
 

 

 

Development of a Vision-Based Particle Tracking 

Velocimetry Method and Post-Processing of Scattered 

Velocity Data 

 

 
  

 

 

Micah Philip Paul 
 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of  

 

Masters of Science in Aeronautics and Astronautics 

 

 

 

 

 

 

University of Washington 

2012 

 

 

Committee: 

Dana Dabiri 

Antonino Ferrante 

 

 

 

Program Authorized to Offer Degree: Department of Aeronautics and Astronautics 

  



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2012 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2012 to 00-00-2012  

4. TITLE AND SUBTITLE 
Development of a Vision-Based Particle Tracking Velocimetry Method
and Post-Processing of Scattered Velocity Data 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Washington,Seattle,WA,98195 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
In this thesis, a new vision-based hybrid particle tracking velocimetry (VB-PTV) technique is described
and methods of processing randomly scattered velocity data investigated. The VB-PTV technique uses a
feature matching method from computer vision theory which relies on the principles of proximity,
similarity, and exclusion, meaning that it seeks to match one feature to one feature in subsequent images,
and it favors matches which are close to one another and ?look? similar. By constructing a matrix which
takes these principles into account and performing singular value decomposition, a straightforward
method of matching is developed which can give accurate matching results in a wide variety of flows. PIV
velocity information is used to provide guidance to the matching algorithm. In addition, matches are made
iteratively and validated by an outlier detection scheme. When this method is tested on synthetic images it
results in matches which are typically reliable more than 98% of the time. A simple modification to the
principle of proximity is introduced which reduces the PTV method?s errors in highly shearing flow, as
well as improving performance in general for various flow types. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

72 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 

University of Washington 

Development of a Vision-Based Particle Tracking Velocimetry Method 

and Post-Processing of Scattered Velocity Data 

Micah P Paul 

Chair of the Supervisory Committee: 

Professor Dana Dabiri 

Department of Aeronautics and Astronautics 

In this thesis, a new vision-based hybrid particle tracking velocimetry (VB-PTV) 

technique is described and methods of processing randomly scattered velocity data investigated. 

The VB-PTV technique uses a feature matching method from computer vision theory which 

relies on the principles of proximity, similarity, and exclusion, meaning that it seeks to match 

one feature to one feature in subsequent images, and it favors matches which are close to one 

another and “look” similar. By constructing a matrix which takes these principles into account 

and performing singular value decomposition, a straightforward method of matching is 

developed which can give accurate matching results in a wide variety of flows. PIV velocity 

information is used to provide guidance to the matching algorithm. In addition, matches are 

made iteratively and validated by an outlier detection scheme. When this method is tested on 

synthetic images it results in matches which are typically reliable more than 98% of the time. A 

simple modification to the principle of proximity is introduced which reduces the PTV method’s 

errors in highly shearing flow, as well as improving performance in general for various flow 

types.  

Finally, a natural neighbor-based interpolation technique is investigated for use in 

estimating flow derivatives using scattered velocity data. This interpolation method is compared 

with other existing techniques in terms of accuracy, sensitivity to noise, computational 

efficiency, and spatial resolution. It is found that the natural neighbor interpolation is less 

accurate than RBF and kriging interpolation methods, and more sensitive to noise, despite the 

use of a denoising technique.  
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Chapter 1. 0BINTRODUCTION  

1.1 7BPARTICLE IMAGE AND TRACKING VELOCIMETRY 

In the past several decades, particle velocimetry has been a widely used tool in examining 

the behavior of fluid flows globally, rather than at discrete points in time, such as measurements 

recorded using pitot tubes or hot wire anemometers. Within the field of particle imaging, two 

separate methods have been developed and gained widespread use: particle image velocimetry 

(PIV) and particle tracking velocimetry (PTV). PIV uses cross-correlation of segments of an 

image to give an estimate of the average velocity in a local region, while PTV attempts to 

identify and match individual particles between image frames. Early techniques relied on streak 

photography and manual measurements of particle locations and velocities, as described by such 

pioneers in the field as Agui and Jimenez in 1987. In the 1990’s the power and availability of 

high-speed computers and CCD cameras allowed much of the particle imaging process to be 

automated, removing the necessity for manual measurements on film prints. In 1996, Baek and 

Lee advanced PTV significantly by introducing a two-frame matching algorithm to replace the 

less accurate and more time intensive four-frame methods that had been used previously. 

Possible matches were assigned values which described their “match probability” and their “no-

match probability” based partly on heuristic parameters such as the maximum expected velocity 

in the interrogation area. Though this was an improvement compared with nearest-neighbor 

approaches, it was limited to low gradient flows, in part due to a quasi-rigidity assumption in 

local areas of the flow. 

 At nearly the same time, PIV and PTV techniques were melded when PIV results were 

used to guide particle matching in a “super-resolution PIV” technique (Keane et al, 1995). The 

additional matched particles were envisioned as a means of increasing the resolution of PIV, and 
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with the addition of a Kalman filter and χ
2
 testing, the method was made more robust and 

accurate (Takehara et al, 2000). Alternatively, Cowen and Monismith (1997) used results from 

PIV performed on a pair of singly pulsed images to guide a particle tracking algorithm. By 

interpolating the PIV results a small (3 x 3 pixel) interrogation window was generated in the 

second image, and if a single particle was identified within this window it was considered a 

match to the particle of interest in the first image frame. More recently this idea of PIV-guided 

PTV was combined with Baek and Lee their concept of match probability (Kim and Lee, 2002). 

Instead of using global heuristic parameters, the matching algorithm was guided by more local 

velocity data from PIV. This simplified detection of erroneous matches and improved the 

number and accuracy of matches that could be made compared with the original technique.  

Other methods which have been developed in the past several years include the 

deterministic annealing technique (Stellmacher and Obermayer, 2000) which constructs and 

attempts to minimize a cost function based on the goodness of match of a group of particles in 

each image frame. Song et al. used Delaunay tessellation to match triangles, rather than 

individual particles, in a pair of images (2002). More recent PTV methods have used a 

variational approach to matching, as in Ruhnau et al, (2005). This technique, somewhat like the 

deterministic annealing method, examines a group of particle images, in this case the entire 

image, and makes matches which satisfy a minimization problem which includes local flow 

information as well as a global smoothness constraint. 

Uemura et al. (1989) had developed a method of tracking which was similar to PIV in 

that it cross-correlated a small region (35 x 35 pixels) around each particle with regions around 

candidate particles to identify matches. This method, called Enhanced PTV (EPTV), was 

updated by Mikheev and Zubtsov (2008) by including information about particle image sizes. A 
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method developed by Ponchaut and Mouton (2005) uses a technique similar to that developed by 

Kim and Lee (2002) which guides a matching algorithm with PIV and initial PTV results. The 

iterative matching process combines the results of a correlation method in high density regions 

with a simple tracking method in low density regions to construct a hybrid velocity field which 

guides the final particle matching routine. Very recently even more algorithms have been 

proposed by Brevis et al. (2011), who combined the correlation methods of, for example, 

Uemura (1989) and Ruhnau (2005) with the relaxation methods of matching which use match 

probabilities (Baek and Lee, 2006). By combining the complementary methods, the new 

algorithm was useful in regions of high flow gradients as well as low and high particle image 

density regions and enjoyed overall better performance than the component techniques. Panday 

et al. (2011) developed a technique for matching features in stereo images which was used in an 

ant colony optimization study, but which could be applied to general particle tracking as well. 

Schindler et al. (2010) modified a polar coordinate system similarity method based on nearest-

neighbor cluster matching which performed very well even in flow fields with great variance in 

seeding density. 

PIV algorithms apart from particle tracking also have a well-developed history of 

improvements and innovations. Because PIV gives an average displacement of particles within a 

region, it is less sensitive to noise and can give measurements with very low errors when 

compared to PTV methods. But because of their nature, PIV methods must always strive for 

greater spatial resolution. Nogueira et al. (2005) demonstrated that PIV could resolve 

wavelengths as small as twice the grid node spacing, though errors were as large as 100%, while 

wavelengths of 4 to 8 times the node spacing could see errors closer to 10%. In addition to 

spatial resolution, PIV methods, because they correlate large sections of an image, give an 
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average displacement and therefore underestimate velocity gradients (Scarano, 2003). Because 

PTV methods examine individual particles, they will not suffer from this averaging effect even 

in strong gradients. Similarly, PTV can achieve higher spatial resolution, limited by the mean 

particle spacing ( 1
p

, where p is the particle image density, or number of particle images 

per image area in pixels) rather than interrogation window and window overlap, as in PIV. 

1.2 8BPOST-PROCESSING OF PTV DATA 

Because PIV data exists on a regularly spaced grid, extracting flow information can be as 

simple as applying finite difference methods (see, for example, Raffel et al., 1998). PTV data is 

randomly scattered and so some method must be used to fit the data, interpolate the data onto a 

regular grid, or otherwise derive useful flow characteristics like shear and vorticity. Within the 

field of particle tracking velocimetry, one of the most common methods of interpolation has been 

interpolation of scattered velocity data onto a grid (see, for example, Agui and Jimenez, 1987; 

Spedding and Rignot, 1993). These have the advantage of being simple to implement, and 

because each interpolation node is influenced by a number of PTV vectors, they tend to have a 

smoothing effect on noise in the field. However, this also means that the spatial resolution gained 

by PTV over PIV is forfeited when shear or vorticity is calculated. Since velocity measurements 

are not usually the end goal of particle velocimetry, it is desirable to obtain flow parameters such 

as shear stress (Dong and Meng, 2001), vorticity (Luff et al., 1999; Fouras and Soria, 1998; 

Foucaut and Stanislas, 2002), or dissipation rate (Saarenrinne and Piirto, 2000; Tanaka and 

Eaton, 2007) with as much accuracy and spatial resolution as possible. An alternative to grid-

based interpolation is to find an analytic fit to velocity data (Abrahamson and Lonnes, 1995; 

Fouras and Soria, 1998) and determine flow gradients from this fitted surface.  
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1.3 OBJECTIVES 

Though numerous PIV and PTV techniques currently exist, there are weaknesses in both 

that leave room for improvement. As mentioned earlier, PIV, because it is a statistical average of 

local particle displacements, can give accurate velocity data, but with a limited spatial resolution. 

