates the penalty of not visiting site i: c, = a* 4- bijt{t — j/,t). Next step calculates 

preference values to visit each site: qx = (^7) 1 where Cnax = max*{Ci}. And then the probabilities of visit are 

equal to: px = m/Q, where Q = £"=1 qx. 
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23.3    Multiple Sensors Scheduling Using Percentile TVpe Constraints 

Boyko et al have proposed to reformulate problem (3.32) -(3.35) for the case of m sensors [6]. 

minmax{a* 4- 61<t(t - y,,t)} 

n 

s.L       J^Si.t <m, Vt= 1,...,T, 
i=i 

0 < y,.( - t/t.t-i < ^i.r, Vi= l,...,n, Vt = 1,...,7\ 

teM < y,-.t < t, Vi = 1,... ,n, V* = 1,.. - ,T, 

y»,o = 0, Vi = l,...,n, 

xu€{0,l},Vi = l,...,n, Vt = l,...,r, 

yu€ JR,Vi = l,...,n, Vt = 0,...,T. 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

For every site i and every time point t we can calculate penalty associated with the last time a sensor visited this 
site a, + b,st{t. - yi%t). Let us pick (1 - a) % of worst cases among these n x T penalty values. Then, instead of 
minimizing maximum loss we can minimize the the average taken over this (1 — Q) % percent of worst penalty values. 
Despite the fact that this formulation is deterministic it is equivalent to computing (1 — a) Conditional Value-at Risk 
(CVaR) for a set of random outcomes having equal probabilities plt = Ap. 

CVaR [43, 45] is closely related to a well-known quantitative risk measure referred to as Value-at-Risk (VaR). By 
definition with respect to a specified probability level (1 - a) (in many applications the value of (1 - a) is set rather 
high, e.g. 95%), the a-VaR is the lowest amount C such that with probability (1 - a), the loss will not exceed Q, 
whereas for continuous distributin the a-CVaR is the conditional expectation of losses above that amount £• As it can 
be seen, CVaR is a more conservative risk measure than VaR, which means that minimizing or restricting CVaR in 
optimization problems provides more robust solutions with respect to the risk of high losses (see figure 2.3). 

Figure 2.3: Graphical representation of VaR and CVaR. 

The reader can find the formal definition of CVaR for various distribution cases in [43, 451. Rockafellar and 
Uryasev [42, 28] showed that minimizing CVaR-type objective function of linear argument can be reduced to LR In 
the sensors scheduling problem the loss function is introduced as 

L{x,y,i,t) = a, +6iit(t - y,.t). (2.24) 
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Thus the initial multiple sensors scheduling problem can be considered as the CVaR-based formulation 

min CVaR« [L(x, y, t, t))] (2.25) 
x.V 

s.t. 

constraints (2.18)-(2.23), 

CeR. (2.26) 

Even though the parameters i and t of the loss function (2.24) are deterministic by nature, the stochastic framework 
was applied to this model in order to compute a percentile-typc measure. 

The parameters that quantify fixed and variable information losses are in many cases uncertain by nature. The 
following mathematical programming formulations allow quantifying and restricting the risks of worst-case losses 
associated with the aforementioned uncertain parameters. It is made by utilizing quantitative risk measures that allow 
one to control the robustness of the optimal solutions. Assuming that a, and bl%t are random values we can formulate 
stochastic program utilizing the notion of CVaR. 

min CVaR«a?(l - xM) + b*it(t - y,.t) (2.27) 

s.t. 

constraints (2.18)-(2.23i 

Here we use S scenarios (a* and 6* r, s = 1,..., S) sampled from the distribution of penalty coefficients. 
The mixed integer linear formulation was solved by ILOG CPLEX. The problems were also reformulated in terms 

of cardinality constraints and solved by AOrDa Portfolio Safeguard software package. Both solver find a good quality 
approximate solutions for large size problems. 

2.4    Communication Network Interdiction 

An important issue in military applications is to neutralize the communication in the sensors network of the enemy. 
This problem is known as jamming or eavesdropping a wireless communication network. This section introduces op- 
nmi/.ation formulations that allow to place jamming devices delivering maximal harm to the adverse sensors network. 
We start from a deterministic case when node locations are known. 

The goal of jamming is to find a set of locations for placing jamming devices that suppresses the functionality of 
the network. Assume that n jamming devices are used to jam m communicating sensors. The assumption is made 
that the sensors and jammers can be located on a fixed set of locations V. The jamming effectiveness of device j is 
calculated as 

d:{VxV)^R, 

where d is a decreasing function of the distance from the jamming device to the node being jammed. 
The cumulative level of jamming energy received at node i is defined as 

Qi:»I>* 

where n is the number of jamming devices. Then, jamming problem can be formulated as the minimization of the 
number of jamming devices placed, subject to a set of covering constraints: 

min n 

s.t.Qi>d,    t«l,2,...,m. 

Seeking the optimal placement coordinates (xj,yj),j = 1,2,... ,7* for jamming devices given the coordinates 
(Xi, Yi),i = 1,2,... ,m leads to non-convex formulations for most functions d. Thus, integer programming models 
for the problem are proposed. 
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A fixed set M = {1,2,..., n) of possible locations for the jamming devices and the set of communication nodes 
are introduced by Commander et al in [10]. Define the decision variable Xj as 

f 1. if a jamming device is installed at location j. 
Xj = < (2.28) 

10, otherwise. 

Then we have the optimal network covering formulation given as 

n 

mm^PcjXj 29) 
i=i 

s.t. (2.30) 
n 

Y,dXJXj>Ci,    i = l,2,...,m, (2.31) 

Zj6{0,l},    ; = l,2,...,n, (2.32) 

Here the objective is to minimize the cost of jamming devices used while achieving some minimum level of coverage 
b mule If c, = 1 then the number of jammers is minimized. 

