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14.  ABSTRACT, concluded 

We analyze technical problems associated with the use of an array of probes to measure simultaneously the near fields scattered 
by a target.  The measurements are made with the objective of estimating the far zone bistatic scattering from the target using 
established electromagnetic signal processing techniques.  An array of probes is proposed to speed the collection of required 
near field samples.  However, the array increases the potential for electromagnetic coupling between the array and the target, 
thereby distorting the fields to be measured.  Further, mutual coupling between array elements in the presence of the scattering 
body may change the near field measured at each probe array element when compared to that measured by an isolated probe. 
 
To minimize the array-target coupling, we propose that the array employ active loading at each array element to minimize 
currents on the array elements.  Proper active loading requires knowledge of the mutual impedances between array elements, 
which, in general, depend on the location and orientation of the array with respect to the scattering target.  To assess the 
requirement for measurements of in-situ mutual impedances, we consider a probe array with strong interaction between the 
target and the array.  We investigate the perturbations on the plane wave induced currents on a target consisting of a plate due 
to the presence of the loaded, five element dipole probe array.  Numerical results found using NEC4 indicate that active loading 
of the probe array is required to minimize the perturbations in the target currents.  However, we find in this case that there is 
little advantage to using in-situ mutual impedances in place of free space impedances in determining the active loads. 
 
Also, we provide a probe array compensation theory based on the Lorentz reciprocity theorem.  The theory permits expression 
of the open circuit probe array voltages in terms of (1) the required surface integral involving the near fields scattered by the 
target and the near fields radiated by the probe array with no target-array interaction, and (2) correction voltages due to the 
presence of the other array elements and target-array interactions.  The correction voltages are of two types.  One type is due to 
perturbations in the target scattered field due to the presence of the probe array and is unknown and not available for 
compensation of the measured voltage at the probe array.  Another type of correction voltage is associated with plane wave 
induced currents on the probe array when located in free space.  These correction voltages can be developed as part of the probe 
array calibration and measurements of the incident plane wave.  A numerical study of the flat plate-probe array configuration 
indicates that (a) corrections to the measured probe array voltages due to perturbations in the scattered field from the presence 
of the probe array are small, even when cancellation of the probe array currents is determined using the free space mutual 
impedances of the array, and (b) corrections due to the presence of the other elements of the probe array can be important, but 
the corrections can be determined in terms of the free space current distributions on the array as part of the array calibration 
process.  Also, errors in the probe array voltage measurements are introduced by the use of realizable sources in the probe array 
during calibration and realizable loads during scattering measurements.  When the array is calibrated in free space and used to 
cancel the array currents during near field measurements, errors in the open circuit voltages can be large for array elements that 
are close to the target under test.  Experimental errors in achieving probe array current cancellation cause errors in the voltage 
measurements that can be significant as well. 
 
These conclusions are potentially significant since they seem to indicate that free space mutual impedances of the probe array 
are sufficient for the simultaneous measurement with small error of near scattered field samples so long as elements of the 
probe array are not too close to the target under test.  These results suggest a hybrid measurement process.  For probe array 
locations and orientations with respect to the target where there is likely to be large coupling, in-situ mutual impedances would 
be required, slowing the measurement process.  When little coupling is anticipated, the free space mutual impedances of the 
array can be used, thereby speeding the measurement process.  These conclusions are based on a limited numerical 
investigation of one probe array structure and target configuration.  Suggestions for further study are provided. 
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1 Summary

The measurement of bistatic radar cross sections of large vehicles with far field techniques is time
consuming, expensive and requires physically large and less secure measurement facilities.
Alternatively, near field scattering measurements permit estimation of bistatic scattering using
smaller and more secure facilities. Advanced electromagnetic signal processing enables the
transformation of the multiple, near field measurements to the required complete set of far field
bistatic cross sections. Still, near field measurements are time consuming and therefore expensive.
The objective of this work is to investigate the feasibility of significantly reducing the time to
make near field scattering measurements through the use of an array of near field probes instead
of the conventional single probe. However, the use of an array of near field probes introduces
technical problems. Coupling between the physically larger probe array and the scattering body
may introduce errors in the near field measurements. Also, mutual coupling between the probe
array elements in the presence of the scattering body may change the near field measured at each
probe array element from that measured by an isolated probe.

In this work, we analyze these technical problems and describe an approach to compensate for the
errors introduced by the use of the probe array. Previously, [SCH] we studied an active loading
approach to minimize the electromagnetic interactions between an array of field probes and a
nearby scattering body. The loading minimizes the currents on the array of field probes while
simultaneously measuring the open circuit voltages induced in the probes. Numerical studies of
simple examples showed that the currents on the approximately half wavelength probe array
elements are canceled effectively only at the single load point, leaving residual currents to
reradiate and modify the plane wave induced currents on the scattering body. Nevertheless,
examination of the currents on surrogate target dipoles indicates that substantial reductions in
the errors in the induced currents results from the single point loading of each element in a three
element probe array. Results of this work revealed the need to study requirements for (a) in-situ
mutual impedance measurements of the probe array at each sample position with respect to the
target to minimize the probe array currents, (b) compensation of the open circuit, plane wave
induced probe array voltages, and (c) experimental and numerical confirmation of the active
loading approach. In this report, we examine study topics (a) and (b).

To evaluate the need for in-situ mutual impedance measurements, we consider a probe array with
strong interaction between the target and the array. Specifically, we consider a surrogate flat
plate with a five element dipole probe array located near the plate and in the direction of the
specular, plane wave induced scattering from the plate. To minimize perturbations in the plane
wave induced currents on the target due to coupling between the target and the array, currents on
the probe array are minimized using active loading at the feeds of the array elements. Proper
active loading requires that we measure the mutual impedances between elements of the probe
array, ideally when the array is in the presence of the target. However, such in-situ measurements
would have to be made at each array location and orientation with respect to the target, slowing
the overall measurement process. Alternatively, the mutual impedances could be measured in free
space, with the target absent, speeding the measurement process. However, use of these free space
mutual impedances will result in imperfect probe element current cancellation and may result in
increased perturbation of the plane wave induced currents on the target.
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We investigate the perturbations of the plane wave induced currents on the plate due to the
presence of the loaded, five element dipole probe array using NEC4. Results indicate that active
loading of the probe array is required to minimize the perturbations in the target currents.
However, we find in this case that there is little advantage to using in-situ mutual impedances in
determining the active loads. If this result is generalized, it could be significant in reducing the
time required for near field measurements since the probe array mutual impedances need not be
measured at each probe array position and orientation with respect to the scattering body.
Instead, the probe array mutual impedances need be measured only once when the probe array is
in free space and these mutual impedances can be used to determine the active loads on the array
for all positions of the array with respect to the scattering body.

However, this is not the complete story. The coupling between the array and the target under test
can introduce errors in the measured voltages at the probe array elements. These errors are due
to (a) the assumption that there is no target-array coupling in interpreting the measurements, (b)
calibration of the probe array in free space where there is no interaction with the target and (c)
failure to achieve adequate current cancellation in the probe array elements during measurements
of the open circuit voltages at the array elements. To understand these additional sources of error,
we provide a probe array compensation theory based on the Lorentz reciprocity theorem. The
theory permits expression of the open circuit probe array voltages in terms of (a) the required
surface integral involving the near fields scattered by the target and the near fields radiated by
the probe array with no target-array interaction and (b) correction voltages due to the presence of
the array elements and the target-array interactions. The correction voltages are of two types.
One type is due to perturbations in the target scattered field because of the presence of the probe
array. This correction voltage is unknown and not available for compensation of the measured
voltage at the probe array. Another type of correction voltage is associated with plane wave
induced currents on the probe array when located in free space. These correction voltages can be
developed as part of the probe array calibration and measurements of the incident plane wave. A
numerical study of the surrogate flat plate-probe array configuration indicates that (a) corrections
to the measured probe array voltages due to perturbations in the scattered field from the presence
of the probe array are small, even when cancellation of the probe array currents is determined
using the free space mutual impedances of the array, and (b) corrections due to the presence of
the other elements of the probe array can be important but the corrections can be determined in
terms of the free space current distributions on the array as part of the array calibration process.

Also, errors in the probe array voltage measurements are introduced by the use of realizable sources
in the probe array during calibration and realizable loads during scattering measurements. When
the array is calibrated in free space and used to cancel the array currents during near field mea-
surements, errors in the open circuit voltages can be large for array elements that are close to the
target under test. Experimental errors in achieving probe array current cancellation cause errors
in the voltage measurements that can be significant as well.

These results seem to indicate that free space mutual impedances of the probe array are sufficient
for the simultaneous measurement of near scattered field samples with small error so long as
elements of the array are not too close to the target under test. The effective use of free space
mutual impedances obviates the need for in-situ impedance measurements at each location and
orientation of the probe array with respect to the scattering body which would slow the overall
measurement process. It would seem that a hybrid measurement process should be considered.
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For probe array locations and orientations with respect to the target where there is likely to be
large coupling, in-situ mutual impedances would be required, slowing the measurement process.
When little coupling is anticipated, the free space mutual impedances of the array can be used,
thereby speeding the measurement process. These conclusions are based on a limited numerical
investigation of one probe array structure and target configuration. Suggestions for further study
are included.

2 Introduction

In previous work [SCH] we studied an approach to reduce the time required for near field
scattering measurements by using an array of near field probes to replace the single probe that is
conventionally used. However, coupling between the probe array and the scattering body may
introduce errors in the near field measurements by perturbing the plane wave induced currents on
the body. Further, mutual coupling between the probe array elements in the presence of the
scattering body may change the near field measured at each probe array element from that
measured by an isolated probe.

Based on an impedance model for the interactions between the probe array and the scattering
body, we developed expressions for the measured voltages at each of the transmission line feeds to
the probe array elements in terms of (1) the open circuit voltages induced by the plane wave
excited body at each probe array element and (2) the in-situ mutual impedances of the probe
array. The expressions showed a linear set of relations between the measured voltages and the
open circuit voltages as would be expected by the superposition principle. The linear set of
equations can be inverted to yield the open circuit, plane wave induced voltages at each probe
array element. We hypothesized that these probe element voltages, when corrected for the direct
plane wave excitation, are related to the required near field measurements. We also described a
separate set of vector network analyzer measurements to yield the in-situ mutual impedances (the
mutual impedances in the presence of the scattering body) that are required to invert the
measurement equations.