PTV can in theory achieve a higher spatial resolution because it examines individual particles, 

but due to difficulties in identifying overlapped particle images, PTV has traditionally been used 

to process images with relatively few particles. 

To address these shortcomings, a new vision-based PTV (VB-PTV) technique is 

developed for use at the University of Washington. A Cascade Correlation Method is used to 

identify overlapped particle images (Angarita-Jaimes et al., 2009), allowing for accurate particle 

centroid estimates and resulting in a denser velocity data field. A feature matching technique 

developed by Scott and Longuet-Higgins (1991) is used to match particle images in sequential 

image frames. This matching method is improved by embedding it within an iterative process 

that makes use of a newly developed outlier detection scheme (Duncan et al., 2010) to verify 

matches. These algorithms are described further in chapter 2 and their implementation within the 

VB-PTV technique is described in chapter 3. Experimental results are presented in chapter 4. A 

simple modification to the Scott and Longuet-Higgins technique is proposed in chapter 5 and 

updated experimental results reported. Strain rate is estimated by interpolating simulated PTV 

data using a Laplace interpolation method and compared with existing interpolation techniques 

in chapter 6. 
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Chapter 2. 1BPTVPTVPTV ALGORITHMS 

2.1 9BVISION-BASED PTV 

In the field of computer vision, the ability to match features from one image frame to 

another in order to discern motion is of great importance. When features are large and distinct, 

matching them across multiple frames can be simple. However when features are small and 

indistinct, as in the case of small particles, matching becomes more problematic. Two principles 

have been developed pursuant to solving this issue which are based on the study of human 

vision: the “Principle of Exclusion” and the “Principle of Proximity” (Scott and Longuet-

Higgins, 1991). The first principle requires that one feature in one image is not associated with 

multiple features in another image. In terms of particle motion, this would mean a one-to-one 

correspondence between particles in each image. The proximity principle simply states that 

features are more likely to be matched the closer they are to one another.  

To include the proximity principle, Scott and Longuet-Higgins first constructed a 

“proximity matrix” G based on Gaussian weighted distances between all features in images I and 

J which is given by 

  (1) 

Hereafter, features (particles) in the first image frame (image I) will be referred to as 

target features or particles, and all the possible matches which exist in the second image frame 

(image J) will be referred to as candidate features. In the above matrix, rij is the distance between 

a target feature i and a candidate feature j, and σ is a characteristic distance. The proximity 

matrix will contain elements ranging from unity, if there is zero distance between features i and j, 

to zero when two features are infinitely distant from one another. This proximity matrix is then 



 

 

7 

used to construct a “pairing matrix” P which is an orthogonal matrix which will maximize the 

inner product P:G. This is accomplished by performing singular value decomposition on the G 

matrix, 

  (2) 

T and U are orthogonal matrices, and D is a non-negative diagonal matrix with the same 

dimensions as G. The matrix D is replaced with a rectangular identity matrix of the same 

dimensions and used to find the pairing matrix 

  (3) 

This pairing matrix is used to directly find matched features. It has dimensions m n , 

where m is the number of target features, and n the number of candidate features. It can be shown 

to maximize the inner product with G, and it has rows which are mutually orthogonal. Those 

rows in the pairing matrix index target features in the first frame, while the columns index the 

candidate features in the second frame; the larger an element Pij is, the greater the 

correspondence between features i and j. If the element Pij is the greatest value in the i
th

 row and 

j
th

 column, then we consider those features to be a match. The mutually orthogonal rows of the P 

matrix tend to disallow a strong correspondence between one target feature with more than one 

candidate feature, or vice versa. In this way the exclusion principle is satisfied without explicitly 

enforcing it, as has been done in other similar vision methods (Ullman 1979). For further 

mathematical details the reader is directed to Scott and Longuet-Higgins (1991) as well as 

Schonemann (1966). 

 The computer vision technique described above can clearly be applied to particle 

tracking. In theory, its implementation is also fairly straightforward, requiring only singular 

value decomposition, matrix multiplication, and a maximum value search. There are, however, 
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some obstacles to this technique’s implementation as a particle matching method. Scott and 

Longuet-Higgins found that the addition of “rogue points,” or features which exist in one image 

frame but not the other, could corrupt their results. Such rogue points will almost invariably 

appear in experimental PTV images as seeding particles travel in and out of the interrogation 

area or through an illuminating laser sheet, or simply due to optical phenomena which cause the 

erroneous identification of particles which may not actually exist. The impact of rogue points on 

experimental results is discussed in section 4.7. 

It was also found that this algorithm was unable to correctly match features across a large 

rotation, which could clearly be problematic in any study of vortical flows. Luo and Hancock 

(2002) found that the critical angle of rotation was near 20 degrees, which is larger than what 

should be found in a typical PTV dataset if the experiment is performed properly. 

Finally, the Scott and Longuet-Higgins technique requires selection of a characteristic 

distance, σ. In the original paper, one value of σ was selected for an entire image set. Scott and 

Longuet-Higgins (1991) suggested that this value might relate to the average displacement of all 

features between image frames, and in experiments Pilu (1997) found that σ should 

approximately match the actual displacements found in the images. In a PTV application a great 

range of displacements could exist in one image frame, and so an adaptive σ is desirable; the 

natural choice is a displacement estimated from PIV results.   

Others in the field of computer vision expanded on Scott’s and Longuet-Higgins’ work 

by including another principle common in the field: the “Principle of Similarity,” (Pilu, 1997) 

which unsurprisingly prefers matches which “look” similar to one another. This was 

accomplished by modifying the construction of the proximity matrix G by including a 

normalized cross-correlation coefficient, Cij, which is described as 
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 (4) 

This term is generated by a cross-correlation of pixel intensities within a window of dimensions 

W W centered on the target feature i and similarly sized windows centered on all candidate 

features j.  and  are the mean pixel intensities within each correlation window, and  and 

 are the standard deviations (not summations; a capital sigma is used to avoid confusion 

with the characteristic distance) of those pixel intensities. The value of Cij can range from -1 for 

a completely uncorrelated candidate feature to 1 for an identical feature. This can be 

incorporated into the proximity matrix by various means, one of which is shown below: 

 

 
(5) 

In this formulation, the similarity coefficient is Gaussian weighted, where γ is a correlation 

parameter which controls the rate of decay of similarity weighting. This value is set to 0.4, per 

Pilu (1997). This modification reduces the impact of rogue features and produces more valid 

matches than the original algorithm. 

The particle tracking algorithm developed here combines the feature association 

algorithm proposed by Scott and Longuet-Higgins (1991) with the correlation-based “similarity” 

term recommended by Pilu (1997), as well as PIV results which provide an estimate for the 

proper characteristic distance, σ, and an outlier detection method (Duncan et al., 2010) which is 

embedded within an iterative matching process. This method is dubbed vision-based PTV, or 

VB-PTV. Further details are provided in chapter 3. 
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2.2 10BPARTICLE LOCATION IDENTIFICATION 

A particle matching method can be considered reliable if the matches made between 

features in a series of images are correct. The accuracy of a PTV method depends on the ability 

to accurately identify the location of particle images based on the pixel intensity information. 

Success in this step is foundational to a useful PTV method, and every effort should be made to 

achieve it. In order to take advantage of PTV methods’ high spatial resolution, a high seeding 

density is desirable. This, however, leads to particle image overlap, which can cause multiple 

overlapped particles to be identified as one (Ponchaut, 2005), and can greatly increase errors in 

particle location estimates (Marxen et al., 2000). 

 Previous work has shown that a particle mask, or a Gaussian “model image” of a particle, 

can be cross-correlated with overlapped particles to estimate the particle center locations 

(Stellmacher and Obermayer, 2000; Takehara and Etoh, 1999; Saga et al., 2003). Angarita-

Jaimes et al.(2009) suggested that this method could be improved by repeating the cross-

correlation process on the correlation surface resulting from the first pass. This narrowed the 

correlation peak and decreased the critical distance of separation between overlapped features 

where two particles could no longer be identified. The method used in the current work is an 

extension of this cascade correlation method (CCM). The correlation of correlation surfaces is 

repeated with a smaller and smaller Gaussian mask in order to narrow the correlation peaks as 

much as possible. This results in a number of well defined peaks. In the CCM and other similar 

methods, fitting of the correlation peak can be biased towards integer values due to the 

discretization of digital images. Therefore, the modified CCM method uses the number and 

locations of correlation peaks to perform a least squares fit of the cluster of particles being 

examined. That is, if the modified CCM method identifies 4 peaks, 4 Gaussian particle models 
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will be fitted to the pixel intensity surface by varying their location, radius, and peak value. This 

method takes advantage of the CCM’s ability to separate overlapped particles, but avoids the 

errors introduced by repeated cross-correlation. Figure 1 shows the results, found in Lei, et al. 

