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1. DG discetization of the 3D Euler equations on hybrid meshes 
 

In this section we present the discontinuous Galerkin (DG) discretization of the three 
dimensional Euler and Nervier-Stokes equations for hybrid-type meshes. Without 
loss of generality the general finite element discretization framework is presented for 
hexahedral type meshes since all computations of the DG method are performed at 
the computational domain on the standard cubic element and transferred back to the 
physical domain elements (tetrahedras, prisms, pyramids, or hexahedras) using 
collapsed coordinate transformations. This approach greatly facilitates 
implementation of hybrid meshes where neighboring element communication is 
performed through the numerical flux defined on the element faces. The numerical 
solution has been validated for flow over a cylinder and for flow over a wing with 
Joukowsky airfoil section.  

 

 

1.1 INTRODUCTION 

 
Recent developments of high order numerical methods for unstructured meshes 

appeared in the past few years offer significant advantages for the simulation of complex 
flows and turbulence in non trivial geometries of interest to practical applications. The 
discontinuous Galerkin (DG) [1 – 2], the spectral volume (SV) [3], and the spectral 
difference [4 – 5] methods have shown promise for high resolution computation of 
complex flows because they have a compact stencil, and retain the design order of 
accuracy even for meshes of moderate quality that often result from grid generation over 
complex configurations. The potential application of these methods for high resolution 
simulations of practical flow problems can be further enhanced with the use of mixed–
type meshes and solution adaptive schemes. Mixed–type meshes facilitate the resolution 
of near wall regions, which can be represented with regular structured-type meshes 
(quadrilateral in two dimensions or tetrahedral/prismatic meshes in three dimensions), 
and allow extension to the far field with sparser triangular or tetrahedral type meshes. 
Furthermore, when the near wall flow is discretized with a structured-like hexahedral 
mesh, application of implicit time marching methods is more straightforward, because 
methods such as the LU-SGS scheme [6], can be used as preconditioners of the large 
linear system of equations that results for implicit time marching of the DG method.  

Solution adaptive refinement strategies of h–, p–, or h/p–type can reduce the 
computing time for high resolution simulations of complex flows. However, application 
of h–type adaptive refinement strategies, even if the DG method allows use of hanging 
nodes, is not straightforward for complex flows, because it requires re-meshing and 
becomes quite difficult for time dependent flows with moving flow features, as it is 
necessary to remove cells from regions where shear layers or vortices have passed. In 
contrast, application of p– type adaptive strategies is straightforward for DG methods 
when hierarchical base functions are used as expansion polynomials. In addition, use of 
p– type adaptively is straightforward for time dependent flows, such as vortical flows for 
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example, because the order of accuracy can be selectively increased in regions of high 
vorticity gradients. Application of p-type adaptivity with the DG method will be 
demonstrated in a subsequent section. To further enhance accuracy curved boundaries or 
the simple procedure of Ref. [7] may be implemented. 

In this work the DG finite element method is applied using the h/p finite element 
framework of Ref. [8]. Modal, hierarchical bases are constructed in the computational 
space over a unit square/cube using tensor products and transformed to the physical space 
of a quadrilateral/ hexahedra or triangle/tetrahedra using a collapsed coordinate system. 
The modal bases offer an advantage for mixed element implementation compared with 
nodal bases used in Ref. [9 – 10]. Numerical evaluations of line and volume integrals, 
required in the implementation of the DG method, are carried out in the computational 
domain. Use of the resulting methodology for mixed-type unstructured meshes is 
straightforward. Furthermore adaptivity of the solution based on computed flow features 
is possible. In the computational examples, simple p– type adaptive schemes based on the 
gradient of the computed density field are demonstrated. In the region of high gradients 
the order of the polynomial expansion is raised to a preset desired level and then 
progressively drops to the lowest order of accuracy that is used for the computation of the 
free stream where no gradients exist. 

The main problem with the application of the DG method for high resolution 
computation of compressible flow with discontinuities in mixed type meshes is lack of a 
unified limiting approach. Furthermore, limiting approaches for DG discretizations 
presented in the literature [11 – 12] do not have a straight forward extension for three 
dimensional flows. Our new unified limiting approach developed recently for two 
dimensional flows is suitable for mixed type meshes and application of p-type 
refinement, it can be extended to three dimensions, and it smears discontinuities over a 
small range of cells because it allows more accurate detection of sharp variations of the 
numerical solution. Application of limiters is not necessary for the computation of 
dynamic stall. However, for the sake of generality our new limiting approach, which is 
applicable because all calculations in the DG formulation are performed in the 
computational domain for the Euler and NS equations. 

 
 

1.2 GOVERNING EQUATIONS 
 
The motion of a compressible fluid without any viscous and thermal conduction effects, 
is described by the system of Euler equations: 
 

( ) ( ) ( ) ( , ) ( , ) ( , )v v v
t x y z x y z∂ + ∂ + ∂ + ∂ = ∂ ∇ + ∂ ∇ + ∂ ∇ ,q f q g q h q f q q g q q h q q  (1) 

 
The conservative variable vector is  and the components of the inviscid 
flux vector are , where, 

{ , , }TE=q vρ ρ
2( ) { , , , , ( ) }Tu u p u uw E p u= + +f q ρ ρ ρ υ ρ p  is the pressure, 

E  is the total energy, and ( ,u w= ,v )υ  are the velocity components. Discretization of the 
Euler and NS, written in short as conservation law 0t + ∇ ⋅ =q F , with the DG method is 
shown next. 
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1.2.1 DG IMPLEMENTATION 
 
A tessellation of an arbitrary domain Ω, of the flow field, into elements Ωe is considered 

, and defines the computational mesh. The tessellation may be composed of 

either straight sided or curvilinear general shaped elements. 
ee

Ω = ∪Ω

The physical field is approximated using a polynomial expansion  over 
each element, resulting in a discontinuous approximation across the inter element 
boundaries. Substitution of the  in Eq. (1) results in an error of approximation, or 
residual, of the flow field over the elemental region. 