If the goal is to suppress sensors communications we can minimize jamming cost with respect to the required level 
of connectivity index. Communication between nodes i and j is assumed tobe destroyed if at least one of the nodes is 
jammed. Further, let ytJ := 1 if there exists a path from node i to node j in the jammed network and let z, = 1 be an 
indicator that i-th node is jammed. This can be formulated as 

n 

min ^ CjXj (2.33) 

s.t. 
m 

^2yij<L,WieM. 34) 

M{\ -Zi)> Si -d> -Mz,, VieM. 35) 

yt] is consistent with the network and Zi (2.36) 

x,€{0,l},V;6Ar, (2.37) 

*€ {0,1}, Vi€ M, (2.38) 

yoe{0,l}, Vi,je.M. (2.39) 

where Si := £j=i ^»J
X

J denote the cumulative level of jamming at node i, Al e R is some large constant. This 
problem can be formulated as a mixed integer linear problem and justification is provided in [10]. 

Finally, Commander et al provide percentile-based formulation for deterministic jamming problems. Suppose it is 
determined that jamming some fraction or € (0,1) of the nodes is sufficient for effectively dismantling the network. 
This can be accomplished by the inclusion of a-VaR constraints in the original model. Let y : M •—» {0,1} be an 
indicator whether node i is jammed (y, = 1). 

Then to find the minimum number of jamming devices that will allow covering a ■ 100% of the network nodes 
with prescribed levels of jamming Ct, we must solve the following integer program 
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min ^2 CjXj (2.40) 
j=\ 

s.t. 
m 

5>>om, (2.41) 
i=i 
n 

Y,drjXj >Cm,    i-1,2,...,m, (2.42) 

x,€{0,l},    j = l,2,...,n, (2.43) 

yie{0,l},    t = l,2,...,m. (2.44) 

The Q-CVaR optimization model for network covering can be formulated as a mixed integer linear program using 
a standard linearization framework: 

n 

minY^r (2.45) 
3=1 

S.t. 

C + (l -a)m £ max{C™> * £ *i^ " C, o} < 0: (2.46) 

C e R, (2.47) 
x^^l}. (2.48) 

The VaR and CVaR models can also be written for connectivity suppression models in the similar fashion. We 
refer the reader to [ 10] for details. 

The deterministic formulations of the wireless network jamming problem are extended in [9] to tackle the stochas- 
tic jamming problem formulations using percentile type constraints. These formulations consider the case when the 
exact topology of the network to be jammed is not known, but we know the distribution of network parameters. 

Since the exact locations of the network nodes are unknown, it is assumed that a set of intelligence data has been 
collected and from that a set S of the most likely scenarios have been compiled. Scenario s G S contains both the node 
locations {(£ f, r/f), (£|, r/|),..., (f^, »£,)} and the set of jamming thresholds {Cf, C|,..., QJ. For each scenario 
s G S, the set MH = {1,2,... ,ms} needs to be jammed. Taking into account all the scenarios we can write a 
mathematical program for node covering problem: 

in^cjtxfc, (2.49) 
n 

min 

s.t. 
n 

J2dlkxk>C?, i = l,2,...,ms,6=L2,...,5, (2.50) 
Jt=i 

xjk€{0,l}. *=l,2,...,nf (2.51) 

It is unlikely to rind the solution that can provide effective jamming strategy for all scenarios. Therefore, the notion of 
percentile-based risk measures can be utilized to develop formulations of the robust jamming problems incorporating 
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these risk constraints. The robust node covering problem with Value-at-Risk constraints can be formulated as 

n 

iiiin^TcjfcSfc, (2.52) 

s.t. 

]T d*kxk > Ctßl V a e <S, V * e M9i (2.53) 
Jfc=l 

£rf>am., Vs€«S, (2.54) 

^6{0,l},VA:GAr, (2.55) 

pf € {0,1}, Vse5,Vi€ M„ (2.56) 

The loss function can be considered as the difference between the energy required to jam network node i. namely 
Cy, and the cumulative amount of energy received at node i due to x over each scenario. With this the robust node 
covering problem with CVaR constraints is formulated as follows. 

in^Cfcifc, (2.57) 
n 

nin 
k=i 

s.t. 
1 

C + „     \ (2-58) (1 - oc)m, 

J2 max I C^in - J2 d*tkxk - <s, 0 \< 0, V a € 5, (2.59) 

xfc€{0,l}, VkefS, (2.60) 
C*eR,Vs€5. (2.61) 

The CVaR constraint (2.59) implies that for the (1 - a) • 100% of the worst (least) covered nodes, the average value 
of f(x) is less than or equal to 0. 

Numerical experiments demonstrate that problems of moderate size can be solved by ILOG CPLEX. Finding 
effective heuristics and approximations for sensors network jamming problems of large dimensions is an interesting 
and important research direction. 