(2012), of using this modified cross correlation method in the presence of Poisson and Gaussian 

noise. In Figure 1a, random Poisson noise is added to overlapped particle images, and the error in 

their locations is plotted against the amount they are overlapped as a percentage of their 

diameters. The performance of the modified CCM method is compared with the original CCM 

method (Angarita-Jaimes et al., 2009) using signal to noise ratios of 2.5, 10 and infinity (no 

noise). Even at the lowest SNR, errors are below 0.2 pixels for overlaps as large as 50% of the 

diameter. Figure 1b shows similar results after applying 2.5% and 5% Gaussian noise to the 

particle images. Errors remain below 0.09 pixels for overlaps of 40% or below, and remain 

below 0.25 pixels for 50% overlap with 5% Gaussian noise added. Essentially, these results 

show that the modified CCM method can detect particles overlapped by as much as 50%, 

meaning that PTV can be applied to images with a higher particle image density. A much more 

detailed description of this method which includes equations, a flow chart of the process, and 

results of experiments with overlapped particle images, can be found in Lei, et al. (2012). 
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Figure 1. Averaged particle location error versus particle overlap ratio between two particles for (a) 

different Poisson noise levels (b) different Gaussian noise levels 

Chapter 3. 2BALGORITHM IMPLEMENTATION 

3.1 11BMODIFIED VISION MATCHING 

Once particle locations are known, the matching algorithm can be implemented. The 

Scott and Longuet-Higgins (1991) technique is used, as described in chapter 2. In order to 

choose a characteristic distance, σ, PIV is performed to obtain an initial estimate of local 

displacements in the flow. The PIV displacement data, which exists on a regularly spaced grid, is 

interpolated to individual particle locations, and the characteristic distance is typically set to be 

twice this interpolated value. Scott and Longuet-Higgins (1991) found that an overestimate of the 

actual displacement was preferable to underestimates, and this was supported by experiments 

with the current VB-PTV algorithm (see Scott and Longuet-Higgins (1991) and chapter 5). 

 Performing the matching process described earlier results in a pairing matrix, Pij, whose 

elements can be used to determine matches. In order to make the matching algorithm more 

robust, the process is made iterative in two ways. First, an outer iteration loop (termed the 

particle removal loop) finds and removes matched particles from the “to-match list” (that is, 

particles which have yet to be matched). Not every particle will be matched after one pass, or not 
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all matches will be allowed because they are outliers. By removing those particles which are 

most easily matched and constructing a new pairing matrix, matching the remaining particles 

becomes simpler since there are fewer candidate particles to pair with any given target particle. 

The second iterative loop is nested within the particle removal loop just described and is termed 

the validation loop. After matches are found, these results are submitted to an outlier detection 

scheme dubbed the modified universal outlier detection method (Duncan et al., 2010). If a match 

is considered an outlier, that element in the pairing matrix is set to zero and a different element 

will become the maximum value for that row and column. When the pairing matrix ceases to 

change, this loop ends and the particle removal loop continues. The outer particle removal loop 

ends when no more matches are made and validated. A flow chart of this process is shown in 

Figure 2. 

 

Figure 2. Matching algorithm flow chart. 
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3.2 12BCOMPUTATION TIME 

An experimental image may contain thousands of particle images, and the effort of 

locating each one, performing a matching method, validating matches, and any other necessary 

steps can become computationally expensive. In the interest of simplifying the matching process 

and so reducing the computation time, images are broken into smaller overlapping sub-windows 

and particle matching performed on each separately. It was found that doing this greatly reduced 

the computational effort while maintaining accuracy. A Dell Precision PWS490 Intel® Xeon® 

CPU E5345 @2.33GHz with 16.00GB of RAM was used to process a 512 x 512 image using 

various sizes of sub-window. The number of matches made in each case is recorded in Table 1, 

where it can be seen that using smaller windows has little to no effect on the number of matches 

being found. Similarly, images with different particle image densities (defined as the number of 

particles per image area in square pixels) were processed using different sub-window sizes and 

the computation time is recorded in Figure 3. At the highest density (0.06), the computation time 

is reduced from 14 hours to 14 minutes, and as seen in Table 1, this came at the cost of only 12 

fewer matches out of more than 15000. 

 

 

 

 

Table 1: Effect on PTV results from breaking 512x512 images with different particle image densities into 

overlapping windows 

Window Size  64x64 128x128 256x256 512x512 
Total No. of 

Particles 

Matches (0.01 

density) 
2592 2592 2592 2592 2611 

Matches (0.03) 7828 7828 7829 7829 7879 

Matches (0.06) 15384 15395 15397 15396 15512 
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Figure 3. Computation time as a function of sub-window size and particle image density (0.01 – 0.06). 

These losses are caused by the matching method’s sensitivity to unmatchable particles 

which cross the edges of an image or sub-window. To minimize this source of error, it is 

recommended that the overlapped region between windows be at least twice as large as the 

expected displacement of particles (e.g. if a 10 pixel displacement is expected, 64 x 64 windows 

with 50% overlap will have an overlapped region of 32 pixels, which is sufficient to minimize 

this source of error). Results recorded in this paper typically come from PTV runs using 64 x 64 

or 128 x 128 sub-windows with 50% overlap. 

Chapter 4. 3BEXPERIMENTAL RESULTS  

4.1 GENERATION OF SYNTHETIC IMAGES 

The particle matching algorithm is now tested using synthetic images where the analytic 

flow and particle locations are known. Synthetic particle images are generated using four 
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parameters: peak intensity Io, representative radius, dr, and peak location (xc,yc).Their shape is 

Gaussian (Raffel et al., 1998), typically described by 

 
 

(6) 

A top hat light sheet intensity profile is assumed in most images; that is, Io is constant throughout 

a synthetic image. Peak locations are randomly generated in the first image and then the set of 

peak locations in the second image is found using the analytic flow field. Images are generated 

by summing the intensities of all particle images which exist at each pixel. Synthetic flows are 

2D and so it is assumed that there is no intensity variation between the first and second image. 

 The number of particles per image area, or particle image density, varies from 0.01 to 

0.06. At high particle image densities, it is possible that the large number of particles could 

interact with and change the flow characteristics. In a typical particle velocimetry experiment 

with 0.06 particle image density, a laser sheet thickness of 1mm, tracer particle diameters of 10 

µm, and an image area of 10000 mm
2
, the volume fraction, Φp, of particles is 2.09x10

-7
. 

Elghobashi (1994) shows that the effect on turbulence at these conditions is negligible, and so 

there are no two phase flow effects. Therefore the synthetic images used in the following 

experiment are acceptable representations of an actual flow, even with high particle image 

densities. 

 

4.2 14VB-PTV RESULTS FROM A MOVING WALL FLOW (STOKES’ FIRST PROBLEM) 

The matching algorithm is tested using a moving wall flow (Stokes’ first problem). 

Images dimensions are 512 x 512 pixels. The VB-PTV method is guided with results from a 

correlation method (PIV) which uses window-shifting and multi-passes which typically results in 

displacement data on a uniform grid with nodes separated by 8 pixels. 
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 Two measures of performance are adopted from Ruhnau (2005): the match yield and 

reliability, given as percentages. Match yield (EY) is defined as the number of correct matches 

made (n) over the total number of possible matches (v). Reliability (ER) is defined as n divided 

by the total number of matches made (d). That is, match yield gives a measure of the algorithm’s 

ability to make a correct match when presented with a pair of particle locations, and reliability 

gives a measure of the accuracy of those matches. These measures of performance can be 

expressed in the following way: 

  (7) 

  (8) 

A match is considered “correct” if it falls within a 1 pixel tolerance (EPTV: Mikheev and 

Zubtsov (2008), NRX: Ohmi and Li (2000), VAR: Ruhnau et al (2005)). A tighter 0.5 pixel 

tolerance is also included to further quantify the performance of the VB-PTV algorithm. Particle 

yield is changed subtly from the definition above and defined as the number of matches made 

over the number of particles within the image. Finally, the root mean square (RMS) error 

recorded in the following results measures the error between the found particle displacements 

and the true displacements particles should experience, as given by the analytic flow field.  

 Synthetic images are generated using the analytic flow field from Stokes’ first problem 

with a velocity profile described as: 

 
 (9) 

Here, U=10, = 5, and t=200. Parameter t determines the sharpness of the velocity gradient 

Particle image density is 0.03 and particle image diameters are 4 pixels. 
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 Results from two experiments are shown in Table 2. The first experiment used the exact 

known locations of particles in the matching process. That is, the particle location identification 

step described in section 2.2 was skipped. In the second experiment particle locations were 

identified and then these coordinates fed into the matching algorithm. 

It can be seen that the matching algorithm can achieve great accuracy when given 

accurate particle location information, even achieving errors as low as machine precision (10
-16

 

in Matlab
®
). When particle locations are extracted with the particle location algorithm, errors are 

introduced and the RMSE value rises to 0.12 pixels while the reliability of matches drops to 

99.6% and 98.9% for 1 px and 0.5 px tolerances, respectively. A scatter plot of the VB-PTV 

results from the moving wall flow is shown in Figure 4. The majority of data points have 

negligible error, and so they appear as a solid black line. The analytic velocity profile is 

superimposed on this scattered data as a dashed white line. Additionally, the scattered PTV data 

is fitted to the known solution of a moving wall flow, where parameters U, μ, and t are allowed 

to vary to minimize the sum of the squared error between the fit and the scattered data. The 

resulting parameters from this curve fit are U=9.99, μ=5.06, and t=196.91. The R
2
 value for the 

fitted curve is 1.000 and the average error of the three parameters is 0.93% when compared with 

the exact parameters of U=10, = 5, and t=200. Naturally, the fitted curve is very accurate in 

part because the exact solution is known and used as a guide to the curve fitting problem, but this 

is meant to give one more quantifiable measure of the accuracy of the matching method.  
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 Figure 4. PTV velocity profile for moving wall flow compared with analytic flow profile which is shown 

as a dashed white line superimposed on the scattered PTV data. 