Simple examples of the importance of the open circuit conditions in the measurement of near
fields with a dipole probe array were given. Example results were based on a method of moments
solution to the electromagnetic interaction problem using NEC4. The open circuit conditions for
the half wavelength dipole elements of the probe array minimized the dominant currents on the
elements leaving smaller, residual currents on the remaining quarter wavelength sections of the
dipoles. Minimization of the dominant currents in the probe array elements reduced the errors in
the target dipole currents by more than 20 dB when compared to the free space induced currents.

Minimizing the probe array-target interactions required measurement of the in-situ mutual
impedances of the probe array. In general these measurements would be required for each
location and orientation of the probe array with respect to the scattering target. However,
repeated in-situ impedance measurements will slow the overall measurement process and degrade
the promised range efficiency of the probe array.
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In this note we evaluate the feasibility of using the free space mutual impedances of the array in
place of the in-situ impedances to derive the open circuit voltages and minimize the array-target
interactions. The free space impedances would be measured only once, thereby increasing the
efficiency of the overall measurement process. We investigate the feasibility of using free space
mutual impedances using an example problem where there is strong interaction between the
probe array and the target. This example problem consists of a surrogate flat plate with a five
element dipole probe array located near the target and in the specular scattering direction from
the target. The effect of using the free space mutual impedances of the probes array in an
attempt to create open circuit probe array voltages will be compared to the case when in-situ
mutual impedances are used. Errors in the plane wave induced current distributions on the target
caused by the probe array will be compared when the probe array currents are canceled using
in-situ and free space mutual impedances.

We develop a theory for compensation of the measured voltages in the probe array using the
Lorentz reciprocity theorem. The theory relates the measured voltage in each element of the
probe array to (a) a surface integral involving the near scattered field from the target and the
near radiated fields from the array with no target-array interaction and (b) correction voltages
due to the presence of the other array elements and electromagnetic interaction between the array
and the scattering body. The correction voltages are expressed in terms of the reaction of the
perturbed scattered and incident fields with the currents on the array elements when located in
free space. A numerical study of the surrogate flat plate-probe array configuration quantifies the
relative importance of the array-target interactions and the array element mutual coupling. In
addition, we develop expressions for the errors in the measured voltages due to imperfect
calibration of the probe array and imperfect cancellation of the probe array currents.

In this report, Section 3 describes the basic measurement model used to study array-target
interactions numerically. The model consists of a surrogate flat plate with a five element dipole
probe array located near the target and in the specular scattering direction from the target. This
model should provide strong target-array interactions and provide a severe test of the necessity
for minimizing these interactions by cancellation of the probe array currents. Section 4 provides
results of a numerical analysis of the measurement model using NEC4. Probe array currents are
canceled using numerical measurements of the mutual impedances of the probe array with the
target absent (free space impedances) and with the target present (in-situ impedances). Currents
on the array elements and the flat plate target are compared using active loading cancellation
found with the use of both sets of mutual impedances.

In Section 5 we turn to the issue of probe compensation with the objective of quantifying the
relationship between the open circuit probe array element voltages as samples of the surface
integral involving the near scattered field from the target and the near radiated fields from the
array. Since the processing of conventional near field measurements with probes assumes no
interaction between the probe and the target or antenna under test, we extend the probe
compensation theory developed here to (a) include this assumption and (b) evaluate the effects of
this assumption. We provide numerical results using NEC4 for the measurement model described
in Section 3 to quantify corrections in the measured probe array voltages due to target-array
interactions and the presence of other probe array elements. In addition, we extend the probe
compensation theory to assess the errors in the measured voltages due to imperfect calibration of
the probe array and imperfect cancellation of the probe array currents at the element terminals.
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3 Measurement Model

We consider a target that interacts strongly with the probe array. The model is shown in Figure
1. It consists of a flat plate of dimensions 2λ by λ/2 at a distance of 2λ from a 5 element probe
array. Here λ denotes the wavelength of the plane wave excitation. As indicated, the
measurement array consists of 5 dipoles which are 0.48λ in length with λ/2 inter-element spacing
located on the y axis. The plate and plane wave excitation are oriented so the the probe array is
in the far field specular scattering direction from the plate, although the probe array itself is in
the near field of the plate scattering.

y

x

5 Element Measurement Array

- 0.48 λλλλ dipoles with λλλλ/2 spacing

2λλλλ
2λλλλ

λλλλ/2

45o

60o

Figure 1: Flat Plate and Measurement Array

For purposes of numerical analysis with NEC4, the surrogate flat plate is synthesized with a
collection 41 parallel, half wavelength dipoles oriented in the z direction and packed such that the
inter-dipole spacing is 0.05λ. All dipoles have a radius of 8 · 10−4λ. Figure 2 illustrates the
locations of the dipoles that synthesize the flat plate and the locations of the probe dipoles used
for the NEC4 analysis. In this work, the plane wave excitation for the plate-array configuration
will consist conveniently of a z directed electric field with E=1 v/m. The ray paths of the incident
and specular scattered field from the plate are shown in Figure 2.

x

y

Figure 2: Element locations for NEC4 analysis and paths of incident and specular scattered rays.
All dimensions are in wavelengths
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4 Analysis of Flat Plate Current Perturbations Due to the Probe
Array

Consider the simulated flat plate and probe array described in previous section. The presence of
the probe array perturbs the plane wave induced currents on the plate due to the electromagnetic
interaction between the array and the plate. Currents induced in the probe array reradiate to
provide an additional illumination source to the plate, thereby causing perturbations from the
currents that would be excited otherwise on the plate in free space. These perturbations from the
free space, plane wave induced plate currents will cause errors in the measured near field
scattering and must be minimized for accurate scattered field measurements. Our strategy for
minimizing the array-plate interaction is to cancel the induced currents in the probe array
elements. As we shall see, the current cancellation is imperfect for several reasons and our
objective is to determine the conditions and degree to which the plate current perturbations can
be minimized with this strategy.

4.1 Numerical Analysis of Model Currents

In this section we describe the numerical analysis of the measurement model using NEC4 to
account for the electromagnetic interactions between the array and the plate. Specifically, we will
evaluate the current distributions on the flat plate under the following three conditions:

1. Flat plate illuminated with a plane wave and no probe array present; this provides the base
line current distribution for comparison with the perturbed plate currents induced by the
probe array;

2. Flat plate illuminated with a plane wave and the probe array present; here probe array
currents are canceled at the element feeds using voltage sources developed with the free space
mutual impedances of the probe array;

3. Flat plate illuminated with a plane wave and the probe array present; the probe array currents
are canceled at the element feeds using voltage sources developed with the in-situ mutual
impedances of the probe array. The in-situ impedances are measured with the probe array
in the presence of the flat plate.

To cancel the plane wave induced currents in the probe array, independent voltage sources are
applied to each probe array feed point. The sources have the same frequency as the plane wave
illumination of the plate-array configuration. The amplitude and phase of each voltage source is
set to create a current in the probe array element sufficient to cancel the plane wave induced
current in the element. Since there is electromagnetic interaction between the probe array
elements, selection of the source amplitude and phase must consider this interaction. In general,
the interaction will change due to the presence and orientation of the plate.

For this numerical application, the mutual admittance of the probe array is a convenient
characterization of the interaction between the probe array elements. Specifically the currents at
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each probe array feed point, ii, i = 1, 2, . . . , 5, are related to the applied feed voltages, vi,
i = 1, 2, . . . , 5, by the linear admittance matrix as follows:⎡⎢⎢⎢⎢⎢⎣

i1
i2
i3
i4
i5

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
y11 y12 y13 y14 y15
y21 y22 y23 y24 y25
y31 y32 y33 y34 y35
y41 y42 y43 y44 y45
y51 y52 y53 y54 y55

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
v1
v2
v3
v4
v5

⎤⎥⎥⎥⎥⎥⎦ ,

or
Ī = ¯̄Y V̄.

The mutual impedance of the probe array is given by ¯̄Z = ¯̄Y −1.

The mutual admittances and impedances of the probe array can be measured under two
conditions. One is when the probe array is located in free space, far from any other object such as
the plate. Under these conditions, the probe array admittance will be given by ¯̄Yfs, where the
subscript ”fs” denotes free space. The second condition is when the probe array is located in the
presence of a scattering body such as the plate. Here the probe array admittance will be given by
¯̄Yis, where the subscript ”is” denotes in-situ. Note that in general, ¯̄Yis depends on the location
and orientation of the probe array with respect to the scattering body. The corresponding free
space and in-situ mutual impedances will be given by ¯̄Zfs and ¯̄Zis respectively.

For purposes of numerical analysis with NEC4, we compute the short circuit currents at each
probe array feed point due to the plane wave excitation and in the presence of the flat plate. We
denote these currents by Īpw

p . Here the subscript ”p” denotes the presence of the plate and the
superscript ”pw” denotes the plane wave excitation for the currents. Now the voltages V̄ c at each
probe array feed point needed to cancel the currents Īpw

p are the solution to −Īpw
p = ¯̄Y V̄ c where

the minus sign is needed to achieve the current cancellation. The two sets of probe array
excitation voltages can be derived as

V̄ c
fs = − ¯̄ZfsĪpw

p , (1)

using the free space mutual impedances and

V̄ c
is = − ¯̄ZisĪpw

p , (2)

using the in-situ mutual impedances.