2.5    Conclusion 

In this chapter, we presented a brief outline of problems and challenges arising in the important and exciting area 
of mathematical programming techniques for sensor network applications. Clearly, the research in this area is far 
from complete, and a lot of extensions and generalizations of the presented models can be developed. Overall, the 
main challenges arising in this area are associated with efficiently incorporating the uncertainties in the mathematical 
programming formulations and dealing with the computational intractability of the corresponding stochastic and robust 
optimization problems. However, there are promising developments in this field, including computationally efficient 
heuristic algorithms and software packages for solving these problems. Therefore, the area of sensor networks and 
mathematical programming techniques associated with it has a clear potential from both theoretical and practical 
perspccthi 
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Chapter 3 

Robust Connectivity Issues in Dynamic 
Sensor Networks for Area Surveillance 
under Uncertainty Problems 

3.1    Introduction 

In this chapter, we address several problems and challenges arising in the task of utilizing dynamic sensor networks 
for area surveillance. This task needs to be efficiently performed in different applications, where various types of 
information need to be collected from multiple locations. In addition to obtaining potentially valuable information 
(that can often be time-sensitive), one also needs to ensure that the information can be efficiently transmitted between 
the nodes in a wireless communication/sensor network. In the simplest static case, the location of sensors (i.e., nodes 
in a sensor network) is fixed, and the links (edges in a sensor network) are determined by the distance between sensor 
nodes, that is, two nodes would be connected if they are located within their wireless transmission range. However, in 
many practical situations, the sensors are installed on moving vehicles (for instance, unmanned air vehicles (UAVs)) 
that can dynamically move within a specified area of surveillance. Clearly, in this case the location of nodes and edges 
in a network and the overall network topology can change significantly over time. The task of crucial importance in 
these settings is to develop optimal strategies for these dynamic sensor networks to operate efficiently in terms of both 
collecting valuable information and ensuring robust wireless connectivity between sensor nodes. 

In terms of collecting information from different locations (sites), one needs to deal with the challenge that the 
number of sites that need to be visited to gather potentially valuable information is usually much larger than the number 
of sensors. Under these conditions, one needs to develop efficient schedules for all the moving sensors such that the 
amount of valuable information collected by the sensors is maximized. A relevant approach that was previously used 
by the co-authors to address this challenge dealt with formulating this problem in terms of minimizing the information 
losses due to the fact that some locations are not under surveillance at certain time moments. In these settings, the 
information losses can be quantified as bo\h fixed and variable losses, where fixed losses would occur when a given 
site is simply not under surveillance at some time moment, while variable losses would increase with time depending 
on how long a site has not been visited by a sensor. Taking into account variable losses of information is often critical 
in the cases of dealing with strategically important sites that need to be monitored as closely as possible. In addition, 
the parameters that quantify fixed and variable information losses are usually uncertain, therefore, the uncertainty and 
risk should be explicitly addressed in the corresponding optimization problems. 

The other important challenge that will be addressed in this paper is ensuring robust connectivity patterns in 
dynamic sensor networks. These robustness properties are especially important in uncertain and adverse environments 
in military settings, where uncertain failures of network components (nodes and/or edges) can occur. 

The considered robust connectivity characteristics will deal with different parameters of the network. First, the 
nodes within a network should be connected by paths that are not excessively long, that is, the number of intermediary 
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nodes and edges in the information transmission path should be small enough. Second, each node should be connected 
to a significant number of other nodes in a network, which would provide the possibility of multiple (backup) transmis- 
sion paths in the network, since otherwise the network topology would be vulnerable to possible network component 
failures. 

Clearly, (he aforementioned robust connectivity properties are satisfied if there are direct links between all pairs of 
nodes, that is, if the network forms a clique. Cliques are very robust network structures, due to the fact that they can 
sustain multiple network component failures. Note that any subgraph of a clique is also a clique, which implies that 
this structure would maintain robust connectivity patterns even if multiple nodes in the network are disabled. However. 
the practical drawbacks of cliques include the fact that these structures are often overly restrictive and expensive to 
construct. 

To provide a tradeoff between robustness and practical feasibility, certain other network structures that "relax" the 
definition of a clique can be utilized. The following definitions address these relaxations from different perspectives. 
Given a graph G{V, E) with a set of vertices (nodes) V and a set of edges E, a fc-clique C is a set o! vertices in which 
any two vertices are distance at most k from each other in G [40]. Let dc(i, j) be the length of a shortest path between 
vertices i and j in G and d(G) = max dc(i, j) be the diameter of G. 

Thus, if two vertices u,v € V belong to a fc-clique C, then dc(u,v) < k, however this does not imply that 
dc(C)(ti, v) < k (that is, other nodes in the shortest path between u and v are not required to belong to the k-clique). 
This motivated Mokken [41] to introduce the concept of a k-club. A k-club is a subset of vertices D C V such that 
the diameter of induced subgraph G{D) is at most k (that is, there exists a path of length at most k connecting any 
pair of nodes within a /c-club, where all the nodes in this path also belong to this fc-club). Also, V C V is said to be a 
fc-plex if the degree of every vertex in the induced subgraph G(V) is at least |V'| - A: [44]. A comprehensive study of 
the maximum /c-plex problem is presented in a recent work by Balasundaram et al. [38]. 

In this chapter, we utilize these concepts to develop rigorous mathematical programming formulations to model 
robust connectivity structures in dynamic sensor networks. Moreover, these formulations will also take into account 
various uncertain parameters by introducing quantitative risk measures that minimize or restrict information losses. 
Overall, we will develop optimal "schedules" for sensor movements that will take into account both the uncertain 
losses of information and the robust connectivity between the nodes that would allow one to efficiently exchange the 
collected information. 

3.2    Multi-Sensor Scheduling Problems: General Deterministic Setup 

This section introduces a preliminary mathematical framework for dynamic multi-sensor scheduling problems. The 
simplest deterministic one-sensor version of this problem was introduced in [46]. The one-sensor scheduling problem 
was then extended and generalized to more realistic cases of multi-sensor scheduling problems, including the setups 
in uncertain environments by Boyko et al. [39]. In the subsequent sections of this paper, this setup will be further 
extended to incorporate robust connectivity issues into the considered dynamic sensor network models. 