4.3 15BERRORS DUE TO GRADIENTS, LARGE DISPLACEMENTS, AND PIV 

A number of experiments are performed to describe the current matching algorithm’s 

performance in flows with high gradients, large displacements, and the impact of PIV guidance 

on the VB-PTV results. As mentioned earlier, PIV methods underestimate flow gradients 

(Scarano 2003) because they correlate regions of the flow in which particles with larger 

Table 2: PTV results using exact particle locations and results from particle finding algorithm. Particle image 

density 0.03 

 
Particles 

Found 

Matches 

Found 

Match 

Yield with 1 

Px Tolerance 

Reliability 

with 1  Px 

Tolerance 

Reliability 

with 0.5 

Tolerance 

RMSE 

(pixels) 

Known particle 

locations 
- 3777 99.8% 100% 100% 10

-16 

Unknown locations 2865 2820 98.1% 99.6% 98.9% 0.119 
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displacements will leave the interrogation window at a higher rate than those with smaller 

displacements. A generic PTV method will not suffer from this biasing since it examines 

individual particles. The current method is a hybrid of PIV and PTV, using correlation results to 

estimate a local characteristic displacement, therefore we wish to learn whether the advantages of 

PTV are lost because of the weaknesses of PIV. To isolate the response of the VB-PTV 

algorithm to gradients, a new synthetic flow is introduced: simple 1D uniform shearing flow. 

These shearing regions are “capped” once the flow displacement reaches a maximum value, and 

since it was found that the performance of the VB-PTV algorithm was affected by the maximum 

displacements in the gradient region, two cases are presented; one flow which shears until the 

displacement reaches ±7 pixels and one which is capped at ±25 pixel displacements. The particle 

image density is 0.01. These velocity profiles are shown in Figure 5 for flow with a gradient of 

0.5 px/px. 

 

Figure 5. Uniform shearing velocity profile (gradient = 0.5) with velocities capped at ±25 px 
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A series of these images are processed using the current VB-PTV method with PIV 

guidance. In another test, the PIV guidance is also replaced with perfect guidance; that is, the 

characteristic distance σ is not interpolated from PIV results but is calculated based on a 

particle’s location within the flow field. VB-PTV results from the region of shearing flow are 

shown in Figure 6. RMS error is shown in  Figure 6a and the match yield and reliability at various 

gradient values are shown in 6b. 

 

Figure 6 a) RMS Error, and b) percent yield and reliability vs. flow gradient for uniform shearing flow. 

Flows containing maximum displacements of ±7 and ±25 pixels are compared. The VB-PTV matching is 

guided both by PIV and exact analytic solutions. 

We can draw some conclusions from the behavior shown in the figures above. Errors in 

the VB-PTV results grow with sharper gradients. At modest displacements, the errors rise in a 

roughly linear fashion but remain below 0.3 pixels. Larger displacements result in larger errors, 

especially as gradients increase above 0.3 px/px. In Figure 6b, we see similar behavior. The 

smaller displacements result in higher yield and reliability percentages in high gradient flow. 

Finally, it can be seen that PIV adds error to VB-PTV results and reduces the yield and reliability 

of matches. In these tests, the PIV method employed window-shifting and multipassing routines 

which resulted in 22 x 22 pixel interrogation windows. The error introduced by PIV guidance is 
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small at low gradients, and at the largest gradients adds between 0.1 and 0.2 pixels when 

compared with the VB-PTV results from using perfect guidance. In all cases, and even at high 

gradients, the reliability of matches remained at or above 99%. It should be possible to reduce 

the pixel-based gradients in experimental images by reducing the time step between exposures, 

though this can introduce other sources of error. In chapter 5, a simple modification to the 

current method is introduced as a means of reducing some of the errors seen in Figure 6. 

4.4 EERRORS DUE TO PARTICLE IMAGE DENSITY, DIAMETER, AND INTENSITY 

In addition to the images processed in section 4.2 which used a particle density of 0.03, 

moving wall images with densities of 0.01 and 0.06 were also generated and processed with VB-

PTV. Match yield and reliability are higher at lower densities, and lower as the particle image 

density rises, as seen in Table 3. Errors are also lower at lower particle densities. Though the 

particle location identification algorithm is able to resolve particles which are overlapped by up 

to 50% of their diameters, at high particle image densities there are still many overlapped 

particles and clusters of overlapped particles which cannot be correctly identified and this 

contributes to the drop in performance. This is discussed further in section 4.7. 

 

 

 

 

 

 

 

 

 

Plots of RMS error, match yield, and reliability versus particle image density are shown 

in Figure 7 below in order to describe optimum test conditions for the use of this VB-PTV 

algorithm. Lower particle densities produce less error and improve yield and reliability, while 

Table 3: Effect of particle image density on VB-PTV results 

Particle 

Image 

Density 

Particles 

Found 

Matches 

Found 

Match 

Yield with 1 

Pixel Tolerance 

Reliability 

with 1  Pixel 

Tolerance 

Reliability with 

0.5 Pixels 

Tolerance 

RMSE 

(pixels) 

0.06 4332 4021 91.3% 98.3% 93.4% 0.376 

0.03 2865 2820 98.1% 99.6% 98.9% 0.111 

0.01 1121 1116 99.5% 99.9% 99.8% 0.042 
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higher particle image densities are desirable because they can provide information about the flow 

with higher spatial resolution. An optimum balance appears to be around an image density of 

0.03 to 0.04. Even at high particle image densities, the reliability of matches remains above 98%. 

 

Figure 7. RMS error, match yield and reliability versus particle image density. 

 Particle images with large diameters provide more information to the particle 

identification algorithm which in theory allow for particle centers to be found more accurately. 

However, larger particle diameters also cause particle images to overlap more frequently and 

more severely than when small particle images exist. To find an optimum diameter, a moving 

wall image with 0.03 density is generated using various particle image diameters and processed 

with VB-PTV. Results are shown in Table 4. The reliability of matches when particle image 

diameters are 4 and 5 pixels remain above 95%, but drop to 86% when the diameter is increased 

to 7 pixels. The number of particles found by the algorithm also drops as particle images overlap 

more severely. Reliability of matches within 1 pixel remains above 96% for all cases. 
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 As mentioned earlier, all previous synthetic particle images were generated using a 

constant peak intensity, Io. In order to model experimental images, the peak intensity and particle 

image diameter are allowed to vary randomly. The peak intensities are distributed normally 

about a mean of 175 with a standard deviation of 25, and the diameters are distributed about a 

mean of 4 pixels with a standard deviation of 0.57 pixel. This randomization is performed 

separately for the first and second image in a sequence so that a particle may have a different 

appearance in frame 1 and 2. This randomization has a negative impact on the VB-PTV 

algorithm’s performance and results in an error of 0.26 px, or twice the error for uniform particle 

images with 4 pixel diameters. It can be seen that even with the ability to resolve overlapped 

particle images, it is desirable to have smaller and sparser particle images for the greatest degree 

of accuracy. 

4.5 OTHER SOURCES OF ERROR 

Two types of erroneous matches have been identified which affect particle tracking 

results. One is the result of pairs or triads of particle pairs which cross one another. The matching 

method is not always sensitive enough to choose the correct match out of two or more closely 

located particles, and the outlier detection routine may not identify these vectors as outliers since 

they don’t vary greatly from nearby vectors. Such crossed vectors can account for as many as 

Table 4: Effect of particle image diameter and intensity on VB-PTV results 

Particle diameter 
Particles 

Found 

Matches 

Found 

Match 

Yield with 1 

pixel Tolerance 

Reliability 

with 1 pixel 

Tolerance 

Reliability with 

0.5  pixels 

Tolerance 

RMS 

(pixels 

4 2865 2820 98.1% 99.6% 98.9% 0.112 

5 2689 2585 94.9% 98.8% 95.4% 0.218 

7 2412 2090 83.5% 96.3% 85.9% 0.391 

Random Intensity and 

diameter 
2792 2620 92.6% 98.7% 93.0% 0.259 
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half of all erroneous matches (those with an error greater than 1 pixel). An example is shown in 

Figure 8a. A simple routine is used to identify and either correct or remove crossed vectors. This 

process needs to be used selectively, as it assumes 2D incompressible flow, and may not be 

beneficial when correct matches should cross, as occurs, for example, in the VSJ images or in a 

highly rotating flow. When used on the moving wall or shearing flows it reduces RMS errors by 

16%, on average. 

 A second major source of errors stems from the use of the particle location identification 

algorithm. In high density images, a cluster of overlapped particle images can easily contain four 

or more particles. Small changes in the relative location of these particles from one image to the 

next, due to flow gradients or a rotating flow, for example, can cause fairly different results in 

particle locations. It is even possible that overlapped particles which are identified as one particle 

in one frame can separate and be identified as two particles in another frame. An example of 

error due to particle location is shown in Figure 8b.  

  

Figure 8 a) Example of error due to crossed matches. b) Errors caused by peak finding inaccuracy. Plot 

shows 5 pairs of exact particle peak locations and 3 pairs of peaks resolved by the particle location 

identification algorithm (particle diameter of 4 pixels). 
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4.6 7BVSJ STANDARD IMAGES19B 

The current VB-PTV algorithm is used on standard images provided by the Visualization 

Society of Japan (VSJ). Results shown in this section are from series #301, which is generated 

using 3D large eddy simulation of a 2D planar jet impinging on a wall (Okamoto et al., 2000). 

The images are 256 x 256 pixels in size and contain around 4000 particle pairs with a maximum 

displacement of around 10 pixels. The particle images have a mean diameter of 5 pixels and a 

standard deviation of 1.4 pixels. The results are compared with the work of a number of other 

researchers who have used these images to test particle velocimetry methods (Ohmi and Li, 

2000; Ruhnau et al., 2005; Mikheev and Zubtsov, 2008; Schindler et al., 2010; Brevis et al., 

2011). 