( , )e tq x�

( , )e tq x�

The discontinuous Galerkin method minimizes the approximation error in the 
computational domain in the weighted residual sense and permits to write the residual for 
every element as: 

( ) ( ) 0eW d W F d W F dSe e e e e e e et

e e e

∂
Ω − ∇ ⋅ Ω + ⋅ =

∂
Ω Ω ∂Ω
∫ ∫ ∫

q
q q

�
� � nv  (3) 

where  denotes the weight function,  the flux vector and  the outward normal 

vector at the element boundary, and 

We F en

( )F e e⋅q n�  is replaced by the numerical flux . 

Any consistent numerical flux is suitable, such as the Roe flux, the HLL flux, or the 
Osher flux. The most computationally efficient flux is the local Lax – Friedrichs (LF) 
flux, leading to the following definition of the numerical flux: 

ˆ ( )H eq�

 

( )1 1ˆ ( ) ( ) ( )
2 2

H F F ke e e e e e
− + +⎡ ⎤= + ⋅ − −⎢ ⎥⎣ ⎦

q q q n q� � � � −q�    (4) 

where  and , denotes the solution at the interior and the exterior of the element 

respectively, and  the spectral radius of the flux Jacobian for the system of the Euler 
equations. Alternatively, the Roe flux is obtained when the spectral radius k  is replaced 
by 

e
−q� e

+q�

k

| |R LΛ , where R and L are the right and left eigenvector matrices and Λ is the 
eigenvalue matrix of the flux Jacobian. 
 

The local approximation of the solution is constructed by a linear combination of 
elemental basis functions : ( )e

kb x
 

ˆ( , ) ( ) ( ),k et t be e
k

= k∑q x q x�     (4) 

where the coefficient vector  denotes the degrees of freedom ( ) of the 
numerical solution in every element to be advanced in time. Substituting Eq. (4) in Eq. 
(3) obtain: 

ˆ ( )k
eq t DOF
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l
ˆ ( )

( ) ( ) 0
k te eW b d W F d W HdSe k e e e e et

e e e

∂
Ω − ∇ ⋅ Ω + =

∂
Ω Ω ∂Ω
∫ ∫ ∫

q
x q� v               (5) 

As a Galerkin procedure implies the weighting function W  is the same with the 

elemental expansion function , resulting in a system of 

 equations for the system of Euler equations, where d 
is the dimension of the problem. 

e

( )ebk x

{( 2) } {( 2) }d DOF d DO+ × × + × F

Gauss numerical integration is employed for the computation of the volume and 
the line integral appearing in Eq. (5). The mixed type element meshes do not pose any 
problem to the computation of the volume integral over quadrilaterals or triangles, as the 
computation is practically the same by storing at every quadrature point the value of the 
basis functions in the computational space (both for quadrilaterals and triangles) and the 
value of the Jacobian in every element. Moreover, by looping over the edges it is feasible 
to compute the line integral for every element no matter of the type of its neighbouring 
elements. Time marching of the solution is performed with an explicit or implicit Runge-
Kutta method. 
 
1.3 DG discretization of the 3D Nervier-Stokes equations 
 The compressible Navier-Stokes equation in conservation law form are: 

inv vis( ) ( , ) 0
t

∂
+ ∇ ⋅ + ∇ ⋅ ∇ =

∂
U F U F U U  

where for example 

vis, x

,

0

4 2( , ) ,
3 3

xx

xy xx

xz

xx xy xz x

τ
u υ wτ τ μ μ
x y z

τ
uτ υτ wτ κT

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎛ ⎞∂ ∂ ∂⎢ ⎥∇ = = − +⎜ ⎟⎢ ⎥ ∂ ∂ ∂⎝ ⎠⎢ ⎥
⎢ ⎥

+ + −⎢ ⎥⎣ ⎦

F U U  

where the viscous terms were written as function of the state variable  and the 
gradient  of the state variables 

U
∇U vis ( , )∇ ⋅ ∇F U U  as required for the DG 

implementation. 

 The DG method is applied for weak form of the governing equations using 
the LDG approach for the system of equations 
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1 2 3 4

1 2 3 4

inv vis 1 2 3 4

( , , , )
, , ,

( ) ( , , , , ) 0

G
u υ w T

t

∇ =
∇ = ∇ = ∇ = ∇ =

∂
+ ∇ ⋅ + ∇ ⋅ =

∂

U q q q q
q q q q

U F U F U q q q q

 

The weak for is 

inv inv

vis vis

( ) ( )

( , ) ( , ) 0

v d v d v ds
t

v d v

Ω Ω ∂Ω

Ω ∂Ω

∂
Ω − ∇ ⋅ Ω + ⋅

∂

∇ ⋅ ∇ Ω + ∇ ⋅ =

∫ ∫ ∫
∫ ∫

U F U F U n

F U U F U U nds

v
v

 

 

and each of the gradients is computed using DG discretization. For example the weak 
form for a generic gradient term evaluation is: 

� 0hv d vu ds vud
Ω ∂Ω Ω

Ω − ∇ Ω+ =∫ ∫ ∫q v  

where each of the gradients is computed with the LDG approach. Preliminary results 
from viscous flow computations are shown bellow. 