To facilitate further discussion, we first introduce the following mathematical notations that will be used throughout 
the paper. Assume that there are m sensors that can move within a specified area of surveillance, and there are n sites 
that need to be observed at every discrete time moment t =  1 /.  One can initially assume that a sensor can 
observe only one site at one point of time and can immediately switch to another site at the next time moment. Since 
m is usually significantly smaller than n, there will be "breaches" in surveillance that can cause losses of potentially 
valuable information. 

A possible objective that arises in practical situations is to build a strategy that optimizes a potential loss that is 
associated with not observing certain sites at some time moments. 

One can introduce binary decision variables 

{1,    if i-th site is observed at time t, 
0,    otherwise, (31) 

and integer variables yxA that denote the last time site i was visited as of the end of time U i =  1 //. t = 
1,...,T, m < ri. 
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One can then associate a fixed penalty a, with each site i and a variable penalty 6, of information loss. If a sensor 
is away from site i at time point t, the fixed penalty a* is incurred. Moreover, the variable penalty 6, is proportional 
to the time interval when the site is not observed. We assume that the variable penalty rate can be dynamic: therefore, 
the values of bt may be different at each time interval. Thus the loss at time t associated with site i is 

at(l-xi<t) + &M(t-yi,t). (3-2) 

In the considered setup, we want to minimize the maximum penalty over all time points t and sites i 

max{o,(l - xt,t) + 6M(t - yijt)}. (3.3) 

Furthermore, x,.£ and y,.t are related via the following set of constraints. No more than m sensors are used at each 
lime point; therefore 

n 

$>i.t<m, V* = l,..  .7. (3.4) 

Time y,r is equal to the time when the site i was last visited by a sensor by time t. This condition is set by the 
following constraints: 

0 < yM - yi.t-i < txt,t, Vi = 1,... ,n, V* = 1 T. (3.5) 

txi,t < Vi,t < t, Vi = 1,... ,n, Vt = 1,... ,T, (3.6) 

Further, using an extra variable C and standard linearization techniques, we can formulate the multi-sensor 
scheduling optimization problem in the deterministic setup as the following mixed integer linear program: 

minC (3.7) 
s.t.        C > a,(l - xM) + bttt(t - yM), Vi = 1,..., n, Vr = 1..... T. (3.8) 

n 

5>,.t<m, V*=l?...,7\ (3.9) 

0<y,.t-yu-i <tei.e, Vi= 1 n. V/= 1 7\ (3.10) 
txt<t < yitt < t, Vi = 1,..., n, Vt = 1,... ,T, (3.11) 

yt.0 = 0, Vi = l,...,n, (3.12) 

xXit € {0,1}, Vi = 1,..., n, Vt = 1,..., 7\ (3.13) 

yu e R, Vi = 1,... ,n, V« = 0 T. (3.14) 

We allowed relaxation (3.14) of variables y,,( to the space of real numbers, because the constraints (3.5) and (3.6) 
enforce the feasible values of variables y,,t to be integer. 

3.2.1    Cardinality Formulation 

Lemma. Constraint (3.13) is equivalent to the following combination of two constraints: 

0<iM< 1 Vi = l,...,n, Vt= 1,...,T, (3.15) 
n 

card(x() < £xM Vt = 1,... ,T , (3.16) 
i=i 

where xt = (xi,f,.... xn%t)
T, and card(x*) denotes the cardinality function for the vector xt. By definition. card(xt) 

equals the number of non-zero elements in ihe inpul vector xt. 
Proof. Assume the matrix (xlf) satisfies constraint (3.13). Obviously, it then satisfies (3.15). At the same time, for 
every t, sum of all elements is equal to the number of values 1 in it. And these are the only non-zero elements in it. 
Therefore, constraint (3.16) is also satisfied. 
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F^T))  m rj+il-a)-1 f       [L(x,w)-r;]+p(w)dw (3.27) 
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Now assume the matrix (xitt) does not satisfy constraint (3.13). Thus there is a pair (1,5, t&), for which xl6iti = 6 
and 6 ^ 0 and 6 ^ 1. If (5 < 0 or (5 > 1, then constraint (3.15) is violated. Thus, for all pairs (t,t), 0 < xi>t < 1, 
and 0 < 6 < 1. Therefore, for all pairs (i, t), card(xt)t) > a^ti and card(<5) > (5. Taking into account that card(x() = 
J2i card(x,it) we conclude that (3.16) is violated, o 

Now we can write alternative, cardinality formulation for the general deterministic sensor-scheduling problem. 

minC (3.17) 

s.t.       C>Oi(l- xu) + M« - W*)i Vi = 1,... ,n, Vt = 1 T. (3.18) 
n 

]T*t,t <m, W = L.... / (3.19) 

0 < ft,< - lft.t-1 < to*,«, Vi = 1,... ,n, V< = 1,... ,7\ (3.20) 
teM <*M<i, Vi=l.....n. Vf = 1,....7\ (3.21) 
Ro = 0, Vi=l n, (3.22) 

0<xM < 1, Vi = l,...,n, Vf=l,...,T, (3.23) 
n 

card(xt) < ^xiit, Vt- = 1,..., T . (3.24) 
,=i 

|fc,t € «, Vt = 1,. • •, n, Vt = 0,..., T. (3.25) 

Although the two formulations are equivalent, some optimization solvers, such as Portfolio Safeguard (that will be 
mentioned later in this paper), can provide a near-optimal solution faster if the formulation with cardinality constraints 
is used instead of the one with boolean variables, which may be important in time-critical systems in military settings. 

3.3    Quantitative Risk Measures in Uncertain Environments:  Conditional 
Value-at-Risk 

To facilitate further discussion on the formulations of the aforementioned problems under uncertainty, in this section 
we briefly review basic definitions and facts related to the Conditional Value-at-Risk concept. 