 

 

 

 

 

 

 

 

As with the moving wall tests, this experiment is divided into two parts. In the first, exact 

particle locations are known, and in the second, the particle location algorithm is used to identify 

particle centers before matching is performed. Images 0 and 1 from #301 series are used; they 

contain 4042 particle pairs which can be matched. When particle locations are known, 4039 

matches are made, and 3927 of them are correct, which results in a match yield of 97.15% and a 

Table 5: VB-PTV results  from VSJ 301 images and comparison to previous work  

Algorithm 
Particle 

Location 

Matches 

Possible 

Matches 

found 

Matches 

Correct 

Match 

Yield 
Reliability 

Present Work(Tracking only) Known 4042 4039 3927 97.23% 97.15% 

VAR(Ruhnau et al. 2005) Known 4042 4039 3894 96.34% 96.41% 

EPTV(Mikheev and Zubtsov, 2008) Known 4042 3863 3823 94.58% 98.96% 

ICCRM(Brevis et al.,2011) Known 4042 NA 3980 98.46% NA 

Present Work (Particle ID+ Tracking) Unknown 2095 1846 1761 84.06% 95.40% 

EPTV(Mikheev and Zubtsov, 2008) Unknown 2029 1759 1733 85.41% 98.52% 

VAR(Ruhnau et al. 2005) Unknown NA 872 865 NA 99.20% 

NRX(Ohmi and Li, 2000) Unknown NA 808 788 NA 97.52% 

MF-EPS(Shindler et al., 2011) Unknown NA 1160 1146 NA 98.80% 

2F-EPS(Shindler et al.,2011) Unknown NA 1123 1112 NA 99.00% 
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reliability of 97.23%. When particle locations must be found, 2095 particles are identified, 1846 

matches are made, and of these 1761 are correct within a 1 pixel tolerance, resulting in a match 

yield of 84.06% and a reliability of 95.40%.  

These results are compared with the results available from other researchers in Table 5. 

When particle location are known, the current algorithm gives a match yield only slightly lower 

than the ICCRM algorithm used by Brevis et al. (2011), and the reliability of matches is 

comparable to other existing methods. The two methods with the best performance with known 

particle locations—the current algorithm and the ICCRM method—use cross-correlation results 

to improve tracking performance. In the ICCRM method, cross-correlation is used in a 

preprocessing stage of a relaxation method. For unknown particle locations, the current 

algorithm results in slightly lower yield and reliability percentages than other methods. It is, 

however, able to identify and match more particles than other listed methods, and a simple 

modification to the matching algorithm is introduced in chapter 5 which improves the yield and 

reliability values recorded in Table 5.  

4.7 18BEXPERIMENTAL IMAGES 

The current VB-PTV method is applied to experimental shear layer images. An 

interrogation area of 22 x 22 cm is tested, with flow velocities of 10.5 cm/s and 22.5 cm/s and a 

Reynolds number of 1.2 x 10
4
. The images were 1000 x 1000 pixels. Details of the flow and 

experimental setup are described in Dabiri (2003). A vector field of the matching results is 

shown in Figure 9. The average of the free-stream velocities is subtracted from all vectors to 

better visualize the flow structures. 12429 and 12143 particles were identified in each frame of 

the image pair, and 7777 matches were found, resulting in a match yield of 64.0%. This is 

considerably lower than the yield when synthetic images with random intensities and diameters 
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were processed (see Table 4). The reason for this lies in the large number of rogue particles, or 

particles moving in and out of the laser sheet. To check the effect of rogue particles on the 

matching algorithm’s performance, tests were performed on synthetic images with particles 

randomly removed and added. The degradation in match yield was approximately linearly 

related to the percentage of rogue particles. That is, when 10% of particles were randomized, the 

yield dropped by 10%; when 20% were randomized, the yield dropped by 20%, and so on. A 

visual inspection of the experimental shear images confirmed that around 20-25% of particle 

images in one frame could not be identified in the other frame, thus explaining the reduced 

match yield. 

As an additional check on these results, experimental images were collected from 

uniform flow in a water tunnel with a velocity of 50 cm/s. The area imaged was 29 x 29 mm with 

a magnification of 0.22, and the flow was seeded with 44 micron particles. Few particles were 

observed moving in or out of the image plane. The match yield was 85.2% which is similar to the 

92.6% yield found with synthetic images containing particle images with random diameter and 

intensity in Table 4. This suggests that the low yield in the shear layer images is due in large part 

to rogue particles, and that the current algorithm can be used to process experimental images. 
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Figure 9. Results from experimental images of a shear layer flow with average of free stream velocity 

subtracted. 

Chapter 5. 4BAN IMPROVED METHOD OF PARTICLE TRACKING 

It was seen that the current tracking algorithm’s performance suffered in high 

displacement, high gradient flows. Figure 6 showed that errors increased and match yield and 

reliability percentages dropped as flow gradients increased, and this was more pronounced when 

the flow contained larger displacements. To address this we re-examine the Scott and Longuet-

Higgins (1991) method of constructing a proximity matrix. The formula for the proximity matrix 

is repeated below, 

  (10) 

This matching method was designed for computer vision, and might be used to match 

features in stereo images. Its strength lay in its simplicity and it required only one user defined 

parameter—the characteristic distance σ—which itself did not require a great deal of precision. 



 

 

30 

Results were roughly the same so long as σ was representative of the mean displacement 

between features, and preferably an overestimate of this value. In the particle tracking results 

recorded in chapter 4, σ was adapted to each target particle and was twice as large as the 

displacement found by interpolating the PIV velocity field to a particle’s location. Scott and 

Longuet-Higgins explain that features in successive images will often be related by a 

transformation which is affine or nearly so. They show that when one set of points is mapped 

into another by a translation, expansion, or shear deformation the 1:1 mapping minimizes the 

sum of squares of distances between the sets of points. And they argue that by choosing a 

sufficiently large σ, their matching method possesses this same property and thus is useful in 

discerning the transformations which exist between feature sets in many and varied image pairs. 

Here, a more graphical view is taken of the matching method, specifically in the construction of 

the proximity matrix. The process of performing singular value decomposition on this matrix to 

obtain a pairing matrix Pij is unchanged and so the properties which allow for robust matching 

remain. 

 

5.1 20BMODIFYING THE PROXIMITY MATRIX 

We can imagine a Gaussian “proximity surface” existing around each target particle j in 

frame 1, described by Equation 10, which can be thought of as a measure of a location’s 

proximity to a target particle. This surface reaches a maximum of 1 when rij is zero and decreases 

monotonically as rij increases. A candidate particle i in frame two will have some value 

depending on where it falls on this proximity surface. This value is element Gij. Since the 

proximity matrix is constructed using the principle of proximity, candidate particles which are 

closer to the target particle (that is, they experienced a smaller displacement) will have a larger 

element Gij. If the proximity matrix were used on its own for matching, it would result in a 
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nearest-neighbor method. The parameter σ controls the rate of decay or the breadth of this 

Gaussian surface. When σ is small, the surface is small and only candidate particles near the 

target particle will have large values in the pairing matrix G. When σ is large, the Gaussian 

surface widens and more candidate particles will have large values. The process of creating a 

pairing matrix P permits the correct match to be found in most cases because matching is 

performed on all particles at once and coherent particle motion is preferred to simply matching a 

target particle with its nearest candidate. However, reliance on this formulation of the proximity 

matrix introduces unnecessary noise to the matching process, especially for large displacements. 

Two simple modifications are introduced here. 

 Because an estimate of local displacements can be obtained from PIV, a more selective 

proximity matrix can be constructed. In the first modification, the proximity matrix is created 

using the following formula: 

  (11) 

Instead of favoring candidate particles with zero displacement ( 0ijr  ), the new proximity 

surface reaches a maximum when rij is equal to the displacement predicted by PIV, rPIV, resulting 

in a ring-like proximity surface. In the second modification, the expected direction as well as 

displacement is taken into account.  

 

 
(12) 

The terms dyij and dxij are the pixel distances between target particle i and candidate 

particle j. The dyPIV and dxPIV terms represent the x and y displacements of target particle i 

predicted by PIV. The second exponential term in Equation 12 provides a comparison between a 

candidate particle’s angle in relation to the target particle and the PIV prediction of the angle of a 
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target particle’s displacement. The resulting proximity surface contains a peak in each quadrant, 

one of which will lie at the expected location of the target particle’s matching candidate particle. 

The scaling parameters ε and φ are discussed later. For comparison, proximity surfaces for a 

predicted displacement of 7 pixels at 45 degrees are shown in Figures 10, 11, and 12.  

 

Figure 10. Proximity surface about a target particle using Scott’s and Longuet-Higgins’ proximity matrix 
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Figure 11. Proximity surface about a target particle using first modified proximity matrix 

formula 

 

Figure 12. Proximity surface about a target particle using second modified proximity matrix 

formula 
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It can be seen in the above figures that the original method can result in many candidate 

particles with large values in the proximity matrix, while the modified methods are far more 

selective and will result in a more sparse proximity matrix. This becomes more pronounced with 

larger predicted displacements. Like the original Gaussian proximity surface, the ring-like shape 

of the first modified method and the peaks in the second method can be widened or narrowed by 

controlling the parameters ε and φ. In the following results, ε was set to a value of 4. This was 

found to be the optimum value for high gradient flows, and performed acceptably well in all 

other experimental flows. If this parameter were made to be adaptive, it might be related to the 

estimated error between the predicted displacement, as found by PIV, and the true particle 

displacement. The parameter φ is set to unity. The proximity matrix created using Equation 11 or 

12 is still combined with the correlation term described in section 2.1 before it undergoes 

singular value decomposition. 