The probe array admittances can be computed using NEC4 by exciting each probe array feed
with a unit voltage source and computing the short circuit currents, ii, i = 1, 2, . . . , 5, at each
probe array feed. Then yij = ii when the unit voltage source is applied to probe feed j. Of course,
the probe array admittances are computed with no plane wave excitation of the array-plate
structure. Also, the free space admittances are computed when no plate is present and the in-situ
admittances are computed with the plate present and oriented with respect to the probe array as
it will be when the array currents are to be canceled.
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4.2 Results of the Analysis of the Model Currents

In this section we discuss the results of the numerical analysis of the plate-probe configuration as
described in the previous section. We will examine the currents on the dipole elements of the
probe array when the currents are canceled using sources developed with the free space
admittance matrix and the in-situ admittance matrix. The quality of the cancellation is
important for two reasons. First, minimizing the currents on the probe array will minimize the
perturbations of the plate currents from those excited by the plane wave alone. Second, the
quality of the cancellation influences the accuracy of the open circuit voltage measurements at the
probe array feeds. As we shall see in Section 5, these open circuit voltages are important since,
when corrected, they are related to the near scattered field to be measured and errors in the open
circuit voltages will cause errors in the desired field measurements. This latter point will be
investigated in Section 5 of this paper.

In addition, we will examine in this section the perturbations of the currents on the plate due to
the presence of the probe array. The baseline for comparison will be the currents induced on the
plate in free space when illuminated by a uniform plane wave.

4.2.1 Probe Array Currents

As described earlier, cancellation of the currents on the five elements of the probe array will
minimize the perturbations in the currents on the surrogate flat plate from those currents induced
by the plane wave alone. Figures 3 and 4 show the effectiveness of cancellation of the probe
element currents with active sources at the feed points of each elements.

Figure 3 shows the cancellation when the active source voltages are derived using the mutual
impedance matrix for the probe array measured with the array in free space, away from the
scattering body. In the Figure we show (a) the currents induced in the elements when the array is
in free space and the terminals are short circuited and (b) the currents when the sources derived
with the free space mutual impedance matrix are applied at the element terminals. Comparison
of these collections of curves indicates that the active loading reduces the current on the dipoles
by more than 12 dB at every element. The cancellation is greatest at the central feed point where
the free space currents are the greatest.

It is interesting to note that the use of the free space mutual impedances to determine the active
source voltages is most effective for those probe array elements at the greatest distance from the
plate (i.e. elements 3, 4 and 5). The nearest element (element 1) shows no deep current
cancellation due to the active source load at its feed point even though the current in the dipole is
reduced by approximately 12 dB when compared to the short circuit currents induced in the free
space array. These results are physically consistent with the notion that current cancellation with
the free space mutual impedances is most effective for elements away from the target where
electromagnetic interactions are likely to be the weakest.
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Figure 3: Currents (in dB with respect on one Ampere) along the five elements of the probe array
when (a) the array is in free space and the array terminals are short circuited and (b) the array
is positioned next to the flat plate and the source voltages derived with the free space mutual
impedances of the array are applied to the array terminals. The following is the legend for the
curves:

Dipole  1 (Near)
Dipole 2
Dipole 3
Dipole 4
Dipole 5

Figure 4 shows similar results when the active source voltages applied to the probe array are
determined using the in-situ mutual impedances of the array measured with the probe array
oriented with respect to the flat plate as it is when the field measurements are made. Here the
active sources are effective in canceling the probe array currents at the load points in all elements
of the probe array, including element 1 which is nearest to the plate. In this case the currents are
canceled by greater than 15dB in the worst case difference with respect to the free space currents.

4.2.2 Flat Plate Current Perturbations

We have detailed an approach to canceling the dominant mode currents in the probe array
elements in an effort to minimize the probe array scattering and its potentially deleterious effect
in perturbing target currents. It remains to examine the degree to which this approach is
successful by examining the surrogate plate currents in the presence of the probe array with short
circuit elements as well as the actively loaded probe array. We consider the active loads as
determined using the free space mutual impedances of the probe array as well as the in-situ
mutual impedances. As a baseline for comparison, we present the surrogate plate currents in the
absence of the probe array.
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Figure 4: Currents (in dB with respect on one Ampere) along the five elements of the probe array
when (a) the array is in free space and the array terminals are short circuited and (b) the array is
positioned next to the flat plate and the source voltages derived with the in-situ mutual impedances
of the array are applied to the array terminals. The following is the legend for the curves:

Dipole  1 (Near)
Dipole 2
Dipole 3
Dipole 4
Dipole 5

Figure 5 shows these plate currents. Figure 5a shows the surrogate plate currents when the plate
is in free space without any perturbations due to the probe array. The magnitudes of the plate
currents in dB with respect to 1 ampere are shown over the 0.5λ by 2λ surface. The back edge at
position 2λ corresponds to the point farthest from the measurement array at point x=2.33λ and
y=-1.17λ in Figure 2. For comparison, Figure 5b shows the same currents when the probe array is
present and each element of the probe array is short circuited at its feed. point. Perturbations in
the plate currents are apparent, especially at a distance of 0.5λ from the plate edge that is near
the probe array. Figures 5c and 5d show the plate currents on the surrogate plate when the probe
array is present with active loads determined by the free space mutual impedances and the in-situ
mutual impedances, respectively. Little perturbations in the plate currents are apparent in these
Figures.

Figure 6 shows more quantitatively the perturbations in the plate currents. This Figure shows the
plate currents at each dipole center as a function of position along the 2λ extent of the plate. The
perturbations in current due to the short circuit probe array are apparent in the solid curve,
amounting to almost 3 dBA near the edge closest to the probe array. Little differences (less than
0.5 dBA) occur when the probe array is actively loaded when compared to the baseline currents
on the plate in free space.
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Figure 5: Magnitude of the current on the surrogate flat plate with (a) no probe array present, (b)
probe array present with each element short circuited, (c) probe array present with active loading
determined by array free space mutual impedances and (d) probe array present with active loading
determined by in-situ mutual impedances. Note that the back edge at position 2λ corresponds to
the point farthest from the measurement array at point x=2.33λ and y=-1.17λ in Figure 2
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Figure 6: Magnitude of the current on the surrogate flat plate at each dipole center as a function
of position along the 2λ dimension of the plate. with (a) short dashed - no probe array present, (b)
solid - probe array present with each element short circuited, (c) dot - dash - probe array present
with active loading determined by array free space mutual impedances and (d) long dash - probe
array present with active loading determined by in-situ mutual impedances. Again, note that the
back edge at position 2λ corresponds to the point farthest from the measurement array.
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Based on these observations, it would appear that active loading of the probe array is required to
minimize perturbations in the currents on the surrogate plate due to the presence of the array.
However, there is little advantage to using in-situ mutual impedances in determining the active
loads. This could be a significant advantage in reducing the time required for near field
measurements since the probe array mutual impedances need not be measured at each probe
array position and orientation with respect to the scattering body. Instead, the probe array
mutual impedances need be measured only once when the probe array is in free space and these
mutual impedances can be used to determine the active loads on the array for all positions of the
array with respect to the scattering body.

These conclusions are preliminary however. In order for the probe array to sample the scattered
field accurately, the open circuit voltages at each probe array element must be measured. The
probe array currents are canceled imperfectly as illustrated in Figure 3 when the free space
mutual impedances of the array are used to determine the active loading necessary to cancel the
probe currents. This is especially true for the probe array elements that are nearest to the
surrogate flat plate.

In the next section of this report, we will investigate an approach to probe array correction in
order to relate the open circuit voltages measured at the probe array elements to the scattered
fields on a planar measurement surface. We will evaluate the impact of assuming that the fields
that are measured are associated with the target scattering and array radiation in free space.
Further, we will determine the errors in the measured open circuit voltages caused by the lack of
proper calibration of the probe array.

5 Probe Array Compensation

In this section we relate the open circuit voltages measured at each probe element to the unknown
scattered fields from the target. This problem is closely related to that of probe compensated
near field measurements for predicting the far-field radiation properties of antennas. This antenna
measurement problem has been the subject of extensive research for more than 50 years. Yaghjian
[YAG] has provided a comprehensive review of the theory and practice of planar, cylindrical and
spherical near-field scanning and processing.

In Section 5.1 we describe a basic analysis of the probe array used for measuring the near zone
scattered fields from the target. We use the Lorentz reciprocity theorem to evaluate the surface
integral over the scanning plane of the near fields scattered by the target and the near radiated
fields from the calibrated probe array in terms of (a) the open circuit voltages measured at the
probe array and (b) correction terms involving the reactions of the incident fields with the probe
array currents. The reaction terms are evaluated using measurements or calculations of the
currents on the elements of the calibrated probe array.

In Sections 5.2 and 5.3 we examine errors implicit in the measurement process. Conventional near
field analyses assume that the fields measured and used in the surface integral are those
associated with free space conditions when there is no target-array electromagnetic interactions.
In Section 5.2 we examine quantitatively the errors associated with this assumption. In Section
5.3 we examine errors due to using realizable active loads on the probe array and imperfect probe
array calibration due to the realizable sources used in the calibration process.
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5.1 Basic Analysis

In this work we adapt a theory of near-field antenna measurements with a single probe to the
problem of near-field scattering measurements with an array of probes. Specifically, we follow an
approach of Paris et. al. [PAR] based on the Lorentz reciprocity theorem [COL, BAL]. The
theorem postulates two sets of monochromatic, electromagnetic fields and sources at the same
frequency, each satisfying Maxwell’s equations and associated boundary conditions. Under quite
general conditions, the reciprocity theorem in differential form is

∇ · (Ē1 x H̄2 − Ē2 x H̄1) = Ē2 · J̄1 − Ē1 · J̄2,

and, using the divergence theorem, the integral form of the reciprocity theorem is∮
S
(Ē1 x H̄2 − Ē2 x H̄1) · n̂dS =

∫
V

(Ē2 · J̄1 − Ē1 · J̄2)dV.

Here the fields Ē1 and H̄1 result from current sources J̄1 and Ē2 and H̄2 result from current
sources J̄2, assuming here that there are no magnetic current sources. In the integral form, the
closed surface S encloses the volume V and the unit vector n̂ is outward normal to S at each
spatial position.