Conditional Value-at-Risk (CVaR) [42, 43, 45] is a quantitative risk measure that will be used in the models 
developed in the next section, which will take into account the presence of uncertain parameters. CVaR is closely 
related to a well-known quantitative risk measure referred to as Value-at-Risk (VaR). By definition, with respect to I 
specified probability level a (in many applications the value of a is set rather high, e.g. 95%), the a-VaR is the lowest 
amount 7/u such that with probability a, the loss will not exceed ?7Q, whereas for continuous distributions the a-CVaR 
is the conditional expectation of losses above that amount T)Q. AS it can be seen, CVaR is a more conservative risk 
measure than VaR, which means that minimizing or restricting CVaR in optimization problems provides more robust 
solutions with respect to the risk of high losses. 

Formally, a-CVaR for continuous distributions can be expressed as 

CValWx) = (I-a)~l f L(x.w)p(w)dw, (3.26) 

where L(x, w) is the random loss (penalty) variable driven by decision vector x and having a distribution in R induced 
by that of the vector of uncertain parameters w. 

CVaR is defined in a similar way for discrete or mixed distributions. The reader can find the formal definition of 
CVaR for general case in [43,45J. 

It has been shown by Rockafellar and Uryasev [42] that minimizing (3.26) is equivalent to minimizing the function 



over w and 7/, where [t]+ = t when t > 0 but [t]+ = 0 when t < 0, and optimal value of the variable 7/ corresponds 
to the VaR value 77a, introduced above. 

3.4    Optimizing the Connectivity of Dynamic Sensor Networks Under Un- 
certainty 

This section extends the previous sensors scheduling problem to a stochastic environment. We use CVaR measure to 
model and optimize various objectives associated with the risk of loss of information. 

In the stochastic formulation, the penalties o, and blt are random. We generate 5 discrete scenarios, which 
approximate implied joint distribution. Thus, every scenario consists of two arrays: one-dimensional {at}* and two- 
dimensional {6,,t}A. 

Now, consider the term of the loss function corresponding to the site i, time t, and scenario s: 

L°(x,y;i,t) = a*(I - xi%t) + fcjt(t - Vi,t). 

Under uncertainty, it is often more important to mitigate the biggest possible losses, rather than the average damage. 
Following this idea, we take (1 - a) biggest penalties, and minimize average penalty over all i. t and 9, This objective 
function is exactly the conditional value-at-risk. 

We now have the following class of optimization problems: 

min CVaRa{L{x, y\ i, t)} (3.28) 
x,y 

This class has one extreme case: a = 1, when the problem becomes equivalent to minimizing maximum possible 
penalty over all scenarios, locations and time points: 

minmax(of (1 - xM) -I- 6*t(t - yT,t)). (3.29) 

This problem has an equivalent LP formulation: 

minC (3.30) 
s.t.       C > af (1 - Xi,t) + b£t(t - yM), (3.31) 

Vi = l,...,n,V< = l,...1T,V6 = 1,...,5. 

In order to formulate a general CVaR optimization problem in LP terms we have to introduce additional variables 
Ti,t>s — 1, • • •»5, i = 1,..., n, t = l,...,T, and 77. With these variables the problem of minimizing CVaR will be 
reduced to the following: 

s.t. 

minC (3.32) 

Cir>+jr^sf £> (3-33) 
5— 1,*. -jS 
t=l n 
t = l T 

Tftt > <(1 - xitt) + blt(t - yiit) - rj, (3.34) 

Vi = l,...,n, t=l,...,T, s = l,...,S, 
Kt > 0, V» = 1 n, t = 1,..., T, s = 1,..., S. (3.35) 

We have discussed various objective functions with objective-specific constraints for sensor scheduling problems 
in the stochastic environment. In addition to that, every sensor scheduling problem, including those in stochastic envi- 
ronment, must have constraints limiting number of sensors (3.4) and defining variables of the last time of observation 
(3.5)- (3.6). These constraints are referred to as mandatory constraints for every sensor-scheduling problem. 
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+ Y1Y1 eiqeqleljXq.tXl.t + • • • 
9=1Z=l 

(3.36) n      n      n 
+ Z] X!X! e*qellelpePJxq,tXl,tXp<t + .. . 

«7=1 i=l p=l 

n        n n n 

»l=llj = l U_2 = l«k-l=l 

>xM + xj%t - 1, 

where i = l,...,n-l, jr = z + l,..,n, r, = 1,..., 7\ For every k these constraints can be linearized, however, 
the size of the problem may substantially increase. In this chapter, we limit our discussion only to 2-club constraints 
due to the practical reasons mentioned earlier in this section and due to the fact that the formulation for the case of 
k = 2 will not add too many new entities (no more than 0(n2)) to the problem formulation. They require every pair 
of nodes (i, j) to be connected directly, or through some other node p. Such type of communication between sensors 
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Further we define a wireless connectivity network G{V,E) on the set of locations V. We interpret it in terms 
of the 0-1 adjacency matrix E = {etJ}t<j-i „, where each ei3 is a 0-1 indicator of wireless signal reachability 
between nodes i and j, that is, if locations i and j are within direct transmission distance from each other, then they 
are connected by an edge, and etJ = 1 (etJ? = 0 otherwise). We also define a subnetwork G of G(V. E) containing 
only those m nodes (locations) that are directly observed by sensors at a particular time moment. 

Scheduling of observation often requires sensors to maintain a certain level of wireless connectivity robustness. 
If an enemy sends a jamming signal that breaks connectivity between a pair of nodes, then the subnetwork G either 
should stay connected, or at least should maintain unity with probability close to 1. Further, we will utilize several 
types of network structures that can be applied to ensure that the network satisfies certain robustness constraints. 