5.2 21BRESULTS OF MODIFIED VB-PTV PERFORMED ON SYNTHETIC IMAGES 

These modified methods were used to process many of the same synthetic flows described in 

section 2.1. Since the modifications were initially produced in response to errors seen in VB-

PTV performed on high gradient flow, results from uniform shearing flows (see section 4.3) are 

presented first. 

 It can be seen in Figure 13 that the modifications have little effect on RMS error, match 

yield, and reliability when compared with the original matching algorithm’s performance on 

shearing flow with displacements of up to ±7 pixels. The improvement can be seen by looking at 

Figure 14, which shows results from shearing flows with displacements of up to ±25 pixels. Both 

modifications lower error and increase yield and reliability, and the second modification 

provides the most improvement. As much as 60% of the RMS error is removed by the second 
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modification, and match yield is increased by up to 24%. Even the already high reliability 

percentage is improved with these modifications, only dropping to 99.6% at a gradient of 0.5 

px/px.  

 

Figure 13 a) RMS error versus flow gradient with a maximum velocity of 7 pixels, and b) match yield and 

reliability percentages versus gradient 

 

Figure 14 a) RMS error versus flow gradient with a maximum velocity of 25 pixels, and b) match yield 

and reliability percentages versus gradient 

The second modification results in an error curve which resembles that for the small 

displacement shearing flow, with a maximum RMS error of roughly 0.3 px at high gradient 

values. It would therefore seem that this modification reduces the error induced by large 
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displacements in shearing flow, though not the errors induced by high gradients themselves. 

Given these improvements, the modified matching methods are applied to other synthetic images 

with more complicated flows. 

Synthetic images generated using a moving wall flow, or Stokes’ first problem, are 

processed using the modified matching. The flow parameters are U=10, = 5, and t=75 and flow 

displacements vary from 0 to 10 with maximum gradients of 0.5 px/px. Both the shearing flow 

and moving wall flow are unidirectional, so to fully utilize the directional guidance provided by 

the second modification, synthetic images are generated using a 2-dimensional Oseen vortex 

flow described as 

 
 (13) 

Radial velocity is zero, Γ=5000π, γ=5000, r is the radial distance from the center of the vortex. 

Displacements in this flow vary from 0 to 22 pixels and gradients  u r  vary from near zero 

to 0.5 px/px. The RMS errors from these flows are presented as bar charts in Figures 15 and 16. 

Three cases are shown for each matching method: one with the typical PIV guidance and known 

particle locations; one with known locations and perfect guidance using the analytic flow 

solutions to guide matching; and one with unknown particle locations and regular PIV guidance. 

The match yield and reliability percentages were generally unchanged or slightly improved by 

the modifications. 
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Figure 15. RMS error of VB-PTV results for a moving wall flow 

  
 

Figure 16. RMS error of VB-PTV results for a 2D Oseen vortex flow 

 

The results show that for the moving wall flow, the modifications to matching provide no 

benefit or may result in slightly higher errors. The moving wall flow contains only a small region 

with high gradients, and nowhere do displacements above 10 pixels exist. The majority of 
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particle locations change either not at all or negligibly between the image frames. For this reason 

it would not be expected that there would be a large difference between the original method, 

which favors a close match to a distant one, and the modified methods. However, a dramatic 

improvement in performance can be seen in the Oseen vortex flow, which contains widely 

varying gradients, displacements, and flow directions and so could be considered a better gauge 

of VB-PTV performance on a generic flow. 

 The modifications to the matching algorithm reduce the RMS error for an Oseen vortex 

flow by as much as 80% in the idealized case of perfect guidance, by more than 40% when PIV 

guidance is used with known particle locations, and by roughly 33% when particle locations 

must be identified. The final test is performed on the synthetic images provided by the 

Visualization Society of Japan (see section 4.5). The images are reprocessed and the results of 

tests with known particle locations are shown in Table 6 compared with the original method and 

the results from other existing PTV methods. Both modifications result in improved performance 

when compared with the original matching method. Both the match yield and reliability are 

improved to over 99%. 

 

 

 

 

 

B

ased on the results seen above these modifications are able to improve the matching results, in 

terms of reduced error and improved match yield and reliability, for various flow types. It is not 

Table 6.Comparison of modified matching with original  results and existing PTV techniques 

Algorithm 
Matches 

Possible 

Matches 

found 

Matches 

Correct 
Match Yield Reliability 

Present Work (Original method) 4042 4039 3927 97.23% 97.15% 

(First modification) 4042 4038 4002 99.01% 99.12% 

(Second modification) 4042 4032 4014 99.31% 99.55% 

VAR(Ruhnau et al. 2005) 4042 4039 3894 96.34% 96.41% 

EPTV(Mikheev and Zubtsov, 2008) 4042 3863 3823 94.58% 98.96% 

ICCRM(Brevis et al.,2011) 4042 NA 3980 98.46% NA 
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clear from these results whether the first or second modification will result in greater 

improvement in a general application, but it is recommended that one of these modifications to 

the matching algorithm be used in any future applications of VB-PTV. 

Chapter 6. 5BPOST-PROCESSING OF PTV DATA 

In this chapter, a natural neighbor-based interpolation method is described and tested 

using synthetic PTV data.  These results are compared with three other commonly used 

techniques for interpolation: one grid-based and two non-grid-based methods. Additionally, a 

smoothing technique from computer graphics is applied to artificial noisy PTV data. Errors in 

strain rate estimates from all interpolation methods are compared when using perfect data, 

unsmoothed noisy data, and smoothed data. The interpolation methods are also compared using 

their computation time and ability to resolve small flow features. Recommendations on the 

suitability of this natural neighbor-based interpolation are made.  

6.1 METHODS OF INTERPOLATION 

As discussed in section 1.2, velocity measurements are typically a means of obtaining 

other flow information, like vorticity or strain rates. A key advantage of PIV over PTV in this 

respect is that velocity data is found on a regularly spaced grid and so calculating derivatives can 

be as simple as implementing a central differencing scheme. Since PTV tracks individual, 

randomly located particles, the velocity field is scattered and finding its derivatives becomes 

more difficult. Here, four methods of interpolation are briefly described: a new natural neighbor-

based method of interpolation, and the established methods of adaptive Gaussian windows, radial 

basis functions (RBF) and kriging interpolation.  

 



 

 

40 

6.1.1 Natural Neighbor-Based  Interpolation 

Scattered data interpolation is hardly exclusive to particle velocimetry applications, and 

methods have been developed for use in fields as varied as cosmology (Bernardeau and van de 

Weygaert, 1996; Schaap and van de Weygaert, 2000) and geostatistics (Journel and Huijbregts, 

1978). We can arrive at another method for deriving differential quantities by manipulating a 

technique developed in the field of structural modeling. The Natural Neighbor Galerkin method, 

or natural element method (NEM), is a technique which can be used to solve elliptic PDEs 

(Sukumar, 2001), and has the desirable trait of being meshless, meaning that it does not require a 

structured grid of interpolation nodes (Gonzalez et al., 2004). Natural neighbor interpolation is 

based on a Voronoi tessellation of scattered nodes. A field of randomly located nodes can be 

divided into Voronoi cells, which are related to Delaunay triangles, but can simply be thought of 

as the region around a node point which is closer to that point than to any other node. Figure 17 

displays a Voronoi cell about a point p. Natural neighbors can be defined as the set of nodes 

around a point of interest whose Voronoi cells share a face with that point of interest’s cell. In 

Figure 17, solid lines connect point p with its natural neighbors.  

Two natural neighbor-based interpolation methods were developed: Sibsonian (Sibson 

1980) and non-Sibsonian, or Laplacian, interpolation (Christ et al., 1982; Belikov et al., 1997; 

Hiyoshi and Sugihara, 1999). At the heart of the interpolation method is a weighting term which 

determines the amount of influence a neighbor has on the interpolated value at the point of 

interest. The Sibson interpolant uses an area-based weighting term whose details can be found in 

the original paper or Sukumar (2001). The non-Sibsonian or Laplace interpolant (hereafter 

referred to as the Laplace interpolant, per Hiyoshi and Sugihara, 1999) is weighted with 

distances between neighbors and Voronoi cell edges, rather than areas, and so has the advantage 
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of being more computationally efficient (Sukumar 2001). A brief outline of this method of 

interpolation in 2 dimensions is provided below. 

 

 

Figure 17. Voronoi cell and natural neighbors of point p (Duncan 2009). 

First, a naming convention is established using the diagram in Figure 17. The distance 

between point p and a natural neighbor is hi, for i=1,2…n where n is the number of natural 

neighbors of point p. The Voronoi cell edge which is shared by point p and natural neighbor i is 

named si. The ratio of these distances will form a weighting term used in the interpolation. If we 

wish to interpolate a function ψ to point p, we use the following formula: 

 
 (14) 

Here φ is the weighting of each natural neighbor based on the ratio of s and h: 
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 (15) 

 
 (16) 

Combining these formulae gives us the interpolation of a function ψ in terms of s and h. 

It can be seen that this interpolation method requires only simple algebraic calculations: 

 

 (17) 

This method of interpolation was adapted for use in estimating differential terms within a 

PTV velocity field by Duncan (2009). The desired gradient function ψ is unknown at each 

velocity data point, but it can be estimated by also approximating the gradient (in this example,

u
y




) at each natural neighbor using the following formula: 

 
 (18) 

In-house work at the University of Washington (Duncan 2009) suggested that this 

method of interpolation could give very accurate results when used to calculate strain rate in 

various synthetic flows, outperforming interpolation performed using a radial-basis function 

(RBF). The RBF method was used to interpolate scattered velocity data to nodes spaced at twice 

the mean particle spacing of the velocity datasets and gradients were calculated using a central 

differencing scheme. (This is a less than ideal method of using RBF-based interpolation, as will 

be seen later). However when just 1% noise was added to the velocity data, the RMS error of 

strain rate estimates increased by a factor of 22 for the natural neighbor-based interpolation. If 
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the natural neighbor method was a viable option for interpolation of scattered data, this 

sensitivity to noise would need to be addressed. Though “many smoothing operations” (Duncan 

2009) were used to remove noise from the velocity field, errors in strain rate estimates remained 

high. It was not clear what smoothing routines were used to clean the velocity fields. 