The computation of the low speed (incompressible) boundary layer flow with zero 
pressure gradient was considered as validation case. A three dimensional hexahedral 
element mesh was used for this computation. 

 
Computed Mach number distribution for low speed boundary layer 
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The computed velocity profiles are shown for a two dimensional slice at Re = 500 
are shown bellow  

 

Computed velocity profiles at Re = 500  

 
Comparison of the P1 computed solution with the exact Blasius solution for the zero 
pressure gradient laminar boundary layer. 

1.4 RESULTS 
Additional results from the DG method for the Euler equations are presented for subsonic 
and supersonic flows using hexahedral and tetrahedral type meshes. The next step is 
careful validation of the computed results and verification that the design order-of-

   7
 

Distribution A:  Approved for public release; distribution is unlimited.



convergence is achieved, for example P3 polynomial expansions yield a 4th order 
accurate solution. Towards this end the code will be parallelized using domain 
decomposition techniques and MPI so that fine mesh solutions become possible in 
reasonable computational time. The parallelization approach, which is the second task of 
the time table, will be presented in the next report. 
 The flow over a Joukowsky airfoil is computed. The airfoil shape in the  
plane is obtained through the map 

z x iy= +
1/z ζ ζ= +  of the circle in the  plane with 

center at ( and radius

ζ ξ iη= +

, ) ( 0.08,0.08)x ya a = − 2 2(1 )x yR a a= − + . The computed flow with 
P1 polynomial bases (second order accuracy) for an infinite in the spanwise direction 
wing with Joukowsky airfoil section at incidence 0 deg.α =  and for  is shown 
in Fig. 1.1. A hexahedral type mesh was used and one layer of cells in the spanwise 
direction was sufficient and high speed was selected to obtain faster convergence to a 
steady state. The computed surface pressure coefficient distribution is compared with the 
analytic result in Fig. 1.2. There are discrepancies only at the leading edge where 
compressibility effects are more significant. The flow was computed with a tetrahedral 
type mesh. For this computation two layers of tetrahedras are needed and the mesh is 
shown in Fig. 1.3. The computed flow field at incidence 

0.5M∞ =

0 deg.α =  and for  is 
shown in Fig. 1.4. Other type of elements, such as triangular prisms and pyramids can be 
used for the computations. However, currently the option of using hybrid type meshes is 
implemented in the code and results for hybrid meshes will be shown in the next report. 
Hybrid meshes for wing flows could be hexahedra/prismatic (where the wind surface is 
discretized with a quadrilateral mesh) or prismatic/tetrahedral (where the wind surface is 
discretized with a triangular mesh). For the hexahedra/prismatic the far field is 
represented with triangular prisms aligned along the spanwise direction and for the 
prismatic/tetrahedral mesh the far field is represented with tetrahedras. 

0.3M∞ =

 The computed flow field at supersonic speed 1.0M∞ =  and incidence  
is shown in Fig. 1.5. This computation was obtained for a piecewise constant P0 
expansion basis (1

0 deg.α =

st order accurate solution) because slope limiters have not incorporated 
as yet to allow 2nd order accurate numerical solutions with discontinuities. Recently, a 
new limiting approach was developed and thoroughly validated for mixed-type of 
meshes. Our new limiting approach is straightforward to extend into three dimensions, in 
contrast to other approach presented so far in the literature, and will be implemented in 
the 3D code. Results from the 3D application of the limiters will be presented in the next 
report. 

The DG method for the three dimensional Euler and NS equations was 
implemented in a generalized framework that allows implementation of mixed-type 
meshes. Furthermore, since all calculations are performed in the canonical cubic element 
of the computational space (where hierarchical, tensor product expansion bases can be 
obtained) application of a p-adaptive procedure is possible. Preliminary results have been 
presented for simple wing flows. Thorough validation will be performed once the code is 
parallelized and fine mesh computations can be obtained at a reasonable computing time.  
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Fig. 1.1 Computed pressure and velocity magnitude fields for subsonic flow 
over a wing with Joukowsky airfoil sections using hexahedra mesh; , 

 
0 deg.α =

0.5M∞ =
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Fig. 1.2 Comparison of the computed ( 0 deg.α = , 0.5M∞ = ) surface pressure 
coefficient with the analytic solution ( 0 deg.α = , incompressible).  