The most robust network structure is a clique, which implies that each pair of nodes is directly connected by an 
edge. Obviously, maintaining a clique structure of the subnetwork G at every moment in time is very expensive in 
terms of penalty, and can be even impossible, if the overall wireless connectivity network is not dense enough. Hence, 
it is reasonable to utilize appropriate types of clique relaxations to ensure robust network connectivity at every time 
moment. 

One of the considered concepts is a fc-plex. By definition, as mentioned above, a fc-plex is a subgraph in which 
every node is connected to at least m - k other nodes in it (where m is the number of nodes in this subgraph). This 
network configuration ensures that each node is connected to multiple neighbors, which makes it more challenging for 
an adversary to disconnect the network and isolate the nodes by destroying (jamming) the edges. 

Another considered class of network configurations is a /c-club. Recall that every pair of nodes in fc-club is 
connected in it through a chain of no more than k arcs (edges). The motivation for studying this type of constraints 
is based on the fact that if two sensors are connected through a shorter path, it lowers the probability of errors in 
information transmission through intermediaries, since the number of intermediaries is smaller. Later in the paper. 
we will specifically use a stronger requirement on the length of these paths. We require that any two nodes are 
connected either directly by an edge, or through at most one intermediary node, which is often a desired robustness 
requirement under the conditions when the number of intermediary information transmissions needs to be minimized 
due to adversarial conditions. Clearly, a 2-club is a structure that satisfies this requirement. In the next subsection, we 
show that this condition can be incorporated in the considered optimization models. 

3.4.1    Ensuring Short Transmission Paths via 2-club Formulation 

The general requirement for a subnetwork G to represent a /r-club can be formulated as the following set of constraints: 

n 

+ ^2eiqeqjxq,t + ... 

n      n 



(i, j) has a concise formulation: 

n 
e«> + Yl eipePJxp>t £ *M + XJ.« - 1 Vi = 1,..., n - 1, Vj = i + 1,..., n, 

Vt = 1 T. 

Here, the left-hand side is always nonnegative. The right-hand side becomes positive only if both locations i and j are 
observed by sensors, and then it equals 1. According to the 2-club definition, these sensors have to be connected (and 
exchange information) either directly, or through one other intermediary sensor node. In the first case etJ equals 1. In 
the second case, the sum Ylp=i €tpepjxp.t W»H also be positive. 

h h also important to note that those constraints, for which eg = 1, can be omitted. Thus, a 2-club wireless 
network configuration can be ensured by the following set of constraints: 

Y2      XP>1 - **»« + ZM ~ lj 

Vt = 1,..., n - 1, V; = i + 1,..., n,.; g <5 (i), V* = 1,..., 7\ 

where S(i) and 6(j) are the sets of neighbors of nodes i and j, respectively. 
Below we present the complete general formulation for the dynamic sensor scheduling optimization problem in a 

stochastic environment with 2-club wireless connectivity constraints 

minC 
C^"+ll-LsT    £   <' 

i=l!.\'.',n 
t=l...,T 

r*t > <(1 - xl>t) + 6J,t(i - yi.t) - V 

Vt = l,...,n,* = l,...,7\s = l,...,S, 
rjt >0, Vi = l,....n, t = L...,T, s=l,...;5. 

]Tx,.t<m, v* = i,...,r, 

0 < y»,t - yi.t-i < ««Mi Vz = ls... ,n, V* = 1 7. 
tat.t < yM < t, V» = 1,... ,n, V* - 1,... ,T, 
y.,o = 0, Vi = l,...,n, 

/]     xP,t > *M + xj\t ~~ 1 
p€Ä(»)nÄ(j) 

Vi- 1 n-1, Vi -« + i,...,n,i 4 5(i), Vfc «1 T. 

xM 6(0,1}, Vi = l,...,n, W=l,...,7\ 
ytJ <ER, Vi= l,...,n, Vt = 0,...T. 

3.4.2    Ensuring Backup Connections via /c-plex Formulation 

Constraints that require a wireless network to have the &-plex structure, can be defined using a symmetric adja- 
cency matrix E = {e»j}t,j=it...,r*. as defined above. Recall that xr = {x\.t, ■ ■ ■ ,xn<t)

T. Consider the vector 
zt = (z\,t, ■■-, Zn.t) = Ex-t- The element zl-t can be interpreted as the number of sensors which have a wireless 
connection with node i at time t. Thus, the constraint Ex.t > xt or (E - I)xt > 0 ensures that each sensor node has at 
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least one neighbor, i.e., it is not isolated. If we want each sensor to have at least (m - k) wireless connections (edges) 
with other sensors, then we should make the constraints more restrictive: Ext > (m — k)xt, or 

(E - (m - k) I) xt > 0 Vi = 1..... T. 

These restrictions by definition ensure that a subnetwork G is a fc-plex. 
Below we present the complete general formulation for the dynamic sensor scheduling optimization problem in a 

stochastic environment with A>plex wireless connectivity constraints. 

"■     c^"+(i-ä)nsr>sg/' 
t=l T 

Kt > <*?(* - *M) + Kti* - vu) - v 
Vi = l,...,n,t = 1 T. s= 1 S, 

T& >0, Vi = l,...,n, i = l,...,7\ s = l,....S. 
n 

£>,,t<m, V< = 1,...,7\ 
t=i 

0 < y»,t - l/t.t-i < tx^t, Vi: = 1 n. Vt = 1 r, 

teite < yu < «, Vi = l,...,n, V<= 1.. 

yi.o = 0, Vi = l,...,n, 

{E-{m-k)I)xt >0, Vt = 1. 

xMG{0,l}, Vi = l,...,n, Vt = l,...,r, 

yM6Ä, Vt = l,...,n, Vr. = 0,...,T. 