6.1.2 Adaptive Gaussian Window 

The three methods of interpolation selected for comparison to the natural neighbor-based 

(NN) method are the common adaptive Gaussian window method, RBF interpolation, and 

kriging interpolation. Each is described briefly here.  

The adaptive Gaussian window (AGW) technique uses a Gaussian weighting function to 

interpolate velocity data to a series of regularly spaced nodes. Interpolating to determine a 

function F(x,y) using some number k scattered data points, fk, is accomplished using the 

following formulae (Spedding and Rignot, 1993): 

 
 

(19) 

 

 

(20) 

The Gaussian weighting function wk is a function of the distance, rk, between the 

interpolation node and velocity data, and the scaling factor σ is set to 1.24 mps , where mps is 

mean particle spacing, 1
p

, and where p is the particle image density, or number of particle 

images per square pixel. The interpolation node spacing was set to be1.5 mps . While this 

method can be used globally, the inverse distance weighting means that velocity data points far 

from an interpolation node have virtually no influence on the interpolated value. For this reason 



 

 

44 

and to improve computational efficiency, the data field is broken into interpolation windows 

around each interpolation node and so practically acts as a local interpolation. 

6.1.3 Radial Basis Function (RBF) 

The radial basis function method of interpolation examines the global data field and finds 

a function which matches known data points. The function is assumed to have the form 

(Chirokov, 2006) 

 
 (21) 

Here n is the number of data points, which are located at xi. The radial based function, φ, can 

take various forms. Once the coefficients have been estimated, the function can be sampled at 

any point. In the current work a cubic basis function is used which has the form 

  (22) 

The estimated function is sampled at every pixel location and the gradients calculated using these 

interpolated velocity values. Many more details on RBFs can be found in, for example, Buhmann 

(2003), and details on the specific RBF Matlab
®
 toolbox used in this work can be found in 

Chirokov (2006). 

6.1.4 Kriging Interpolation 

The final method of interpolation used for comparison with the NN technique is kriging 

interpolation. The focus of this chapter is the NN interpolation method’s performance, and since 

even a brief treatment of kriging interpolation quickly becomes a long list of equations and 

variable definitions, interested readers are referred to Gunes et al., (2006); Sacks et al., (1989); 

and Lophaven et al., (2002), which describe the kriging method used in this section. Like the RBF 
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method, a model function is created which estimates the data surface and can be sampled at any 

location within the data field and gradients calculated from these sampled points. The DACE 

toolbox for Matlab
®
 is employed, using a quadratic regression model based on second order 

polynomials, and a spherical correlation model. Kriging has been shown to be a useful method of 

interpolation, though it does require manipulation of several potentially large matrices and so can 

become computationally expensive. 

6.2 24BSYNTHETIC FLOWS USED FOR TESTING 

In Duncan (2009), six synthetic flows were generated and tested using NN and RBF 

interpolation: Uniform flow, shearing flow, solid body rotation, 1-D Oseen flow, flow with a 

non-smooth strain rate profile, and a series of 2-D vortices. Here the uniform flow is dropped as 

it revealed little about the relative strengths of the interpolation methods. The flow profiles are 

briefly described below. 

 The uniform strain rate flow has a gradient of 0.05u
y

 


. The solid body rotation 

(SBR) flow has no strain rate but a uniform velocity of 10° in the angular direction. The 1D 

Oseen vortex is described by 

 
 (23) 

where B=2 and Γ=100. The non-smooth strain rate velocity field is designed with the intention 

of demonstrating the ability of the NN method to recreate even sharp changes in gradients 

because it only examines local velocity information. It is described as  
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 (24) 

Here Δ is the step width, or can be thought of as the width of the region within which the velocity 

increases from 0 to 2. In most examples Δ is 18 pixels, unless otherwise stated. The 2D vortices 

are described with the following: 

  (25) 

  (26) 

The strain rate profiles of these last three flows are shown below in Figure 18.  

 

Figure 18 Strain rate profiles for a) 1D Oseen flow, b) non-smooth strain rate flow and c) 2D vortices 

6.3 25BINTERPOLATION RESULTS 

Each of the four interpolation methods is used to estimate the strain rate, given as  

 
 (27) 

All synthetic data sets consisted of 300 data points within a 100 x 100 pixel region. The RMS 

error between the found and exact strain rate values are averaged over 100 data sets. Results 

from velocity fields with no noise are recorded in Table 7. Cells shaded gray indicate the 

interpolation scheme which provided the best performance for a given synthetic flow. In addition 
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to the averaged RMS errors recorded in Table 7, the standard deviation of the RMS errors was 

calculated for each test, and this value was considered the uncertainty interval of that dataset. 

When the uncertainty interval of the method with the lowest RMS error overlapped with that of 

another interpolation scheme for a given flow type, that interpolation scheme was considered to 

have given an estimate of the strain rate in a flow whose error was statistically similar to the 

method with the best performance. The values in these cells are in a bold underlined font. 

Table 7.RMS error of strain rate from various interpolation schemes on synthetic velocity 

fields without noise 

Flow Description Natural Neighbors RBF Kriging AGW 

Uniform strain 2.09E-03 
U
1.42E-15 4.32E-16 1.38E-02 

Solid body 

rotation 
U
2.51E-13 

U
4.79E-15 1.40E-15 5.58E-02 

1D Oseen 4.96E-02 8.11E-02 1.96E-02 1.14E-01 

Non-smooth strain 7.37E-03 
U
5.26E-03 3.86E-03 2.30E-02 

2D vortices 3.41E-02 1.32E-02 
U
1.78E-02 4.69E-02 

 

It can be seen from these results that RBF and kriging interpolations result in the lowest 

errors in strain rate estimates. The AGW method is never as accurate as the non-grid-based 

interpolations. The NN interpolation only performed as well as RBF and kriging in solid body 

rotation flow. This would seem to contradict the findings in Duncan (2009) in which NN 

interpolation outperformed RBF interpolation with noiseless data. However, as was suggested 

earlier, the RBF interpolation was used like a grid-based interpolation method, with a widely 

spaced grid of sampling nodes. Since RBF (and kriging) result in a continuous function 

throughout the data field, it is possible to sample them at every location, greatly reducing the 
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gradient estimate errors. To help visualize the comparative performance of these interpolations, 

example results from the non-smooth strain rate flow are shown in Figure 19. Since the flow is 

unchanging in the x-direction, the strain rate estimates are collapsed onto one plane for ease of 

viewing.   

 

Figure 19. Strain rate estimates of the non-smooth strain rate flow, clockwise from top left  a) natural 

neighbor interpolation, b) RBF, c) adaptive Gaussian window, d) kriging  

It can be seen in these examples that, while NN interpolation is able to follow the sharp 

jump in strain rate without too much smoothing, it does suffer from outliers, even with perfect 

data. The RBF interpolation experiences some overshoot at the jump in strain rate, while kriging 

follows the strain rate behavior quite well. The AGW method smooths the peak of the strain rate 

feature due to its grid-based interpolation scheme which averages a group of velocity data points. 
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In spite of this performance, a better understanding of NN interpolation’s performance 

was desired and so these interpolations were repeated on noisy velocity data sets. PTV error was 

simulated by recreating particle image location errors. A real PTV image could also include 

spurious vectors which were not detected by outlier detection schemes, but this source of error 

was not modeled. Data sets were simulated as a series of matched particle coordinates from 

which displacements could be calculated. Random position error was added to these particle 

locations by simply shifting the coordinates some distance in a random direction. The mean 

magnitude of this shift was set to 0.2 pixels with a standard deviation of 0.067 pixels (see Figure 

7.13 in Adrian and Westerweel, 2011). The results from interpolating these noisy data fields are 

shown in Table 8. 

Table 8. RMS error of strain rate from various interpolation schemes on synthetic velocity fields 

with noise added 

Flow Description NN RBF Kriging AGW 

Uniform strain 4.21E-01 1.14E-01 
U
3.19E-02 2.82E-02 

Solid body rotation 4.01E-01 1.26E-01 3.07E-02 5.87E-02 

1D Oseen 4.57E-01 
U
1.48E-01 2.19E-01 1.17E-01 

Non-smooth strain 4.44E-01 
U
1.26E-01 7.58E-02 3.46E-02 

2D vortices 3.95E-01 
U
1.31E-01 

U
7.38E-02 5.54E-02 

 

The best performance now comes from the AGW interpolation, where its inherent 

smoothing tendencies allow it to be less affected by the random noise. Data sets with mean noise 

magnitudes of 0.1 and 0.3 pixels were also processed. More noise resulted in overall higher 

errors, and less noise in less error, but the relative performance of the interpolation methods 
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remained the same. Plots of the results from a non-smooth strain rate profile are once again 

informative and shown in Figure 20. 

 

Figure 20. Strain rate estimates of the non-smooth strain rate flow with noise, clockwise from top left a) 

natural neighbor interpolation, b) RBF, c) adaptive Gaussian window, d) kriging 

 This random noise causes the strain feature to be essentially lost in the NN and kriging 

methods. RBF somewhat follows the strain profile, but it also displays a great sensitivity to 

noise. The AGW method appears to follow the strain profile approximately as well as it did with 

perfect data. Some way of addressing the severe drop in performance must be devised in order to 

use any of the non-grid based methods with experimental data.  