 

 
Fig. 1.3 Tetrahedral mesh for the wing. 
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Fig. 1.4 Computed pressure and velocity magnitude for subsonic flow over a 
wing with Joukowsky airfoil sections using tetrahedra mesh; 0 deg.α = ,  0.3M∞ =
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Fig. 1.5 Computed pressure field for supersonic flow over a wing with Joukowsky 
airfoil sections using hexahedra mesh; 0 deg.α = , 1.0M∞ =  
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2. Parallelization using domain decomposition 
 
 
 In this section, we present a parallelization strategy of DG discretizations that 
relies on the implementation of the method in the transformed computational domain 
where all operations are performed for the standard square (in 2D) and cubic element (in 
3D). In this manner, parallelization through domain decomposition, application of p–
adaptive strategies, and use of mixed type meshes becomes straightforward as it will be 
discussed in more detail in the implementation section. One of the main disadvantages of 
the DG method is the severe stability limitation especially for high order expansions 
(  where p is the polynomial order). Parallelization achieved through domain 
decomposition and processing in multi-core clusters greatly reduced processing time. 
However, implementation of implicit time marching schemes is still required and it will 
initiate in the next period, first for linear 3D problems such as the Maxwell equations and 
the for the non-linear Euler and Navier-Stokes equations. In this report examples for 
parallel computations of subsonic and supersonic flows both in two- and three-
dimensional domains are presented. 

21/CFL p∼

 
 
2.1 DG Implementation in the Transformed domain 

 
The implementation of the DG method for arbitrary shaped elements in the 

domain of interest Ω is carried out in the computational domain for the standard square 
element configuration in two dimensions and for the standard cubic element in three 
dimension, which is denoted by Ωst. A collapsed coordinate transformation, shown in 
Fig.2.1, is used to transform arbitrary triangles of physical space into the standard 
element Ωst. The transformation between quadrilaterals or triangles in the physical 
domain to the standard square element is depicted in Fig. 2.2. Similar transformations, 
shown in Fig. 2.3, are used to map three-dimensional hexahedral, prismatic, and pyramid 
elements to the standard cubic element. Clearly, use of the collapsed coordinate 
transformation allows treating triangles, quadrilaterals, tetrahedral etc. in a unified way 
by building tensor product bases for the standard element configuration and transforming 
them back to the physical domain. Furthermore, the evaluation of the volume and surface 
integrals is greatly facilitated.  

In the present work, hierarchical basis functions are constructed over the standard 
element configuration in the domain, ( , , ) [ 1,1] [ 1,1] [ 1,1]ξ η ζ − × − × − , where arbitrary 
hexahedra and tetrahedral elements in the physical space ( , , )x y z  transform to the 
standard cubic element. The basis are formed by the tensor product of Legendre 
polynomials. These hierarchical basis functions have been chosen in order to facilitate 
application of p-adaptive schemes of arbitrary order on mixed-type meshes.  Gauss-
Legendre numerical integration is used for the evaluation of the integrals in the 
computational domain. The Lax-Friedrichs numerical flux in the surface integral is also 
computed out in the computational domain.  
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2.2    Results 
 
Sample results for parallel implementation of the DG method for the Euler 

equations are presented for subsonic and supersonic flows using hexahedral type meshes. 
The next step is careful optimization of the parallelization strategy in order to achieve 
high scalability in many-core architectures. However, two additional essential ingredients 
are missing from our scheme. Namely, an implicit time marching scheme, and the 
viscous terms, which are missing and it is not straightforward to add in the DG context. 
Therefore, full optimization of the parallelization strategy is postponed until the viscous 
terms and the implicit scheme are implemented, and it will be carried out once these 
modules have been added.  

Supersonic flow at M=3 over a cylinder is computed using a hexahedral mesh 
with arbitrary shape elements. A three-dimensional limiting procedure, which to the best 
of our knowledge has been not applied as yet for three dimensional DG discretizations, is 
used. This approach will be shown in more detail in a subsequent report. The shock 
capturing capability, shown in Fig 2.4, for decomposed domain parts appears very good. 
Computed Mach and pressure distributions on a plane are shown in Fig. 2.5. The limited 
elements are shown in Fig. 2.6.  A more stringent shock capturing standard case is shown 
in Fig. 2.7 where a, M=10, right moving shock is reflected from a wall. The flow was 
computed in many domains and the shocks cross again the domain boundaries with no 
distortion. Furthermore limiting is confined to very narrow regions around the moving, 
complex shock structures. 

Next, subsonic flow over a wing with Joukowsky airfoil section is computed. The 
airfoil shape in the  plane is obtained through the map z x iy= + 1/z ζ ζ= +  of the circle 
in the  plane having centre at ζ ξ iη= + ( , ) ( 0.08,0.08)x ya a = −  and radius 

2 2(1 )x yR a a= − + . The domain decomposition into seven parts for parallel computation 
is shown in Fig. 2.8. The computed flow with P1 polynomial bases (second order 
accuracy) for the wing with Joukowsky airfoil section at incidence  and for 

 is shown in Fig. 2.9. 
0 deg.α =

0.25M∞ =
The DG method for the three dimensional Euler equations was implemented in a 

generalized framework that allows implementation of mixed-type meshes and 
parallelized for many-core architectures using domain decomposition. The scaling of the 
parallelized numerical scheme is approximately linear at least for small number of 
processors we tested so far. The current parallelization strategy will be used as building 
block for parallelization of time-accurate implicit schemes in may-core architectures. 
 
 

   14
 

Distribution A:  Approved for public release; distribution is unlimited.



 
Fig. 2.1 Collapsed coordinate transformation to map arbitrary triangles of the 
physical domain to the standard square in the computational domain. 

 

 
Fig. 2.2 Unified treatment of arbitrary quadrilateral and triangular elements of 
the physical domain by transforming to the standard square where all the numerical 
implementation is carried out.  
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Fig. 2.3 Transformation of tetrahedral, prismatic and pyramid elements to the 
standard square through sequential application of collapsed coordinate transformations. 
 