Application of the Lorentz reciprocity theorem to our array near-field measurement problem
requires that we first specify the sources and boundary conditions that generate the fields in cases
1 and 2. That is:

Case 1: Here the (flat plate) target and probe array are present and illuminated by the plane
wave source. The probe array elements are open circuited at their feed points. See Figure 7. In
this analysis, we will be concerned only with the fields scattered by the target and array and not
with the incident plane wave. The sources for these scattered fields are then the equivalent
currents induced in the plate and probe array elements by the plane wave excitation.

Case 2: Here the (flat plate) target and probe array are present. However, there is no plane wave
excitation. Instead, each element of the probe array is driven by a current source at its feed point,
providing the sources that are required for the Lorentz reciprocity theorem. See Figure 8.

In this work, we parenthetically include the adjective “flat plate” as a reminder that the results
developed here are not restricted to the specific case when the target is a flat plate, as will be
studied here.
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Figure 7: Case 1: Target and probe array illuminated by a plane wave. The probe array elements
are open circuited.
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Figure 8: Case 2: Target and probe array with each element of the probe array driven by a current
source.

We will employ the integral form of the reciprocity theorem and thus must specify the surface S
and associated volume V. Following Paris et. al., the surface will consist of (a) a planar
measurement surface, Sm, (b) a spherical surface at a large distance from the target/array
ensemble, S∞, and (c) surfaces just outside the elements of the probe array, Si, i = 1, 2, . . . , I,
where I is the number of probe array elements. These surfaces are shown in Figure 9.

14
Approved for public release; distribution unlimited.



S∞∞∞∞

Sm

S1

S4

S5

S2

S3 n̂

n̂

Figure 9: Integration surfaces employed in the Lorentz reciprocity theorem.

The volume enclosed by this surface contains no sources from either case and so the reciprocity
theorem becomes ∮

S
(Ē1 x H̄2 − Ē2 x H̄1) · n̂dS = 0,

and we can then write∮
Sm

(Ē1 x H̄2−Ē2 x H̄1)·n̂dS+
∮

S∞
(Ē1 x H̄2−Ē2 x H̄1)·n̂dS+

I∑
i=1

∮
Si

(Ē1i x H̄2i −Ē2i x H̄1i)·n̂idS = 0.

(3)

In this expression we first note that∮
S∞

(Ē1 x H̄2 − Ē2 x H̄1) · n̂dS = 0,

since at a large distance from the sources, all scattered fields become spherical, transverse EM
waves and the integrand vanishes at every point on the distant spherical surface, S∞ [PAR, page
375]. Then from Equation 3 we find

∮
Sm

(Ē1 x H̄2 − Ē2 x H̄1) · n̂dS = −
I∑

i=1

∮
Si

(Ē1i x H̄2i − Ē2i x H̄1i) · n̂idS

= −
I∑

i=1

∮
Si

(Ē1i x H̄2i − Ē2i x H̄1i) · (−n̂Bi)dS

=
I∑

i=1

∫
Vi

(Ē2i · J̄1i − Ē1i · J̄2i)dV.

(4)
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In the second of these equations we have replaced the outward normal vector to the surface Si, n̂i,
by a normal vector n̂Bi perpendicular to the surface of each probe element and pointing outward
from the volume occupied by the element. Vi denotes the volume occupied by the ith probe array
element. This is illustrated in Figure 10. Finally, we again use the Lorentz reciprocity theorem to
express the surface integral in terms of a volume integral involving the fields and sources within
each probe element.

n

nB

Si

Vi

2a

δδδδ

Figure 10: Integration surface around each probe array dipole element.

Consider now the integrand of the element volume integral. We note that for highly conducting
elements, Ē2i = 0, i = 1, 2 . . . , I, everywhere in the element except in the gap that constitutes the
element feed. Also, J̄1i = 0, i = 1, 2 . . . , I, in the gap since for case 1 we require that each element
of the probe array be open circuited. It follows then that the first term of each element volume
integrand vanishes and we can then write

∮
Sm

(Ē1 x H̄2 − Ē2 x H̄1) · n̂dS = −
I∑

i=1

∫
Vi

Ē1i · J̄2idV. (5)

The volume integral for each element can now be evaluated heuristically. We consider two cases
— the gap region and the wire sections of the dipole element. For highly conducting elements, the
electric field Ē1i is the negative of the incident plane wave field in the wire sections, insuring that
the total electric field vanishes within the dipole wires. That is

Ē1i(r̄) = −Ēinc(r̄), r̄ ⊂ Vwirei .

Here Vwirei denotes the volume of the wire of the ith probe dipole element.
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Within the the gap, the electric field Ē1i can be written as

Ē1i =
V s

oci

δ
�̂i,

where V s
oci

is the open circuit voltage induced in the ith probe element due to the scattering from
the target and probe array (case 1) with plane wave excitation, δ is the dimension of the feed gap
in the element (see Figure 10)), and �̂i is a unit vector oriented along the ith dipole element.
Next, the current density J̄2i in the gap excited by the current source Ii specified in case 2 can be
written as either

J̄2i =
{

Ii
πa2 �̂i if current uniformly distributed,

Ii
2πads

�̂i if current is confined to a skin depth, ds.

Here a is the radius of the element dipole. In either case, performing the integral over the gap
volume Vgapi gives ∫

Vgapi

Ē1i · J̄2idV = V s
oci

Ii. (6)

Then Equation (5) becomes

∮
Sm

(Ē1 x H̄2 − Ē2 x H̄1) · n̂dS = −
I∑

j=1
V s

ocj
Ij +

I∑
j=1

∫
Vwirej

Ēincj · J̄2j dV,

where Vwirej = Vj −Vgapj . It becomes clear that to measure the open circuit voltage at the ith probe
element, for example, V s

oci
, the remaining elements in case 2 must have open circuit terminals so

that Ij = 0, j �= i. There results

V s
oci

= − 1
Ii

∮
Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS +
1
Ii

I∑
j=1

∫
Vwirej

Ēincj · J̄prj dV, (7)

where H̄pri = H̄2

∣∣∣∣
Ij=0, j �=i

and Ēpri = Ē2

∣∣∣∣
Ij=0, j �=i

are the fields produced by the probe array in the

presence of the target when the ith array element is excited by a current source of value Ii and all

other elements are open circuited. Also, J̄prk
= J̄2k

∣∣∣∣∣
Ij=0, j �=i

, k = 1, 2, . . . , I denotes the current

density within the probe element wires in the presence of the target when the ith array element is
excited by a current source of value Ii and all other elements are open circuited.

In Appendix 1 we validate Equation (7) by further expanding the surface integral using the
reciprocity theorem. However, here we retain the surface integral since, in the conventional theory
of near field scanning, the fields in the integrand are expanded in terms of their plane wave spectra
in order to relate the far field radiation and scattering properties of the device under test to the
measured near field voltages. Note in Equation (7) that the difference between the measured
voltage, V s

oci
, and the required surface integral is the superposition of the reactions [RUM] of the

incident field on the probe array wire current distributions, 1
Ii

∑I
j=1

∫
Vwirej

Ēincj · J̄prj dV. Also,
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note that the difference can be written as the sum of the self reaction of the incident field on the
measurement dipole wire currents,

∫
Vwirei

Ēinci · J̄pridV, and the reactions of the incident field on
the wire currents in the remaining, open circuit elements of the probe array,∑I

j=1,j �=i

∫
Vwirej

Ēincj · J̄prj dV. The self reaction is present even for an isolated dipole probe since
the current distribution on the dipole is determined largely by the near resonant size of the probe.
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Figure 11: In-situ current distributions on the probe array elements when the fourth element is
excited by a unit current source.

Figure 11 shows the in-situ probe array current distributions from NEC4 for case 2 when the
fourth array element is excited by a current source of one ampere. The other elements are
constrained to have an open circuit at their feeds. Using these current distributions we have
found the contributions to the error between the measured voltage and the surface integral due to
the measurement (driven) element and the open circuit elements of the array. That is, the error
due to self reaction of the driven element, i, is∣∣∣∫Vwirei

Ēinci · J̄pridV
∣∣∣2∣∣∣∮Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS
∣∣∣2 = 0.84 (−0.74 dB),

and the error due to the open circuit elements is∣∣∣∑I
j=1,j �=i

∫
Vwirej

Ēincj · J̄prj dV
∣∣∣2∣∣∣∮Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS
∣∣∣2 = 7.0 · 10−3 (−21.5 dB).

In these expression, the surface integral has been evaluated in terms of the probe element currents
and the incident field as described further in Appendix 1.

While the error due to the driven element is substantial, it likely differs little from that expected
from an isolated dipole since the current distribution on the dipole is determined principally by
the near resonant length of the dipole. This error term can be determined numerically from
measurements or calculations of the currents on the driven elements. On the other hand, the error
due to the open circuit probe elements is small due to the small currents on the elements. Note
that these results assume perfect cancellation of the currents on these open circuit elements.
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5.2 Errors Due to the Assumption of No Target-Array Interaction

We turn now to simplifying the first integral in Equation (7) in order to determine the errors in
the measured voltage when the fields in the surface integral are assumed to be associated with the
probe array and the scatterer when they are individually located in free space. For that purpose,
we express the fields for case 1 as

Ē1 = Ē1o + δĒ1 (8)

and
H̄1 = H̄1o + δH̄1.

Here the fields Ē1o and H̄1o are the scattered fields from the (flat plate) target when the probe
array is absent. These are the fields that we are trying to measure. Then the fields δĒ1 and δH̄1
represent changes in the fields due to the presence of the open circuited probe array. Each of
these scattered fields has a corresponding electric current source distribution. That is, J̄1
distributed over the open circuited probe array and the target is the source for Ē1 and
J̄1odistributed over the plate is the source for Ē1o .

In a similar manner for case 2,
Ēpri = Ēprio + δĒpri (9)

and
H̄pri = H̄prio + δH̄pri ,

where the fields Ēprio and H̄prio are the radiated fields from the probe array when (a) there is no
(flat plate) target present, (b) the ith element is excited and (c) all other elements are open
circuited. These are the fields that are conveniently measured to characterize the probe array.
Then the fields δĒpri and δH̄pri represent changes in the probe array fields due to the presence of
the (flat plate) target. Here too there are electric current sources for the field components. Let
J̄pr distributed on the target and elements of the probe array be the source for the field Ēpri and
J̄prodistributed on the elements of the probe array be the source for the field Ēprio .