 Towards that end, a technique of smoothing randomly located data is adopted from 

computer graphics which achieves local surface area minimization. It has the desirable traits of 
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1) being a local smoothing which preserves actual feature edges, if used properly, and 2) of being 

simple to implement with multivariate data, such as two velocity components existing on a 2-

manifold. Details of the method can be found in Desbrun et al., (1999 and 2000). After random 

noise was added to the synthetic data sets, it was removed using this feature-preserving 

denoising technique, and the datasets reprocessed. Denoising was not used in conjunction with 

the AGW method, since that grid-based technique already results in smoothing of noise, and it 

was found that additional denoising only increased RMS error. The results are shown in Table 9. 

Table 9. RMS error of strain rate from various interpolation schemes on synthetic velocity fields with 

a denoising technique applied 

Flow Description NN RBF Kriging AGW 

Uniform strain 8.16E-02 
U
3.10E-02 2.05E-02 2.85E-02 

Solid body rotation 7.88E-02 3.09E-02 2.13E-02 5.89E-02 

1D Oseen 
U
1.69E-01 

U
1.28E-01 

U
1.29E-01 1.18E-01 

Non-smooth strain 8.58E-02 3.18E-02 
U
3.60E-02 

U
3.47E-02 

2D vortices 9.83E-02 5.05E-02 5.78E-02 
U
5.54E-02 

 

 Application of this denoising scheme once again results in the best performance coming 

from RBF and kriging interpolations. And while NN interpolation still lags behind, this 

smoothing resulted in errors that are generally an order of magnitude smaller than those seen in 

Table 7, and of the same order of magnitude as the RBF and kriging methods. Once again the 

results from a non-smooth strain rate dataset are displayed in Figure 21. 
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Figure 21. Strain rate estimates of the non-smooth strain rate flow with denoising, clockwise from top left 

a) natural neighbor interpolation, b) RBF, c) adaptive Gaussian window, d) kriging 

It can be seen that the non-grid interpolation methods benefitted greatly from the 

denoising, and the underlying strain rate profile is better reflected in the results. The NN method 

still suffers from large outliers, even with an outlier removal scheme applied. Though it 

benefitted the most from the noise removal, NN interpolation consistently underperformed the 

RBF and kriging techniques. The final metrics of performance were computation time and ability 

to resolve small flow features. The results of time trials are presented in Figure 22. The number 

of data points in a 100 x 100 area was increased and the time to perform the interpolation 

recorded. Results are from tests performed on a Dell Precision PWS490 Intel® Xeon® CPU 

E5345 @2.33GHz with 16.00GB of RAM. 
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Figure 22. Computation time of various interpolation schemes 

The fastest methods of interpolation from these results are RBF and AGW, with kriging 

being the slowest. In fact, above 1000 data points, the kriging method required more memory 

than was available to it on the experimental computer. The code which executes the NN 

interpolation was not specifically designed for efficiency, and is far less mature than the other 

techniques, and so could very conceivably be made to perform faster. 

Finally, the interpolation methods are compared based on 

their ability to accurately resolve a small feature in a flow field. For 

this experiment, the non-smooth strain rate flow profile is used 

without noise and the parameter Δ is adjusted to control the feature 

size. The RMS error is calculated by examining the strain rate 

values within a region centered on the strain feature and three times 

Figure 23 Interrogation 

area of error calculations. 
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its width (see Figure 23). Results are plotted in Figure 24 against the normalized flow feature 

size,
mps


  , where mps is the mean particle spacing. 

 

Figure 24. RMS error versus normalized feature size on a non-smooth strain rate flow profile. 

It can be seen that features which are more than five times as large as the mean particle 

spacing can be accurately resolved by all four interpolation methods. As the normalized feature 

size is reduced to 4 and below, the grid based AGW method, which has interpolation nodes at 2.5 

times the mean particle spacing, begins to result in higher errors. The non-grid based methods 

experience error divergence when the normalized feature size shrinks below three. The same 

trend appears in NN, RBF and kriging interpolation, and so it seems that the resolution of all 

three interpolation methods is primarily limited by the mean particle spacing. 
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6.4 26BRECOMMENDATIONS ON NATURAL NEIGHBOR INTERPOLATION 

Based on the results seen in section 6.3, it is clear that the current natural neighbor-based 

interpolation method is not competitive with existing interpolation methods when used to 

estimate gradients from scattered PTV data. The technique, though conceptually simple and 

computationally efficient, fails to outperform RBF or kriging interpolation on perfect PTV data. 

It is very sensitive to noise, and though it responds well to smoothing, it still fails to perform as 

well as RBF or kriging interpolation. Additionally, it does not even appear to have an advantage 

over RBF interpolation in terms of spatial resolution, as originally suggested (Duncan 2009). 

Some of this sub-par performance can be traced to the heart of the natural neighbor interpolation 

method. The function being interpolated (flow gradient) is unknown at each data point. In order 

to use the NN interpolation, an estimate of the gradient is made at each natural neighbor using 

something akin to a rudimentary backward differencing scheme (Equation 18), and so from the 

very beginning a great deal of error may be introduced into the NN interpolation, especially 

when the spacing between natural neighbors is large. Additionally, it could prove difficult to 

adapt a NN interpolation method for use in estimating gradients at the edge of a data set, such as 

finding shear stress on a wall, as the method performed poorly on these outer edges. Based on 

the results of this work, it is recommended that interpolation of PTV data be performed using 

either RBF or kriging interpolation, which have the added benefits of being well-established and 

widely used, or else some considerable variations be made to the NN method to make it more 

robust and accurate, such as directly finding the derivative of Equation 14 (Sukumar, 2003). 

Chapter 7. 6BCONCLUSION 

In this thesis, a new particle tracking velocimetry technique was developed and methods 

for post processing of scattered velocity data were considered. While PIV results in a statistical 
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average of the local velocity in a flow, PTV can give the velocities of individual particles. 

Typically PTV has been used with low particle image density flows, since identifying individual 

particles becomes increasingly difficult when particle images overlap. By using a new cascade 

correlation method (Lei et al., 2012) to identify the centroids of overlapped particle images, PTV 

can be used with higher particle image density flows, and thus higher resolution velocity data can 

be obtained. A feature matching technique was adopted from computer vision which relied upon 

the principles of proximity and exclusion. This matching algorithm was guided with PIV results 

and combined with a cross-correlation term which took into account the principle of similarity 

when making matches. Particle matching was performed iteratively on overlapping interrogation 

windows and an outlier detection scheme was used to validate matches. This VB-PTV algorithm 

was tested on synthetic images of a moving wall flow and resulted in match yields of over 98% 

and reliability of matches of more than 99%. When the algorithm was tested on standard 

synthetic images from the Visualization Society of Japan, it identified more particles and made 

more correct matches than existing PTV methods. Tests performed on experimental images 

showed that this VB-PTV technique was suitable for real applications. Sensitivity tests suggested 

that, despite the ability to resolve overlapped particle images, this method still performs best at 

lower particle image densities and smaller particle image diameters. It was seen that match yield 

and reliability were degraded and the error of matches increased in highly straining flows. This 

trend was aggravated by high displacements.  

In an effort to improve this performance, a simple modification to the proximity matrix 

used in the matching process was introduced. Essentially, the principle of proximity was relaxed 

and instead PIV was used to produce a more selective set of candidate particles in the second 

image frame which could be matched to a target particle in the first image frame. Two 



 

 

57 

modifications were proposed: one which relied only on an estimate of the distance to a correct 

match, and one which used both distance and directional estimates from PIV to guide matching. 

These modified matching methods reduced the error in high-displacement (maximum 25 pixels) 

high-shear flow, though they had less of an impact on shearing flow with small displacements 

(maximum 7 pixels). Though the results from reprocessing synthetic moving wall images 

showed little change from the original matching method, due in large part to the low gradients 

and small displacements in the flow, tests performed on a synthetic Oseen vortex flow and the 

standard VSJ images showed that the modifications could reduce errors by as much as 33% in 

images with unknown particle locations, and it improved the match yield and reliability of results 

from the VSJ images by 2 percentage points to over 99% in both cases—the best result when 

compared with other PTV methods. The difference between the performances of each of the two 

modifications was minor, but both showed improvements over the original matching method, 

and so their use was recommended in any future application of the VB-PTV technique. 

Finally, consideration was given to post-processing of scattered PTV data. A method of 

obtaining accurate estimates of derivative properties, such as shear stress or vorticity, was 

desired. A natural neighbor-based method (NN) of derivative estimation was proposed which 

allowed for the direct calculation of flow derivatives at each PTV data point. This method was 

compared with a well-known grid-based adaptive Gaussian window interpolation method, as 

well as two methods which estimate a function which describes the velocity surface—radial 

basis function and kriging interpolation. Tests showed that the NN method consistently resulted 

in higher errors than RBF and kriging, and was highly sensitive to noise. Though it responded 

well to a denoising technique, NN interpolation remained prone to outliers and generally less 

accurate than other interpolation schemes. Additionally, the NN interpolation displayed little or 
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no improvement over the other interpolation methods when compared based on computational 

time and spatial resolution. RBF and kriging interpolation appear to be more useful methods for 

interpolation of scattered data, and they have the advantage of being widely used and well-

developed.  

A collaborative effort to develop a PTV algorithm for use at the University of 

Washington has been successful. This process has been shown to give accurate results in various 

synthetic and experimental applications, methods have been explored for extracting derivative 

information from the scattered data, and this tool is suitable for use in future particle imaging 

applications. 
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