 
Fig. 2.4 Computed pressure distribution for supersonic flow at  over a 3D 
cylinder using hexahedra mesh and division of the global mesh into four parts for parallel 
implementation. 

3.0M∞ =
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Fig. 2.5 Computed speed and pressure distribution for supersonic flow at  over 
a 3D cylinder  

3.0M∞ =

 

 
Fig. 2.6 Elements where limiting was applied (marked in green) and domain 
decomposition for the computation of supersonic flow over a cylinder at . 3.0M∞ =
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Fig. 2.7 Computed density contours for the Mach 10 reflection problem using a rectangular 
mesh with spacing 1/ 240x yΔ = Δ =  and a P1 polynomial approximation. 
 

 
Fig. 2.8 Domain partition for the computation of subsonic flow at  over a 3D 
wing with Joukowsky airfoil section.  

0.25M∞ =
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Fig. 2.9 Computed pressure coefficient distribution for subsonic flow at  over 
a 3D wing with Joukowsky airfoil section at incidence 

0.25M∞ =
0 deg.α =  using hexahedral mesh and 

division of the global mesh into seven parts for parallel implementation. 
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3. Implicit time marching scheme and implementation
 

Space discretization of the Euler equations with the DG method yields a system of 
ordinary differential equations (ODE’s) for the degrees of freedom to be advanced in 
time.  This system of ODEs has the following form: 
 

[ ] ( ) 0d R
dt

+ =
UM U  (3.1) 

 

where  represents the state variables for each element (more precisely the 
coefficients of the polynomial expansion for each state variable to be advanced in 
time),  is the mass matrix, and  is the residual of the DG space 
discretization.  

U

[ ]M ( )R U

The development of implicit time integration methods on unstructured meshes has 
been the subject of of recent investigations Ref. 13-17. Implementation of implicit 
time integration is demonstrated for simplicity and without loss of generality for the 
backward Euler time discretization, since each stage of implicit Runge-Kutta 
methods is a backward Euler step. The backward Euler time discretization of the 
ODE system of Eq. (3.1) yields 

 
1

1[ ] ( ) 0
n n

nR
t

+
+−

+ =
Δ

U UM U  (3.2) 

 

Eq. (3.2) represents a nonlinear system of the form  
1( )nF + 0=U  (3.3) 

 

This system is solved using a Newton-type method, which requires linearization of 
. Approximate linearization is performed as follows: 1( nF +U )

 

( )'( ) R
t

∂
= +

Δ ∂
M UF U

U
 (3.4) 

 

where the term  is the Jacobian of the residual and includes derivatives of 
the physical fluxes and the numerical fluxes. This term must be calculated accurately 
in order to obtain accurate linearization. However, analytical evaluation of the 
residual Jacobian is time consuming, difficult, and some times even impossible, 

( ) /R∂ ∂U U
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because the upwind terms included in the numerical fluxes may be non-differentiable 
functions, as is the Roe flux. For that reason, analytic evaluation of the system’s 
Jacobian is performed by neglecting some terms, especially derivatives of the 
upwind part. Although, this appears to be an acceptable linearization from a practical 
point of view, its success is limited, especially for flows with discontinuities. An 
attractive alternative is to numerically evaluate the elements of the Jacobian matrix, 
regardless of the type of the numerical flux. Although, this might seem an expensive 
operation, its cost is comparable to that of the analytic computation of the Jacobian. 
Furthermore, when viscous terms are included all differentiations in the evaluations 
of viscous Jacobian must be performed in terms of the expansion polynomial bases 
and the number of operations is very large.  

The general form of a k-stage approximate Newton’s method for solving Eq. (3.3) is: 
   

[ ] 1
1 '( ) ( ), 0,1, 2,.....k k k k k−

+ = − =U U F U F U  (3.5) 

 

with being an initial approximation to the solution and  is the Jacobian, 
which must be non singular at every Newton iteration. In practice, the Newton 
iteration in Eq. (3.5) is implemented in the following two steps: 

0U '( )kF U

 

1

Approximatelysolve '( ) ( )
Update the iteration

k k k

k k k+

• Δ
• =

F U U F U
U U U

=
+ Δ

  

 
where the iterations are terminated based on a required drop in the norm of the nonlinear 
residual. At every Newton iteration, a linear system needs to be solved, and the solution 
is usually obtained by an iterative method. Despite of the sparse nature of the matrix size 
of the system is very large especially for high order expansions and the computational 
cost and storage requirements become very large. Direct methods for the solution of this 
system are not suitable for nonlinear problems such as the Euler equations but they may 
become an attractive alternative for linear problems such as the Maxwell equations.  
 It should be noted here that, for parallel implementation through domain 
decomposition, during the Newton iteration updated values of kΔU  at the boundaries are 
not available. Therefore an additional outer iteration loop must be established in order to 
ensure that the solution is fully updated between the domains at the end of each time step. 
Achieving updated values (within certain tolerance) between the adjacent domains that 
are involved in the numerical flux which is part of the residual is very crucial element for 
time dependent problems. For steady-state problems, the tolerance between the 
consecutive approximations of the boundary values could be relaxed.  However, for time 
accurate computations this tolerance should be down to machine accuracy. As a result, 
the number of the required iterations becomes larger and the computing cost increases. 
The technique used to ensure full update between the sub-domains will be demonstrated 
in more detail later. 
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3.1 Krylov subspace methods 
 

Krylov subspace methods are approaches for solving large linear systems either by 
direct or iterative methods. They are generalized projection methods for solving a linear 
system: 
 

[ ] =A x b   

 

using the Krylov subspace, Kj : Kj = span (r0, Ar0,A2r0, . . . ,Aj−1r0), where r0 is the 
residual, r0 = b − Ax0, and x0 is an initial guess of the solution. 