3.5    Computational Experiments 

Computational experiments on sample problem instances have been performed on Intel Xeon X5355 2.66 GHz CPU 
with 16GB RAM, using two commercial optimization solvers: ILOG CPLEX 11.2 and AORDA PSG 64 bit (MAT- 
LAB 64 bit environment). It should be noted that due to the nature of the considered class of problems, they are 
computationally challenging even on relatively small networks. Therefore, in many practical situations, finding near- 
opumal solutions in a reasonable time would be sufficient. The PSG package was used in addition to CFLEX because 
it has attractive features in terms of coding the optimization problems, and therefore it may be more preferable to use 
in practical time-critical settings. In particular, in addition to linear and polynomial functions, PSG supports a number 
of different classes of functions, such as CVaR and cardinality functions. For the purposes of the current case study 
we defined in PSG the objective using the CVaR function, and we also used cardinality function for the cardinality 
constraint on /, - instead of boolean constraint. 

For comparison purposes, multiple experiments have been performed. All experiments were divided into two 
groups: with 2-club connectivity constraints on subnetwork G, and A*-plex constraints with k = [~]. In each of 
these groups, number of locations n = 10.11,12,13,14,15 and number of sensors m = 4,5,6,7,8. All problems 
have CVaR-type objective with a = 0.9, deterministic setup (1 scenario), 20 time intervals. The edge density of the 
considered overall wireless connectivity network was p = 0.8 (80% pairs of nodes are connected). 

We have run PSG using two built-in solvers: CAR and TANK. These solvers took on average 26 seconds to deliver 
solution over all cases with 2-club constraints, and 27 seconds for the cases with fc-plex constraints. After that we 
run CPLEX on cases with 2-club constraints with time limit 26 seconds, on cases with /c-plex constraints with time 
limit 27 seconds. Then, we additionally run CPLEX on all cases with time limit 1 minute. Computational results are 

ued in two tables, for the cases with 2-club constraints and fc-plex constraints, respectively. 
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Table 3.1: CPLEX Results: Probten v. ith 2-club Constraints 
Case PSGCAR PSG TANK CPLEX 26 sec CPLEX 1 min 

n m value time value time value time value time 
10 4 97.96 22.3 100.61 21.6 84.62 26.1 84.62 60.1 
10 5 79.29 22.8 83.69 25.6 74.30 26.0 71.57 60.0 
10 6 74.79 24.2 71.15 23.6 63.32 26.1 63.32 60.1 
10 7 64.82 25.6 61.68 26.5 57.54 26.1 57.54 60.0 
10 8 52.27 26.7 51.86 25.2 50.76 26.1 50.21 60.0 
11 4 106.19 23.2 105.16 24.2 92.21 26.1 92.21 60.1 
11 5 86.61 23.0 85.21 22.4 75.54 26.1 75.54 60.1 
11 6 75.08 23.9 76.21 22.5 70.79 26.1 66.32 60.1 
11 7 68.43 25.4 69.93 24.0 58.37 26.0 58.37 60.1 
11 8 60.44 24.4 61.05 23.8 57.01 26.1 57.01 60.1 
12 4 122.32 24.1 124.00 22.8 105.45 26.1 105.45 60.1 
12 5 91.25 22.8 98.02 22.6 82.08 26.2 81.96 60.1 
12 6 84.69 22.8 81.76 23.0 72.65 26.0 72.65 60.1 
12 7 73.44 23.6 76.95 22.1 64.11 26.1 64.11 60.1 
12 8 64.78 25.6 61.95 24.0 56.10 26.1 56.10 60.1 
13 4 126.37 24.5 119.76 28.9 98.46 26.0 98.46 60.1 
13 5 94.48 24.0 104.78 26.5 86.31 26.0 88.20 60.1 
13 6 82.46 24.2 83.29 27.2 76.61 26.1 76.61 60.1 
13 7 73.97 25.5 74.59 30.8 70.53 26.1 67.93 60.0 
13 8 71.57 26.4 69.79 33.9 59.92 26.1 59.92 60.1 
14 4 135.75 25.6 139.06 27.3 118.41 26.0 112.74 60.1 
14 5 109.75 27.1 114.27 27.2 95.01 26.1 94.87 60.1 
14 6 89.58 24.3 93.82 27.2 79.54 26.1 79.54 60.1 
14 7 80.70 25.9 80.89 23.3 70.53 26.2 70.37 60.1 
14 8 75.31 26.0 76.88 26.6 65.26 26.1 61.67 60.1 
15 4 155.67 27.9 145.00 26.7 127.00 26.2 126.82 60.1 
15 5 113.18 25.8 115.65 28.8 104.06 26.1 102.34 60.1 
15 6 95.51 24.8 99.11 28.1 90.80 26.1 82.74 60.1 
15 7 85.96 25.0 86.49 27.8 74.22 26.1 74.22 60.1 
15 8 77.81 26.1 76.83 34.4 68.09 26.1 68.22 60.0 

avg avg avg avg 
24.8 26.0 26.1 60.1 

The results show that on average the best solution is produced by CPLEX 1 minute run. Values, obtained by 
CPLEX runs with 26 and 27 seconds limits are by 1.2% and 2.2% greater for 2-club and for fc-plex respectively. In 
most cases solutions obtained by two runs were equal. Therefore, CPLEX obtains solution close to optimal in about 
less than 30 seconds. PSG TANK solution value is greater than CPLEX 1 minute solution value by 15.8% and 22.4% 
for 2-club and for A>plex respectively. PSG CAR performs slightly better than another solver, providing the solution 
values greater than CPLEX 1 minute solution values by 15.0% and 22.0%. 