Table 1 summarizes the sources and boundary conditions for each of these fields.

Field Target Probe Array Plane Wave Probe Array Source Probe Array Loading
Ē1 Present Present Yes No Open Circuit (OC)
Ē1o Present Absent Yes – –
Ēpri Present Present No Yes, element i All elements except i are OC
Ēprio Absent Present No Yes, element i All elements except i are OC

Table 1: Fields, sources and boundary conditions for field expansions.
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With these expansions we find from Equation (7)

V s
oci

= − 1
Ii

∮
Sm

((Ē1o + δĒ1) x(H̄prio + δH̄pri) − (Ēprio + δĒpri) x (H̄1o + δH̄1)) · n̂dS

+ 1
Ii

I∑
i=1

∫
Vwirei

Ēinci · J̄pridV

= − 1
Ii

∮
Sm

(Ē1o x H̄prio − Ēprio x H̄1o) · n̂dS

− 1
Ii

∮
Sm

(Ē1o x δH̄pri − δĒpri x H̄1o) · n̂dS

− 1
Ii

∮
Sm

(δĒ1 xH̄prio − Ēprio x δH̄1) · n̂dS

− 1
Ii

∮
Sm

(δĒ1 x δH̄pri − δĒpri x δH̄1) · n̂dS

+ 1
Ii

I∑
j=1

∫
Vwirej

Ēincj · J̄prj dV.

(10)

Conventional probe compensation measurements assume no interaction between the probe and
antenna or scatterer under test. Thus analysis of the conventional measurements assumes that
only the first surface integral, − 1

Ii

∮
Sm

(Ē1o x H̄prio − Ēprio x H̄1o) · n̂dS, needs to be retained.
However, since in this work we are interested in the nature of the probe array-target interactions,
we will study further the remaining terms in Equation (10).

We apply the Lorentz reciprocity theorem to the second, third and fourth terms in Equation (10).
For the second term∮

Sm
(Ē1o x δH̄pri − δĒpri x H̄1o) · n̂dS =

∮
Sm+S∞(Ē1o x δH̄pri − δĒpri x H̄1o) · n̂dS

=
∫

V (δĒpri · J̄1o − Ē1o · δJ̄pri)dV

= −
I∑

j=1

∫
Vj

Ē1o · δJ̄prj dV,

where we have added the vanishing integral over an infinite spherical surface to satisfy the
reciprocity theorem and we note that J̄1o = 0̄ in the volume V since the probe array is absent in
this case. Also, δJ̄prj represents the perturbation in the current density on the jth array element
due to introduction of the (flat plate) target.

For the third term∮
Sm

(δĒ1 xH̄prio − Ēprio x δH̄1) · n̂dS =
∮

Sm+S′
∞

(δĒ1 xH̄prio − Ēprio x δH̄1) · n̂dS

=
∫

V ′ (Ēprio · δJ̄1 − δĒ1 · J̄prio)dV

=
∫

Vplate
Ēprio · δJ̄1dV,
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Figure 12: Alternate integration surfaces employed in the Lorentz reciprocity theorem.

where we have added the alternate infinite spherical surface, S
′
∞, enclosing the plate as shown in

Figure 12. Within the volume V
′ the current J̄prio = 0̄ yielding the third line of the equation.

Here δJ̄1 represents the perturbation in the free space plate currents excited by the plane wave
when the open circuit probe array is placed near the plate.

An alternate form for the third term results from using the original integration surfaces enclosing
the probe array elements. Here we find∮

Sm
(δĒ1 xH̄prio − Ēprio x δH̄1) · n̂dS =

∮
Sm+S∞(δĒ1 xH̄prio − Ēprio x δH̄1) · n̂dS

=
I∑

j=1

∫
Vj

(Ēprjo · δJ̄1 − δĒ1 · J̄prjo)dV

= −
I∑

j=1

∫
Vj

δĒ1 · J̄prjodV,

where we have observed that (1) Ēprio = 0̄ for each i everywhere within Vi except within the gap,
and (2) δJ̄1 = J̄1 − J̄1o = 0̄ in the gap since J̄1 = 0̄ due to the fact that all probe array elements
are open circuited and J̄1o = 0̄ due to the fact that the probe array is absent in this case.
Finally, for the fourth term∮

Sm
(δĒ1 x δH̄pri − δĒpri x δH̄1) · n̂dS =

∮
Sm+S∞(δĒ1 x δH̄pri − δĒpri x δH̄1) · n̂dS

=
I∑

j=1

∫
Vj

(δĒprj · δJ̄1 − δĒ1 · δJ̄prj )dV

=
I∑

j=1

∫
Vj

(Ēprj − Ēprjo) · (J̄1 − J̄1o)

−(Ē1 − Ē1o) · (J̄prj − J̄prjo)dV

=
I∑

j=1

∫
Vj

Ē1o · δJ̄prj dV,
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where we have used the field expansions given in Equations (8) and (9) and their related current
source equations. The last expression results from consideration of the eight terms in each volume
integral as follows:

• ∫
Vi

Ē1 · J̄pridV =
{

V pw
oci

Ii for driven element
0 otherwise

}
− ∫

Vi−Vgapi
Ēinci · J̄pridV ; Ē1 is the field

scattered by the plate with the array present and all elements are open circuited and so
Ē1 = −Ēinc(r̄), r̄ ⊂ Vwirei with Vwirei = Vi − Vgapi for each i . Also, J̄pri = 0̄ in each gap
except the driven element. V pw

oci
is the open circuit voltage induced in element i due to plane

wave excitation of the plate and open circuit probe array. This portion of the integral is
evaluated with the same approach used in the development of Equation (6);

• ∫
Vi

Ē1 · J̄priodV =
{

V pw
oci

Ioi for driven element
0 otherwise

}
− ∫

Vi−Vgapi
Ēinci · J̄priodV ; Again Ē1 =

¯−Ēinc(r̄), r̄ ⊂ Vwirei for each i except in the gap region and J̄prio = 0̄ in each gap except the
driven element. In this case, Ioidenotes the current source at element i when the probe array
is in free space. Again this portion of the integral is evaluated with the same approach used
in the development of Equation (6).

Using these results we find that

−
I∑

i=1

∫
Vi

Ē1·(J̄pri−J̄prio))dV =
I∑

i=1

∫
Vi−Vgapi

Ēinci ·(J̄pri−J̄prio)dV =
I∑

i=1

∫
Vi−Vgapi

Ēinci ·δJ̄pridV,

if we assume that Ioi = Ii.

• ∫
Vi

Ē1o · J̄pridV and
∫

Vi
Ē1o · J̄priodV must be evaluated directly since neither Ē1o , J̄pri nor

J̄prio vanish in Vi.
Again we find

I∑
i=1

∫
Vi

Ē1o · (J̄pri − J̄prio)dV =
I∑

i=1

∫
Vi

Ē1o · δJ̄pridV.

• ∫
Vi

Ēpri · J̄1dV = 0; Epri is the field excited by the source in the ith probe array element with
the plate present and so Ēpri = 0̄ in Vi for all i except in the gap region. Also J̄1 = 0̄ in each
gap since this is the current in the open circuit array elements with the plate present and a
plane wave excitation;

• ∫
Vi

Ēpri · J̄1odV = 0; Here J̄1o = 0̄ in each probe array element since the corresponding field
Ē1o is the scattering from the plate with the probe array absent;

• ∫
Vi

Ēprio · J̄1dV = 0; Ēprio is the field excited by the source in the ith probe array element with
the plate absent and so Ēprio = 0̄ in Vi for all i except in the gap region. Also J̄1 = 0̄ in each
gap since this is the current induced in the open circuit array elements with the plate present
and a plane wave excitation; and

• ∫
Vi

Ēprio · J̄1odV = 0; Again J̄1o = 0̄ in each probe array element since the corresponding field
Ē1o is the scattering from the plate with the probe array absent.
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Now from Equation (10) we can write for the observed open circuit voltage at probe terminal i as

V s
oci

= − 1
Ii

∮
Sm

((Ē1o + δĒ1) x(H̄prio + δH̄pri) − (Ēprio + δĒpri) x (H̄1o + δH̄1)) · n̂dS

+ 1
Ii

I∑
j=1

∫
Vwirej

Ēincj · J̄prj dV

= − 1
Ii

∮
Sm

(Ē1o x H̄prio − Ēprio x H̄1o) · n̂dS

+ 1
Ii

I∑
j=1

∫
Vj

Ē1o · δJ̄prj dV

+ 1
Ii

I∑
j=1

∫
Vj

δĒ1 · J̄prjodV

− 1
Ii

I∑
j=1

∫
Vj−Vgapj

Ēincj · δJ̄prj dV − 1
Ii

I∑
j=1

∫
Vj

Ē1o · δJ̄prj dV

+ 1
Ii

I∑
j=1

∫
Vwirej

Ēincj · J̄prj dV

= − 1
Ii

∮
Sm

(Ē1o x H̄prio − Ēprio x H̄1o) · n̂dS

+ 1
Ii

I∑
j=1

∫
Vj

δĒ1 · J̄prjodV + 1
Ii

I∑
j=1

∫
Vwirej

Ēincj · J̄prjodV,

(11)

since Vwirej = Vj − Vgapj .

Again we have assumed that Ii = Ioi or that the current source driving the ith probe array
element is the same when the probe array is in free space and when the array is in the presence of
the (flat plate) target. In the last equation we have applied the alternate representation for the
third term in Equation (10). We verify Equation (11) in the Appendix 2 by expansion of the
surface integral and back substitution.