The widely used GMRES (Generalized Minimal Residual) method belongs to the class of 
Krylov subspace methods. For GMRES, the Krylov subspace is formed by an Arnoldi 
based method, which is an orthogonalization procedure that generates orthonormal bases 
of the Krylov subspace. The main advantage of the GMRES method is that it does not 
require the explicit formulation of matrix A, it rather requires the matrix-vector products 
used to form the Krylov subspace. This application of the GMRES method is called 
matrix-free, and results in significant savings in storage that are crucial for three 
dimensional applications of high order DG discretizations. In the context of Newton’s 
method, this feature leads to the so called Jacobian free Newton Krylov (JFNK) methods, 
where the Jacobian matrix needs to be accessed only in the form of matrix-vector 
products. That is: 
 

( ) ('( ) h
h

)+ Δ −
Δ ≈

F U U F UF U U   

 

where the differencing parameter h is computed as follows: 
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(1.6) 

 

 

3.2 GMRES Preconditioning 
Close approximation of the Jacobian matrix of the system is required in order to 

ensure accelerated convergence of the iterative method for the linear system. For the 
JFNK method in particular, a very good preconditioning is required. For that reason, in 
the present work a numerical approximation of the complete Jacobian matrix is 
performed, where in order to speed up the computation of its elements, the sparsity of the 
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matrix is used in advance. The matrix elements are computed by the following first order 
accurate approximation: 
 

' ( ) (
( ) i j i

ij

he
h

+ −
≈

F U F U
F U

)
 (3.7) 

 

where index i refers to the global number of the DOF at the element and index j refers to 
the global number of the DOF of the neighbouring element. 
 

The full procedure for each time step n along with the strategy used for the update of 
the information for multi-domain updates that are required when domain 
decomposition is used for parallel processing is shown in the schematic flow chart of 
Fig. 3.1. 

 

 

Figure 3.1. Iteration loop implementation to ensure that when domain 
decomposition is applied values from the adjacent sub-domains involved in 
the residual  have been fully updated and converged to the same 
time step  . 

1( nR +U )
1n +
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3.2 Results 
Results with implicit time marching for steady-state and time-accurate solutions 

are presented for model problems of two dimensional flows solved with three 
dimensional meshes. All solutions with implicit time marching were obtained with 
parallel implementation. The first class of results are steady-state solutions for 
inviscid low speed flow (M=0.2) over a cylinder and an airfoil. Then implicit time 
marching is applied for supersonic (M=2.0) flow over a cylinder. Finally, a time-
accurate solution for the convection of an isentropic vortex is shown. 

The computed flow field and the comparison with the exact result for inviscid 
flow over a cylinder are shown in Figs. 3.2 and 3.3. The convergence rate of the 
computed solution with , CFL~500 is shown in Fig. 3.4. The convergence 
was based on the  norm of the residual computed as: 

0.08tΔ =
2L

 

21
2

1

1( )
elN

n n
j j

jel

L ρ ρ ρ
N

+

=

Δ = −∑   

 

Convergence to machine accuracy was achieved in approximately 1000 iterations. 

The computed flow field with 0.08tΔ = , CFL~500 and the comparison with the 
exact result for inviscid low speed (M=0.2) flow over a Joukowski airfoil are shown 
in Figs. 3.5 and 3.6. The convergence rate of the computed solution is shown in Fig. 
3.7 similarly to the cylinder case converge to machine accuracy was achieved. 

Finally, the numerical solution of a time accurate problem was computed using 
implicit time marching. The convection of an inviscid isentropic vortex is a good test 
problem for evaluating the validity of the implicit time marching approach because it 
is an exact solution of the compressible Euler equations. Fort his problem the mean 
density ρ∞ , velocities , pressure ,u υ∞ ∞ p∞ , and temperature T∞   have the free stream 
values: (( , , , , ) 1, 0.5, 0, 1/ ,1)ρ u υ p T γ∞ ∞ ∞ ∞ ∞ =  that are perturbed by the isentropic 
vortex   ( , , )δu δυ δT

2 2
2

(1 ) (1 ) 2 (1 )
0 0 2

( 1)( ) , ( ) ,
2 2 16

A r A r A rγδu y y e δυ x x e δ e
π π

− −Γ Γ Γ
= − − = + − Τ = −

Α
2

γπ
−−  

where 2 2
0 0( ) (r x x y y= − + − )  and 4.0Γ = , 1A =  are parameters determining the 

strength of the vortex. For invisicd flow, this isontropic vortex convects with speed 
 without change of form and the accuracy of time advancement can be evaluated. 

Numerical solutions were obtained with very large values of time steps (CFL~10
u∞

3) 
and the convergence rate of the numerical solution is shown in Fig. 3.8. It can be 
seen that the design order of accuracy of the backward Euler method is almost 
exactly achieved. Higher order accurate implicit time marching methods such as the 
Crank-Nicolson, the implicit RK2, and the implicit RK3 method have been 
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implemented. However, accuracy test for these methods are very time consuming 
because either small element size or high order of accuracy must be used to ensure 
that space discretization error are much smaller than the time discretization induced 
error. 