In addition to deterministic setup, we have run the aforementioned optimization problems under uncertainty on 
several stochastic problem instances with the number of sensors m = 6, the number of locations n = 12, the CVaR- 
type objective with a = 0.9, T = 10 time intervals, for different numbers of scenarios: S = 10,20,50,100. As 
before, the wireless connectivity network edge density was p = 0.8. The time limit was set to 5 minutes. PSG solvers 
in most cases provided solution before the time limit was reached. However, the quality of solution was worse then 
provided by CPLEX by 15% on average. 
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Table 3.2: CPLEX Results: Problem with k-pl ex Cons 
Case PSGCAR PSG TANK CPLEX 27 sec CPLEX 1 min 

n m value time value time value time value time 
10 4 106.52 25.1 102.94 22.7 85.34 27.1 85.34 60.1 
10 5 79.98 23.7 83.48 22.0 72.40 27.1 72.40 60.1 
10 6 74.22 25.0 78.25 26.0 63.22 27.0 63.22 60.1 
10 7 65.71 27.0 62.27 26.9 56.73 27.0 56.73 60.0 
10 8 55.70 25.8 50.91 24.3 50.26 27.0 50.26 60.0 
11 4 117.61 23.7 101.28 26.8 87.57 27.0 87.57 60.1 
11 5 89.16 24.7 92.77 22.9 75.97 27.1 75.97 60.0 
11 6 77.27 24.3 84.08 26.2 68.25 27.1 67.03 60.0 
11 7 70.4 26.0 67.24 23.5 58.61 27.1 58.61 60.0 
11 8 67.98 25.9 64.84 23.4 53.80 27.1 53.15 60.0 
12 4 134.62 31.1 128.60 26.1 109.89 27.1 102.52 60.1 
12 5 100.80 24.4 103.70 23.0 80.11 27.1 80.11 60.1 
12 6 83.21 24.3 87.56 25.5 70.54 27.1 70.54 60.1 
12 7 69.91 25.8 74.99 26.2 63.26 27.1 63.26 60.1 
12 8 70.03 27.9 69.28 22.7 56.75 27.1 56.73 60.1 
13 4 134.39 32.2 121.72 28.5 103.87 27.1 103.87 60.1 
13 5 97.24 25.4 103.89 23.7 84.63 27.1 84.57 60.1 
13 6 90.51 25.7 89.40 29.5 77.94 27.1 77.94 60.1 
13 7 78.15 26.2 77.34 28.7 68.52 27.1 68.52 60.1 
13 8 77.49 26.7 72.61 24.3 63.36 27.1 59.69 60.1 
14 4 134.01 30.3 140.12 32.1 119.17 27.1 112.18 60.1 
14 5 114.72 26.9 113.61 27.6 90.00 27.1 89.34 60.1 
14 6 97.83 27.4 96.71 29.1 78.37 27.1 78.37 60.1 
14 7 86.09 26.4 87.00 31.4 70.46 27.1 70.24 60.1 
14 8 77.78 27.2 75.75 26.0 62.48 27.0 62.48 60.1 
15 4 153.18 34.4 189.41 32.3 136.89 27.1 120.81 60.1 
15 5 123.61 28.6 123.84 27.0 110.94 27.1 98.15 60.2 
15 6 97.53 27.2 101.72 31.4 83.11 27.0 82.59 60.1 
15 7 93.21 27.3 86.48 30.1 74.43 27.1 74.43 60.0 
15 8 80.29 28.9 75.70 25.7 67.08 27.1 67.37 60.1 

avg avg avg avg 
26.9 26.5 27.1 60.1 

Table 3.3: CPLEX and PSG Results: Stochastic Setup 
CPLEX PSG CAR PSG TANK 

type S value time gap value time value time 
k-plex 10 85.14 300.1 27.0% 96.78 25.3 96.81 29.4 
k-plex 20 89.36 300.2 14.64 95.10 35.3 96.10 37.1 
k-plex 50 92.27 300.5 44.44 110.06 154.7 97.40 273.1 
kplcx 100 93.81 301.7 49.7% 104.57 300.6 115.69 300.6 
2-club 10 86.92 300.1 30.5% 100.13 229.9 100.13 300.1 
2-club 20 84.92 300.1 32.0% 97.55 79.4 97.55 300.1 
2-club 50 89.75 300.5 44.3% 104.30 300.1 103.42 300.1 
2-club 100 95.87 301.8 50.7% 116.63 300.2 116.23 300.2 
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3.6    Conclusions 

We have defined and extended a class of dynamic sensor scheduling problems by introducing explicit robust connec- 
tivity requirements, speeilieally, A:-club and fc-plex constraints, taking into account wireless connectivity requirements 
tor sensors at every time moment. 

We have also presented computational results for moderate-size instances in both deterministic and stochastic 
problem setups. Since the size of the stochastic version of the problem is S times larger than for the deterministie 
version (where 5 is the number of implied penalty scenarios), solving these stochastic problems is clearly challenging 
from the computational perspective. 

Problem formulations can be further extended by adding movement network and corresponding constraints as 
introduced in Boyko et al. [39], thus modeling the map of possible sensor movements. 

We have also compared the performance of the two optimization software packages: [LOG CPLEX 11.2 and 
AORDA Portfolio Safeguard 64 bit. Although CPLEX generally outperforms PSG on the considered problem in- 
stances in terms of the quality of solutions by 15-22%, PSG may have its own advantages in practical settings due to 
a more user-friendly approach and more options to formulate a problem. 

The classes of problems considered in this paper are primarily motivated by military applications; however, the 
developed formulations are general enough so that they can be applied in a variety of settings. 
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