Equation (11) expresses the value of the surface integral in terms of the measured open circuit
voltage and correction voltage terms. That is, rewriting Equation (11) we find

V s
oci

= − 1
Ii

∮
Sm

(Ē1o x H̄prio − Ēprio x H̄1o) · n̂dS + Vδ + Vinci + Vinc, (12)

where the correction terms are

Vδ = 1
Ii

I∑
j=1

∫
Vj

δĒ1 · J̄prjodV = Voltage induced by perturbed scattered field

Vinci = 1
Ii

∫
Vwirei

Ēinci · J̄priodV = Voltage correction in measurement probe

Vinc = 1
Ii

I∑
j=1,j �=i

∫
Vwirej

Ēincj · J̄prjodV = Voltage correction due to open circuit

probe array elements.

It is interesting to observe that the correction voltages are developed as reactions of the perturbed
scattered and incident fields with the free space probe array currents with the ith element driven.
These currents are shown in Figure 13. They differ little from the in-situ currents shown in Figure
11.
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Figure 13: Currents on the elements of a five element probe array with the array in free space (no
target present); the fourth array element is excited by a unit current source and the remaining
element are open circuited.

The correction voltage Vδ due to perturbations in the scattered field due to the presence of the
probe array is generally unknown since the field perturbations are unknown. Thus, this correction
voltage cannot be applied to the measured voltage and must be minimized. Alternatively, the
correction voltages Vinci and Vinc are known from measurements of the free space incident field
and measurements or computations of the free space current distributions on the probe array
elements. These correction voltages may be used to correct the measured open circuit voltage,
V s

oci
, to obtain a more accurate sample of the desired surface integral in Equation (12).

It is interesting to observe the relative magnitudes of these correction voltages for the problem
described earlier where the scattering from a surrogate flat plate is observed with the fourth
element of a five element probe array. The NEC4 numerical analysis of this problem provides the
following:

∣∣∣Vδ

∣∣∣2∣∣∣ 1
Ii

∮
Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS
∣∣∣2 =

∣∣∣ 1
Ii

I∑
j=1

∫
Vj

δĒ1 · J̄prjodV
∣∣∣2

∣∣∣ 1
Ii

∮
Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS
∣∣∣2 = 8.4·10−4 (−31dB),

∣∣∣Vinci

∣∣∣2∣∣∣ 1
Ii

∮
Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS
∣∣∣2 =

∣∣∣ 1
Ii

∫
Vwirei

Ēinci · J̄priodV
∣∣∣2∣∣∣ 1

Ii

∮
Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS
∣∣∣2 = 6.8 (8.3 dB), and

∣∣∣Vinc

∣∣∣2∣∣∣ 1
Ii

∮
Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS
∣∣∣2 =

∣∣∣ 1
Ii

I∑
j=1,j �=i

∫
Vwirej

Ēincj · J̄prjodV
∣∣∣2

∣∣∣ 1
Ii

∮
Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS
∣∣∣2 = 0.05 (−12.7 dB).

These numerical results indicate that

(a) the correction voltage, Vδ, due to perturbation of the scattered field by the probe array is
small. Recall that this voltage us unknown and so cannot be used as a correction to the measured
voltage. Thus, it is required that this voltage be small so that it can be neglected;
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(b) the correction voltage, Vinci , due to the reaction of the incident field on the wire currents of
the measurement element of the probe array is significant and must be used to correct the
measured voltage much as it would be if the element were in free space; and

(c) the correction voltage, Vinc, due to the reaction of the incident field on the wire elements of
the canceled elements of the probe array is small because of the canceled currents; potentially it is
possible to apply these correction voltages to the measured voltage.

This study of probe array compensation indicates that it is important to minimize the
perturbation in the scattered field due to the presence of the probe array since the perturbations
induce an error in the measured voltage in the probe array which cannot be corrected. However,
results of this admittedly small numerical study indicate that this perturbation error voltage is
small. This is in agreement with the results of Section 4.2.2 where we found little advantage in
the use of the in-situ mutual impedances to design the cancellation of the currents in the probe
array. Further, in this development of probe array compensation, we find that using the currents
designed with free space mutual impedances is required as the basis for determining correction
voltages to be applied to the probe array measurements.

5.3 Errors Due to the Measurement Process

The preceeding analysis assumes that probe array currents are perfectly canceled for purposes of
measuring the open circuit voltages representative of the integral of the near zone scattered field.
Perfect cancellation is difficult to achieve experimentally and the lack of perfect cancellation will
introduce additional errors in the measurements. In this section we analyze the imperfect
cancellation problem by introducing active loads at the probe array terminals with the objective
of estimating these additional errors under realistic conditions.

We return to the development in Section 5.1 where we defined the fields and sources for each case
required in the Lorentz reciprocity theorem. Here case 1 is revised such that the surrogate plate
and probe array are illuminated by a plane wave and the probe array elements have active loads
characterized by Thévenin equivalent circuits. The parameters of the ith Thévenin equivalent
circuit are its open circuit voltage, VT i , and equivalent series impedance, ZT i . This case is
illustrated in Figure 14 and is called Case 1a.

Similarly, case 2 is revised with the flat plate target excited by the probe array with each element
of the array driven by a Norton equivalent source. The parameters of the Norton equivalent
circuit at the ith probe array terminal are the current source with value INi and shunt admittance
YNi . This is Case 2a and is shown in Figure 15.

Here our analysis of probe compensation with the Lorentz reciprocity theorem begins with Equation
(4) given by ∮

Sm

(Ē1 x H̄2 − Ē2 x H̄1) · n̂dS =
I∑

i=1

∫
Vi

(Ē2i · J̄1i − Ē1i · J̄2i)dV.
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Figure 14: Case 1a: Target and probe array illuminated by a plane wave. The probe array elements
are loaded with Thévenin equivalent circuits.

y

x

Sources with Norton 
Equivalent Parameters

Figure 15: Case 2a: Target and probe array with each element of the probe array driven by a
Norton equivalent source.

In this case, we find that Ē2i(r̄) = 0̄, when r̄ ⊂ Vwireiand Ē1i(r̄) = −Ēinc(r̄), when r̄ ⊂ Vwirei .
Substituting these results gives

∮
Sm

(Ē1 x H̄2 − Ē2 x H̄1) · n̂dS =
I∑

i=1

∫
Vgapi

(Ē2i · J̄1i − Ē1i · J̄2i)dV +
I∑

j=1

∫
Vwirej

Ēincj · J̄2j dV. (13)

This result is similar to that which we developed in the basic analysis of Section 5.1. There we
evaluated the reaction terms,

∑I
j=1

∫
Vwirej

Ēincj · J̄2j dV, and found that only the self reaction on
the measurement element of the probe array was significant and the sum of the reactions on the
open circuit elements was relatively small. These terms can be found by computation based on
measurements of the incident electric field and the measurements or calculations of the currents on
the probe array dipole elements.

We focus now on the integrals involving the fields and currents in the gap region. As we saw in
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Section 5.1 we can express the electric field in the gap region as

Ēαi =
Vαi

δ
�̂i,

and the current density in the gap can be modeled as

J̄βi
=

⎧⎨⎩
Iβi
πa2 �̂i if current uniformly distributed,

Iβi
2πads

�̂i if current is confined to a skin depth, ds.

The parameters δ and a are as defined in Figure 10 and represent the dimension of the dipole gap
and the radius of the dipole, respectively. Also, α and β denote the case for application of the
Lorentz reciprocity theorem. It follows that∫

Vgapi

Ēαi · J̄βi
dV = VαiIβi

,

and
I∑

i=1

∫
Vgapi

(Ē2i · J̄1i − Ē1i · J̄2i)dV = V
T
2 I1 − V

T
1 I2, (14)

where the voltage and current column matrices are given by

V 1 = [V11V12 . . . V1I ]T

V 2 = [V21V22 . . . V2I ]T

I1 = [I11I12 . . . I1I ]T

I2 = [I21I22 . . . I2I ]T .

The notation [·]T denotes matrix transpose.

For case 2a, the voltages V2i can be found from the in-situ mutual admittance matrix for the
probe array and the Norton equivalent sources at each probe array terminal. For the probe array,
the in-situ admittance matrix relates the currents and voltages at each terminal as⎡⎢⎢⎢⎢⎢⎣

i1
i2
i3
i4
i5

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
y11 y12 y13 y14 y15
y21 y22 y23 y24 y25
y31 y32 y33 y34 y35
y41 y42 y43 y44 y45
y51 y52 y53 y54 y55

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
v1
v2
v3
v4
v5

⎤⎥⎥⎥⎥⎥⎦ ,

or
I2 = Y isV 2, (15)

where the in-situ admittance matrix of the probe array is given by

Y is =

⎡⎢⎢⎢⎢⎢⎣
y11 y12 y13 y14 y15
y21 y22 y23 y24 y25
y31 y32 y33 y34 y35
y41 y42 y43 y44 y45
y51 y52 y53 y54 y55

⎤⎥⎥⎥⎥⎥⎦ .
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Figure 16: Norton equivalent circuit for probe array terminal i.

The Norton equivalent circuit at terminal i is shown in Figure 16. It follows from this circuit that

ii = INi − YNivi,

or
I2 = IN − Y N V 2.

Here the Norton admittance matrix is given by

Y N =

⎡⎢⎢⎢⎢⎢⎣
YN1 0 0 0 0

0 YN2 0 0 0
0 0 YN3 0 0
0 0 0 YN4 0
0 0 0 0 YN5

⎤⎥⎥⎥⎥⎥⎦ ,

and IN = [IN1IN2 . . . INI
]T .

Applying this to Equation (15) gives

IN =
[
Y is + Y N

]
V 2,

where we have equated the terminal voltages to those required in Equation (14), i.e.
vi, ≡ V2i i = 1, 2, . . . , 5. Thus we can solve for V 2 as

V 2 =
[
Y is + Y N

]−1
IN . (16)

From Figure 16, the current I2i ≡ ii = INi − YNiV2i . Then

I2 = IN − Y N V 2. (17)

Turning now to Case 1a, we consider the Thévenin equivalent circuit shown in Figure 17 at each
terminal of the probe array.
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Figure 17: Thévenin equivalent circuit for probe array teminal i.