Implicit time marching schemes for the Euler equations were developed and 
applied for steady-state and time accurate computations in multi domains. Large CFL 
numbers were achieved and time accuracy was maintained.  Implicit time marching 
of viscous flows and further demonstration of time accuracy will be carried out next. 
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Figure 3.2.  Computed flow field for invisicd M=0.2 low speed flow over a 
cylinder including the sub-domain partition for MPI processing. 

 

 
Figure 3.3.  Comparison of the surface pressure computed for invisicd, 
M=0.2, low speed flow with the potential flow exact result for the cylinder.  
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Figure 3.4.  Convergence rate based on the  norm of the density residual 
for the computation for invisicd,  M=0.2,  low speed flow over a cylinder. 

2L

 

   
Figure 3.5.  Computed flow field for invisicd, M=0.2, low speed flow over 
the Joukowski airfoil including the sub-domain partition for MPI processing. 
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Figure 3.6.  Comparison of the surface pressure computed for invisicd,  
M=0.2,  low speed flow with the potential flow exact result for the 
Joukowski  airfoil.  

 

 

 
Figure 3.7.  Convergence rate based on the  norm of the density residual 
for the computation for invisicd, M=0.2, low speed flow over the Joucowski  
airfoil. 

2L
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Figure 3.8.  Time convergence of backward Euler implicit time integration 
scheme obtain for the convection of an isentropic vortex between four sub-
domains and parallel implementation of the implicit algorithm.    
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4. NS solutions and turbulence model 
 
The once equation turbulence model of Spalart and Almaras (SA) was implemented 
in the DG finite element context. For the implementation of this model in the DG 
context several new features, such as treatment of a nonlinear diffusion term, appear. 
Therefore in order to verify the discretization strategy of the SA turbulence model, 
the algebraic turbulence model of Baldwin and Lomax (BL), which does not pose 
problems in terms of discretization but is rather not very well suited to use with 
unstructured meshes, has been also implemented. Comparisons of the computed eddy 
viscosity profiles for a zero pressure gradient, flat plate, turbulent boundary layer 
demonstrated that both the SA and BL turbulence models yield essentially the same 
velocity and eddy viscosity distribution. Furthermore, in order to overcome 
numerical problems caused by negative eddy viscosities computed by the SA model 
at the edge of the boundary layer positivity preserving limiters were used for the 
computed eddy viscosity. 
Strategies for p-adaptive refinement of three dimensional flows were further 
examined and an attempt was made to incorporate p-type multigrid in the 
implicit solver to further enhance the efficiency and accuracy of implicit time 
marching with large time steps.  

 
4.1 Background 
 

The one equation Spalart-Almaras (SA) turbulence model [18-21] in conservative 
form suitable for compressible flow numerical solutions is  
 

N N2 1 1
1 1( ) ( )j

b b w w
j j j j j IV

I VII III

ρνuρν ν ν νμ ρν ρc c Sν c f
t x σ x x x x ρ D

⎡ ⎤⎛ ⎞∂∂ ∂ ∂ ∂ ∂ ⎛ ⎞+ = + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

�� � � � �� � ρν�

���	��
�	
 ��������	�������

 (4.1) 

 
In this equation  is the working variable that is related to eddy viscosity ν� tμ  as: 
 

1t t υμ ρν ρν f= = �  (4.2) 
 
Terms I and II express convention of the density scaled working variable ρν� , term III 
expresses diffusion, the production is part IV, and the destruction is part V. 

The term  of the production (part IV of the right hand site) is given by S�
 

22 2| | ,υ
νS f

κ D
= Ω +

��  (4.3) 

 
where  is the magnitude of the vorticity vector and D is the distance to the nearest 
wall. The need of the wall distance D is a fundamental difference compared to  and 

 two equation turbulence models which could manage without information about 

| Ω |
k ω−

k ε−
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distance from the nearest wall. To overcome this difficulty the distance from the nearest 
wall was computed and stored. The definition of the model is completed by the auxiliary 
relations 
 

6
63
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1 3
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1

1 , ( ), min

,

1
1

w
w w

w
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The closure constants of the model are 
 

1 2

1 1 2 2 3 1

0.1355, 0.622, 2 / 3, 0.41
/ (1 ) / , 0.3, 2.0, 7.1

b b

w b b w w υ

c c σ κ
c c κ c σ c c c

= = =
= + + = = =

=
 (4.5) 

 
The nondimensional for of the SA one equation turbulence model is  

 

N N2 1 1
1 1 1( ) ( )

Re
j

b b w w
j j j j j IV

I VII III

ρνuρν ν ν νμ ρν ρc c Sν c f
t x σ x x x x ρ D
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 (4.6) 

where now 
 

22 2 2 2

1| | , min , 10
Re Reυ

ν vS f r
κ D Sκ D

⎡ ⎤= Ω + = ⎢ ⎥⎣ ⎦

� ��
�  (4.7) 

 
The one equation turbulence model of Eq. (1) is discretized in the DG context 

decoupled from the flow equations e.g. the density ρ  and the convective velocity  are 
taken from the flow solution at the current time step. The local DG (LDG) method is used 
and the gradient  appearing in the diffusive part of the model is evaluated 
first. Then after integration by parts the nonlinear diffusion term  can be 
evaluated. 