Previously [SCH, Equation (3)] we found that the plane wave excited probe array could be
characterized as ⎡⎢⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
VP1

VP2

VP3

VP4

VP5

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎣
z11 z12 z13 z14 z15
z21 z22 z23 z24 z25
z31 z32 z33 z34 z35
z41 z42 z43 z44 z45
z51 z52 z53 z54 z55

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
i1
i2
i3
i4
i5

⎤⎥⎥⎥⎥⎥⎦ ,

or
V 1 = V P + ZisI1, (18)

where the voltages VPi are the open circuit voltages at the probe array terminals excited by the
plane wave with the (flat plate) target present and V P = [VP1VP2 . . . VP5 ]T . The impedance
matrix, Zis = Y

−1
is , with elements zi,j , is the in-situ impedance matrix characterizing the array in

the presence of the (flat plate) target. With the Thévenin load at each terminal we find that

vi = VTi − ZTiii,

or
V 1 = V T − ZT I1, (19)

where

ZT =

⎡⎢⎢⎢⎢⎢⎣
ZT1 0 0 0 0
0 ZT2 0 0 0
0 0 ZT3 0 0
0 0 0 ZT4 0
0 0 0 0 ZT5

⎤⎥⎥⎥⎥⎥⎦ ,

and V T = [VT1VT2 . . . VT5 ]T .
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Applying this to Equation (18) gives⎡⎢⎢⎢⎢⎢⎣
VT1 − VP1

VT2 − VP2

VT3 − VP3

VT4 − VP4

VT5 − VP5

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
z11 + ZT1 z12 z13 z14 z15

z21 z22 + ZT2 z23 z24 z25
z31 z32 z33 + ZT3 z34 z35
z41 z42 z43 z44 + ZT4 z45
z51 z52 z53 z54 z55 + ZT5

⎤⎥⎥⎥⎥⎥⎦ I1.

This enables us to find the terminal currents ii ≡ I1i i = 1, 2, . . . , 5, which are required in
Equation (14). That is

I1 =
[
Zis + ZT

]−1 [
V T − V P

]
. (20)

We can find the probe array terminal voltages for this case from the Thévenin equivalent circuit
using Equations (19) and (20).

Using Equations (16) and (17) for case 2a we find for the gap integrals in Equation (14)

I∑
i=1

∫
Vgapi

(Ē2i · J̄1i − Ē1i · J̄2i)dV = V
T
2 I1 − V

T
1 I2

= I
T
N

[
Y is + Y N

]−1
I1 − V

T
1 (IN − Y N V 2)

= I
T
N

[
Y is + Y N

]−1
I1 − V

T
1 (IN − Y N

[
Y is + Y N

]−1
IN )

= I
T
N

{[
Y is + Y N

]−1
I1 − V 1 +

[
Y is + Y N

]−1
Y N V 1

}
= I

T
N

{[
Y is + Y N

]−1
I1 − (I −

[
Y is + Y N

]−1
Y N )V 1

}
.

Now we examine the case 1a relations given by Equations (18) and (20) to find

I∑
i=1

∫
Vgapi

(Ē2i · J̄1i − Ē1i · J̄2i)dV = I
T
N

{[
Y is + Y N

]−1
I1 − (I −

[
Y is + Y N

]−1
Y N )(V P + ZisI1)

}
= −I

T
N (I −

[
Y is + Y N

]−1
Y N )V P

+I
T
N

{[
Y is + Y N

]−1 − (I −
[
Y is + Y N

]−1
Y N )Zis

}
I1

= −I
T
N (I −

[
Y is + Y N

]−1
Y N )V P

+I
T
N

{[
Y is + Y N

]−1 − (I −
[
Y is + Y N

]−1
Y N )Zis

}
·
[
Zis + ZT

]−1 [
V T − V P

]
= Vc,

where
Vc = −I

T
N (I −

[
Y is + Y N

]−1
Y N )V P .

This follows from consideration of the factor in braces in the second and third terms3 given by

B ≡
[
Y is + Y N

]−1 − (I −
[
Y is + Y N

]−1
Y N )Zis = 0.
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The fact that B vanishes follows from the following development:[
Y is + Y N

]
B = I − (

[
Y is + Y N

]
− Y N )Zis

= I − Y isZis

= 0 and it follows that
B = 0 when

[
Y is + Y N

]
�= 0.

Note the special case when Y N = 0 gives

I∑
i=1

∫
Vgapi

(Ē2i · J̄1i − Ē1i · J̄2i)dV = Vc = −I
T
N V P .

As we have seen previously in this special case, setting the ith current source in case 2a to 1
Ampere (i.e. INI

= 1Amp) and the remaining current sources to zero, gives −I
T
N V P = −VPi , the

required plane wave induced open circuit voltage at probe array port i.

Returning to the general case with active Thévenin loads and Norton sources, we require that the
case 2a current sources be such that only one probe array element has unit terminal currents. In
this case

I2 = Îi = IN − Y N V 2 = IN − Y N

[
Y is + Y N

]−1
IN = (I − Y N

[
Y is + Y N

]−1
)IN , (21)

where Îi = [01, 02, . . . 1i, . . . , 0I ]T is a unit vector on the ith probe array dimension. Then the
Norton equivalent sources must be

IN = (I − Y N

[
Y is + Y N

]−1
)−1Îi

and the response due to the correctly calibrated probe array becomes

Vc = −I
T
N (I −

[
Y is + Y N

]−1
Y N )V P

= −ÎT
i (I −

[
Y is + Y N

]−1
Y N )−T (I −

[
Y is + Y N

]−1
Y N )V P

= −ÎT
i V P = −VPi .

In this expression [·]−T denotes the transpose of the matrix inverse. Since the admittance matrices
are symmetric, we will keep in mind that the transpose of the inverse is equal to the matrix inverse.
Thus, we find from this expression that when the probe array is calibrated in-situ, the measured
voltage is the plane wave induced voltage at the ith terminal of the probe array.

However, we have observed that it is far more efficient to calibrate the probe array when it is in
free space, away from the target to be measured. Here only one set of mutual admittances for the
probe array must be measured and used to calibrate the probe array for every position and
orientation of the array with respect to the target. Using the free space admittances of the array,
Y fs, the current sources must be

I
fs
N = (I − Y N

[
Y fs + Y N

]−1
)−1Îi,
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where we have assumed that the Norton terminal admittances for the free space probe array are
the same as those for the in-situ array. Here the response due to the free space calibrated probe
array is

V fs
c = −ÎT

i (I −
[
Y fs + Y N

]−1
Y N )−T (I −

[
Y is + Y N

]−1
Y N )V P . (22)

Note that when the probe array is calibrated with high impedance sources (Y N = 0) then V fs
c =

−ÎT
i V P = −VPi independent of whether the array is calibrated in free space or in the presence of

the probe array.

It is interesting to compare the probe array element open circuit voltages when the array is
calibrated in free space with the voltages when the array is calibrated with the in-situ
admittances. Here we will compare the difference between these voltages with the required
surface integral in a quantity given by

10 log
[ ∣∣∣V fs

c − Vc

∣∣∣2∣∣∣ 1
Ii

∮
Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS
∣∣∣2

]
(dB).

For the sample problem consisting of the surrogate flate plate and a five element probe array
considered here, this measure of calibration error varies from −12.5 dB for the array element
closest to the plate to −17.9 dB for the element farthest from the plate. For these results we have
assumed that the Norton admittance at each element is matched to the free space admittance of
the probe array element. That is, YNi = y∗

i,i where y∗
i,i is the complex conjugate of the admittance

of the ith array element when the array is located in free space with no target present.

These results indicate that when the probe array elements are close to the test target, errors
increase in the measured open circuit voltages as a measure of the surface integral. The element
closest to the flat plate target introduces an error of −12.5 dB and that closest element is located
within 3/4 wavelength from the edge of the plate. See Figure 2. Also, the element farthest from
the plate is approximately 23/4 wavelengths from the plate and introduces an error of −17.9 dB.
Thus it appears from this limited numerical study that in-situ calibration of the probe array may
be necessary when elements of the probe array come within two wavelengths of the target.

Experimentally it is difficult to calibrate the probe array such that the terminal currents are
perfectly canceled. To investigate the error in the measured voltage Vc due to imperfect
cancellation of the terminal currents we return to Equation (21) with

I2 = Îi + E = (I − Y N

[
Y is + Y N

]−1
)IN ,

where E = [e1, e2, . . . ei, . . . , eI ]T represents the residual error or noise at each array terminal
when the probe array is experimentally calibrated. It follows that the Norton equivalent sources
with noise are

IN = (I − Y N

[
Y is + Y N

]−1
)−1(Îi + E)
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and the errored response due to the correctly calibrated probe array becomes

Vce = −I
T
N (I −

[
Y is + Y N

]−1
Y N )V P

= −(ÎT
i + E

T )(I −
[
Y is + Y N

]−1
Y N )−T (I −

[
Y is + Y N

]−1
Y N )V P

= −VPi − E
T

V P

= Vc − E
T

V P .

The error or noise power in the measurement of Vc is given by

Nc = E

{∣∣∣ET
V P

∣∣∣2}
= E

⎧⎨⎩
I∑

i=1

I∑
j=1

eiVPie
∗
jV ∗

Pj

⎫⎬⎭
=

I∑
i=1

I∑
j=1

VPiV
∗

Pj
E

{
eie

∗
j

}
=

I∑
i=1

I∑
j=1

VPiV
∗

Pj
Eoδi,j

= Eo

∣∣VP

∣∣2,

where E {·} denotes the ensemble average with respect to the random error or noise samples and
we have assumed that the residual noise samples at each array terminal are independent with zero
mean and common variance given by Eo.

With these results we can find the signal to error noise ratio of the in-situ calibrated probe array
output as among

SNRcn =
∣∣VPi

∣∣2
Nc

=
∣∣VPi

∣∣2
Eo

∣∣VP

∣∣2 = SNRi. (23)

Here SNRi = 1/Eo denotes the signal to noise of the probe array terminal currents, assuming that
the measurement dipole is calibrated with a one Ampere source and the last result follows from
the fact that

∣∣VP

∣∣2 =
∣∣VPi

∣∣2 when the probe array is calibrated with the target present.

Equation (23) indicates that the signal to error noise ratio of the measured open circuit voltage
equals the signal to error noise of the calibration current in the measurement element of the probe
array when the array is calibrated in-situ.

In the case when the probe array is calibrated with free space admittances, we find that the Norton
equivalent current sources are

IN = (I − Y N

[
Y fs + Y N

]−1
)−1(Îi + E),

and
Vcn = −I

T
N (I −

[
Y is + Y N

]−1
Y N )V P

= −(ÎT
i + E

T )(I −
[
Y fs + Y N

]−1
Y N )−T (I −

[
Y is + Y N

]−1
Y N )V P

= V fs
c + E

T (I −
[
Y fs + Y N

]−1
Y N )−T (I −

[
Y is + Y N

]−1
Y N )V P .
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In this case, the signal to error noise of the free space calibrated probe array is

SNRcn =
∣∣VPi

∣∣2

Eo

∣∣∣∣∣(I−
[

Y fs+Y N

]−1
Y N )−T (I−

[
Y is+Y N

]−1
Y N )V P

∣∣∣∣∣
2

= SNRi

∣∣VPi

∣∣2∣∣∣∣∣(I−
[

Y fs+Y N

]−1
Y N )−T (I−

[
Y is+Y N

]−1
Y N )V P

∣∣∣∣∣
2 .

(24)

Thus the signal to error noise of the measured open circuit voltage is degraded when the probe
array is calibrated in free space. This SNR degradation is given by the factor

δSNRcn
=

∣∣VPi

∣∣2∣∣∣∣∣(I −
[
Y fs + Y N

]−1
Y N )−T (I −

[
Y is + Y N

]−1
Y N )V P

∣∣∣∣∣
2 .

For the problem described earlier consising of the surrogate flat plate and the five element probe
array, this signal to error noise degradation varies from -5.3 dB to -13.1 dB among the probe
elements. Thus it appears that there can be significant degradation in the accuracy with which the
open circuit voltages are measured when there is failure to achieve open circuit conditions in the
array elements due to free space calibration of the probe array.

6 Conclusions and Recommendations

In this work we analyzed technical problems associated with the use of an array of probes to
measure simultaneously the near fields scattered by a target. The measurements are made with
the objective of estimating the far zone bistatic scattering from the target using established
electromagnetic signal processing techniques. An array of probes is proposed for the purpose of
speeding the collection of required near field samples. However, the array increases the potential
for electromagnetic coupling between the array and the target, thereby distorting the fields to be
measured. Further, mutual coupling between array elements in the presence of the scattering
body may change the near field measured at each probe array element when compared to that
measured by an isolated probe.

To minimize the array-target coupling, we proposed that the array employ active loading at each
array element to minimize currents on the array elements. Proper active loading requires
knowledge of the mutual impedances between array elements, which, in general, depend on the
location and orientation of the array with respect to the scattering target. To assess the
requirement for measurements of in-situ mutual impedances, we considered a probe array with
strong interaction between the target and the array. Specifically we considered a surrogate flat
plate with a five element dipole probe array located near the plate and in the direction of the
specular, plane wave induced scattering from the plate. We investigated the perturbations on the
plane wave induced currents on the plate due to the presence of the loaded, five element dipole
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probe array. Numerical results using NEC4 indicated that active loading of the probe array is
required to minimize the perturbations in the target currents. However, we found in this case that
there is little advantage to using in-situ mutual impedances in determining the active loads. If
this result is generalized, it could be significant in reducing the time required for near field
measurements since the probe array mutual impedances need not be measured at each probe
array position and orientation with respect to the scattering body. Instead, the probe array
mutual impedances need to be measured only once when the probe array is in free space and
these mutual impedances can be used to determine the active loads on the array for all positions
of the array with respect to the scattering body.

However, this is not the complete story. The coupling between the array and the target under test
can introduce errors in the measured voltages at the probe array elements. These errors are due
to (a) the assumption that there is no target-array coupling in interpreting the measurements, (b)
calibration of the probe array in free space where there is no interaction with the target and (c)
failure to achieve adequate current cancellation in the probe array elements during measurements
of the open circuit voltages at the array elements. To address these additional sources of error, we
provided a probe array compensation theory based on the Lorentz reciprocity theorem. The
theory permits expression of the open circuit probe array voltages in terms of (a) the required
surface integral involving the near fields scattered by the target and the near fields radiated by
the probe array with no target-array interaction and (b) correction voltages due to the presence of
the array elements and the target-array interactions. The correction voltages are of two types.
One type is due to perturbations in the target scattered field because of the presence of the probe
array. This correction voltage is unknown and not available for compensation of the measured
voltage at the probe array. Another type of correction voltage is associated with plane wave
induced currents on the probe array when located in free space. These correction voltages can be
developed as part of the probe array calibration and measurements of the incident plane wave. A
numerical study of the surrogate flat plate-probe array configuration indicated that (a) corrections
to the measured probe array voltages due to perturbations in the scattered field from the presence
of the probe array are small, even when cancellation of the probe array currents is determined
using the free space mutual impedances of the array, and (b) corrections due to the presence of
the other elements of the probe array can be important but the corrections can be determined in
terms of the free space current distributions on the array as part of the array calibration process.

In addition, errors in the probe array voltage measurements are introduced by the use of
realizable sources in the probe array during calibration and realizable loads during scattering
measurements. When the array is calibrated in free space and used to cancel the array currents
during near field measurements, errors in the open circuit voltages as large as -12.5 dB were
observed for the plate-array problem analyzed here. These measurement errors are most
signficant for the array elements that are close to the target under test. Experimental errors in
achieving probe array current cancellation cause errors in the voltage measurements as well. In
fact, these errors are increased due to calibration of the probe array in free space by as much as
13 dB for the plate-array problem considered here.

These conclusions are potentially significant since they seem to indicate that free space mutual
impedances of the probe array are sufficient for the simultaneous measurement of near scattered
field samples with small error so long as elements of the array are not too close to the target
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under test. The effective use of free space mutual impedances obviates the need for in-situ
impedance measurements at each location and orientation of the probe array with respect to the
scattering body which would slow the overall measurement process. It would seem that a hybrid
measurement process should be considered. For probe array locations and orientations with
respect to the target when there is likely to be large coupling, in-situ mutual impedances would
be required, slowing the measurement process. When little coupling is anticipated, the free space
mutual impedances of the array can be used, thereby speeding the measurement process.

However, these conclusions are based on a limited numerical investigation of one probe array
structure and target configuration. This suggests further study of (a) the precision with which
probe array current cancellation is experimentally achievable, (b) additional configurations of
dipole probe arrays with respect to a larger selection of scattering targets, and (b) other elements
for the probe array such as aperture or microstrip elements as might be used in practical
measurement arrays.
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8 Appendices

8.1 Appendix 1 - Verification of Equation (7)

Here we validate Equation (7) which gives the open circuited scattered voltage. Equation (7) is

V s
oci

= − 1
Ii

∮
Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS +
1
Ii

I∑
j=1

∫
Vwirej

Ēincj · J̄prj dV.

Using the reciprocity theorem to expand the surface integral we find∮
Sm

(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS =
∮

Sm+S∞(Ē1 xH̄pri − Ēpri x H̄1) · n̂dS

=
I∑

j=1

∫
Vj

(Ēprj · J̄1 − Ē1 · J̄prj )dV

=
I∑

j=1

∫
Vgapj

Ēprj · J̄1dV −
I∑

j=1

∫
Vwirej

Ē1 · J̄prj dV − ∫
Vgapi

Ē1 · J̄pridV

= −
I∑

j=1

∫
Vwirej

Ē1 · J̄prj dV − ∫
Vgapi

Ē1 · J̄pridV.

In the third line we have noted that Ēprj (r̄) = 0̄, r̄ ⊂ Vwirej j = 1, 2, . . . , I. and J̄prj (r̄) = 0̄, r̄ ⊂
Vgapj ∀ j �= i. Also, in the fourth line we have used J̄1(r̄) = 0̄, r̄ ⊂ Vgapj , j = 1, 2, . . . , I. Then we
can write, using the fact that Ē1(r̄) + Ēinc(r̄) = 0̄, r̄ ⊂ Vwire, that

V s
oci

= 1
Ii

I∑
j=1

∫
Vwirej

Ē1 · J̄prj dV + 1
Ii

∫
Vgapi

Ē1 · J̄pridV + 1
Ii

∑I
j=1

∫
Vwirej

Ēincj · J̄prj dV

= 1
Ii

∫
Vgapi

Ē1 · J̄pridV,

which validates the development.
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8.2 Appendix 2 - Verification of Equation (11)

In this appendix, we confirm the result given in Equation (11) by expansion of the surface integral
using the Lorentz reciprocity theorem. From Equation (11)

V s
oci

= − 1
Ii

∮
Sm

(Ē1o x H̄prio − Ēprio x H̄1o) · n̂dS

+ 1
Ii

I∑
j=1

∫
Vj

δĒ1 · J̄prjodV + 1
Ii

I∑
j=1

∫
Vwirej

Ēincj · J̄prjodV

= − 1
Ii

I∑
j=1

∫
Vj

(Ēprjo · J̄1o − Ē1o · J̄prjo)dV

+ 1
Ii

I∑
j=1

∫
Vj

δĒ1 · J̄prjodV + 1
Ii

I∑
j=1

∫
Vwirej

Ēincj · J̄prjodV

= 1
Ii

I∑
j=1

∫
Vj

Ē1o · J̄prjodV

+ 1
Ii

I∑
j=1

∫
Vj

δĒ1 · J̄prjodV + 1
Ii

I∑
j=1

∫
Vwirej

Ēincj · J̄prjodV

= 1
Ii

I∑
j=1

∫
Vj

Ē1 · J̄prjodV + 1
Ii

I∑
j=1

∫
Vwirej

Ēincj · J̄prjodV

= 1
Ii

I∑
j=1

∫
Vgapj

Ē1 · J̄prjodV

= 1
Ii

∫
Vgapi

Ē1 · J̄priodV

= V s
oci

,

since we have assumed that Ii = Iio .
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