ju

/ jν x= ∂ ∂N �
/ jν ν x∂ ∂� �

 Numerical implementation of the SA model for complex time dependent flows 
often produces negative values of ν  which subsequently yield negative eddy viscosity, �

1t υμ ρν f= �  since 1υf  has the same sign with the working variableν . Therefore the 
following positivity limiters that ensure positive  value were used. Positivity is enforced 
by first computing the minimum value of the working variable  looping over the 
quadrature points on the edges. Then the following 

�
ν�

minν�

parameter is defined: 
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and the coefficient for the working variable expansion are modified as follows: 
0 1ˆν νc θ c=� �

0  (4.9) 
Proper discretization of the SA model was verified by comparing results with the 

eddy viscosity obtained from the algebraic Balwin-Lomax (BL) turbylence model for a 
simple flow case the zero pressure gradient flat plate turbulent boundary layer. The eddy 
viscosity for the BL model is obtained for a direction normal to the wall. Therefore rays 
normal to the wall were drawn where needed as shown in Fig. 4.1 and the eddy viscosity 
was computed. 

 
 

Figure 4.1. Normal to the wall rays for the computation of the eddy viscosity with the 
algebraic BL model, (left) computational mesh (right) pressure and velocity. 

It is necessary that the SA turbulence model is integrated in time using and 
implicit method otherwise the explicit time step limitations for the SA turbulence model 
are more severe that for the main flow solver. It must be noted that the SA turbulence 
model is run decoupled from the solution of the flow field and the velocities and the 
density in Eq. 1 are considered known. The implicit time marching scheme used for the 
time advancement of the SA is shown in Fig. 4.2. 
 

 
Figure 4.2. Implicit algorithm for the SA model. 
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The PETC library that is used for the implementation of the Jacobian free 

algorithm gives the options of using many implicit Runge-Kutta (RK) methods for time 
advancement. In addition, it incorporates the so-called implicit/explicit RK methods 
which are used for the SA model since the source terms IV and V in Eqs. (4.1) and (4.6) 
are not linearized but they are kept in the right hand side. 
The gradient tem  is evaluated first and the local DG (LDG) method is used 
to treat diffusion terms of the model. As a result the following system of equations is 
solved. 

/ jν x= ∂ ∂N
G
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As an alternative the hybridized DG method is currently considered for the discretization 
of the turbulence model because it provides certain advantages compared with the LDG 
method in particular after post processing of the numerical solution  it can provide k+2 
order of accuracy for k order polynomial approximation. 
 
 
4.2 Turbulence model implementation 
 

Computed velocity profiles for a flat plate boundary layer at Re=  are 
shown in Figs. 4.3-4.6. A hybrid (hexahedral/prismatic) mesh over a flat plate of total 
length 10 units with a rounded leading edge, as shown in Fig. 4.1, was constructed. The 
computed eddy viscosity field and the velocity at x=5 are shown in Fig. 4.3. Linear plots 
on the computed axial velocity and eddy viscosity distribution are shown in Figs. 4.4-4.6. 

62 10×

 

 
Figure 4.3. Computed velocity vectors and eddy viscosity with the SA turbulence 
model at x=5, Re=  610
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Figure 4.4. Computed u velocity with the SA turbulence model at x=5, Re=  610
 

 
Figure 4.5. Log-log scale ,y u+ + diagram of the computed u velocity with the SA 
turbulence model at x=5, Re=  610
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Figure 4.6. Computed eddy viscosity with the SA turbulence model at x=5, Re=  610
 
 
4.3 P-adaptive numerical solutions 

Results for adaptive p-refinement of time dependent solutions are shown bellow. 
Without loss of generality results of p-adaptive numerical solutions were computed for 
hexahedral meshes. A snapshot of the computed flow field for a p-adaptive numerical 
solution for an inviscit, isentropic, convecting voretex, which is an exact solution of the 
Euler equations, is shown in Fig. 4.7. Adaptivity of the numerical solution was based on 
the computed vorticity. The irrotational part of the flow field was computed as second 
order accurate (P1 computation). The accuracy progressively increased in regions of 
higher vorticity from P2 to P3. Comparisons with the exact result of numerical solutions 
computed with P3 global accuracy and progressively increase P1 to P5 accuracy are 
shown in Fig. 4.8. Clearly, increase of the accuracy over P3 only for 16 cells improved 
the accuracy of the numerical solution while at the same time the overall computational 
cost of the p-adaptive numerical was diminished.  
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 (a) 

 (b) 

 (c) 
Figure 4.7. Snapshot of a P1 to P3, p-adaptive numerical solution; white cells P1, 
light gray cells P2, and dark gray cells P3. (a) convection for 15 unit lengths (b) 
convection for 16 unit lengths (c) comparison with exact 
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Figure 4.8. Comparison of the computed density with global P3 and adaptive P1-P5 
numerical solutions. 
 
 Different criteria for p-type adaptive solutions of the laminar flow field over two 
airfoils at Re = 104 (a test case for the 1st international workshop on high order methods) 
were implemented. The computational mesh and a snapshot of the computed velocity 
magnitude are shown in Fig. 4.9. Clearly, for this case a criterion base only on vorticity it 
will result in very high order in the near wall region while for the rest of the flow field no 
sufficient adaption will be performed. Therefore different criteria for adaptation must be 
tested. 

 
Figure 4.9. Computational mesh and snapshot of the computed velocity with a 
numerical solution with P4 global accuracy. 
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